1
|
Hauser F, Koch TL, Grimmelikhuijzen CJP. Review: The evolution of peptidergic signaling in Cnidaria and Placozoa, including a comparison with Bilateria. Front Endocrinol (Lausanne) 2022; 13:973862. [PMID: 36213267 PMCID: PMC9545775 DOI: 10.3389/fendo.2022.973862] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bilateria have bilateral symmetry and are subdivided into Deuterostomia (animals like vertebrates) and Protostomia (animals like insects and mollusks). Neuropeptides occur in both Proto- and Deuterostomia and they are frequently structurally related across these two lineages. For example, peptides belonging to the oxytocin/vasopressin family exist in both clades. The same is true for the G protein-coupled receptors (GPCRs) of these peptides. These observations suggest that these neuropeptides and their GPCRs were already present in the common ancestor of Proto- and Deuterostomia, which lived about 700 million years ago (MYA). Furthermore, neuropeptides and their GPCRs occur in two early-branching phyla that diverged before the emergence of Bilateria: Cnidaria (animals like corals and sea anemones), and Placozoa (small disk-like animals, feeding on algae). The sequences of these neuropeptides and their GPCRs, however, are not closely related to those from Bilateria. In addition, cnidarian neuropeptides and their receptors are not closely related to those from Placozoa. We propose that the divergence times between Cnidaria, Placozoa, and Bilateria might be too long for recognizing sequence identities. Leucine-rich repeats-containing GPCRs (LGRs) are a special class of GPCRs that are characterized by a long N-terminus containing 10-20 leucine-rich domains, which are used for ligand binding. Among the ligands for LGRs are dimeric glycoprotein hormones, and insulin-like peptides, such as relaxin. LGRs have been found not only in Proto- and Deuterostomia, but also in early emerging phyla, such as Cnidaria and Placozoa. Humans have eight LGRs. In our current review, we have revisited the annotations of LGRs from the sea anemone Nematostella vectensis and the placozoan Trichoplax adhaerens. We identified 13 sea anemone LGRs and no less than 46 LGRs from T. adhaerens. All eight human LGRs appear to have orthologues in sea anemones and placozoans. LGRs and their ligands, therefore, have a long evolutionary history, going back to the common ancestor of Cnidaria and Placozoa.
Collapse
Affiliation(s)
- Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
2
|
Koch TL, Hauser F, Grimmelikhuijzen CJP. An evolutionary genomics view on neuropeptide genes in Hydrozoa and Endocnidozoa (Myxozoa). BMC Genomics 2021; 22:862. [PMID: 34847889 PMCID: PMC8638164 DOI: 10.1186/s12864-021-08091-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The animal phylum Cnidaria consists of six classes or subphyla: Hydrozoa, Scyphozoa, Cubozoa, Staurozoa, Anthozoa, and Endocnidozoa. Cnidarians have an early evolutionary origin, diverging before the emergence of the Bilateria. Extant members from this phylum, therefore, are important resources for understanding the evolution of the nervous system. Cnidarian nervous systems are strongly peptidergic. Using genomics, we have recently shown that three neuropeptide families (the X1PRX2amides, GRFamides, and GLWamides) are wide-spread in four (Scyphozoa, Cubozoa, Staurozoa, Anthozoa) out of six cnidarian classes or subphyla, suggesting that these three neuropeptide families emerged in the common cnidarian ancestor. In the current paper, we analyze the remaining cnidarian class, Hydrozoa, and the subphylum Endocnidozoa, to make firm conclusions about the evolution of neuropeptide genes in Cnidaria. RESULTS We analyzed sixteen hydrozoan species with a sequenced genome or transcriptome, using a recently developed software program for discovering neuropeptide genes. These species belonged to various hydrozoan subclasses and orders, among them the laboratory models Hydra, Hydractinia, and Clytia. We found that each species contained three to five neuropeptide families. A common feature for all hydrozoans was that they contained genes coding for (i) X1PRX2amide peptides, (ii) GRFamide peptides, and (iii) GLWamide peptides. These results support our previous conclusions that these three neuropeptide families evolved early in evolution. In addition to these three neuropeptide families, hydrozoans expressed up to two other neuropeptide gene families, which, however, were only occurring in certain animal groups. Endocnidozoa (Myxozoa) are microscopically small endoparasites, which are strongly reduced. For long, it was unknown to which phylum these parasites belonged, but recently they have been associated with cnidarians. We analyzed nine endocnidozoan species and found that two of them (Polypodium hydriforme and Buddenbrockia plumatellae) expressed neuropeptide genes. These genes coded for neuropeptides belonging to the GRFamide and GLWamide families with structures closely resembling them from hydrozoans. CONCLUSIONS We found X1PRX2amide, GRFamide, and GLWamide peptides in all species belonging to the Hydrozoa, confirming that these peptides originated in the common cnidarian ancestor. In addition, we discovered GRFamide and GLWamide peptide genes in some members of the Endocnidozoa, thereby linking these parasites to Hydrozoa.
Collapse
Affiliation(s)
- Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
3
|
A comparative genomics study of neuropeptide genes in the cnidarian subclasses Hexacorallia and Ceriantharia. BMC Genomics 2020; 21:666. [PMID: 32993486 PMCID: PMC7523074 DOI: 10.1186/s12864-020-06945-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/24/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nervous systems originated before the split of Proto- and Deuterostomia, more than 600 million years ago. Four animal phyla (Cnidaria, Placozoa, Ctenophora, Porifera) diverged before this split and studying these phyla could give us important information on the evolution of the nervous system. Here, we have annotated the neuropeptide preprohormone genes of twenty species belonging to the subclass Hexacorallia or Ceriantharia (Anthozoa: Cnidaria), using thirty-seven publicly accessible genome or transcriptome databases. Studying hexacorals is important, because they are versatile laboratory models for development (e.g., Nematostella vectensis) and symbiosis (e.g., Exaiptasia diaphana) and also are prominent reef-builders. Results We found that each hexacoral or ceriantharian species contains five to ten neuropeptide preprohormone genes. Many of these preprohormones contain multiple copies of immature neuropeptides, which can be up to 50 copies of identical or similar neuropeptide sequences. We also discovered preprohormones that only contained one neuropeptide sequence positioned directly after the signal sequence. Examples of them are neuropeptides that terminate with the sequence RWamide (the Antho-RWamides). Most neuropeptide sequences are N-terminally protected by pyroglutamyl (pQ) or one or more prolyl residues, while they are C-terminally protected by an amide group. Previously, we isolated and sequenced small neuropeptides from hexacorals that were N-terminally protected by an unusual L-3-phenyllactyl group. In our current analysis, we found that these N-phenyllactyl-peptides are derived from N-phenylalanyl-peptides located directly after the signal sequence of the preprohormone. The N-phenyllactyl- peptides appear to be confined to the hexacorallian order Actiniaria and do not occur in other cnidarians. On the other hand, (1) the neuropeptide Antho-RFamide (pQGRFamide); (2) peptides with the C-terminal sequence GLWamide; and (3) tetrapeptides with the X1PRX2amide consensus sequence (most frequently GPRGamide) are ubiquitous in Hexacorallia. Conclusions We found GRFamide, GLWamide, and X1PRX2amide peptides in all tested Hexacorallia. Previously, we discovered these three neuropeptide classes also in Cubozoa, Scyphozoa, and Staurozoa, indicating that these neuropeptides originated in the common cnidarian ancestor and are evolutionarily ancient. In addition to these ubiquitous neuropeptides, other neuropeptides appear to be confined to specific cnidarian orders or subclasses.
Collapse
|
4
|
Zang H, Nakanishi N. Expression Analysis of Cnidarian-Specific Neuropeptides in a Sea Anemone Unveils an Apical-Organ-Associated Nerve Net That Disintegrates at Metamorphosis. Front Endocrinol (Lausanne) 2020; 11:63. [PMID: 32140137 PMCID: PMC7042181 DOI: 10.3389/fendo.2020.00063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/31/2020] [Indexed: 12/20/2022] Open
Abstract
Neuropeptides are ancient neuronal signaling molecules that have diversified across Cnidaria (e.g., jellyfish, corals, and sea anemones) and its sister group Bilateria (e.g., vertebrates, insects, and worms). Over the course of neuropeptide evolution emerged lineage-specific neuropeptides, but their roles in the evolution and diversification of nervous system function remain enigmatic. As a step toward filling in this knowledge gap, we investigated the expression pattern of a cnidarian-specific neuropeptide-RPamide-during the development of the starlet sea anemone Nematostella vectensis, using in situ hybridization and immunohistochemistry. We show that RPamide precursor transcripts first occur during gastrulation in scattered epithelial cells of the aboral ectoderm. These RPamide-positive epithelial cells exhibit a spindle-shaped, sensory-cell-like morphology, and extend basal neuronal processes that form a nerve net in the aboral ectoderm of the free-swimming planula larva. At the aboral end, RPamide-positive sensory cells become integrated into the developing apical organ that forms a bundle of long cilia referred to as the apical tuft. Later during planula development, RPamide expression becomes evident in sensory cells in the oral ectoderm of the body column and pharynx, and in the developing endodermal nervous system. At metamorphosis into a polyp, the RPamide-positive sensory nerve net in the aboral ectoderm degenerates by apoptosis, and RPamide expression begins in ectodermal sensory cells of growing oral tentacles. In addition, we find that the expression pattern of RPamide in planulae differs from that of conserved neuropeptides that are shared across Cnidaria and Bilateria, indicative of distinct functions. Our results not only provide the anatomical framework necessary to analyze the function of the cnidarian-specific neuropeptides in future studies, but also reveal previously unrecognized features of the sea anemone nervous system-the apical organ neurons of the planula larva, and metamorphosis-associated reorganization of the ectodermal nervous system.
Collapse
Affiliation(s)
- Hannah Zang
- Lyon College, Batesville, AR, United States
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Nagayasu Nakanishi
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
- *Correspondence: Nagayasu Nakanishi
| |
Collapse
|
5
|
Nielsen SKD, Koch TL, Hauser F, Garm A, Grimmelikhuijzen CJP. De novo transcriptome assembly of the cubomedusa Tripedalia cystophora, including the analysis of a set of genes involved in peptidergic neurotransmission. BMC Genomics 2019; 20:175. [PMID: 30836949 PMCID: PMC6402141 DOI: 10.1186/s12864-019-5514-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/07/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The phyla Cnidaria, Placozoa, Ctenophora, and Porifera emerged before the split of proto- and deuterostome animals, about 600 million years ago. These early metazoans are interesting, because they can give us important information on the evolution of various tissues and organs, such as eyes and the nervous system. Generally, cnidarians have simple nervous systems, which use neuropeptides for their neurotransmission, but some cnidarian medusae belonging to the class Cubozoa (box jellyfishes) have advanced image-forming eyes, probably associated with a complex innervation. Here, we describe a new transcriptome database from the cubomedusa Tripedalia cystophora. RESULTS Based on the combined use of the Illumina and PacBio sequencing technologies, we produced a highly contiguous transcriptome database from T. cystophora. We then developed a software program to discover neuropeptide preprohormones in this database. This script enabled us to annotate seven novel T. cystophora neuropeptide preprohormone cDNAs: One coding for 19 copies of a peptide with the structure pQWLRGRFamide; one coding for six copies of a different RFamide peptide; one coding for six copies of pQPPGVWamide; one coding for eight different neuropeptide copies with the C-terminal LWamide sequence; one coding for thirteen copies of a peptide with the RPRAamide C-terminus; one coding for four copies of a peptide with the C-terminal GRYamide sequence; and one coding for seven copies of a cyclic peptide, of which the most frequent one has the sequence CTGQMCWFRamide. We could also identify orthologs of these seven preprohormones in the cubozoans Alatina alata, Carybdea xaymacana, Chironex fleckeri, and Chiropsalmus quadrumanus. Furthermore, using TBLASTN screening, we could annotate four bursicon-like glycoprotein hormone subunits, five opsins, and 52 other family-A G protein-coupled receptors (GPCRs), which also included two leucine-rich repeats containing G protein-coupled receptors (LGRs) in T. cystophora. The two LGRs are potential receptors for the glycoprotein hormones, while the other GPCRs are candidate receptors for the above-mentioned neuropeptides. CONCLUSIONS By combining Illumina and PacBio sequencing technologies, we have produced a new high-quality de novo transcriptome assembly from T. cystophora that should be a valuable resource for identifying the neuronal components that are involved in vision and other behaviors in cubomedusae.
Collapse
Affiliation(s)
- Sofie K. D. Nielsen
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Thomas L. Koch
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Frank Hauser
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Anders Garm
- Section of Marine Biology, Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen, Denmark
| | - Cornelis J. P. Grimmelikhuijzen
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
6
|
Anctil M. Chemical transmission in the sea anemone Nematostella vectensis: A genomic perspective. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2009; 4:268-289. [PMID: 20403752 DOI: 10.1016/j.cbd.2009.07.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/30/2009] [Accepted: 07/07/2009] [Indexed: 12/30/2022]
Abstract
The sequencing of the starlet sea anemone (Nematostella vectensis) genome provides opportunities to investigate the function and evolution of genes associated with chemical neurotransmission and hormonal signaling. This is of particular interest because sea anemones are anthozoans, the phylogenetically basal cnidarians least changed from the common ancestors of cnidarians and bilaterian animals, and because cnidarians are considered the most basal metazoans possessing a nervous system. This analysis of the genome has yielded 20 orthologues of enzymes and nicotinic receptors associated with cholinergic function, an even larger number of genes encoding enzymes, receptors and transporters for glutamatergic (28) and GABAergic (34) transmission, and two orthologues of purinergic receptors. Numerous genes encoding enzymes (14), receptors (60) and transporters (5) for aminergic transmission were identified, along with four adenosine-like receptors and one nitric oxide synthase. Diverse neuropeptide and hormone families are also represented, mostly with genes encoding prepropeptides and receptors related to varying closeness to RFamide (17) and tachykinin (14), but also galanin (8), gonadotropin-releasing hormones and vasopressin/oxytocin (5), melanocortins (11), insulin-like peptides (5), glycoprotein hormones (7), and uniquely cnidarian peptide families (44). Surprisingly, no muscarinic acetylcholine receptors were identified and a large number of melatonin-related, but not serotonin, orthologues were found. Phylogenetic tree construction and inspection of multiple sequence alignments reveal how evolutionarily and functionally distant chemical transmitter-related proteins are from those of higher metazoans.
Collapse
Affiliation(s)
- Michel Anctil
- Département de sciences biologiques and Centre de recherches en sciences neurologiques, Université de Montréal, Case postale 6128, Succursale Centre-Ville, Montréal, Québec, Canada H3C 3J7.
| |
Collapse
|
7
|
Di Cristo C, Delli Bovi P, Di Cosmo A. Role of FMRFamide in the reproduction of Octopus vulgaris: molecular analysis and effect on visual input. Peptides 2003; 24:1525-32. [PMID: 14706531 DOI: 10.1016/j.peptides.2003.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As a part of continuous research on the neurobiology of the cephalopods in general, and the neuroendocrine control of reproduction in Octopus vulgaris in particular, the presence, the molecular analysis and the effect of FMRFamide on the screening-pigment migration in the visual system have been analysed. FMRFamide immunoreactive fibres are present in the outer plexiform layer of the retina as well as in the plexiform zone of the deep retina. These fibres presumably come from optic and olfactory lobes. We isolated an incomplete Octopus FMRFamide cDNA which encodes an amino terminal truncated precursor containing several FMRFamide-related peptides (FaRPs) showing a high degree of identity with the FaRPs encoded in the precursor of Sepia officinalis, except for the presence of an Rpamide related peptide, present only in cnidarians. Finally, stimulation of isolated retina demonstrated that the effect of this tetrapeptide, coupled with dopamine, is the induction of an extreme adaptation of the retina to the light condition. This situation de facto inhibits sexual maturation. Our results on the effect of FMRFamide on the retina confirm the suggested hypothesis that this peptide plays an inhibitory role on the activity of optic gland.
Collapse
Affiliation(s)
- Carlo Di Cristo
- Department of Biological and Environmental Sciences, University of Sannio, Via Port'Arsa 11, 82100, Benevento, Italy
| | | | | |
Collapse
|
8
|
Takahashi T, Kobayakawa Y, Muneoka Y, Fujisawa Y, Mohri S, Hatta M, Shimizu H, Fujisawa T, Sugiyama T, Takahara M, Yanagi K, Koizumi O. Identification of a new member of the GLWamide peptide family: physiological activity and cellular localization in cnidarian polyps. Comp Biochem Physiol B Biochem Mol Biol 2003; 135:309-24. [PMID: 12798941 DOI: 10.1016/s1096-4959(03)00088-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KPNAYKGKLPIGLWamide, a novel member of the GLWamide peptide family, was isolated from Hydra magnipapillata. The purification was monitored with a bioassay: contraction of the retractor muscle of a sea anemone, Anthopleura fuscoviridis. The new peptide, termed Hym-370, is longer than the other GLWamides previously isolated from H. magnipapillata and another sea anemone, A. elegantissima. The amino acid sequence of Hym-370 is six residues longer at its N-terminal than a putative sequence previously deduced from the cDNA encoding the precursor protein. The new longer isoform, like the shorter GLWamides, evoked concentration-dependent muscle contractions in both H. magnipapillata and A. fuscoviridis. In contrast, Hym-248, one of the shorter GLWamide peptides, specifically induced contraction of the endodermal muscles in H. magnipapillata. This is the first case in which a member of the hydra GLWamide family (Hym-GLWamides) has exhibited an activity not shared by the others. Polyclonal antibodies were raised to the common C-terminal tripeptide GLWamide and were used in immunohistochemistry to localize the GLWamides in the tissue of two species of hydra, H. magnipapillata and H. oligactis, and one species of sea anemone, A. fuscoviridis. In each case, nerve cells were specifically labeled. These results suggest that the GLWamides are ubiquitous among cnidarians and are involved in regulating the excitability of specific muscles.
Collapse
Affiliation(s)
- Toshio Takahashi
- Physiological Laboratory, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Cnidarians are the lowest animal group having a nervous system. In the primitive nervous systems of cnidarians, peptides play important roles as neurotransmitters or neurohormones. So far, we have isolated and sequenced about 35 neuropeptides from different cnidarian classes (Hydrozoa, Scyphozoa, Anthozoa). All these neuropeptides have a C-terminal amide group, which protects against C-terminal degradation, but which also is important for receptor recognition. Also the N-termini of the cnidarian neuropeptides often contain different kinds of protecting groups (such as <Glu residues, L-3-phenyllactyl groups, and X-Pro or X-Pro-Pro sequences). Cnidarian neuropeptides are located in neuronal dense-core vesicles and are synthesized as preprohormones, which can contain up to 41 copies of a neuro peptide sequence. From Hydra, six different neuropeptide genes have been cloned so far. Each gene is expressed by a specific population of neurons, but in two instances coexpression of neuropeptide genes has been found. We have also cloned some of the cnidarian prohormone processing enzymes, among them the enzymes necessary for C-terminal amidation. These enzymes are closely related to their mammalian counterparts. All these data show that the primitive nervous systems of cnidarians have already acquired some of the sophisticated principles that we know from higher animals.
Collapse
|
10
|
Grimmelikhuijzen CJ, Leviev I, Carstensen K. Peptides in the nervous systems of cnidarians: structure, function, and biosynthesis. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 167:37-89. [PMID: 8768492 DOI: 10.1016/s0074-7696(08)61345-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cnidarians are the lowest animal group having a nervous system and it was probably within this phylum or in a related ancestor group that nervous systems first evolved. The primitive nervous systems of cnidarians are strongly peptidergic. From a single sea anemone species, Anthopleura elegantissima, 17 different neuropeptides have been isolated so far, and we expect that many more neuropeptides (more than 30) must be present. All peptides are localized in neurons of cnidarians and we have demonstrated the presence of some of the peptides in neurosecretory dense-cored vesicles. Most neuropeptides have an excitatory or inhibitory action on whole cnidarians, muscle preparations, and isolated muscle cells, suggesting that these peptides are neurotransmitters or neuromodulators. One neuropeptide induces metamorphosis in planula larvae to become a polyp. This shows that cnidarian neuropeptides also are involved in developmental processes, such as cell differentiation and pattern formation. We have cloned the preprohormones for most of the cnidarian neuropeptides. These preprohormones have a high copy number of the immature neuropeptide sequence, which can be up to 37 neuropeptide copies per precursor molecule. In addition to well-known, "classical" processing enzymes, novel prohormone processing enzymes must be present in cnidarian neurons. These include a processing enzyme hydrolyzing at the C-terminal sides of acidic (Asp and Glu) residues and a dipeptidyl aminopeptidase digesting at the C-terminal sides of N-terminally located X-Pro and X-Ala sequences. All this shows that the primitive nervous systems of cnidarians are already quite complex, and that neuropeptides play a central role in the physiology of these animals.
Collapse
|
11
|
Abstract
Cnidarians have simple nervous systems and it was probably within this group or a closely-related ancestor that nervous systems first evolved. The basic plan of the cnidarian nervous system is that of a nerve net which, at some locations, has condensed to form nerve plexuses, or circular or longitudinal nerve tracts which may be syncytia. At the ultrastructural level, many cnidarian neurons have the combined characteristics of sensory, motor, inter- and neurosecretory neurons and thus appear to be multifunctional. We propose that these multifunctional neurons resemble the ancestors of the more specialized neurons that we find in higher animals today. The primitive nervous system of cnidarians is strongly peptidergic: from a single sea anemone species Anthopleura elegantissima, we have now isolated 16 different novel neuropeptides. These peptides are biologically active and cause inhibitions or contractions in muscle preparations or isolated muscle cells from sea anemones. The various peptides are located in at least six distinct sets of neurons showing that sea anemone neurons have already specialized with respect to their peptide content. Using immuno-electronmicroscopy, we have found that the peptides are located in neuronal dense-cored vesicles associated with both synaptic and non-synaptic release sites. All these data indicate that evolutionarily "old" nervous systems use peptides as transmitters. We have also investigated the biosynthesis of the cnidarian neuropeptides. These neuropeptides are made as large precursor proteins which contain multiple (up to 36) copies of immature neuropeptides. Thus, the biosynthesis of neuropeptides in cnidarians is very efficient and comparable to that of higher invertebrates, such as molluscs and insects, and vertebrates.
Collapse
|
12
|
McFarlane ID, Hudman D, Nothacker HP, Grimmelikhuijzen CJ. The expansion behaviour of sea anemones may be coordinated by two inhibitory neuropeptides, Antho-KAamide and Antho-RIamide. Proc Biol Sci 1993; 253:183-8. [PMID: 8397415 DOI: 10.1098/rspb.1993.0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Antho-KAamide (L-3-phenyllactyl-Phe-Lys-Ala-NH2) and Antho-RIamide (L-3-phenyllactyl-Tyr-Arg-Ile-NH2) are novel neuropeptides isolated from the sea anemone Anthopleura elegantissima. They both inhibited spontaneous contractions of isolated muscle preparations from a wide variety of anemone species (threshold around 10(-7) M). Their actions were universal in that they inhibited every muscle preparation tested, regardless of whether the muscle group was located in the ectoderm or endoderm, or was oriented in a circular or longitudinal direction. Injection of Antho-KAamide or Antho-RIamide into the coelenteron of intact sea anemones resulted in a marked expansion of the animals. Similar shape changes followed feeding or exposure to soluble food extracts. Therefore, we hypothesize that nerve cells that release Antho-KAamide and Antho-RIamide are involved in the expansion phase of feeding behaviour in sea anemones.
Collapse
Affiliation(s)
- I D McFarlane
- Department of Applied Biology, University of Hull, U.K
| | | | | | | |
Collapse
|