1
|
Irmen CP, Siegel SM, Carr PA. Localization of SSeCKS in unmyelinated primary sensory neurons. J Brachial Plex Peripher Nerve Inj 2008; 3:8. [PMID: 18353188 PMCID: PMC2277419 DOI: 10.1186/1749-7221-3-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/19/2008] [Indexed: 12/04/2022] Open
Abstract
Background SSeCKS (Src SupprEssed C Kinase Substrate) is a proposed protein kinase C substrate/A kinase anchoring protein (AKAP) that has recently been characterized in the rat peripheral nervous system. It has been shown that approximately 40% of small primary sensory neurons contain SSeCKS-immunoreactivity in a population largely separate from substance P (95.2%), calcitonin gene related peptide (95.3%), or fluoride resistant acid phosphatase (55.0%) labeled cells. In the spinal cord, it was found that SSeCKS-immunoreactive axon collaterals terminate in the dorsal third of lamina II outer in a region similar to that of unmyelinated C-, or small diameter myelinated Aδ-, fibers. However, the precise characterization of the anatomical profile of the primary sensory neurons containing SSeCKS remains to be determined. Here, immunohistochemical labeling at the light and ultrastructural level is used to clarify the myelination status of SSeCKS-containing sensory neuron axons and to further clarify the morphometric, and provide insight into the functional, classification of SSeCKS-IR sensory neurons. Methods Colocalization studies of SSeCKS with myelination markers, ultrastructural localization of SSeCKS labeling and ablation of largely unmyelinated sensory fibers by neonatal capsaicin administration were all used to establish whether SSeCKS containing sensory neurons represent a subpopulation of unmyelinated primary sensory C-fibers. Results Double labeling studies of SSeCKS with CNPase in the dorsal horn and Pzero in the periphery showed that SSeCKS immunoreactivity was observed predominantly in association with unmyelinated primary sensory fibers. At the ultrastructural level, SSeCKS immunoreactivity was most commonly associated with axonal membrane margins of unmyelinated fibers. In capsaicin treated rats, SSeCKS immunoreactivity was essentially obliterated in the dorsal horn while in dorsal root ganglia quantitative analysis revealed a 43% reduction in the number of SSeCKS-labeled cells. This attenuation is concomitant with a decrease in fluoride-resistant acid phosphatase labeled fibers in the spinal cord dorsal horn and small neuronal somata in sensory ganglia. Conclusion These results demonstrate that SSeCKS is primarily localized within a distinct subpopulation of small diameter, largely unmyelinated C-fiber primary sensory neurons putatively involved in nociception.
Collapse
Affiliation(s)
- Christopher P Irmen
- Dept. of Anatomy and Cell Biology, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | |
Collapse
|
2
|
Final report on the safety assessment of capsicum annuum extract, capsicum annuum fruit extract, capsicum annuum resin, capsicum annuum fruit powder, capsicum frutescens fruit, capsicum frutescens fruit extract, capsicum frutescens resin, and capsaicin. Int J Toxicol 2007; 26 Suppl 1:3-106. [PMID: 17365137 DOI: 10.1080/10915810601163939] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Capsicum-derived ingredients function as skin-conditioning agents--miscellaneous, external analgesics, flavoring agents, or fragrance components in cosmetics. These ingredients are used in 19 cosmetic products at concentrations as high as 5%. Cosmetic-grade material may be extracted using hexane, ethanol, or vegetable oil and contain the full range of phytocompounds that are found in the Capsicum annuum or Capsicum frutescens plant (aka red chiles), including Capsaicin. Aflatoxin and N-nitroso compounds (N-nitrosodimethylamine and N-nitrosopyrrolidine) have been detected as contaminants. The ultraviolet (UV) absorption spectrum for Capsicum Annuum Fruit Extract indicates a small peak at approximately 275 nm, and a gradual increase in absorbance, beginning at approximately 400 nm. Capsicum and paprika are generally recognized as safe by the U.S. Food and Drug Administration for use in food. Hexane, chloroform, and ethyl acetate extracts of Capsicum Frutescens Fruit at 200 mg/kg resulted in death of all mice. In a short-term inhalation toxicity study using rats, no difference was found between vehicle control and a 7% Capsicum Oleoresin solution. In a 4-week feeding study, red chilli (Capsicum annuum) in the diet at concentrations up to 10% was relatively nontoxic in groups of male mice. In an 8-week feeding study using rats, intestinal exfoliation, cytoplasmic fatty vacuolation and centrilobular necrosis of hepatocytes, and aggregation of lymphocytes in the portal areas were seen at 10% Capsicum Frutescens Fruit, but not 2%. Rats fed 0.5 g/kg day-1 crude Capsicum Fruit Extract for 60 days exhibited no significant gross pathology at necropsy, but slight hyperemia of the liver and reddening of the gastric mucosa were observed. Weanling rats fed basal diets supplemented with whole red pepper at concentrations up to 5.0% for up to 8 weeks had no pathology of the large intestines, livers, and kidneys, but destruction of the taste buds and keratinization and erosion of the gastrointestinal (GI) tract were noted in groups fed 0.5% to 5.0% red pepper. The results of 9-and 12-month extension of this study showed normal large intestines and kidneys. In rabbits fed Capsicum Annuum Powder at 5 mg/kg day-1 in the diet daily for 12 months damage to the liver and spleen was noted. A rabbit skin irritation test of Capsicum Annuum Fruit Extract at concentrations ranging from 0.1% to 1.0% produced no irritation, but Capsicum Frutescens Fruit Extract induced concentration-dependent (at 25 to 500 microg/ml) cytotoxicity in a human buccal mucosa fibroblast cell line. An ethanol extract of red chili was mutagenic in Salmonella typhimurium TA98, but not in TA100, or in Escherichia coli. Other genotoxicity assays gave a similar pattern of mixed results. Adenocarcinoma of the abdomen was observed in 7/20 mice fed 100 mg red chilies per day for 12 months; no tumors were seen in control animals. Neoplastic changes in the liver and intestinal tumors were observed in rats fed red chili powder at 80 mg/kg day-1 for 30 days, intestinal and colon tumors were seen in rats fed red chili powder and 1,2-dimethyl hydrazine, but no tumors were observed in controls. In another study in rats, however, red chile pepper in the diet at the same dose decreased the number of tumors seen with 1,2-dimethylhydrazine. Other feeding studies evaluated the effect of red chili peppers on the incidence of stomach tumors produced by N-methyl-N'-nitro-N-nitrosoguanidine, finding that red pepper had a promoting effect. Capsicum Frutescens Fruit Extract promoted the carcinogenic effect of methyl(acetoxymethyl)nitrosamine (carcinogen) or benzene hexachloride (hepatocarcinogen) in inbred male and female Balb/c mice dosed orally (tongue application). Clinical findings include symptoms of cough, sneezing, and runny nose in chili factory workers. Human respiratory responses to Capsicum Oleoresin spray include burning of the throat, wheezing, dry cough, shortness of breath, gagging, gasping, inability to breathe or speak, and, rarely, cyanosis, apnea, and respiratory arrest. A trade name mixture containing 1% to 5% Capsicum Frutescens Fruit Extract induced very slight erythema in 1 of 10 volunteers patch tested for 48 h. Capsicum Frutescens Fruit Extract at 0.025% in a repeated-insult patch test using 103 subjects resulted in no clinically meaningful irritation or allergic contact dermatitis. One epidemiological study indicated that chili pepper consumption may be a strong risk factor for gastric cancer in populations with high intakes of chili pepper; however, other studies did not find this association. Capsaicin functions as an external analgesic, a fragrance ingredient, and as a skin-conditioning agent--miscellaneous in cosmetic products, but is not in current use. Capsaicin is not generally recognized as safe and effective by the U.S. Food and Drug Administration for fever blister and cold sore treatment, but is considered to be safe and effective as an external analgesic counterirritant. Ingested Capsaicin is rapidly absorbed from the stomach and small intestine in animal studies. Subcutaneous injection of Capsaicin in rats resulted in a rise in the blood concentration, reaching a maximum at 5 h; the highest tissue concentrations were in the kidney and lowest in the liver. In vitro percutaneous absorption of Capsaicin has been demonstrated in human, rat, mouse, rabbit, and pig skin. Enhancement of the skin permeation of naproxen (nonsteroidal anti-inflammatory agent) in the presence of Capsaicin has also been demonstrated. Pharmacological and physiological studies demonstrated that Capsaicin, which contains a vanillyl moiety, produces its sensory effects by activating a Ca2 +-permeable ion channel on sensory neurons. Capsaicin is a known activator of vanilloid receptor 1. Capsaicin-induced stimulation of prostaglandin biosynthesis has been shown using bull seminal vesicles and rheumatoid arthritis synoviocytes. Capsaicin inhibits protein synthesis in Vero kidney cells and human neuroblastoma SHSY-5Y cells in vitro, and inhibits growth of E. coli, Pseudomonas solanacearum, and Bacillus subtilis bacterial cultures, but not Saccharomyces cerevisiae. Oral LD50 values as low as 161.2 mg/kg (rats) and 118.8 mg/kg (mice) have been reported for Capsaicin in acute oral toxicity studies, with hemorrhage of the gastric fundus observed in some of the animals that died. Intravenous, intraperitoneal, and subcutaneous LD50 values were lower. In subchronic oral toxicity studies using mice, Capsaicin produced statistically significant differences in the growth rate and liver/body weight increases. Capsaicin is an ocular irritant in mice, rats, and rabbits. Dose-related edema was observed in animals receiving Capsaicin injections into the hindpaw (rats) or application to the ear (mice). In guinea pigs, dinitrochlorobenzene contact dermatitis was enhanced in the presence of Capsaicin, injected subcutaneously, whereas dermal application inhibited sensitization in mice. Immune system effects have been observed in neonatal rats injected subcutaneously with Capsaicin. Capsaicin produced mixed results in S. typhimurium micronucleus and sister-chromatid exchange genotoxicity assays. Positive results for Capsaicin were reported in DNA damage assays. Carcinogenic, cocarcinogenic, anticarcinogenic, antitumorigenic, tumor promotion, and anti-tumor promotion effects of Capsaicin have been reported in animal studies. Except for a significant reduction in crown-rump length in day 18 rats injected subcutaneously with Capsaicin (50 mg/kg) on gestation days 14, 16, 18, or 20, no reproductive or developmental toxicity was noted. In pregnant mice dosed subcutaneously with Capsaicin, depletion of substance P in the spinal cord and peripheral nerves of pregnant females and fetuses was noted. In clinical tests, nerve degeneration of intracutaneous nerve fibers and a decrease in pain sensation induced by heat and mechanical stimuli were evident in subjects injected intradermally with Capsaicin. An increase in mean inspiratory flow was reported for eight normal subjects who inhaled nebulized 10(-7) M Capsaicin. The results of provocative and predictive tests involving human subjects indicated that Capsaicin is a skin irritant. Overall, studies suggested that these ingredients can be irritating at low concentrations. Although the genotoxicity, carcinogenicity, and tumor promotion potential of Capsaicin have been demonstrated, so have opposite effects. Skin irritation and other tumor-promoting effects of Capsaicin appear to be mediated through interaction with the same vanilloid receptor. Given this mechanism of action and the observation that many tumor promoters are irritating to the skin, the Panel considered it likely that a potent tumor promoter may also be a moderate to severe skin irritant. Thus, a limitation on Capsaicin content that would significantly reduce its skin irritation potential is expected to, in effect, lessen any concerns relating to tumor promotion potential. Because Capsaicin enhanced the penetration of an anti-inflammatory agent through human skin, the Panel recommends that care should be exercised in using ingredients that contain Capsaicin in cosmetic products. The Panel advised industry that the total polychlorinated biphenyl (PCB)/pesticide contamination should be limited to not more than 40 ppm, with not more than 10 ppm for any specific residue, and agreed on the following limitations for other impurities: arsenic (3 mg/kg max), heavy metals (0.002% max), and lead (5 mg/kg max). Industry was also advised that aflatoxin should not be present in these ingredients (the Panel adopted < or =15 ppb as corresponding to "negative" aflatoxin content), and that ingredients derived from Capsicum annuum and Capsicum Frutescens Plant species should not be used in products where N-nitroso compounds may be formed. (ABSTRACT TRUNCATED)
Collapse
|
3
|
Holzer P. Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds. Rev Physiol Biochem Pharmacol 2005; 121:49-146. [PMID: 1485073 DOI: 10.1007/bfb0033194] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P Holzer
- University of Graz, Department of Experimental and Clinical Pharmacology, Austria
| |
Collapse
|
4
|
Funakoshi K, Nakano M, Atobe Y, Goris RC, Kadota T, Yazama F. Differential development of TRPV1-expressing sensory nerves in peripheral organs. Cell Tissue Res 2005; 323:27-41. [PMID: 16142452 DOI: 10.1007/s00441-005-0013-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
In mouse ontogeny, neurons immunoreactive for transient receptor potential vanilloid receptor 1 (TRPV1) were observed primarily in the dorsal root ganglia (DRG) at embryonic day 13 (E13). In the embryonic period, the number of TRPV1(+) neurons decreased, but then gradually increased postnatally. Some of TRPV1(+) neurons were also immunoreactive for calcitonin gene-related peptide (CGRP). At postnatal day 7 (P7), 66% of CGRP(+) neurons were TRPV1(+), and 55% of TRPV1(+) neurons were also CGRP(+) in the L4 DRG. In the peripheral organs, TRPV1-immunorective nerve fibers were transiently observed in the skin at E14. They were also observed in the urinary tract at E14, and in the rectum at E15. Many TRPV1(+) nerve fibers in these organs were also CGRP(+). At P1, TRPV1(+) nerve fibers were observed in the respiratory organs, and to a lesser extent in the stomach, colon, skin, and skeletal muscles. The number of TRPV1(+) nerve fibers on each organ gradually increased postnatally. At P7, TRPV1(+) nerve fibers were also observed in the small intestine and kidneys. The percentage of total TRPV1(+) nerve fibers that co-localized with CGRP was greater in most organs at P7 than at P1. The present results indicate that TRPV1 expression on peripheral processes differs among organs. The differential time course of TRPV1 expression in the cell bodies might be related to the organs to which they project. Co-localization of TRPV1 with CGRP on nerve fibers also varies among organs. This suggests that the TRPV1-mediated neuropeptide release that occurs in certain pathophysiologic conditions also varies among organs.
Collapse
Affiliation(s)
- Kengo Funakoshi
- Department of Neuroanatomy, Yokohama City University School of Medicine, 3-9 Fukuura, Yokohama, 236-0004, Japan.
| | | | | | | | | | | |
Collapse
|
5
|
Kashiba H, Fukui H, Senba E. Histamine H1 receptor mRNA is expressed in capsaicin-insensitive sensory neurons with neuropeptide Y-immunoreactivity in guinea pigs. Brain Res 2001; 901:85-93. [PMID: 11368954 DOI: 10.1016/s0006-8993(01)02287-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Histamine H1 receptor mRNA-expressing sensory neurons in guinea pigs are unmyelinated and are not immunoreactive to substance P and calcitonin gene-related peptide (CGRP) [Mol. Brain Res. 66 (1999) 24], which are implicated in the nociceptive transmission of the primary sensory system. In this study, we examined whether these H1 receptor mRNA-expressing neurons are sensitive to capsaicin by using in situ hybridization histochemistry. Of lumbar dorsal root ganglion (DRG) neurons in control animals, 17% were positive for CGRP. In guinea pigs neonatally treated with capsaicin (50 mg/kg), few CGRP-immunoreactive neurons were seen in the DRGs. However, the percentages of H1 receptor mRNA-expressing neurons (15-20%) and the intensity of the mRNA signals in these neurons were not affected by neonatal capsaicin treatment. We also revealed the presence of both capsaicin-sensitive and insensitive neuropeptide Y (NPY)-immunoreactive neurons in the DRGs. These neurons were exclusively small. H1 receptor mRNA was expressed in NPY-immunoreactive neurons in naive guinea pig DRGs. These results suggest that H1 receptor mRNA is expressed in capsaicin-insensitive DRG neurons with NPY-immunoreactivity in guinea pigs.
Collapse
Affiliation(s)
- H Kashiba
- Department of Physiology, Kansai College of Oriental Medicine, 2-11-1 Wakaba, Kumatori, Sennan, 590-0433, Osaka, Japan
| | | | | |
Collapse
|
6
|
Ha SO, Yoo HJ, Park SY, Hong HS, Kim DS, Cho HJ. Capsaicin effects on brain-derived neurotrophic factor in rat dorsal root ganglia and spinal cord. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:181-6. [PMID: 11000490 DOI: 10.1016/s0169-328x(00)00144-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of capsaicin systemically administered in adult rats, with the major focus on the expression of brain-derived neurotropic factor (BDNF) and its mRNA in the dorsal root ganglion (DRG) and spinal cord, has been investigated by means of immunohistochemistry and reverse transcriptase-polymerase chain reactions. The percentage of BDNF-immunoreactive neurons in the L5 DRG was found to increase significantly 1 day after capsaicin injection. Subsequently, it decreased slowly returning to near normal levels 1 week later. Four weeks post-injection, a significant reduction to below normal levels was observed. The temporal pattern of BDNF mRNA expression in the DRG was similar to BDNF-immunoreactivity. In the spinal cord, 1 and 3 days post-injection, no changes in the expression of the BDNF-immunoreactive axonal fibers was noted. However, the expression had decreased significantly after 1 and 4 weeks. The mechanism by which capsaicin induces changes in expression of BDNF in DRG neurons and the functional significance of the rapid increase in BDNF levels in the DRG is discussed briefly.
Collapse
Affiliation(s)
- S O Ha
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101 Dongin Dong, Taegu 700-422, South Korea
| | | | | | | | | | | |
Collapse
|
7
|
Zhang Q, Schäffer M, Elde R, Stein C. Effects of neurotoxins and hindpaw inflammation on opioid receptor immunoreactivities in dorsal root ganglia. Neuroscience 1998; 85:281-91. [PMID: 9607719 DOI: 10.1016/s0306-4522(97)00647-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three types of opioid receptors mediate peripheral opioid antinociception in inflammation. Recently, antisera that recognize unique epitopes of the cloned mu-, delta-, and kappa-opioid receptors have been developed. Using these antisera we examined the regulation of opioid receptors in rat dorsal root ganglia after hindpaw inflammation and the influence of neurotoxins for primary afferent neurons and sympathetic neurons thereon. Peripheral tissue inflammation was produced by injection of complete Freund's adjuvant into the right hindpaw. Capsaicin was injected subcutaneously once a day for three days using a total dose of 150 mg/kg. 6-hydroxydopamine was injected intraperitoneally 75 mg/kg/day for three days. Freund's adjuvant induced a marked increase in the percentage of mu-, but a decrease in delta- and kappa-opioid receptor-positive neurons. Capsaicin significantly decreased mu-, delta- and kappa-opioid receptor immunoreactivity in both Freund's adjuvant treated and non-treated rats. No significant changes on the mu-, delta- and kappa-opioid receptor immunoreactivities were observed after 6-hydroxydopamine treatment in either Freund's adjuvant-treated or non-treated rats. Our studies indicate: (1) Peripheral inflammation can differentially regulate the expression of the three opioid receptors in dorsal root ganglia neurons with an up-regulation of mu- and down-regulation of delta- and kappa-opioid receptors. 2) A significant portion of mu-, delta- and kappa-opioid receptors are located on capsaicin-sensitive neurons in dorsal root ganglia of both non-inflamed and inflamed hindlimbs. 3) The expression of opioid receptors in dorsal root ganglia of either inflamed or non-inflamed hindlimbs is not influenced by sympathetic postganglionic neurons.
Collapse
Affiliation(s)
- Q Zhang
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD 21287-8711, USA
| | | | | | | |
Collapse
|
8
|
Perry MJ, Lawson SN. Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 1998; 85:293-310. [PMID: 9607720 DOI: 10.1016/s0306-4522(97)00629-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Dorsal root ganglion neurons innervating skin via the saphenous nerve, muscle via the gastrocnemius nerve and viscera via the splanchnic nerve, were identified by retrograde tracing with Fast Blue applied to the cut nerve. Only neuronal profiles with nuclei were counted. At the survival times used no changes in immunohistochemical labelling patterns were detectable in the axotomized neurons. Percentages of Fast Blue-labelled neuronal profiles that were immunolabelled were calculated. The values for markers of carbohydrate groups were for skin, muscle and viscera, respectively: the lectin peanut agglutinin 55%, 24%, and 50%; the lectin soybean agglutinin 72%, 56%, 61%; the antibody 2C5 (against lactoseries groups) 43%, 20%, 6%; the antibodies SSEA-4 (against globoseries groups) 6%, 12%, 0% and SSEA-3 (against globoseries groups) 6%, 5%, 0%. The values for neurofilament rich profiles were for skin, muscle and viscera, respectively: 34%, 43%, 19%, and for carbonic anhydrase were 10%, 33%, 2%. Values for neuropeptides were, for calcitonin gene-related peptide 51%, 70%, 99%, for substance P 21%, 51%, 82%, and for somatostatin 10%, 2% and 0%. The population of skin afferents therefore contained the highest proportion of profiles expressing galactose containing carbohydrate groups labelled by 2C5 and the lectins and the highest proportion of cells with somatostatin. In contrast they had the lowest proportions of cells with calcitonin gene-related peptide and substance P, compared with the other tissues. Muscle afferents had the highest proportions compared with the other tissues of the neurofilament-rich, carbonic anhydrase-positive and SSEA-4-labelled profiles, but the lowest proportions of profiles with lectin binding. The splanchnic visceral afferents had the highest proportions, compared with the other tissues, of neuronal profiles labelled for calcitonin gene-related peptide and substance P, but the lowest proportions of neurofilament rich profiles and of profiles with carbonic anhydrase or 2C5 labelling and they totally lacked any labelling for globoseries carbohydrates and somatostatin. Both the muscle and skin afferent populations had clear small cell and large cell peaks in their size distributions, with the small cell peak being larger for skin than muscle afferents and the large cell peak being more marked for muscle afferents. The visceral afferent profiles had a unimodal size distribution with the peak size being between the small and large cell peaks of the somatic afferent units. This study therefore shows that the patterns of immunohistochemical labelling and cell size of primary afferent neurons differ according to their peripheral target tissue.
Collapse
Affiliation(s)
- M J Perry
- Department of Physiology, The School of Medical Sciences, Bristol, UK
| | | |
Collapse
|
9
|
Carleson J, Kogner P, Bileviciute I, Theodorsson E, Appelgren A, Appelgren B, Kopp S, Yousef N, Lundeberg T. Effects of capsaicin in temporomandibular joint arthritis in rats. Arch Oral Biol 1997; 42:869-76. [PMID: 9460541 DOI: 10.1016/s0003-9969(97)00005-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Temporomandibular joint (TMJ) arthritis was induced in female Lewis rats by unilateral injection of a suspension of heat-killed Mycobacterium butyricum in paraffin oil into the TMJ. Control rats received paraffin oil by the same route. Arthritic and control rats were pretreated either with capsaicin or denervation of the mandibular branch of the trigeminal nerve. Tissues were collected for neuropeptide extraction and analysed by radioimmunoassay and reverse-phase high-performance liquid chromatography. In all groups, the levels of substance P-(SP), calcitonin gene-related peptide- (CGRP) and neuropeptide Y- (NPY) like immunoreactivity (LI) were higher in the trigeminal ganglia than in the TMJs. In control rats, capsaicin significantly lowered the levels of SP-LI in the trigeminal ganglia and TMJ, but not CGRP-LI and NPY-LI. In the arthritic rats, capsaicin pretreatment significantly lowered the SP-LI and CGRP-LI in the trigeminal ganglia and TMJ, but not the NPY-LI. In the trigeminal ganglia the unilateral denervation significantly lowered SP-LI in control rats, and in arthritic rats SP-LI and CGRP-LI. On the denervated side of the arthritic TMJ, NPY-LI, SP-LI and CGRP- LI were significantly lowered as compared to the arthritic control rats and to the contralateral side. In this rat model, pretreatment with capsaicin and surgical denervation decreased the neuropeptide content in the trigeminal ganglia and the TMJ. The results clearly demonstrate a close interaction between increased neuropeptide release from sensory and sympathetic neurones after induction of arthritis in the rat.
Collapse
Affiliation(s)
- J Carleson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kashiba H, Ueda Y, Senba E. Systemic capsaicin in the adult rat differentially affects gene expression for neuropeptides and neurotrophin receptors in primary sensory neurons. Neuroscience 1997; 76:299-312. [PMID: 8971780 DOI: 10.1016/s0306-4522(96)00334-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
While systemic capsaicin in adult rats is known to reduce substance P and somatostatin in primary sensory nerves, it is still unknown if it also affects the production of these peptides at the genetic level. Therefore, we examined the effects of systemically administered capsaicin on the expression of the beta-preprotachykinin, gamma-preprotachykinin, somatostatin, calcitonin gene-related peptide, vasoactive intestinal polypeptide, galanin, neuropeptide Y and neurotrophin receptor family (trkA, trkB, trkC) genes in dorsal root ganglion neurons by in situ hybridization in adult rats. Nerve growth factor is thought to be involved in the regulation of some of these genes. In the control animals, beta-preprotachykinin, gamma-preprotachykinin, calcitonin gene-related peptide, somatostatin, trkA, trkB and trkC messenger RNAs were found in about 30%, 30%, 40%, 10%, 40%, 5% and 20% of the lumbar dorsal root ganglion neurons, respectively. The number of neurons expressing beta/gamma-preprotachykinin and calcitonin gene-related peptide messenger RNAs decreased to about 50% and 70% of the control values, respectively, six days after subcutaneous administration of capsaicin (950 mg/kg). Simultaneously, the number of trkA messenger RNA-expressing neurons also decreased to about 70% of the control level, while the number of neurons expressing trkB and trkC messenger RNAs was unaffected. On the other hand, vasoactive intestinal polypeptide and galanin messenger RNAs, but not neuropeptide Y messenger RNA, began to be expressed in about 10% of dorsal root ganglion neurons after administration of capsaicin, although their messenger RNAs were not detected in the controls. However, the expression of somatostatin messenger RNA was unaffected by the systemic administration of capsaicin. The somatostatin messenger RNA was not co-expressed with vasoactive intestinal polypeptide and galanin messenger RNAs in the sensory neurons of rats given capsaicin. Electron microscopic analysis revealed a few degenerating unmyelinated afferents in sural nerves of the treated rats. The number of small-sized dorsal root ganglion cells labeled with Fluoro-Gold, a retrograde-tracing dye which was injected into the sural nerve of the treated rats, decreased to half of the control number. Our results suggest that systemic administration of capsaicin in adult rats depresses the expression of beta/gamma-preprotachykinin, calcitonin gene-related peptide and trkA messenger RNAs, and induces expression of vasoactive intestinal polypeptide and galanin messenger RNAs in sensory neurons, which may be due to the capsaicin-induced degeneration of a subpopulation of sensory afferents. We also demonstrated that the regulation of somatostatin gene expression in mature sensory neurons is not affected by systemic capsaicin.
Collapse
Affiliation(s)
- H Kashiba
- Department of Physiology, Kansai College of Oriental Medicine, Osaka, Japan
| | | | | |
Collapse
|
11
|
Teoh H, Malcangio M, Fowler LJ, Bowery NG. Evidence for release of glutamic acid, aspartic acid and substance P but not gamma-aminobutyric acid from primary afferent fibres in rat spinal cord. Eur J Pharmacol 1996; 302:27-36. [PMID: 8790988 DOI: 10.1016/0014-2999(96)00052-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro superfusion release experiments and autoradiography were carried out on spinal cords of neonatally capsaicin-treated rats. Electrical and chemical stimulations significantly increased the release of aspartate, glutamate and gamma-aminobutyric acid (GABA) from hemisected dorsal horn slices of vehicle-treated animals. In capsaicin-treated rats, the evoked release of aspartate, glutamate and substance P but not GABA, were significantly lower. Capsaicin (1 microM) stimulated the release of aspartate and glutamate, as reported for substance P, in control slices but this effect was not as apparent in tissues from capsaicin-treated rats. Evoked GABA release was not affected in either case. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, dizocilpine and GABAB binding sites were highly localised in the substantia gelatinosa. Capsaicin treatment did not affect the affinity of the binding sites in all four cases but significantly reduced the density of kainate, dizocilpine and GABAB binding sites. The data suggest that capsaicin-sensitive primary afferent fibres release aspartate, glutamate and Substance P following high-intensity stimulations and that this release might be modulated by presynaptic glutamate and GABAB receptors present on these terminals.
Collapse
Affiliation(s)
- H Teoh
- Department of Pharmacology, School of Pharmacy, London, UK
| | | | | | | |
Collapse
|
12
|
Telser S, Marksteiner J, Hinterhuber H, Saria A. Distribution of secretoneurin-like immunoreactivity in comparison with that of substance P in the human spinal cord. Neurosci Lett 1995; 191:83-6. [PMID: 7544882 DOI: 10.1016/0304-3940(95)11566-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Secretoneurin (SN), a neuropeptide of 33 amino acids, was determined in comparison with substance P (SP) by immunocytochemistry in normal human spinal cord. The density of secretoneurin-like immunoreactivity (SN-IR) was high in the superficial dorsal horn and in the lateral column of autonomic arcs. The ventral horn displayed low to moderate density of SN-IR and prominently outlined motoneurons. The congruent distribution of SN and SP to the termination of primary afferents may indicate that SN is involved in modulation of pain.
Collapse
Affiliation(s)
- S Telser
- Department of Psychiatry, University of Innsbruck, Austria
| | | | | | | |
Collapse
|
13
|
Ahmed M, Bjurholm A, Srinivasan GR, Lundeberg T, Theodorsson E, Schultzberg M, Kreicbergs A. Capsaicin effects on substance P and CGRP in rat adjuvant arthritis. REGULATORY PEPTIDES 1995; 55:85-102. [PMID: 7536950 DOI: 10.1016/0167-0115(94)00095-f] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The effects of capsaicin on the sensory neuropeptides substance P and calcitonin gene-related peptide were analyzed in the ankle joints and dorsal root ganglia (L2-L6) of adult female Lewis rats. The study included 23 normal rats and 23 arthritic rats, all injected subcutaneously with capsaicin (total dose 200 mg/kg bw). Another two groups of animals from a previous study, i.e., 23 normal rats and 23 arthritic rats not given capsaicin served as controls. Adjuvant arthritis was induced by inoculation with heat-killed mycobacteria. The morphological distribution of sensory neuropeptides was assessed by immunohistochemistry and the tissue concentrations were determined by radioimmunoassay. In normal rats, capsaicin significantly reduced the concentrations of substance P and calcitonin gene-related peptide in ankle joints (54 and 36%, respectively) as well as dorsal root ganglia (40 and 54%, respectively). In arthritic rats those pretreated with capsaicin had significantly lower concentrations of substance P and calcitonin gene-related peptide in dorsal root ganglia (19 and 42%, respectively) compared to the arthritic controls. In the ankle joints, however, only the SP concentration was reduced (42%). Notably, this was accompanied by a 40% reduction in inflammatory response as assessed by comparing the ankle joint weights of the experimental groups. In general, there was a good correlation between the neuropeptide concentrations in ipsilateral ankle joints and the corresponding dorsal root ganglia as assessed in individual rats. The present study of adjuvant induced arthritis shows that capsaicin administration reduces the otherwise up-regulated levels of sensory neuropeptides in dorsal root ganglia and ankle joints. However, capsaicin at the dose given can only mitigate, not completely prevent the development of joint inflammation. Nonetheless, the findings suggest that antineuronal therapy targeted against specific neurotransmitters may prove useful in inflammatory joint disease.
Collapse
Affiliation(s)
- M Ahmed
- Department of Orthopaedics, Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
14
|
Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 1995; 45:1-98. [PMID: 7716258 DOI: 10.1016/0301-0082(94)e0017-b] [Citation(s) in RCA: 350] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C A Maggi
- Department of Pharmacology, A. Menarini Pharmaceuticals, Florence, Italy
| |
Collapse
|
15
|
Kirchmair R, Marksteiner J, Troger J, Mahata SK, Mahata M, Donnerer J, Amann R, Fischer-Colbrie R, Winkler H, Saria A. Human and rat primary C-fibre afferents store and release secretoneurin, a novel neuropeptide. Eur J Neurosci 1994; 6:861-8. [PMID: 8075827 DOI: 10.1111/j.1460-9568.1994.tb00996.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Secretoneurin is a recently discovered neuropeptide derived from secretogranin II (SgII). Since this peptide could be detected in the dorsal horn of the spinal cord we studied whether it is localized in and released from primary afferent neurons. Secretoneurin was investigated with immunocytochemistry and radioimmunoassay in spinal cord, dorsal root ganglia and peripheral organs. SgII mRNA was determined in dorsal root ganglia. Normal rats and rats pre-treated neonatally with capsaicin to destroy selectively polymodal nociceptive (C-) fibres were used. Slices of dorsal spinal cord were perfused in vitro for release experiments. Immunocytochemistry showed a distinct distribution of secretoneurin-immunoreactivity (IR) in the spinal cord and, lower brainstem. A particularly high density of fibres was found in lamina I and outer lamina II of the caudal trigeminal nucleus and of the spinal cord. This distribution was qualitatively identical in rat and human post-mortem tissue. Numerous small diameter and some large dorsal root ganglia neurons were found to contain SgII mRNA. Capsaicin treatment led to a marked depletion of secretoneurin-IR in the substantia gelatinosa, but not in other immunopositive areas of the spinal cord and to a substantial loss of small (< 25 microns) SgII-mRNA-containing dorsal root ganglia neurons. Radioimmunoassay revealed a significant decrease of secretoneurin-IR in the dorsal spinal cord, the trachea, heart and urinary bladder of capsaicin-treated rats. Perfusion of spinal cord slices with capsaicin as well as with 60 mM potassium led to a release of secretoneurin-IR. In conclusion, secretoneurin is a neuropeptide which is stored in and released from capsaicin-sensitive, primary afferent (C-fibre) neurons.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Kirchmair
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
el-Bohy A, LaMotte CC. Deafferentation-induced changes in neuropeptides of the adult rat dorsal horn following pronase injection of the sciatic nerve. J Comp Neurol 1993; 336:545-54. [PMID: 7503999 DOI: 10.1002/cne.903360407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The effect of deafferentation on the neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS), and cholecystokinin (CCK) in the lumbar dorsal horn of the adult rat was examined by the indirect immunohistochemical method. Deafferentation was induced by injecting the sciatic nerve of anesthetized rats with proteolytic enzymes (20 mg pronase), which cause selective death of the nerve's ganglion cells and degeneration of their terminal arborization in the spinal cord. The density of immunolabel of each peptide was determined by using a computerized densitometry analysis system in two animal groups, i.e., short-term (10-13 days after injection) and long-term (4-9 months). In both groups, the deafferentation produced a significant ipsilateral depletion of CGRP, SP, CCK, and SS immunoreactivity. This depletion was limited to the area occupied by the sciatic terminals in the dorsal horn. In the long-term group, the loss of CGRP and SP staining was significantly less than that in the short-term animals, thus indicating partial recovery. A similar, but not statistically significant, trend was observed for CCK and SS. The large decrease in CGRP and SP seen in short-term animals reflects the large contribution of the sciatic nerve to the lumbar dorsal horn. The partial recovery of peptides demonstrates the plasticity of the nervous system and may parallel sprouting of primary afferents from other nerves, such as the saphenous nerve, as we have demonstrated in previous studies.
Collapse
Affiliation(s)
- A el-Bohy
- Section of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510
| | | |
Collapse
|
17
|
Fike EA, Simons E, Boswell C, Smith PG. Sensory nerves impair sympathetic reinnervation and recovery of smooth muscle function. Exp Neurol 1992; 118:85-94. [PMID: 1397180 DOI: 10.1016/0014-4886(92)90025-l] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Neuronal populations projecting to a common target may compete for neurotrophic substances. To determine if competition impairs target reinnervation, we examined the effect of capsaicin-induced sensory denervation on sympathetic nerve ingrowth to the sympathectomized rat superior tarsal smooth muscle. In tarsal muscles with intact sympathetic innervation, capsaicin injection on Day 2 reduced numbers of perimuscular CGRP-ir sensory nerves by 68% at 3-4 months; however, it did not alter dopamine-beta-hydroxylase-ir nerve density, response to nerve stimulation, or tarsal muscle adrenoceptor-mediated contraction. Tarsal muscles denervated by ipsilateral superior cervical ganglionectomy on Postnatal Day 4 were partially reinnervated by fibers from the contralateral ganglion, as noted in previous studies. Sensory denervation by capsaicin improved sympathetic reinnervation, as evidenced by a 174% increase in numbers of DBH-ir nerves and a 62% increase in neurally mediated smooth muscle contraction evoked by electrical stimulation of the contralateral pathway relative to reinnervated muscles of vehicle-injected rats; smooth muscle function was also influenced, as indicated by a decrease toward normal in adrenoceptor sensitivity. Tarsal muscles denervated at 30 days were not reinnervated in either vehicle-injected or capsaicin-treated rats, indicating that sensory denervation does not extend the developmental window during which contralateral reinnervation can occur. Both the vehicle-injected and capsaicin-treated preparations with sustained juvenile sympathectomy showed sensory hyperinnervation as adults; thus, a chronic reduction in competition from sympathetics is a sufficiently powerful stimulus to overcome the decreased nerve density induced by neonatal capsaicin treatment. We conclude that sensory nerves limit the extent of sympathetic reinnervation and functional recovery that can occur following neonatal sympathetic denervation.
Collapse
Affiliation(s)
- E A Fike
- Department of Physiology, University of Kansas Medical Center, Kansas City 66160-7401
| | | | | | | |
Collapse
|
18
|
Shiokawa Y, Delgado-Zygmunt TJ, Arbab MA, Svendgaard NA. Effect of unilateral pre- and postganglionic lesioning of the trigeminal nerve on the development of cerebral vasospasm in the squirrel monkey: angiographic findings. Br J Neurosurg 1992; 6:445-55. [PMID: 1449667 DOI: 10.3109/02688699208995034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bilateral carotid angiography was performed in the squirrel monkey before and after unilateral pre- and postganglionic trigeminal lesioning. A unilateral postganglionic lesion caused a significant constriction of about 27% of the ipsilateral cerebral arteries, while a preganglionic lesion did not change the baseline arterial diameter. Following a subarachnoid haemorrhage (SAH) the degree of vasoconstriction in the animals with a preganglionic lesion did not differ significantly from that seen in controls. In the postganglionically lesioned animals, the vasoconstriction was more pronounced (12% at both 10 min and 6 days post SAH) on the lesioned as compared with the non-lesioned side. At day 6 post SAH the degree of vasoconstriction was 19% more pronounced on the lesioned side in post- as compared with the preganglionically lesioned animals. There was no difference in the degree of spasm on the non-lesioned side between the two groups. The findings indicate that the trigeminal system has both a peripheral and a central function. The peripheral, or axon reflex mechanism, exerts a tonic effect on the cerebral vessels. Following a SAH the axon reflex seems to attenuate cerebral vasospasm.
Collapse
Affiliation(s)
- Y Shiokawa
- Neurosurgical Department, Karolinska Sjukhuset, Stockholm, Sweden
| | | | | | | |
Collapse
|
19
|
Hammond DL, Ruda MA. Developmental alterations in nociceptive threshold, immunoreactive calcitonin gene-related peptide and substance P, and fluoride-resistant acid phosphatase in neonatally capsaicin-treated rats. J Comp Neurol 1991; 312:436-50. [PMID: 1721077 DOI: 10.1002/cne.903120310] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study examined the effect of neonatal administration of capsaicin on nociceptive threshold and the distribution of calcitonin gene-related peptide (CGRP), substance P (SP), and fluoride-resistant acid phosphatase (FRAP) in the dorsal horn of the spinal cord during the course of development (10 days to 12 weeks of age) in the rat. As early as 10 days of age, CGRP-like immunoreactivity was reduced in laminae I, II, and V, as well as in the bundles of fibers situated dorsal and ventral to the central canal. However, beginning on or about 6 weeks of age, the density of CGRP-like immunoreactivity in the superficial laminae and in the bundles dorsal and ventral to the central canal increased. Moreover, thick, nonvaricose CGRP-like immunoreactive fibers appeared in laminae III and IV. These recurring fibers were of primary afferent origin as demonstrated by their disappearance after multiple, unilateral rhizotomies. A similar age-dependent alteration in the density of FRAP activity was also observed. Although virtually absent at 10 days of age after neonatal administration of capsaicin, the density of FRAP activity increased in lamina II by 8 weeks of age. This activity disappeared after multiple, unilateral rhizotomies, indicating that the FRAP activity that reappeared was of primary afferent origin. Neonatal administration of capsaicin also reduced the density of SP-like immunoreactivity in the dorsal horn as early as 10 days of age, although the density of SP-like immunoreactivity showed some recovery after 6 weeks of age. However, unlike CGRP-like immunoreactivity or FRAP activity, the density of SP-like immunoreactivity in capsaicin-treated rats was not detectably altered by multiple, unilateral rhizotomies, indicating that it originated principally from intrinsic dorsal horn neurons. Age-dependent alterations in both thermal and mechanical, but not chemical, nociceptive thresholds were also observed in these same animals. Thus, tail flick latency, hot plate latency, and paw withdrawal threshold were maximally increased at 6 weeks of age, after which time thresholds declined to vehicle-treated values. In contrast, capsaicin-treated animals were uniformly insensitive to ophthalmic administration of capsaicin. The correspondence between developmental alterations in CGRP-like immunoreactivity or FRAP activity and in thermal and mechanical nociceptive thresholds is suggestive of a role of CGRP- or FRAP-containing primary afferents in thermal and mechanical nociception.
Collapse
Affiliation(s)
- D L Hammond
- Department of Central Nervous System Diseases Research, G.D. Searle & Co., Skokie, Illinois 60077
| | | |
Collapse
|
20
|
Kashiba H, Senba E, Ueda Y, Tohyama M. Cell size and cell type analysis of calcitonin gene-related peptide-containing cutaneous and splanchnic sensory neurons in the rat. Peptides 1991; 12:101-6. [PMID: 2052485 DOI: 10.1016/0196-9781(91)90174-n] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell size, cell type and calcitonin gene-related peptide (CGRP)-like immunoreactivity were compared between cutaneous and splanchnic sensory neurons by means of a combination of fluorescent tracer and immunohistochemistry. Nineteen percent of cutaneous sensory neurons and 88% of splanchnic sensory neurons were shown to contain CGRP. The former cells were larger than the latter ones, which was also confirmed by the finding that about a half of the former cells contained 200 kDa subunit of neurofilament protein, while only 8% of the latter ones were positively stained. These findings suggest that most of the visceral CGRP-IR sensory neurons are small type B.
Collapse
Affiliation(s)
- H Kashiba
- Department of Physiology, Kansai College of Acupuncture Medicine, Osaka, Japan
| | | | | | | |
Collapse
|
21
|
Kashiba H, Senba E, Ueda Y, Tohyama M. Calbindin D28k-containing splanchnic and cutaneous dorsal root ganglion neurons of the rat. Brain Res 1990; 528:311-6. [PMID: 2271930 DOI: 10.1016/0006-8993(90)91673-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Calbindin D28k (CaBP)-containing splanchnic and cutaneous sensory neurons in the rat dorsal root ganglia (DRGs) were investigated immunocytochemically in combination with a fluorescent dye tracer (Fluoro gold). About 15% of the DRG neurons at Th9-10 levels showed CaBP-like immunoreactivity. Eighty-four % of the splanchnic sensory neurons were immunoreactive to CaBP, while only 3% of the cutaneous sensory neurons were. The diameters of the splanchnic and cutaneous sensory neurons containing CaBP were 23.4 +/- 6.3 microns and 38.4 +/- 8.8 microns, respectively. Splanchnic sensory neurons containing CaBP were sensitive to capsaicin while cutaneous ones were not. These findings suggest that CaBP-containing splanchnic and cutaneous sensory neurons constitute different subgroups among the DRG neurons at the lower thoracic level.
Collapse
Affiliation(s)
- H Kashiba
- Department of Physiology, Kansai College of Acupuncture Medicine, Osaka, Japan
| | | | | | | |
Collapse
|