1
|
Zheng Y, Sun J, Luo Z, Li Y, Huang Y. Emerging mechanisms of lipid peroxidation in regulated cell death and its physiological implications. Cell Death Dis 2024; 15:859. [PMID: 39587094 PMCID: PMC11589755 DOI: 10.1038/s41419-024-07244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
Regulated cell death (RCD) refers to the form of cell death that can be regulated by various biomacromolecules. Each cell death modalities have their distinct morphological changes and molecular mechanisms. However, intense evidences suggest that lipid peroxidation can be the common feature that initiates and propagates the cell death. Excessive lipid peroxidation alters the property of membrane and further damage the proteins and nucleic acids, which is implicated in various human pathologies. Here, we firstly review the classical chain process of lipid peroxidation, and further clarify the current understanding of the myriad roles and molecular mechanisms of lipid peroxidation in various RCD types. We also discuss how lipid peroxidation involves in diseases and how such intimate association between lipid peroxidation-driven cell death and diseases can be leveraged to develop rational therapeutic strategies.
Collapse
Affiliation(s)
- Yongxin Zheng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
| | - Junlu Sun
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Zhiting Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China
- State Key Laboratory of Respiratory Diseases, Guangzhou, China
- Guangzhou National Laboratory, Guangzhou, China
| | - Yimin Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
- Guangzhou National Laboratory, Guangzhou, China.
| | - Yongbo Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangzhou Institute of Respiratory Health Guangzhou, Guangzhou, China.
- State Key Laboratory of Respiratory Diseases, Guangzhou, China.
| |
Collapse
|
2
|
Nazeer W, Qamar MU, Rasool N, Taibi M, Salamatullah AM. Synthesis of 2-Ethylhexyl 5-Bromothiophene-2-Carboxylates; Antibacterial Activities against Salmonella Typhi, Validation via Docking Studies, Pharmacokinetics, and Structural Features Determination through DFT. Molecules 2024; 29:3005. [PMID: 38998957 PMCID: PMC11242937 DOI: 10.3390/molecules29133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 07/14/2024] Open
Abstract
A new class of thiophene-based molecules of 5-bromothiophene-2-carboxylic acid (1) have been synthesized in current research work. All analogs 4A-4G were synthesized with optimized conditions by coupling reactions of 2-ethylhexyl 5-bromothiophene-2-carboxylate (3) with various arylboronic acids. The results indicated that the majority of compounds showed promising effective in vitro antibacterial activity. Herein, 2-ethylhexyl-5-(p-tolyl)thiophene-2-carboxylate (4F), in particular among the synthesized analogs, showed outstanding antibacterial action (MIC value 3.125 mg/mL) against XDR Salmonella Typhi compared to ciprofloxacin and ceftriaxone. The intermolecular interaction was investigated by using a molecular docking study of thiophene derivatives 4A-4G against XDR S. Typhi. The values of the binding affinity of functionalized thiophene molecules and ciprofloxacin were compared against bacterial enzyme PDB ID: 5ztj. Therefore, 4F appears to be a promising antibacterial agent and showed the highest potential value. Density functional theory (DFT) calculations were executed to examine the electronic, structural, and spectroscopic features of the newly synthesized molecules 4A-4G.
Collapse
Affiliation(s)
- Waseem Nazeer
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Usman Qamar
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan;
- Division of Infectious Disease, Department of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Nasir Rasool
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Mohamed Taibi
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000 Montpellier, France;
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Roman D, Meisinger P, Guillonneau R, Peng CC, Peltner LK, Jordan PM, Haensch V, Götze S, Werz O, Hertweck C, Chen Y, Beemelmanns C. Structure Revision of a Widespread Marine Sulfonolipid Class Based on Isolation and Total Synthesis. Angew Chem Int Ed Engl 2024; 63:e202401195. [PMID: 38529534 DOI: 10.1002/anie.202401195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/27/2024]
Abstract
The cosmopolitan marine Roseobacter clade is of global biogeochemical importance. Members of this clade produce sulfur-containing amino lipids (SALs) involved in biofilm formation and marine surface colonization processes. Despite their physiological relevance and abundance, SALs have only been explored through genomic mining approaches and lipidomic studies based on mass spectrometry, which left the relative and absolute structures of SALs unresolved, hindering progress in biochemical and functional investigations. Herein, we report the structural revision of a new group of SALs, which we named cysteinolides, using a combination of analytical techniques, isolation and degradation experiments and total synthetic efforts. Contrary to the previously proposed homotaurine-based structures, cysteinolides are composed of an N,O-acylated cysteinolic acid-containing head group carrying various different (α-hydroxy)carboxylic acids. We also performed the first validated targeted-network based analysis, which allowed us to map the distribution and structural diversity of cysteinolides across bacterial lineages. Beyond offering structural insight, our research provides SAL standards and validated analytical data. This information holds significance for forthcoming investigations into bacterial sulfonolipid metabolism and biogeochemical nutrient cycling within marine environments.
Collapse
Affiliation(s)
- Dávid Roman
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
- Anti-Infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1, 66123, Saarbrücken, Germany
| | - Philippe Meisinger
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
| | | | - Chia-Chi Peng
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
- Anti-Infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1, 66123, Saarbrücken, Germany
| | - Lukas K Peltner
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy-, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy-, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Veit Haensch
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
| | - Sebastian Götze
- Anti-Infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1, 66123, Saarbrücken, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry Institute of Pharmacy-, Friedrich-Schiller-University Jena, Philosophenweg 14, 07743, Jena, Germany
| | - Christian Hertweck
- Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
- Institute of Microbiology-, Friedrich-Schiller-University Jena, 07743, Jena, Germany
| | - Yin Chen
- School of Biosciences, University of Birmingham, Edgbaston, B15 2TT, United Kingdom
| | - Christine Beemelmanns
- Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute (HKI), Beutenbergstrasse 11 A, 07745, Jena, Germany
- Anti-Infectives from Microbiota Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI) Campus E8.1, 66123, Saarbrücken, Germany
- Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| |
Collapse
|
4
|
Said MF, Marie SM, Mohamed NM, Mahrouse MA, Moussa BA. Insight on novel oxindole conjugates adopting different anti-inflammatory investigations and quantitative evaluation. Future Med Chem 2024; 16:817-842. [PMID: 38634318 PMCID: PMC11249151 DOI: 10.4155/fmc-2023-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024] Open
Abstract
Background: A dual COX/5-LOX strategy was adopted to develop new oxindole derivatives with superior anti-inflammatory activity. Methods: Three series of oxindoles - esters 4a-p, 6a-l and imines 7a-o - were synthesized and evaluated for their anti-inflammatory and analgesic activities. Molecular docking and predicted pharmacokinetic parameters were done for the most active compounds. A new LC-MS/MS method was developed and validated for the quantification of 4h in rat plasma. Results: Compounds 4h, 6d, 6f, 6j and 7m revealed % edema inhibition up to 100.00%; also, 4l and 7j showed 100.00% writhing protection. Compound 4h showed dual inhibitory activity with IC50 = 0.0533 and 0.4195 μM for COX-2 and 5-LOX, respectively. Molecular docking rationalized the obtained biological activity. The pharmacokinetic parameters of 4h from rat plasma were obtained.
Collapse
Affiliation(s)
- Mona F Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Sarah M Marie
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Nada M Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Modern University for Technology & Information (MTI), Cairo, 11585, Egypt
| | - Marianne A Mahrouse
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| | - Bahia A Moussa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, PO Box 11562, Cairo, Egypt
| |
Collapse
|
5
|
Reyes AWB, Kim H, Huy TXN, Nguyen TT, Min W, Lee D, Hur J, Lee JH, Kim S. The In Vitro and In Vivo Effect of Lipoxygenase Pathway Inhibitors Nordihydroguaiaretic Acid and Its Derivative Tetra- O-methyl Nordihydroguaiaretic Acid against Brucella abortus 544. J Microbiol Biotechnol 2022; 32:1126-1133. [PMID: 36039381 PMCID: PMC9628969 DOI: 10.4014/jmb.2207.07026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022]
Abstract
This study investigated the contribution of lipoxygenase (LOX) inhibitors, nordihydroguaiaretic acid (NDGA), tetra-O-methyl nordihydroguaiaretic acid (M4N) and zileuton (ZIL), and thromboxane A2 (TXA2) inhibitor 4,5-diphenylimidazole (DPI) in the proliferation of Brucella abortus infection. None of the compounds affected the uptake of Brucella into the macrophages. We determined the effect of neutralizing leukotriene B4 (LTB4) receptor and showed that the uptake of the bacteria was inhibited at 30 min post-infection. M4N treatment attenuated intracellular survival of Brucella at 2 h post-incubation but it was not observed in the succeeding time points. DPI treatment showed reduced survival of Brucella at 24 h post-incubation while blocking LTB4 receptor was observed to have a lower intracellular growth at 48 h post-incubation suggesting different action of the inhibitors in the course of the survival of Brucella within the cells. Reduced proliferation of the bacteria in the spleens of mice was observed in animals treated with ZIL or DPI. Increased serum cytokine level of TNF-α and MCP-1 was observed in mice treated with M4N or ZIL while a lower IFN-γ level in ZIL-treated mice and a higher IL-12 serum level in DPI-treated mice were observed at 7 d post-infection. At 14 d post-infection, ZIL-treated mice displayed reduced serum level of IL-12 and IL-10. Overall, inhibition of 5-LOX or TXA2 or a combination therapy promises a potential alternative therapy against B. abortus infection. Furthermore, strong ligands for LTB4 receptor could also be a good candidate for the control of Brucella infection.
Collapse
Affiliation(s)
- Alisha Wehdnesday Bernardo Reyes
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, College, Laguna 4031, Philippines
| | - Heejin Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Tran Xuan Ngoc Huy
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Trang Thi Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Dongho Lee
- College of Medicine, Inje University, Busan, 47392, Republic of Korea
| | - Jin Hur
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Suk Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea,Corresponding author Phone +82-55-772-2359 Fax: +82-55-772-2349 E-mail:
| |
Collapse
|
6
|
Kurihara H, Yachiyama K, Morimoto C. Classification of Marine Algae–Derived Compounds by the Mechanism Responsible for Decreasing Lipoxygenase-Catalyzed Lipid Hydroperoxides. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lipoxygenase (LOX)-mediated lipid hydroperoxides (LHPOs) are converted to physiologically active mediators. Thus, decreasing hydroperoxides is important for diminishing various health-related risks. In this study, decreasing compounds of LOX-catalyzed LHPOs were investigated and classified by mechanism using a modified triple LOX-indamine dye formation (IDF) method. The compounds 2,3-dibromo-4,5-dihydroxybenzyl methyl ether (1) and fucoxanthin (2) were isolated from algae as compounds that can decrease hydroperoxides. Along with previously isolated pheophytin a (3), a chlorophyll-related compound, and purchased nordihydroguaiaretic acid (4), a well-known lipoxygenase inhibitor, all the compounds were examined to determine the mechanisms responsible for decreasing LHPOs by using a modified triple LOX-IDF method. Compounds 1 and 4 were found to be LOX inhibitors, compound 2 was a decomposer of the produced LHPOs, and compound 3 was both an inhibitor and a decomposer of the produced LHPOs.
Collapse
Affiliation(s)
- Hideyuki Kurihara
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Kenta Yachiyama
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| | - Chihiro Morimoto
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, Japan
| |
Collapse
|
7
|
Smeets E, Huang S, Lee XY, Van Nieuwenhove E, Helsen C, Handle F, Moris L, El Kharraz S, Eerlings R, Devlies W, Willemsen M, Bücken L, Prezzemolo T, Humblet-Baron S, Voet A, Rochtus A, Van Schepdael A, de Zegher F, Claessens F. A disease-associated missense mutation in CYP4F3 affects the metabolism of leukotriene B4 via disruption of electron transfer. J Cachexia Sarcopenia Muscle 2022; 13:2242-2253. [PMID: 35686338 PMCID: PMC9397552 DOI: 10.1002/jcsm.13022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Cytochrome P450 4F3 (CYP4F3) is an ω-hydroxylase that oxidizes leukotriene B4 (LTB4), prostaglandins, and fatty acid epoxides. LTB4 is synthesized by leukocytes and acts as a chemoattractant for neutrophils, making it an essential component of the innate immune system. Recently, involvement of the LTB4 pathway was reported in various immunological disorders such as asthma, arthritis, and inflammatory bowel disease. We report a 26-year-old female with a complex immune phenotype, mainly marked by exhaustion, muscle weakness, and inflammation-related conditions. The molecular cause is unknown, and symptoms have been aggravating over the years. METHODS Whole exome sequencing was performed and validated; flow cytometry and enzyme-linked immunosorbent assay were used to describe patient's phenotype. Function and impact of the mutation were investigated using molecular analysis: co-immunoprecipitation, western blot, and enzyme-linked immunosorbent assay. Capillary electrophoresis with ultraviolet detection was used to detect LTB4 and its metabolite and in silico modelling provided structural information. RESULTS We present the first report of a patient with a heterozygous de novo missense mutation c.C1123 > G;p.L375V in CYP4F3 that severely impairs its activity by 50% (P < 0.0001), leading to reduced metabolization of the pro-inflammatory LTB4. Systemic LTB4 levels (1034.0 ± 75.9 pg/mL) are significantly increased compared with healthy subjects (305.6 ± 57.0 pg/mL, P < 0.001), and immune phenotyping shows increased total CD19+ CD27- naive B cells (25%) and decreased total CD19+ CD27+ IgD- switched memory B cells (19%). The mutant CYP4F3 protein is stable and binding with its electron donors POR and Cytb5 is unaffected (P > 0.9 for both co-immunoprecipitation with POR and Cytb5). In silico modelling of CYP4F3 in complex with POR and Cytb5 suggests that the loss of catalytic activity of the mutant CYP4F3 is explained by a disruption of an α-helix that is crucial for the electron shuffling between the electron carriers and CYP4F3. Interestingly, zileuton still inhibits ex vivo LTB4 production in patient's whole blood to 2% of control (P < 0.0001), while montelukast and fluticasone do not (99% and 114% of control, respectively). CONCLUSIONS A point mutation in the catalytic domain of CYP4F3 is associated with high leukotriene B4 plasma levels and features of a more naive adaptive immune response. Our data provide evidence for the pathogenicity of the CYP4F3 variant as a cause for the observed clinical features in the patient. Inhibitors of the LTB4 pathway such as zileuton show promising effects in blocking LTB4 production and might be used as a future treatment strategy.
Collapse
Affiliation(s)
- Elien Smeets
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Shengyun Huang
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis Laboratory, KU Leuven, Leuven, Belgium
| | - Xiao Yin Lee
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Erika Van Nieuwenhove
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Christine Helsen
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Florian Handle
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Lisa Moris
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Sarah El Kharraz
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Wout Devlies
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| | - Mathijs Willemsen
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Leoni Bücken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Teresa Prezzemolo
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunity, KU Leuven, Leuven, Belgium
| | - Arnout Voet
- Department of Chemistry, Biochemistry, Molecular and Structural Biology Section Laboratory, KU Leuven, Leuven, Belgium
| | - Anne Rochtus
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis Laboratory, KU Leuven, Leuven, Belgium
| | - Francis de Zegher
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Frank Claessens
- Department of Cellular and Molecular Medicine, Molecular Endocrinology Laboratory, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Garland LL, Guillen-Rodriguez J, Hsu CH, Davis LE, Szabo E, Husted CR, Liu H, LeClerc A, Alekseyev YO, Liu G, Bauman JE, Spira AE, Beane J, Wojtowicz M, Chow HHS. Clinical Study of Aspirin and Zileuton on Biomarkers of Tobacco-Related Carcinogenesis in Current Smokers. Cancers (Basel) 2022; 14:2893. [PMID: 35740559 PMCID: PMC9221101 DOI: 10.3390/cancers14122893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022] Open
Abstract
The chemopreventive effect of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) on lung cancer risk is supported by epidemiologic and preclinical studies. Zileuton, a 5-lipoxygenase inhibitor, has additive activity with NSAIDs against tobacco carcinogenesis in preclinical models. We hypothesized that cyclooxygenase plus 5-lipoxygenase inhibition would be more effective than a placebo in modulating the nasal epithelium gene signatures of tobacco exposure and lung cancer. We conducted a randomized, double-blinded study of low-dose aspirin plus zileuton vs. double placebo in current smokers to compare the modulating effects on nasal gene expression and arachidonic acid metabolism. In total, 63 participants took aspirin 81 mg daily plus zileuton (Zyflo CR) 600 mg BID or the placebo for 12 weeks. Nasal brushes from the baseline, end-of-intervention, and one-week post intervention were profiled via microarray. Aspirin plus zilueton had minimal effects on the modulation of the nasal or bronchial gene expression signatures of smoking, lung cancer, and COPD but favorably modulated a bronchial gene expression signature of squamous dysplasia. Aspirin plus zileuton suppressed urinary leukotriene but not prostaglandin E2, suggesting shunting through the cyclooxygenase pathway when combined with 5-lipoxygenase inhibition. Continued investigation of leukotriene inhibitors is needed to confirm these findings, understand the long-term effects on the airway epithelium, and identify the safest, optimally dosed agents.
Collapse
Affiliation(s)
- Linda L. Garland
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - José Guillen-Rodriguez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| | - Lisa E. Davis
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA;
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - Christopher R. Husted
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Hanqiao Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Ashley LeClerc
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (A.L.); (Y.O.A.)
| | - Gang Liu
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Julie E. Bauman
- Department of Medicine, University of Arizona, Tucson, AZ 85724, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
- Division of Hematology/Oncology, Department of Medicine, George Washington (GW) University and GW Cancer Center, Washington, DC 20037, USA
| | - Avrum E. Spira
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Jennifer Beane
- Section of Computational Biomedicine, Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA; (C.R.H.); (H.L.); (G.L.); (A.E.S.); (J.B.)
| | - Malgorzata Wojtowicz
- Division of Cancer Prevention, National Cancer Institute, Bethesa, MD 20892, USA; (E.S.); (M.W.)
| | - H.-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; (J.G.-R.); (C.-H.H.); (H.-H.S.C.)
| |
Collapse
|
9
|
Kalyvianaki K, Drosou I, Notas G, Castanas E, Kampa M. Enhanced OXER1 expression is indispensable for human cancer cell migration. Biochem Biophys Res Commun 2021; 584:95-100. [PMID: 34775286 DOI: 10.1016/j.bbrc.2021.11.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
OXER1 is a recently identified receptor, binding the arachidonic acid metabolic product 5-oxo-ETE, considered an inflammatory receptor, implicated in chemoattraction of circulating mononuclear cells, Ca2+ surge in neutrophils, inflammation and cancer. Recently, we have shown that OXER1 is also a membrane androgen receptor in various cancer tissues. It was reported that the presence of OXER1 in leucocytes and the production and release of 5-oxo-ETE by wounded tissues is a wound sensing mechanism, leading to lymphocyte attraction. In view of the similarity of hallmarks of cancer and wound healing, we have explored the role of OXER1 and its endogenous ligand in the control of cell migration of human cancer epithelial cells (DU-145, T47D and Hep3B), mimicking the activation/migration phase of healing. We show that OXER1 is up-regulated only at the leading edge of the wound and its expression is up-regulated by its ligand 5-oxo-ETE, in a time-related manner. Knock-down of OXER1 or inhibition of 5-oxo-ETE synthesis led to decreased migration of cells and a prolongation of healing, in culture prostate cancer cell monolayers, with a substantial modification of actin cytoskeleton and a decreased filopodia formation. Inhibition of cell migration is a phenomenon mediated by Gβγ OXER1 mediated actions. These results provide a novel mechanism of OXER1 implication in cancer progression and might be of value for the design of novel OXER1 antagonists.
Collapse
Affiliation(s)
- Konstantina Kalyvianaki
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Irene Drosou
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - George Notas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece.
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece.
| |
Collapse
|
10
|
Hung TY, Huang CW, Wu SN. High ability of zileuton ((±)-1-(1-benzo[b]thien-2-ylethyl)-1-hydroxyurea) to stimulate I K(Ca) but suppress I K(DR) and I K(M) independently of 5-lipoxygenase inhibition. Eur J Pharmacol 2020; 887:173482. [PMID: 32795513 DOI: 10.1016/j.ejphar.2020.173482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022]
Abstract
Zileuton (Zyflo®) is regarded to be an inhibitor of 5-lipoxygenase. Although its effect on Ca2+-activated K+ currents has been reported, its overall ionic effects on neurons are uncertain. In whole-cell current recordings, zileuton increased the amplitude of Ca2+-activated K+ currents with an EC50 of 3.2 μM in pituitary GH3 lactotrophs. Furthermore, zileuton decreased the amplitudes of both delayed-rectifier K+ current (IK(DR)) and M-type K+ current (IK(M)). Conversely, no modification of hyperpolarization-activated cation current (Ih) was demonstrated in its presence of zileuton, although the subsequent addition of cilobradine effectively suppressed the current. In inside-out current recordings, the addition of zileuton to the bath increased the probability of large-conductance Ca2+-activated K+ (BKCa) channels; however, the subsequent addition of GAL-021 effectively reversed the stimulation of channel activity. The kinetic analyses showed an evident shortening in the slow component of mean closed time of BKCa channels in the presence of zileuton, with minimal change in mean open time or that in the fast component of mean closed time. The elevation of BKCa channels caused by zileuton was also observed in hippocampal mHippoE-14 neurons, without any modification of single-channel amplitude. In conclusion, except for its suppression of 5-lipoxygenase, our results indicate that zileuton does not exclusively act on BKCa channels, and its inhibitory effects on IK(DR) and IK(M) may combine to exert strong influence on the functional activities of electrically excitable cells in vivo.
Collapse
Affiliation(s)
- Te-Yu Hung
- Department of Pediatrics, Chi-Mei Medical Center, Tainan, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Sheng-Nan Wu
- Department of Physiology, National Cheng Kung University Medical College, Tainan, Taiwan; Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan.
| |
Collapse
|
11
|
Structural considerations on lipoxygenase function, inhibition and crosstalk with nitric oxide pathways. Biochimie 2020; 178:170-180. [PMID: 32980463 DOI: 10.1016/j.biochi.2020.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Lipoxygenases (LOX) are non-heme iron-containing enzymes that catalyze regio- and stereo-selective dioxygenation of polyunsaturated fatty acids (PUFA). Mammalian LOXs participate in the eicosanoid cascade during the inflammatory response, using preferentially arachidonic acid (AA) as substrate, for the synthesis of leukotrienes (LT) and other oxidized-lipid intermediaries. This review focus on lipoxygenases (LOX) structural and kinetic implications on both catalysis selectivity, as well as the basic and clinical implications of inhibition and interactions with nitric oxide (•NO) and nitroalkenes pathways. During inflammation •NO levels are increasingly favoring the formation of reactive nitrogen species (RNS). •NO may act itself as an inhibitor of LOX-mediated lipid oxidation by reacting with lipid peroxyl radicals. Besides, •NO may act as an O2 competitor in the LOX active site, thus displaying a protective role on lipid-peroxidation. Moreover, RNS such as nitrogen dioxide (•NO2) may react with lipid-derived species formed during LOX reaction, yielding nitroalkenes (NO2FA). NO2FA represents electrophilic compounds that could exert anti-inflammatory actions through the interaction with critical LOX nucleophilic amino acids. We will discuss how nitro-oxidative conditions may limit the availability of common LOX substrates, favoring alternative routes of PUFA metabolization to anti-inflammatory or pro-resolutive pathways.
Collapse
|
12
|
Bergare J, Kingston L, Guly DJ, Dolan J, Lewis RJ, Elmore CS. The synthesis of one H-2 labeled and two H-3 labeled leukotriene C4 synthase inhibitors. J Labelled Comp Radiopharm 2020; 63:434-441. [PMID: 32441366 DOI: 10.1002/jlcr.3862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 11/06/2022]
Abstract
As part of a medicinal chemistry program aimed at developing a leukotriene C4 synthase inhibitor for the treatment of asthma, two tritium-labeled and one stable isotope-labeled compounds were required. The synthesis of the tritium-labeled compounds used a standard bromination-tritiodehalogentation approach. One of the tritium-labeled compounds was observed to exchange its tritium label slowly with the solvent. The stable isotope-labeled compound was prepared in seven steps (3% overall yield) from [2 H6 ]acetone in a modification of the route used by medicinal chemistry.
Collapse
Affiliation(s)
- Jonas Bergare
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| | - Lee Kingston
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| | - Dominic J Guly
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, PL32 9RA, UK
| | - James Dolan
- Key Organics Ltd, Highfield Road Industrial Estate, Camelford, PL32 9RA, UK
| | - Richard J Lewis
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune, BioPharmaceuticals R&D, AstraZeneca, Gothenberg, Sweden
| | - Charles S Elmore
- Isotope Chemistry, Pharmaceutical Science, R&D, AstraZeneca, Gothenberg, Sweden
| |
Collapse
|
13
|
Protein Precipitation Method for Determination of Zileuton in Human Plasma by LC-MS/MS. J Pharm Innov 2019. [DOI: 10.1007/s12247-019-09403-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Comprehensive quality by design approach for stable nanocrystalline drug products. Int J Pharm 2019; 564:426-460. [DOI: 10.1016/j.ijpharm.2019.04.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
15
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Bao J, Kuik D, Tranmer GK. An efficient one-pot synthesis of N,N′-disubstituted phenylureas and N-aryl carbamates using hydroxylamine-O-sulfonic acid. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.05.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Dahlin A, Qiu W, Litonjua AA, Lima JJ, Tamari M, Kubo M, Irvin CG, Peters SP, Wu AC, Weiss ST, Tantisira KG. The phosphatidylinositide 3-kinase (PI3K) signaling pathway is a determinant of zileuton response in adults with asthma. THE PHARMACOGENOMICS JOURNAL 2018; 18:665-677. [PMID: 29298996 PMCID: PMC6150906 DOI: 10.1038/s41397-017-0006-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022]
Abstract
Variable responsiveness to zileuton, a leukotriene antagonist used to treat asthma, may be due in part to genetic variation. While individual SNPs were previously associated with zileuton-related lung function changes, specific quantitative trait loci (QTLs) and biological pathways that may contribute have not been identified. In this study, we investigated the hypothesis that genetic variation within biological pathways is associated with zileuton response. We performed an integrative QTL mapping and pathway enrichment study to investigate data from a GWAS of zileuton response, in addition to mRNA expression profiles and leukotriene production data from lymphoblastoid cell lines (LCLs) (derived from asthmatics) that were treated with zileuton or ethanol (control). We identified 1060 QTLs jointly associated with zileuton-related differential LTB4 production in LCLs and lung function change in patients taking zileuton, of which eight QTLs were also significantly associated with persistent LTB4 production in LCLs following zileuton treatment (i.e., ‘poor’ responders). Four nominally significant trans-eQTLs were predicted to regulate three candidate genes (SELL, MTF2, and GAL), the expression of which was significantly reduced in LCLs following zileuton treatment. Gene and pathway enrichment analyses of QTL associations identified multiple genes and pathways, predominantly related to phosphatidyl inositol signaling via PI3K. We validated the PI3K pathway activation status in a subset of LCLs demonstrating variable zileuton-related LTB4 production, and show that in contrast to LCLs that responded to zileuton, the PI3K pathway was activated in poor responder LCLs. Collectively, these findings demonstrate a role for the PIK3 pathway and its targets as important determinants of differential responsiveness to zileuton.
Collapse
Affiliation(s)
- Amber Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Augusto A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Stephen P Peters
- Wake Forest University Health Science Center, Winston-Salem, NC, USA
| | - Ann C Wu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Partners Center for Personalized Genetic Medicine, Partners Health Care, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,University of Vermont, Burlington, VT, USA
| |
Collapse
|
18
|
Targeting neutrophils for host-directed therapy to treat tuberculosis. Int J Med Microbiol 2017; 308:142-147. [PMID: 29055689 DOI: 10.1016/j.ijmm.2017.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/26/2017] [Accepted: 10/01/2017] [Indexed: 01/08/2023] Open
Abstract
M. tuberculosis is one of the prime killers from infectious diseases worldwide. Infections with multidrug-resistant variants counting for almost half a million new cases per year are steadily on the rise. Tuberculosis caused by extensively drug-resistant variants that are even resistant against newly developed or last resort antibiotics have to be considered untreaTable Susceptible tuberculosis already requires a six-months combinational therapy which requires further prolongation to treat drug-resistant infections. Such long treatment schedules are often accompanied by serious adverse effects causing patients to stop therapy. To tackle the global tuberculosis emergency, novel approaches for treatment need to be urgently explored. Host-directed therapies that target components of the defense system represent such a novel approach. In this review, we put a spotlight on neutrophils and neutrophil-associated effectors as promising targets for adjunct host-directed therapies to improve antibiotic efficacy and reduce both, treatment time and long-term pathological sequelae.
Collapse
|
19
|
Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nat Commun 2017; 8:128. [PMID: 28743859 PMCID: PMC5527007 DOI: 10.1038/s41467-017-00137-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/02/2017] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells arise from the vascular endothelium of the dorsal aorta and subsequently switch niche to the fetal liver through unknown mechanisms. Here we report that vascular endothelium-specific deletion of mouse Drosha (DroshacKO), an enzyme essential for microRNA biogenesis, leads to anemia and death. A similar number of hematopoietic stem and progenitor cells emerge from Drosha-deficient and control vascular endothelium, but DroshacKO-derived hematopoietic stem and progenitor cells accumulate in the dorsal aorta and fail to colonize the fetal liver. Depletion of the let-7 family of microRNAs is a primary cause of this defect, as it leads to activation of leukotriene B4 signaling and induction of the α4β1 integrin cell adhesion complex in hematopoietic stem and progenitor cells. Inhibition of leukotriene B4 or integrin rescues maturation and migration of DroshacKO hematopoietic stem and progenitor cells to the fetal liver, while it hampers hematopoiesis in wild-type animals. Our study uncovers a previously undefined role of innate leukotriene B4 signaling as a gatekeeper of the hematopoietic niche transition. Hematopoietic stem and progenitor cells are generated first from the vascular endothelium of the dorsal aorta and then the fetal liver but what regulates this switch is unknown. Here, the authors show that changing miRNA biogenesis and leukotriene B4 signaling in mice modulates this switch in the niche.
Collapse
|
20
|
Antiviral Activity of Nordihydroguaiaretic Acid and Its Derivative Tetra- O-Methyl Nordihydroguaiaretic Acid against West Nile Virus and Zika Virus. Antimicrob Agents Chemother 2017; 61:AAC.00376-17. [PMID: 28507114 DOI: 10.1128/aac.00376-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/09/2017] [Indexed: 01/18/2023] Open
Abstract
Flaviviruses are positive-strand RNA viruses distributed all over the world that infect millions of people every year and for which no specific antiviral agents have been approved. These viruses include the mosquito-borne West Nile virus (WNV), which is responsible for outbreaks of meningitis and encephalitis. Considering that nordihydroguaiaretic acid (NDGA) has been previously shown to inhibit the multiplication of the related dengue virus and hepatitis C virus, we have evaluated the effect of NDGA, and its methylated derivative tetra-O-methyl nordihydroguaiaretic acid (M4N), on the infection of WNV. Both compounds inhibited the infection of WNV, likely by impairing viral replication. Since flavivirus multiplication is highly dependent on host cell lipid metabolism, the antiviral effect of NDGA has been previously related to its ability to disturb the lipid metabolism, probably by interfering with the sterol regulatory element-binding proteins (SREBP) pathway. Remarkably, we observed that other structurally unrelated inhibitors of the SREBP pathway, such as PF-429242 and fatostatin, also reduced WNV multiplication, supporting that the SREBP pathway may constitute a druggable target suitable for antiviral intervention against flavivirus infection. Moreover, treatment with NDGA, M4N, PF-429242, and fatostatin also inhibited the multiplication of the mosquito-borne flavivirus Zika virus (ZIKV), which has been recently associated with birth defects (microcephaly) and neurological disorders. Our results point to SREBP inhibitors, such as NDGA and M4N, as potential candidates for further antiviral development against medically relevant flaviviruses.
Collapse
|
21
|
Discovery two potent and new inhibitors of 15-lipoxygenase: (E)-3-((3,4-dihydroxybenzylidene) amino)-7-hydroxy-2H-chromen-2-one and (E)-O-(4-(((7-hydroxy-2-oxo-2H-chromen-3-yl) imino)methine) phenyl)dimethylcarbamothioate. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1968-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Proschak E, Heitel P, Kalinowsky L, Merk D. Opportunities and Challenges for Fatty Acid Mimetics in Drug Discovery. J Med Chem 2017; 60:5235-5266. [PMID: 28252961 DOI: 10.1021/acs.jmedchem.6b01287] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acids beyond their role as an endogenous energy source and storage are increasingly considered as signaling molecules regulating various physiological effects in metabolism and inflammation. Accordingly, the molecular targets involved in formation and physiological activities of fatty acids hold significant therapeutic potential. A number of these fatty acid targets are addressed by some of the oldest and most widely used drugs such as cyclooxygenase inhibiting NSAIDs, whereas others remain unexploited. Compounds orthosterically binding to proteins that endogenously bind fatty acids are considered as fatty acid mimetics. On the basis of their structural resemblance, fatty acid mimetics constitute a family of bioactive compounds showing specific binding thermodynamics and following similar pharmacokinetic mechanisms. This perspective systematically evaluates targets for fatty acid mimetics, investigates their common structural characteristics, and highlights demands in their discovery and design. In summary, fatty acid mimetics share particularly favorable characteristics justifying the conclusion that their therapeutic potential vastly outweighs the challenges in their design.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Pascal Heitel
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Lena Kalinowsky
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt, Germany
| |
Collapse
|
23
|
Gaschler MM, Stockwell BR. Lipid peroxidation in cell death. Biochem Biophys Res Commun 2017; 482:419-425. [PMID: 28212725 DOI: 10.1016/j.bbrc.2016.10.086] [Citation(s) in RCA: 1154] [Impact Index Per Article: 144.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 10/23/2016] [Indexed: 02/07/2023]
Abstract
Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed.
Collapse
Affiliation(s)
- Michael M Gaschler
- Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA; Department of Biological Sciences, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, NY 10027, USA.
| |
Collapse
|
24
|
Meirer K, Glatzel D, Kretschmer S, Wittmann SK, Hartmann M, Blöcher R, Angioni C, Geisslinger G, Steinhilber D, Hofmann B, Fürst R, Proschak E. Design, Synthesis and Cellular Characterization of a Dual Inhibitor of 5-Lipoxygenase and Soluble Epoxide Hydrolase. Molecules 2016; 22:molecules22010045. [PMID: 28036068 PMCID: PMC6155600 DOI: 10.3390/molecules22010045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023] Open
Abstract
The arachidonic acid cascade is a key player in inflammation, and numerous well-established drugs interfere with this pathway. Previous studies have suggested that simultaneous inhibition of 5-lipoxygenase (5-LO) and soluble epoxide hydrolase (sEH) results in synergistic anti-inflammatory effects. In this study, a novel prototype of a dual 5-LO/sEH inhibitor KM55 was rationally designed and synthesized. KM55 was evaluated in enzyme activity assays with recombinant enzymes. Furthermore, activity of KM55 in human whole blood and endothelial cells was investigated. KM55 potently inhibited both enzymes in vitro and attenuated the formation of leukotrienes in human whole blood. KM55 was also tested in a cell function-based assay. The compound significantly inhibited the LPS-induced adhesion of leukocytes to endothelial cells by blocking leukocyte activation.
Collapse
Affiliation(s)
- Karin Meirer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Daniel Glatzel
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Simon Kretschmer
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Sandra K Wittmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Markus Hartmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - René Blöcher
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Carlo Angioni
- Institute of Clinical Pharmacology, Goethe-University of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe-University of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
25
|
Lindelöf Å, Ericsson C, Simonsson R, Nilsson G, Grönberg G, Elmore CS. Synthesis of [3H] and [2H6]AZD6642, an inhibitor of 5-lipoxygenase activating protein (FLAP). J Labelled Comp Radiopharm 2016; 59:340-5. [DOI: 10.1002/jlcr.3409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/14/2016] [Accepted: 05/07/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Åsa Lindelöf
- Isotope Chemistry, Enabling Services, Drug Safety and Metabolism iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| | - Cecilia Ericsson
- Isotope Chemistry, Enabling Services, Drug Safety and Metabolism iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| | - Roger Simonsson
- Isotope Chemistry, Enabling Services, Drug Safety and Metabolism iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| | - Göran Nilsson
- Isotope Chemistry, Enabling Services, Drug Safety and Metabolism iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| | - Gunnar Grönberg
- Structure Analysis & Separation Science, Medicinal Chemistry, Respiratory, Inflammation, and Autoimmune iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| | - Charles S. Elmore
- Isotope Chemistry, Enabling Services, Drug Safety and Metabolism iMED; AstraZeneca Pharmaceuticals LP; Mölndal Sweden
| |
Collapse
|
26
|
Dahlin A, Litonjua A, Irvin CG, Peters SP, Lima JJ, Kubo M, Tamari M, Tantisira KG. Genome-wide association study of leukotriene modifier response in asthma. THE PHARMACOGENOMICS JOURNAL 2016; 16:151-7. [PMID: 26031901 PMCID: PMC4668236 DOI: 10.1038/tpj.2015.34] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/19/2014] [Accepted: 01/28/2015] [Indexed: 01/08/2023]
Abstract
Heterogeneous therapeutic responses to leukotriene modifiers (LTMs) are likely due to variation in patient genetics. Although prior candidate gene studies implicated multiple pharmacogenetic loci, to date, no genome-wide association study (GWAS) of LTM response was reported. In this study, DNA and phenotypic information from two placebo-controlled trials (total N=526) of zileuton response were interrogated. Using a gene-environment (G × E) GWAS model, we evaluated 12-week change in forced expiratory volume in 1 second (ΔFEV1) following LTM treatment. The top 50 single-nucleotide polymorphism associations were replicated in an independent zileuton treatment cohort, and two additional cohorts of montelukast response. In a combined analysis (discovery+replication), rs12436663 in MRPP3 achieved genome-wide significance (P=6.28 × 10(-08)); homozygous rs12436663 carriers showed a significant reduction in mean ΔFEV1 following zileuton treatment. In addition, rs517020 in GLT1D1 was associated with worsening responses to both montelukast and zileuton (combined P=1.25 × 10(-07)). These findings implicate previously unreported loci in determining therapeutic responsiveness to LTMs.
Collapse
Affiliation(s)
- A Dahlin
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - A Litonjua
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - C G Irvin
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - S P Peters
- Center for Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - J J Lima
- Center for Pharmacogenomics and Translational Research, Nemours Children's Clinic, Jacksonville, FL, USA
| | - M Kubo
- Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - M Tamari
- Center for Integrative Medical Sciences, Riken, Yokohama, Japan
| | - K G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Kurihara H, Konno R, Takahashi K. Fucophlorethol C, a phlorotannin as a lipoxygenase inhibitor. Biosci Biotechnol Biochem 2015; 79:1954-6. [PMID: 26155826 DOI: 10.1080/09168451.2015.1062716] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
Fucophlorethol C, a phlorotannin, was isolated from the brown alga Colpomenia bullosa (Scyto-siphonaceae) as a novel lipoxygenase (LOX) inhibitor. It was obtained as a free form from natural origin for the first time. The compound inhibited a soybean LOX to the same extent as the known inhibitor nordihydroguaiaretic acid.
Collapse
Affiliation(s)
- Hideyuki Kurihara
- a Faculty and Graduate School of Fisheries Sciences , Hokkaido University , Hakodate , Hokkaido 041-8611 , Japan
| | - Remi Konno
- a Faculty and Graduate School of Fisheries Sciences , Hokkaido University , Hakodate , Hokkaido 041-8611 , Japan
| | - Koretaro Takahashi
- a Faculty and Graduate School of Fisheries Sciences , Hokkaido University , Hakodate , Hokkaido 041-8611 , Japan
| |
Collapse
|
28
|
Prakash K, Adiki SK, Kalakuntla RR. Development and validation of a liquid chromatography-mass spectrometry method for the determination of zileuton in human plasma. Sci Pharm 2014; 82:571-83. [PMID: 25853069 PMCID: PMC4339974 DOI: 10.3797/scipharm.1402-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/26/2014] [Indexed: 11/22/2022] Open
Abstract
A selective and sensitive liquid chromatography-tandem mass spectrometric method (LC-MS/MS) has been developed and validated for the quantification of zileuton in human plasma. Deuterated internal standard (zileuton D4) was used as the internal standard (ISTD). Zileuton was extracted by liquid-liquid extraction using methyl tert-butyl ether and separated by isocratic elution on a C18 column (100 × 4.6 mm, 5 μm, Discovery C18) with the mobile phase consisting of 1 mM ammonium acetate buffer and methanol in the ratio of 10:90. A flow rate of 1.0 ml/min was used with isocratic elution. Multiple reaction monitoring transitions in positive mode for zileuton and the internal standard were 237.3/161.2 and 241.2/161.1, respectively. The method was validated within the linearity range of 50.5-10,012.7 ng/ml for the bioanalytical method validation parameters like selectivity, accuracy, precision, recovery, stability, and matrix effect.
Collapse
Affiliation(s)
- Katakam Prakash
- Nirmala College of Pharmacy, Mangalagiri, Guntur 522503, AP, India
| | - Shanta K Adiki
- Nirmala College of Pharmacy, Mangalagiri, Guntur 522503, AP, India
| | - Rama Rao Kalakuntla
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, AP, India
| |
Collapse
|
29
|
Kurihara H, Kagawa Y, Konno R, Kim SM, Takahashi K. Lipoxygenase inhibitors derived from marine macroalgae. Bioorg Med Chem Lett 2014; 24:1383-5. [PMID: 24495846 DOI: 10.1016/j.bmcl.2014.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/10/2014] [Accepted: 01/14/2014] [Indexed: 10/25/2022]
Abstract
The solvent extracts from the algae Sargassum thunbergii (Sargassaceae) and Odonthalia corymbifera (Rhodomelaceae) were subjected to soybean lipoxygenase inhibitory screening. Two hydrophobic inhibitors were obtained from the extracts of S. thunbergii through inhibitory assay-guided fractionation. The inhibitors were identified as known exo-methylenic alkapolyenes (6Z,9Z,12Z,15Z)-1,6,9,12,15-henicosapentaene (1) and (6Z,9Z,12Z,15Z,18Z)-1,6,9,12,15,18-henicosahexaene (2). The alkapolyenes 1 and 2 showed higher inhibitory activity than the known inhibitor nordihydroguaiaretic acid (NDGA). Pheophytin a (3) was obtained from the extract of O. corymbifera. The inhibitor 3 also showed higher inhibitory activity than NDGA. This is the first report on lipoxygenase inhibition of exo-methylenic alkapolyenes and a chlorophyll a-related substance.
Collapse
Affiliation(s)
- Hideyuki Kurihara
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan.
| | - Yoshio Kagawa
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Remi Konno
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan
| | - Sang Moo Kim
- Department of Marine Bioscience and Technology, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
| | - Koretaro Takahashi
- Faculty and Graduate School of Fisheries Sciences, Hokkaido University, Minato, Hakodate, Hokkaido 041-8611, Japan
| |
Collapse
|
30
|
Pian P, Labovitz E, Hoffman K, Clavijo CF, Rzasa Lynn R, Galinkin JL, Vinks AA, Malik P, Christians U. Quantification of the 5-lipoxygenase inhibitor zileuton in human plasma using high performance liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2013; 937:79-83. [PMID: 24029553 DOI: 10.1016/j.jchromb.2013.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Zileuton is an orally active, selective inhibitor of 5-lipoxygenase, which catalyzes the first step in the conversion of arachadonic acid into leukotrienes. Given the important role of leukotrienes in inflammation and cell signaling, multiple studies have investigated the efficacy of zileuton in the treatment of human disease. Examples of disease targets include asthma, ulcerative colitis, rheumatoid arthritis, and more recently, acne, ischemic/reperfusion injury, inflammatory pain, and sickle cell anemia. Zileuton is currently approved for the prophylaxis and chronic treatment of asthma. We report the development and validation of a sensitive and specific liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for the quantification of zileuton in human EDTA plasma. The range of reliable response was 3.05-20,000ng/mL in human plasma. The calibration curves had a correlation coefficient of r(2)>0.99. The intra-day precision was 3.4-5.3%. The inter-day precision ranged from 4.5% to 7.3% and inter-day accuracy from 100% to 107%. No matrix interferences, ion suppression/enhancement, or carry-over was observed. The assay met all predefined acceptance criteria and was subsequently employed to measure plasma zileuton concentrations in a clinical trial.
Collapse
Affiliation(s)
- Phillip Pian
- iC42 Clinical Research & Development, Department of Anesthesiology, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hoobler EK, Rai G, Warrilow AGS, Perry SC, Smyrniotis CJ, Jadhav A, Simeonov A, Parker JE, Kelly DE, Maloney DJ, Kelly SL, Holman TR. Discovery of a novel dual fungal CYP51/human 5-lipoxygenase inhibitor: implications for anti-fungal therapy. PLoS One 2013; 8:e65928. [PMID: 23826084 PMCID: PMC3691235 DOI: 10.1371/journal.pone.0065928] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/02/2013] [Indexed: 12/26/2022] Open
Abstract
We report the discovery of a novel dual inhibitor targeting fungal sterol 14α-demethylase (CYP51 or Erg11) and human 5-lipoxygenase (5-LOX) with improved potency against 5-LOX due to its reduction of the iron center by its phenylenediamine core. A series of potent 5-LOX inhibitors containing a phenylenediamine core, were synthesized that exhibit nanomolar potency and >30-fold selectivity against the LOX paralogs, platelet-type 12-human lipoxygenase, reticulocyte 15-human lipoxygenase type-1, and epithelial 15-human lipoxygenase type-2, and >100-fold selectivity against ovine cyclooxygenase-1 and human cyclooxygnease-2. The phenylenediamine core was then translated into the structure of ketoconazole, a highly effective anti-fungal medication for seborrheic dermatitis, to generate a novel compound, ketaminazole. Ketaminazole was found to be a potent dual inhibitor against human 5-LOX (IC50 = 700 nM) and CYP51 (IC50 = 43 nM) in vitro. It was tested in whole blood and found to down-regulate LTB4 synthesis, displaying 45% inhibition at 10 µM. In addition, ketaminazole selectively inhibited yeast CYP51 relative to human CYP51 by 17-fold, which is greater selectivity than that of ketoconazole and could confer a therapeutic advantage. This novel dual anti-fungal/anti-inflammatory inhibitor could potentially have therapeutic uses against fungal infections that have an anti-inflammatory component.
Collapse
Affiliation(s)
- Eric K. Hoobler
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ganesha Rai
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Andrew G. S. Warrilow
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Steven C. Perry
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher J. Smyrniotis
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
| | - Josie E. Parker
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - Diane E. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
| | - David J. Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, Bethesda, Maryland, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| | - S. L. Kelly
- Institute of Life Science, College of Medicine, Swansea University, Swansea, Wales, United Kingdom
- * E-mail: (DJM); (SLK); (TRH)
| | - Theodore R. Holman
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail: (DJM); (SLK); (TRH)
| |
Collapse
|
32
|
Hoobler EK, Holz C, Holman TR. Pseudoperoxidase investigations of hydroperoxides and inhibitors with human lipoxygenases. Bioorg Med Chem 2013; 21:3894-9. [PMID: 23669189 DOI: 10.1016/j.bmc.2013.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 03/28/2013] [Accepted: 04/03/2013] [Indexed: 01/29/2023]
Abstract
Understanding the mode of action for lipoxygenase (LOX) inhibitors is critical to determining their efficacy in the cell. The pseudoperoxidase assay is an important tool for establishing if a LOX inhibitor is reductive in nature, however, there have been difficulties identifying the proper conditions for each of the many human LOX isozymes. In the current paper, both the 234 nM decomposition (UV) and iron-xylenol orange (XO) assays are shown to be effective methods of detecting pseudoperoxidase activity for 5-LOX, 12-LOX, 15-LOX-1 and 15-LOX-2, but only if 13-(S)-HPODE is used as the hydroperoxide substrate. The AA products, 12-(S)-HPETE and 15-(S)-HPETE, are not consistent hydroperoxide substrates since they undergo a competing transformation to the di-HETE products. Utilizing the above conditions, the selective 12-LOX and 15-LOX-1 inhibitors, probes for diabetes, stroke and asthma, are characterized for their inhibitory nature. Interestingly, ascorbic acid also supports the pseudoperoxidase assay, suggesting that it may have a role in maintaining the inactive ferrous form of LOX in the cell. In addition, it is observed that nordihydroguaiaretic acid (NDGA), a known reductive LOX inhibitor, appears to generate radical species during the pseudoperoxidase assay, which are potent inhibitors against the human LOX isozymes, producing a negative pseudoperoxidase result. Therefore, inhibitors that do not support the pseudoperoxidase assay with the human LOX isozymes, should also be investigated for rapid inactivation, to clarify the negative pseudoperoxidase result.
Collapse
Affiliation(s)
- Eric K Hoobler
- Chemistry and Biochemistry Department, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
33
|
Çalışkan B, Banoglu E. Overview of recent drug discovery approaches for new generation leukotriene A4 hydrolase inhibitors. Expert Opin Drug Discov 2012; 8:49-63. [DOI: 10.1517/17460441.2013.735228] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Burcu Çalışkan
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,
Taç Sok. No:3 Yenimahalle, 06330 Ankara, Turkey
| | - Erden Banoglu
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry,
Taç Sok. No:3 Yenimahalle, 06330 Ankara, Turkey ; ;
| |
Collapse
|
34
|
Gallastegui N, Beck P, Arciniega M, Huber R, Hillebrand S, Groll M. Hydroxyureas as Noncovalent Proteasome Inhibitors. Angew Chem Int Ed Engl 2011; 51:247-9. [DOI: 10.1002/anie.201106010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Indexed: 11/10/2022]
|
35
|
Gallastegui N, Beck P, Arciniega M, Huber R, Hillebrand S, Groll M. Hydroxyharnstoffe als nichtkovalente Proteasom-Inhibitoren. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Wasfi YS, Villarán C, de Tilleghem CLB, Smugar SS, Hanley WD, Reiss TF, Knorr BA. The efficacy and tolerability of MK-0633, a 5-lipoxygenase inhibitor, in chronic asthma. Respir Med 2011; 106:34-46. [PMID: 21945511 DOI: 10.1016/j.rmed.2011.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 08/18/2011] [Accepted: 08/20/2011] [Indexed: 01/27/2023]
Abstract
Leukotriene B4 (LTB(4)) is a potent inflammatory mediator in asthma, and is increased in more severe asthma. Targeting LTB(4), in addition to cysteinyl leukotrienes, could be beneficial in asthma. This was a randomized, double-blind trial of once-daily MK-0633, a potent 5-lypoxygenase inhibitor, 10 mg, 50 mg, and 100 mg, and placebo in patients 18-70 years with a history of chronic asthma, and FEV(1) ≥45 and ≤85% predicted. There was a 6-week main period and optional 18-week and 34-week periods (52 weeks total), the latter two comparing only MK-0633 100 mg and placebo. The primary endpoint was the change from baseline in FEV(1) over the last 4 weeks of the 6-week primary treatment period. Secondary endpoints included symptom scores, β-agonist use, peak expiratory flow (PEF), asthma quality of life questionnaire (AQLQ), asthma control questionnaire (ACQ), asthma attacks, exacerbations, days with asthma control, post-β-agonist FEV(1), and blood eosinophils. MK-0633 100 mg was significantly more effective than placebo for the change from baseline in FEV(1) (0.20 L vs. 0.13 L; p = 0.004). The other MK-0633 doses were not significantly more effective than placebo. MK-0633 (at various doses) was also more effective than placebo for β-agonist use, AQLQ, AM and PM PEFR, ACQ, and post-β-agonist FEV(1) (p < 0.05 for all). MK-0633 was associated with a dose-dependent increase in elevated aspartate aminotransferase and alanine aminotransferase. Because of the relative benefit-risk ratio, the optional study periods were terminated after unblinding for the main study period. Overall, the benefit-risk ratio did not support the clinical utility of MK-0633 in asthma.
Collapse
|
37
|
Thakker P, Marusic S, Stedman NL, Lee KL, McKew JC, Wood A, Goldman SJ, Leach MW, Collins M, Kuchroo VK, Wolf SF, Clark JD, Hassan-Zahraee M. Cytosolic phospholipase A2α blockade abrogates disease during the tissue-damage effector phase of experimental autoimmune encephalomyelitis by its action on APCs. THE JOURNAL OF IMMUNOLOGY 2011; 187:1986-97. [PMID: 21746963 DOI: 10.4049/jimmunol.1002789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cytosolic phospholipase A(2)α (cPLA(2)α) is the rate-limiting enzyme for release of arachidonic acid, which is converted primarily to PGs via the cyclooxygenase 1 and 2 pathways and to leukotrienes via the 5-lipoxygenase pathway. We used adoptive transfer and relapsing-remitting forms of experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis, in two different strains of mice (SJL or C57BL/6) to demonstrate that blockade of cPLA(2)α with a highly specific small-molecule inhibitor during the tissue-damage effector phase abrogates the clinical manifestation of disease. Using the adoptive transfer model in SJL mice, we demonstrated that the blockade of cPLA(2)α during the effector phase of disease was more efficacious in ameliorating the disease pathogenesis than the blockade of each of the downstream enzymes, cyclooxygenase-1/2 and 5-lipooxygenase. Similarly, blockade of cPLA(2)α was highly efficacious in ameliorating disease pathogenesis during the effector phase of EAE in the adoptive transfer model of EAE in C57BL/6 mice. Investigation of the mechanism of action indicates that cPLA(2)α inhibitors act on APCs to diminish their ability to induce Ag-specific effector T cell proliferation and proinflammatory cytokine production. Furthermore, cPLA(2)α inhibitors may prevent activation of CNS-resident microglia and may increase oligodendrocyte survival. Finally, in a relapsing-remitting model of EAE in SJL mice, therapeutic administration of a cPLA(2)α inhibitor, starting from the peak of disease or during remission, completely protected the mice from subsequent relapses.
Collapse
Affiliation(s)
- Paresh Thakker
- Inflammation and Immunology Research Unit, Pfizer Research and Development, Cambridge, MA 02140, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rossi A, Pergola C, Koeberle A, Hoffmann M, Dehm F, Bramanti P, Cuzzocrea S, Werz O, Sautebin L. The 5-lipoxygenase inhibitor, zileuton, suppresses prostaglandin biosynthesis by inhibition of arachidonic acid release in macrophages. Br J Pharmacol 2011; 161:555-70. [PMID: 20880396 DOI: 10.1111/j.1476-5381.2010.00930.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Zileuton is the only 5-lipoxygenase (5-LOX) inhibitor marketed as a treatment for asthma, and is often utilized as a selective tool to evaluate the role of 5-LOX and leukotrienes. The aim of this study was to investigate the effect of zileuton on prostaglandin (PG) production in vitro and in vivo. EXPERIMENTAL APPROACH Peritoneal macrophages activated with lipopolysaccharide (LPS)/interferon γ (LPS/IFNγ), J774 macrophages and human whole blood stimulated with LPS were used as in vitro models and rat carrageenan-induced pleurisy as an in vivo model. KEY RESULTS Zileuton suppressed PG biosynthesis by interference with arachidonic acid (AA) release in macrophages. We found that zileuton significantly reduced PGE2 and 6-keto prostaglandin F1α (PGF1α) levels in activated mouse peritoneal macrophages and in J774 macrophages. This effect was not related to 5-LOX inhibition, because it was also observed in macrophages from 5-LOX knockout mice. Notably, zileuton inhibited PGE2 production in LPS-stimulated human whole blood and suppressed PGE2 and 6-keto PGF1α pleural levels in rat carrageenan-induced pleurisy. Interestingly, zileuton failed to inhibit the activity of microsomal PGE2 synthase1 and of cyclooxygenase (COX)-2 and did not affect COX-2 expression. However, zileuton significantly decreased AA release in macrophages accompanied by inhibition of phospholipase A2 translocation to cellular membranes. CONCLUSIONS AND IMPLICATION Zileuton inhibited PG production by interfering at the level of AA release. Its mechanism of action, as well as its use as a pharmacological tool, in experimental models of inflammation should be reassessed.
Collapse
Affiliation(s)
- A Rossi
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Tu XK, Yang WZ, Wang CH, Shi SS, Zhang YL, Chen CM, Yang YK, Jin CD, Wen S. Zileuton Reduces Inflammatory Reaction and Brain Damage Following Permanent Cerebral Ischemia in Rats. Inflammation 2010; 33:344-52. [DOI: 10.1007/s10753-010-9191-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
40
|
Karlage KL, Mogalian E, Jensen A, Myrdal PB. Inhalation of an ethanol-based zileuton formulation provides a reduction of pulmonary adenomas in the A/J mouse model. AAPS PharmSciTech 2010; 11:168-73. [PMID: 20101484 PMCID: PMC2850452 DOI: 10.1208/s12249-009-9371-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 12/16/2009] [Indexed: 11/30/2022] Open
Abstract
Potential efficacy of zileuton, a 5-LOX inhibitor, was evaluated for the reduction of pulmonary adenomas in the A/J murine model when administered via nose-only inhalation. Development of pulmonary adenomas was induced with benzo(a)pyrene. Animals were treated with a zileuton solution (5 mg/mL in 85:15 ethanol/water) either twice weekly or five times a week via nose-only inhalation; The placebo solution (85:15 EtOH/H2O, no active) was also evaluated. Dose delivered was calculated to be 1.2 mg/kg per exposure for each zileuton group. After 20 weeks of treatment, surface tumors were enumerated and histologically assessed. A significant reduction in tumor count was noted for both the twice weekly administration (40%) and the five times a week administration (59%). The data also showed a significant reduction for the group, which received the placebo (approximately 58%). The treatment groups were also found to have an impact on the histological stages of adenoma development.
Collapse
Affiliation(s)
- Kelly L Karlage
- College of Pharmacy, University of Arizona, 1703 E. Mabel St, Tucson, Arizona 85721, USA.
| | | | | | | |
Collapse
|
41
|
Robinson SJ, Hoobler EK, Riener M, Loveridge ST, Tenney K, Valeriote FA, Holman TR, Crews P. Using enzyme assays to evaluate the structure and bioactivity of sponge-derived meroterpenes. JOURNAL OF NATURAL PRODUCTS 2009; 72:1857-1863. [PMID: 19848434 PMCID: PMC2996101 DOI: 10.1021/np900465e] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Enzyme screening of crude sponge extracts prioritized a 2005 Papua New Guinea collection of Hyrtios sp. for further study. The MeOH extract contained puupehenone and four puupehenone analogues (1, 2, 3, 5, and 7) along with a new diastereomer, 20-epi-hydroxyhaterumadienone (4), and a new analogue, 15-oxo-puupehenoic acid (6). The drimane terpene core of 4 and 6 was rapidly dereplicated, and the modified Mosher's method identified 4, while 1D and 2D NMR techniques were used to solve 6. These compounds plus noteworthy repository natural products and standards were tested against three lipoxygenase isozymes, human 5-, 12-, and 15-lipoxygenases. Significant potency and selectivity profiles were exhibited in the human 5-lipoxygenase assay by puupehenone (1) and jaspaquinol (9) and structural factors responsible for activity identified.
Collapse
Affiliation(s)
- Sarah J. Robinson
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Eric K. Hoobler
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Michelle Riener
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Steven T. Loveridge
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Karen Tenney
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | | | - Theodore R. Holman
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
42
|
Lou TF, Singh M, Mackie A, Li W, Pace BS. Hydroxyurea generates nitric oxide in human erythroid cells: mechanisms for gamma-globin gene activation. Exp Biol Med (Maywood) 2009; 234:1374-82. [PMID: 19657070 DOI: 10.3181/0811-rm-339] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Hydroxyurea (HU) induces fetal hemoglobin synthesis through activation of cyclic guanine monophosphate (cGMP) signaling. Studies in sickle cell patients demonstrated increased circulating nitric oxide (NO) levels after oral HU treatment. However, the direct measurement of NO in erythroid cells and its role in fetal hemoglobin induction have not been defined. Therefore, we quantified the level of nitrate and nitrite (NOx) generated by HU in human erythroid progenitors in the presence of three nitric oxide synthase inhibitors (NOS), including N(G)-monomethyl-L-arginine (L-NMMA). In addition, cGMP levels were measured in the presence or absence of the pathway inhibitor 1H-(1,2,4)ox-adiazolo(4,3-a)quinoxalin-1-one, which blocks soluble guanylyl cyclase formation. HU treatment increased NOx levels and gamma-globin transcription in K562 and primary erythroid cells, which was augmented when HU was combined with L-NMMA. Pretreatment with the cGMP pathway inhibitor reversed gamma-gene activation by HU. These data demonstrate the direct stimulation of cellular NO and cGMP signaling in erythroid progenitors by HU as a possible mechanism for gamma-globin gene activation.
Collapse
Affiliation(s)
- Tzu-Fang Lou
- University of Texas at Dallas, Department of Molecular and Cell Biology, Richardson, Texas 75080, USA
| | | | | | | | | |
Collapse
|
43
|
Jacobsen FE, Buczynski MW, Dennis EA, Cohen SM. A macrophage cell model for selective metalloproteinase inhibitor design. Chembiochem 2008; 9:2087-95. [PMID: 18666306 PMCID: PMC2826882 DOI: 10.1002/cbic.200800148] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Indexed: 11/06/2022]
Abstract
The desire to inhibit zinc-dependent matrix metalloproteinases (MMPs) has, over the course of the last 30 years, led to the development of a plethora of MMP inhibitors that bind directly to the active-site metal. With one exception, all of these drugs have failed in clinical trials, due to many factors, including an apparent lack of specificity for MMPs. To address the question of whether these inhibitors are selective for MMPs in a biological setting, a cell-based screening method is presented to compare the relative activities of zinc, heme iron, and non-heme iron enzymes in the presence of these compounds using the RAW264.7 macrophage cell line. We screened nine different zinc-binding groups (ZBGs), four established MMP inhibitors (MMPis), and two novel MMP inhibitors developed in our laboratory to determine their selectivities against five different metalloenzymes. Using this model, we identified two nitrogen donor compounds--2,2'-dipyridylamine (DPA) and triazacyclononane (TACN)--as the most selective ZBGs for zinc metalloenzyme inhibitor development. We also demonstrated that the model could predict known nonspecific interactions of some of the most commonly used MMPis, and could also give cross-reactivity information for newly developed MMPis. This work demonstrates the utility of cell-based assays in both the design and the screening of novel metalloenzyme inhibitors.
Collapse
Affiliation(s)
- Faith E. Jacobsen
- Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92093-0358
| | - Matthew W. Buczynski
- Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92093-0358
- Department of Pharmacology, University of California in San Diego, La Jolla, CA 92093-0601
| | - Edward A. Dennis
- Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92093-0358
- Department of Pharmacology, University of California in San Diego, La Jolla, CA 92093-0601
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry, University of California in San Diego, La Jolla, CA 92093-0358
| |
Collapse
|
44
|
Capra V, Thompson MD, Sala A, Cole DE, Folco G, Rovati GE. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Med Res Rev 2007; 27:469-527. [PMID: 16894531 DOI: 10.1002/med.20071] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cysteinyl-leukotrienes (cysteinyl-LTs), that is, LTC4, LTD4, and LTE4, trigger contractile and inflammatory responses through the specific interaction with G protein-coupled receptors (GPCRs) belonging to the purine receptor cluster of the rhodopsin family, and identified as CysLT receptors (CysLTRs). Cysteinyl-LTs have a clear role in pathophysiological conditions such as asthma and allergic rhinitis (AR), and have been implicated in other inflammatory conditions including cardiovascular diseases, cancer, atopic dermatitis, and urticaria. Molecular cloning of human CysLT1R and CysLT2R subtypes has confirmed most of the previous pharmacological characterization and identified distinct expression patterns only partially overlapping. Interestingly, recent data provide evidence for the immunomodulation of CysLTR expression, the existence of additional receptor subtypes, and of an intracellular pool of CysLTRs that may have roles different from those of plasma membrane receptors. Furthermore, genetic variants have been identified for the CysLTRs that may interact to confer risk for atopy. Finally, a crosstalk between the cysteinyl-LT and the purine systems is being delineated. This review will summarize and attempt to integrate recent data derived from studies on the molecular pharmacology and pharmacogenetics of CysLTRs, and will consider the therapeutic opportunities arising from the new roles suggested for cysteinyl-LTs and their receptors.
Collapse
MESH Headings
- Adult
- Animals
- Asthma/drug therapy
- Asthma/physiopathology
- Cardiovascular Diseases/physiopathology
- Child
- Child, Preschool
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/etiology
- Female
- Humans
- Hydroxyurea/adverse effects
- Hydroxyurea/analogs & derivatives
- Leukotriene Antagonists/adverse effects
- Leukotriene Antagonists/therapeutic use
- Leukotriene C4/physiology
- Leukotriene D4/physiology
- Leukotriene E4/physiology
- Membrane Proteins/drug effects
- Membrane Proteins/genetics
- Membrane Proteins/physiology
- Pharmacogenetics
- Receptors, Leukotriene/drug effects
- Receptors, Leukotriene/genetics
- Receptors, Leukotriene/physiology
- Receptors, Purinergic/physiology
- Recombinant Proteins/pharmacology
- Rhinitis, Allergic, Seasonal/drug therapy
- Rhinitis, Allergic, Seasonal/physiopathology
- SRS-A/biosynthesis
- Tissue Distribution
Collapse
Affiliation(s)
- Valérie Capra
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Berger W, De Chandt MTM, Cairns CB. Zileuton: clinical implications of 5-Lipoxygenase inhibition in severe airway disease. Int J Clin Pract 2007; 61:663-76. [PMID: 17394438 DOI: 10.1111/j.1742-1241.2007.01320.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The 5-Lipoxygenase pathway results in the formation of leukotrienes, including leukotriene B(4) (LTB(4)), 5-oxo-6E,8Z,11Z,14Z-eicosatetranoic acid and the cysteinyl leukotrienes (LTC(4), LTD(4) and LTE(4)) and activates all four leukotriene receptors, BLT1, BLT2, cysLT(1) and cysLT(2). Zileuton is the only commercially available inhibitor of the 5-Lipoxygenase pathway. In a number of clinical trials, zileuton has been shown to improve airway function and inflammation, asthma symptom control and quality of life in asthmatics. Given the important role that leukotrienes play in airway inflammation, zileuton provides an additional therapeutic option in the management of chronic, persistent asthma, particularly those asthmatics with more severe disease. In addition, zileuton has shown promise in a number of other conditions, including upper airway inflammatory conditions, dermatological disease and chronic obstructive pulmonary disease. The development of new formulations, including a controlled release tablet formulation for b.i.d. dosing and an intravenous preparation for acute asthma exacerbations may enhance clinical utility and expand therapeutic indications.
Collapse
Affiliation(s)
- W Berger
- Department of Pediatrics, Division of Allergy and Immunology, University of California, Irvine, Mission Viejo, CA, USA
| | | | | |
Collapse
|
46
|
Pufahl RA, Kasten TP, Hills R, Gierse JK, Reitz BA, Weinberg RA, Masferrer JL. Development of a fluorescence-based enzyme assay of human 5-lipoxygenase. Anal Biochem 2007; 364:204-12. [PMID: 17376394 DOI: 10.1016/j.ab.2007.02.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2006] [Revised: 02/05/2007] [Accepted: 02/06/2007] [Indexed: 10/23/2022]
Abstract
Leukotrienes are important mediators in a number of inflammatory diseases and therefore are a target of several therapeutic approaches. The first committed step in the synthesis of leukotrienes is the conversion of arachidonic acid to leukotriene A(4) (LTA(4)) in two successive reactions catalyzed by 5-lipoxygenase (5-LOX). Assays to measure 5-LOX activity typically have been low throughput and time consuming. In this article, we describe a fluorescence assay that is amenable to high-throughput screening in a 384-well microplate format. The fluorescent signal is measured during oxidation of 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) by human 5-LOX. The assay has been found to reliably identify small molecule inhibitors of human 5-LOX. The IC(50) values of several 5-LOX inhibitors in this new assay are comparable to those determined in a standard spectrophotometric assay that measures the formation of the 5(S)-hydroperoxyeicosatetraenoic acid (5-HpETE) product. In addition, we demonstrate the use of the assay in a high-throughput screen of the Pfizer compound collection to identify inhibitors of 5-LOX.
Collapse
Affiliation(s)
- Robert A Pufahl
- Pfizer Global Research and Development, Chesterfield, MO 63017, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The biosynthesis of tetrapetalones (tetrapetalones A, B, C, and D) in Streptomyces sp. USF-4727 was studied by feeding experiments with [1-13C] sodium propanoate, [1-13C] sodium butanoate, [carbonyl-13C] 3-amino-5-hydroxybenzoic acid (AHBA) hydrochloride, and [1-13C] glucose, followed by analysis of the 13C-NMR spectra. These feeding experiments revealed that the four tetrapetalones were polyketide compounds constructed from propanoate, butanoate, AHBA, and glucose. The tetrapetalone biosynthetic pathway was also suggested in this study. In this pathway, tetrapetalone A (1) is synthesized by polyketide synthase (PKS) using AHBA as a starter unit, then the side chain of 1 is subjected to acetoxylation to produce tetrapetalone B (2). Additionally, 1 is oxidized and transformed into tetrapetalone C (3). In a similar way, 2 is converted to tetrapetalone D (4). Therefore, the biosynthetic relationship of the four tetrapetalones was indicated.
Collapse
Affiliation(s)
- Toshikazu Komoda
- Laboratory of Applied Microbiology, School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan 422-8526.
| | | | | |
Collapse
|
48
|
Thomas SB, Albazi SJ. Simultaneous Determination of the 5-Lipoxygenase Inhibitor “Zileuton” and its N-Dehydroxylated Metabolite in Untreated Rat Urine by Micellar Liquid Chromatography. J LIQ CHROMATOGR R T 2006. [DOI: 10.1080/10826079608001928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Samuel B. Thomas
- a Department of Chemistry , Northeastern Illinois University , Chicago, Illinois, 60625
| | - Sargon J. Albazi
- a Department of Chemistry , Northeastern Illinois University , Chicago, Illinois, 60625
| |
Collapse
|
49
|
Werz O, Steinhilber D. Therapeutic options for 5-lipoxygenase inhibitors. Pharmacol Ther 2006; 112:701-18. [PMID: 16837050 DOI: 10.1016/j.pharmthera.2006.05.009] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 12/27/2022]
Abstract
5-Lipoxygenase (5-LO) catalyzes the conversion of arachidonic acid (AA) into leukotriene (LT) A(4) and 5-hydroperoxyeicosatetraenoic acid. LTA(4) can then be converted into LTB(4) by LTA(4) hydrolase or into LTC(4) by LTC(4) synthase and the LTC(4) synthase isoenzymes MGST2 and MGST3. LTB(4) is a potent chemoattractant for neutrophils, eosinophils and monocytes leading to adherence of phagocytes to vessel walls, neutrophil degranulation and release of superoxide anions. LTC(4) and its metabolite, LTD(4), are potent bronchoconstrictors that increase vascular permeability and stimulate mucus secretion from airways. Recent data also suggest that LT have an immunomodulatory role. Due to these properties, the increased biosynthesis of LT in asthma, and based upon clinical data obtained with CysLT(1) receptor antagonists in asthma patients, there is a consensus that CysLT play a prominent role in asthma. In this review, we summarize the knowledge on possible functions of the 5-LO pathway in various diseases like asthma, cancer and cardiovascular events and review the corresponding potential therapeutic roles of 5-LO inhibitors.
Collapse
Affiliation(s)
- Oliver Werz
- Pharmaceutical Institute, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany
| | | |
Collapse
|
50
|
Funk CD. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nat Rev Drug Discov 2005; 4:664-72. [PMID: 16041318 DOI: 10.1038/nrd1796] [Citation(s) in RCA: 257] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Owing to their anti-inflammatory properties, leukotriene modifiers have been the primary therapeutics in asthma management for several years. Although blocking the inflammatory component of human disease is a long-standing and established concept, the use of leukotriene modifiers in treating the inflammatory component of cardiovascular disease encompassing atherosclerosis, myocardial infarction, stroke and aortic aneurysm has, surprisingly, only been seriously contemplated in the past few years. As reviewed here, several exciting studies have recently contributed to this expanding area of interest, and so far one leukotriene modifier has entered Phase II clinical trials to assess its potential for reducing the risk of heart attacks.
Collapse
Affiliation(s)
- Colin D Funk
- Department of Biochemistry, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|