1
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, methyl salicylate, CAS registry number 119-36-8. Food Chem Toxicol 2024; 194 Suppl 1:115047. [PMID: 39396699 DOI: 10.1016/j.fct.2024.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, MI, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
2
|
Cha DH, Kim GH, Nepal RU, Nepal MR, Jeong TC. A convenient spectrophotometric test for screening skin-sensitizing chemicals using reactivity with glutathione in chemico. Toxicol Res 2024; 40:203-213. [PMID: 38525138 PMCID: PMC10959841 DOI: 10.1007/s43188-023-00218-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/08/2023] [Accepted: 11/08/2023] [Indexed: 03/26/2024] Open
Abstract
To initiate skin sensitization, haptens react with endogenous proteins. During this process, skin sensitizers react with small endogenous molecules containing thiol or amino groups. In this study, a simple spectrophotometric method to identify skin sensitizers in chemico was developed using the reactivity of glutathione (GSH) with test chemicals in a 96-well plate. To quantitate the remaining GSH following the reaction with a skin sensitizer, 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) was employed. The optimized experimental conditions included the pH- and time-dependent stability of GSH, stability of derivatized products of GSH with optimal concentration and incubation time of DTNB, incubation time of GSH with the test chemicals, and molar ratios of GSH to the test chemicals. With the optimized conditions with both acetonitrile and DMSO as vehicles and incubation of GSH with test chemicals in 1:10 and 1:15 ratios for 24 h at 4 °C, 23 skin sensitizers and 23 non-sensitizers, based on the local lymph node assay, were tested to determine the predictive capacity of individual conditions. The best result showed a predictive capacity of 95.2% sensitivity, 91.3% specificity, and 93.2% accuracy, with 93.2% consistency in three trials, when 5.8% depletion was used as a cut-off value in 1:10 of GSH:test chemicals in DMSO. It would be an economic and useful screening tool for determining the skin sensitization potential of small molecules, because the present method employs simple endogenous GSH as an electron donor for sensitizers with a spectrophotometric detection system in 96-well plates, and because the method requires neither experimental animals nor cell cultures. Supplementary Information The online version contains supplementary material available at 10.1007/s43188-023-00218-9.
Collapse
Affiliation(s)
- Dong Ho Cha
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Geon Ho Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Rahul U. Nepal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Mahesh R. Nepal
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541 Republic of Korea
| |
Collapse
|
3
|
Api AM, Bartlett A, Belsito D, Botelho D, Bruze M, Bryant-Freidrich A, Burton GA, Cancellieri MA, Chon H, Dagli ML, Dekant W, Deodhar C, Farrell K, Fryer AD, Jones L, Joshi K, Lapczynski A, Lavelle M, Lee I, Moustakas H, Muldoon J, Penning TM, Ritacco G, Sadekar N, Schember I, Schultz TW, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. Update to RIFM fragrance ingredient safety assessment, isoeugenol, CAS registry number 97-54-1. Food Chem Toxicol 2024; 183 Suppl 1:114501. [PMID: 38320647 DOI: 10.1016/j.fct.2024.114501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Bartlett
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - A Bryant-Freidrich
- Member Expert Panel for Fragrance Safety, Pharmaceutical Sciences, Wayne State University, 42 W. Warren Ave., Detroit, MI, 48202, USA
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Chon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Farrell
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Muldoon
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Schember
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
4
|
Chapkanov A, Schultz TW, Yordanova D, Kirilov K, Ivanova H, Mekenyan OG. Estimating uncertainty in LLNA EC3 data and its impact on regulatory classifications. Regul Toxicol Pharmacol 2023; 139:105357. [PMID: 36805911 DOI: 10.1016/j.yrtph.2023.105357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
The murine Local Lymph Node Assay (LLNA) is a test that produces numerical results (EC3 values) quantifying the sensitization potency of chemicals. These results are broadly used in toxicology and serve as a basis for various classifications, which determine subsequent regulatory decisions. The continuing interest in LLNA data and the diminished likelihood of new experimental EC3 data being generated sparked this investigation of uncertainty. Instead of using the Gaussian distribution as a default choice for assessing variability in a data set, two strictly positive distributions were proposed and their performance over the available experimental EC3 values was tested. In the application stage, how the uncertainty in EC3 values affects the possible classifications was analyzed, and the percentage of the chemicals receiving ambiguous classification was determined. It was shown that this percentage is high, which increases the risk of improper classification. Two approaches were suggested in regulatory practice to address the uncertainty in the EC3 data: the approaches based on "grey zones" and the classification distribution. If a chemical cannot be classified unambiguously, the latter appears to be an acceptable means to assess the level of sensitization potency of chemicals and helps provide better regulatory decisions.
Collapse
Affiliation(s)
- Atanas Chapkanov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Terry W Schultz
- The University of Tennessee, College of Veterinary Medicine, Knoxville, TN, 37996-4500, USA
| | - Darina Yordanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Kalin Kirilov
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Hristiana Ivanova
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria
| | - Ovanes G Mekenyan
- Laboratory of Mathematical Chemistry, Prof. As. Zlatarov University, Bourgas, Bulgaria.
| |
Collapse
|
5
|
Parris P, Whelan G, Burild A, Whritenour J, Bruen U, Bercu J, Callis C, Graham J, Johann E, Griffin T, Kohan M, Martin EA, Masuda-Herrera M, Stanard B, Tien E, Cruz M, Nagao L. Framework for sensitization assessment of extractables and leachables in pharmaceuticals. Crit Rev Toxicol 2022; 52:125-138. [PMID: 35703156 DOI: 10.1080/10408444.2022.2065966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
During the toxicological assessment of extractables and leachables in drug products, localized hazards such as irritation or sensitization may be identified. Typically, because of the low concentration at which leachables occur in pharmaceuticals, irritation is of minimal concern; therefore, this manuscript focuses on sensitization potential. The primary objective of performing a leachable sensitization assessment is protection against Type IV induction of sensitization, rather than prevention of an elicitation response, as it is not possible to account for the immunological state of every individual. Sensitizers have a wide range of potencies and those which induce sensitization upon exposure at a low concentration (i.e. strong, or extreme sensitizers) pose the highest risk to patients and should be the focus of the risk assessment. The Extractables and Leachables Safety Information Exchange (ELSIE) consortium has reviewed the status of dermal, respiratory, and systemic risk assessment in cosmetic and pharmaceutical industries, and proposes a framework to evaluate the safety of known or potential dermal sensitizers in pharmaceuticals. Due to the lack of specific regulatory guidance on this topic, the science-driven risk-based approach proposed by ELSIE encourages consistency in the toxicological assessment of extractables and leachables to maintain high product quality and ensure patient safety.
Collapse
Affiliation(s)
- Patricia Parris
- Pfizer Worldwide Research, Development and Medical, Kent, UK
| | | | - Anders Burild
- Novo Nordisk A/S, Safety Sciences, Imaging and Data Management, Måløv, Denmark
| | | | - Uma Bruen
- Organon USA Inc., Jersey City, NJ, USA
| | - Joel Bercu
- Gilead Sciences Inc., Foster City, CA, USA
| | - Courtney Callis
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, USA
| | | | | | - Troy Griffin
- Teva Branded Pharmaceutical Products R&D, West Chester, PA, USA
| | - Martin Kohan
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth A Martin
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | | | | | | | - Maureen Cruz
- Faegre Drinker Biddle & Reath LLP, Washington, DC, USA
| | - Lee Nagao
- Faegre Drinker Biddle & Reath LLP, Washington, DC, USA
| |
Collapse
|
6
|
Chilton ML, Api AM, Foster RS, Gerberick GF, Lavelle M, Macmillan DS, Na M, O'Brien D, O'Leary-Steele C, Patel M, Ponting DJ, Roberts DW, Safford RJ, Tennant RE. Updating the Dermal Sensitisation Thresholds using an expanded dataset and an in silico expert system. Regul Toxicol Pharmacol 2022; 133:105200. [PMID: 35662638 DOI: 10.1016/j.yrtph.2022.105200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/24/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
The Dermal Sensitisation Thresholds (DST) are Thresholds of Toxicological Concern, which can be used to justify exposure-based waiving when conducting a skin sensitisation risk assessment. This study aimed to update the published DST values by expanding the size of the Local Lymph Node Assay dataset upon which they are based, whilst assigning chemical reactivity using an in silico expert system (Derek Nexus). The potency values within the expanded dataset fitted a similar gamma distribution to that observed for the original dataset. Derek Nexus was used to classify the sensitisation activity of the 1152 chemicals in the expanded dataset and to predict which chemicals belonged to a High Potency Category (HPC). This two-step classification led to three updated thresholds: a non-reactive DST of 710 μg/cm2 (based on 79 sensitisers), a reactive (non-HPC) DST of 73 μg/cm2 (based on 331 sensitisers) and an HPC DST of 1.0 μg/cm2 (based on 146 sensitisers). Despite the dataset containing twice as many sensitisers, these values are similar to the previously published thresholds, highlighting their robustness and increasing confidence in their use. By classifying reactivity in silico the updated DSTs can be applied within a skin sensitisation risk assessment in a reproducible, scalable and accessible manner.
Collapse
Affiliation(s)
- Martyn L Chilton
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK.
| | - Anne Marie Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Robert S Foster
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | | | - Maura Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Donna S Macmillan
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - Mihwa Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | - Devin O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, USA
| | | | - Mukesh Patel
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| | - David W Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Robert J Safford
- B-Safe Toxicology Consulting, 31 Hayway, Rushden, Northants, NN10 6AG, UK
| | - Rachael E Tennant
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds, LS11 5PS, UK
| |
Collapse
|
7
|
IN SILICO AND IN VIVO STUDY OF ADULTICIDAL ACTIVITY FROM Ayapana triplinervis ESSENTIAL OILS NANO-EMULSION AGAINST Aedes aegypti. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. Update to RIFM fragrance ingredient safety assessment, eugenol, CAS Registry Number 97-53-0. Food Chem Toxicol 2022; 163 Suppl 1:113027. [PMID: 35439588 DOI: 10.1016/j.fct.2022.113027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/12/2022] [Indexed: 11/19/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel for Fragrance Safety, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel for Fragrance Safety, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member Expert Panel for Fragrance Safety, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel for Fragrance Safety, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel for Fragrance Safety, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel for Fragrance Safety, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel for Fragrance Safety, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel for Fragrance Safety, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel for Fragrance Safety, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel for Fragrance Safety, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel for Fragrance Safety, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel for Fragrance Safety, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
9
|
Api A, Belsito D, Botelho D, Bruze M, Burton G, Buschmann J, Cancellieri M, Dagli M, Date M, Dekant W, Deodhar C, Fryer A, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler D, Moustakas H, Na M, Penning T, Ritacco G, Romine J, Sadekar N, Schultz T, Selechnik D, Siddiqi F, Sipes I, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, hydroxycitronellal, CAS Registry Number 107-75-5. Food Chem Toxicol 2022; 163 Suppl 1:112983. [DOI: 10.1016/j.fct.2022.112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/21/2022] [Accepted: 03/30/2022] [Indexed: 11/16/2022]
|
10
|
Johnson C, Anger LT, Benigni R, Bower D, Bringezu F, Crofton KM, Cronin MT, Cross KP, Dettwiler M, Frericks M, Melnikov F, Miller S, Roberts DW, Suarez-Rodriguez D, Roncaglioni A, Lo Piparo E, Tice RR, Zwickl C, Myatt GJ. Evaluating Confidence in Toxicity Assessments Based on Experimental Data and In Silico Predictions. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100204. [PMID: 35368849 PMCID: PMC8967148 DOI: 10.1016/j.comtox.2021.100204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Understanding the reliability and relevance of a toxicological assessment is important for gauging the overall confidence and communicating the degree of uncertainty related to it. The process involved in assessing reliability and relevance is well defined for experimental data. Similar criteria need to be established for in silico predictions, as they become increasingly more important to fill data gaps and need to be reasonably integrated as additional lines of evidence. Thus, in silico assessments could be communicated with greater confidence and in a more harmonized manner. The current work expands on previous definitions of reliability, relevance, and confidence and establishes a conceptional framework to apply those to in silico data. The approach is used in two case studies: 1) phthalic anhydride, where experimental data are readily available and 2) 4-hydroxy-3-propoxybenzaldehyde, a data poor case which relies predominantly on in silico methods, showing that reliability, relevance, and confidence of in silico assessments can be effectively communicated within Integrated approaches to testing and assessment (IATA).
Collapse
Affiliation(s)
- Candice Johnson
- Instem, 1393 Dublin Rd, Columbus, OH 43215, USA,Corresponding author.
(C. Johnson)
| | | | | | - David Bower
- Instem, 1393 Dublin Rd, Columbus, OH 43215, USA
| | | | | | - Mark T.D. Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Liverpool, L3 3AF, UK
| | | | - Magdalena Dettwiler
- Idorsia Pharmaceuticals Ltd, Hegenheimermattweg 91, 4123
Allschwill, Switzerland
| | - Markus Frericks
- BASF SE, APD/ET, Li 444, Speyerer St 2, 67117
Limburgerhof, Germany
| | - Fjodor Melnikov
- Genentech, Inc., 1 DNA Way, South San Francisco, CA,
94080, USA
| | | | - David W. Roberts
- School of Pharmacy and Biomolecular Sciences, Liverpool
John Moores University, Liverpool, L3 3AF, UK
| | | | - Alessandra Roncaglioni
- Laboratory of Environmental Chemistry and Toxicology,
Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche
Mario Negri IRCCS, Milan, Italy
| | - Elena Lo Piparo
- Chemical Food Safety Group, Nestlé Research,
Lausanne, Switzerland
| | | | - Craig Zwickl
- Transendix LLC, 1407 Moores Manor, Indianapolis, IN
46229, USA
| | | |
Collapse
|
11
|
Kim JY, Kim KB, Lee BM. Validation of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) approaches as alternatives to skin sensitization risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:945-959. [PMID: 34338166 DOI: 10.1080/15287394.2021.1956660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The aim of this study was conducted to validate the physicochemical properties of a total of 362 chemicals [305 skin sensitizers (212 in the previous study + 93 additional new chemicals), 57 non-skin sensitizers (38 in the previous study + 19 additional new chemicals)] for skin sensitization risk assessment using quantitative structure-activity relationship (QSAR)/quantitative structure-property relationship (QSPR) approaches. The average melting point (MP), surface tension (ST), and density (DS) of the 305 skin sensitizers and 57 non-sensitizers were used to determine the cutoff values distinguishing positive and negative sensitization, and correlation coefficients were employed to derive effective 3-fold concentration (EC3 (%)) values. QSAR models were also utilized to assess skin sensitization. The sensitivity, specificity, and accuracy were 80, 15, and 70%, respectively, for the Toxtree QSAR model; 88, 46, and 81%, respectively, for Vega; and 56, 61, and 56%, respectively, for Danish EPA QSAR. Surprisingly, the sensitivity, specificity, and accuracy were 60, 80, and 64%, respectively, when MP, ST, and DS (MP+ST+DS) were used in this study. Further, MP+ST+DS exhibited a sensitivity of 77%, specificity 57%, and accuracy 73% when the derived EC3 values were classified into local lymph node assay (LLNA) skin sensitizer and non-sensitizer categories. Thus, MP, ST, and DS may prove useful in predicting EC3 values as not only an alternative approach to animal testing but also for skin sensitization risk assessment.
Collapse
Affiliation(s)
- Ji Yun Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University Dandae-ro, Cheonan, Chungnam, South Korea
| | - Byung-Mu Lee
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do, South Korea
| |
Collapse
|
12
|
Api AM, Belsito D, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Jones L, Joshi K, Kumar M, Lapczynski A, Lavelle M, Lee I, Liebler DC, Moustakas H, Na M, Penning TM, Ritacco G, Romine J, Sadekar N, Schultz TW, Selechnik D, Siddiqi F, Sipes IG, Sullivan G, Thakkar Y, Tokura Y. RIFM fragrance ingredient safety assessment, 2,6-octadienal, 3,6,7-trimethyl-, CAS Registry Number 1891-67-4. Food Chem Toxicol 2021; 156 Suppl 1:112471. [PMID: 34371105 DOI: 10.1016/j.fct.2021.112471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE, 20502, Sweden
| | - G A Burton
- Member Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Kumar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I Lee
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - H Moustakas
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - D Selechnik
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Siddiqi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - I G Sipes
- Member Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member Expert Panel, The Journal of Dermatological Science (JDS), Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| |
Collapse
|
13
|
Next generation risk assessment for skin sensitisation: A case study with propyl paraben. Regul Toxicol Pharmacol 2021; 123:104936. [PMID: 33905779 DOI: 10.1016/j.yrtph.2021.104936] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 11/23/2022]
Abstract
Skin sensitisation is a key adverse health effect to be addressed in the safety assessment of cosmetic ingredients. Regulatory demands have urged the development of Next Generation Risk Assessment (NGRA) using New Approach Methodologies (NAM) and Defined Approaches (DA) instead of animal models. An illustrative NGRA case study shall demonstrate if the use of propyl paraben at 0.2% in a face cream was safe for consumers. A sequential stacking tier testing DA based on NAM data predicted propyl paraben to be a non-sensitiser, while some NAM input data showed positive results. To increase confidence, structurally related parabens were considered, which revealed NAM and DA hazard predictions similar to those of propyl paraben, non-sensitiser classifications in animal models and very rare cases of human skin allergy. Based on a weight of evidence it was decided that propyl paraben should be considered a non-sensitiser leading to a favourable NGRA conclusion, in line with traditional risk assessment. Examination of an ab initio NGRA based on NAM and metabolism data resulted in a more conservative weak sensitiser consideration as point of departure, which still led to a favourable conclusion.
Collapse
|
14
|
RIFM fragrance ingredient safety assessment, farnesal, CAS Registry Number 19317-11-4. Food Chem Toxicol 2021; 149 Suppl 1:111996. [PMID: 33460700 DOI: 10.1016/j.fct.2021.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/03/2020] [Accepted: 01/10/2021] [Indexed: 11/23/2022]
|
15
|
Ryan CA, Troutman JA, Kern PS, Quijano M, Dobson RLM, Jian Dai H, Burt TM, Gerberick GF. Refinement of the Peroxidase Peptide Reactivity Assay and Prediction Model for Assessing Skin Sensitization Potential. Toxicol Sci 2020; 178:88-103. [DOI: 10.1093/toxsci/kfaa137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
A peptide reactivity assay with an activation component was developed for use in screening chemicals for skin sensitization potential. A horseradish peroxidase-hydrogen peroxide (HRP/P) oxidation system was incorporated into the assay for characterizing reactivity of hapten and pre-/prohapten sensitizers. The assay, named the Peroxidase Peptide Reactivity Assay (PPRA) had a predictive accuracy of 83% (relative to the local lymph node assay) with the original protocol and prediction model. However, apparent false positives attributed to cysteine depletion at relatively high chemical concentrations and, for some chemicals expected to react with the −NH2 group of lysine, little to no depletion of the lysine peptide were observed. To improve the PPRA, cysteine peptide reactions with and without HRP/P were modified by increasing the number of test concentrations and refining their range. In addition, removal of DL-dithiothreitol from the reaction without HRP/P increased cysteine depletion and improved detection of reactive aldehydes and thiazolines without compromising the assay’s ability to detect prohaptens. Modification of the lysine reaction mixture by changing the buffer from 0.1 M ammonium acetate buffer (pH 10.2) to 0.1 M phosphate buffer (pH 7.4) and increasing the level of organic solvent from 1% to 25% resulted in increased lysine depletion for known lysine reactive chemicals. Refinement of the prediction model improved the sensitivity, specificity, and accuracy for hazard identification. These changes resulted in significant improvement of the PPRA making it is a reliable method for predicting the skin sensitization potential of all chemicals, including pre-/prohaptens and directly reactive haptens.
Collapse
Affiliation(s)
- Cindy A Ryan
- Global Product Stewardship, Mason Business Center, The Procter & Gamble Company, Mason, Ohio 45040
| | - John A Troutman
- Global Product Stewardship, Mason Business Center, The Procter & Gamble Company, Mason, Ohio 45040
| | - Petra S Kern
- Central Product Safety, Brussels Innovation Center, Procter & Gamble Eurocor, B-1853 Strombeek-Bever, Belgium
| | - Mike Quijano
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Roy L M Dobson
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Hong Jian Dai
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | - Thomas M Burt
- Corporate Functions Analytical, Mason Business Center, The Procter & Gamble Company, Cincinnati, Ohio 45040
| | | |
Collapse
|
16
|
de Silva O, Basketter DA, Barratt MD, Corsini E, Cronin MT, Das PK, Degwert J, Enk A, Garrigue JL, Hauser C, Kimber I, Lepoittevin JP, Peguet J, Ponec M. Alternative Methods for Skin Sensitisation Testing. Altern Lab Anim 2020. [DOI: 10.1177/026119299602400507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Odile de Silva
- L'Oréal, 1 Avenue Eugène Schueller, 93600 Aulnay-sous-Bois, France
| | - David A. Basketter
- Unilever Environmental Safety Laboratory, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Martin D. Barratt
- Unilever Environmental Safety Laboratory, Colworth House, Sharnbrook, Bedford MK44 1LQ, UK
| | - Emanuela Corsini
- Laboratoire de Toxicologic, Istituto di Scienze Farmacologiche, Via Balzaretti 9, 20133 Milan, Italy
| | - Mark T.D. Cronin
- School of Pharmacy and Chemistry, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Pranab K. Das
- Department of Dermatology and Pathology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Joachim Degwert
- Beiersdorf Immunology, Cosmed Division, PGU Skin Research Center, Unnastrasse 48, 20245 Hamburg, Germany
| | - Alexander Enk
- Department of Dermatology, University of Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany
| | | | - Conrad Hauser
- Allergy Unit, Division of Immunology and Allergy, Clinique de Dermatologie, Hôpital Cantonal Universitaire, 1211 Geneva 14, Switzerland
| | - Ian Kimber
- ZENECA Central Toxicology Laboratory, Alderley Park, Macclesfield, Cheshire SK10 4TJ, UK
| | | | - Josette Peguet
- INSERM UR 346, Clinique Dermatologique, Hôpital Edouard Herriot, 69437 Lyon 03, France
| | - Maria Ponec
- Department of Dermatology, University Hospital Leiden, 2300 RC Leiden, The Netherlands
| |
Collapse
|
17
|
Frawley RP, Witt KL, Cunny H, Germolec DR, Jackson-Humbles D, Malarkey D, Shockley KR, Stout M, Travlos G, Buccellato M, Fallacara D, Harris S, Kissling GE, Manheng W, Surh II, White K, Auerbach SS. Evaluation of 2-methoxy-4-nitroaniline (MNA) in hypersensitivity, 14-day subacute, reproductive, and genotoxicity studies. Toxicology 2020; 441:152474. [PMID: 32380031 DOI: 10.1016/j.tox.2020.152474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
2-Methoxy-4-nitroaniline (MNA), an intermediate in the synthesis of azo dyes used in textiles and paints, is structurally similar to carcinogenic anilines. Human exposure occurs primarily in the occupational setting through handling of dye dust, and through use and disposal of MNA-containing products. MNA has been reported to induce contact hypersensitivity in a human, myocardial necrosis in rats, and bacterial mutagenicity. This study assessed the subacute toxicity, genotoxicity, contact hypersensitivity, and reproductive toxicity of MNA in rodents in an effort to more fully characterize its toxicological profile. B6C3F1/N mice were exposed to 0, 650, 1250, 2500, 5000, or 10,000 ppm MNA by dosed feed for 14-days to evaluate subacute toxicity and histopathological endpoints. In female mice, decreased body weight (13.5 %) and absolute kidney weight (14.8 %), compared to control, were observed at 10,000 ppm MNA; increased relative liver weight (10-12 %), compared to control, occurred at 5,000-10,000 ppm MNA. In male mice, absolute (15 %) and relative liver weights (9-13 %) were increased at 2,500-5,000 ppm and 1250-10,000 ppm MNA, compared to control, respectively. In both sexes of mice, minimal elevations of hemosiderin pigmentation (a breakdown product of erythrocytes), relative to control, were observed in the liver (10,000 ppm); minimal to moderate elevations of hemosiderin pigmentation (5,000-10,000 ppm) and minimal increases in hematopoietic cell proliferation occurred in the spleen (≥ 1250 ppm). In a reproductive toxicity study, timed-mated female Harlan Sprague Dawley rats were exposed to 0-10,000 ppm MNA by dosed feed from gestation day 6 through postnatal day (PND) 21. Decreases in mean litter weights were observed at 5000 ppm MNA, compared to control, beginning at PND1. To evaluate potential contact hypersensitivity, MNA (2.5-50 %, in dimethylformamide) was applied to the dorsa of both ears of female Balb/c mice once daily for three days. The increase observed in lymph node cell proliferation (10-50 % increase in thymidine uptake compared to control) did not reproducibly achieve the Sensitization Index (SI) 3 level, and there was no ear swelling evident following sensitization with 10-50 % MNA and challenge with 25 % MNA in the mouse ear swelling test. In bacterial mutagenicity assays, MNA (250-1000 μg/plate) induced significant increases, compared to control, in mutant colonies with and without metabolic activation enzymes in Salmonella typhimurium strains TA100 and TA98. These data indicate that MNA is genotoxic, and may induce erythrocyte damage and reactive phagocytosis by macrophages in the liver and spleen.
Collapse
Affiliation(s)
- Rachel P Frawley
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
| | - Kristine L Witt
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Helen Cunny
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Dori R Germolec
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Daven Jackson-Humbles
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - David Malarkey
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Keith R Shockley
- Division of Intramural Research, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Matthew Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Greg Travlos
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | | | | | - Shawn Harris
- Social & Scientific Systems, Inc., 4505 Emperor Blvd, Suite 400, Durham, NC, 27703, USA
| | - Grace E Kissling
- Division of Intramural Research, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Wimolnut Manheng
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, VCU Medical Center, 1201 E Marchall ST #4-100, Richmond, VA, 23298, USA
| | - Irene Inok Surh
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| | - Kimber White
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, VCU Medical Center, 1201 E Marchall ST #4-100, Richmond, VA, 23298, USA
| | - Scott S Auerbach
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
18
|
RIFM fragrance ingredient safety assessment, 3,7-dimethyl-2,6-nonadien-1-al, CAS Registry Number 41448-29-7. Food Chem Toxicol 2020; 138 Suppl 1:111234. [PMID: 32135215 DOI: 10.1016/j.fct.2020.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 11/22/2022]
|
19
|
Abstract
Guidance for managing potential dermal exposures has historically been qualitative in nature, for example, in the form of a DSEN notation. We propose a method that can provide quantitative guidance on how to establish and use surface wipe limits for skin sensitizers. The murine local lymph node assay (LLNA) is a validated test that not only identifies potential skin sensitizers but also provides an effective concentration (EC3) value. This provides quantitative dose-response information on induction of skin sensitization that permits estimates of sensitization thresholds and potency. Building upon the previously established correlation between LLNA EC3 values and human repeat insult patch testing no-effect levels, we present a quantitative method for setting surface wipe guidelines using the LLNA EC3. These limits can be used to assign compounds to occupational exposure bands and provide handling guidance for skin sensitizers of varying potency, supporting both exposure assessment and control strategies. A table is included that suggests a band of reasonable surface wipe limits (mg/100 cm2) for potentially all chemical sensitizers. When used in conjunction with a comprehensive industrial hygiene program that includes hazard communication, engineering controls, and personal protective equipment, skin exposure and consequent skin sensitization risks in the workplace can be minimized.
Collapse
Affiliation(s)
| | - Susan F Arnold
- University of Minnesota, Division of Environmental Sciences, Minneapolis, MN, USA
| |
Collapse
|
20
|
Nepal MR, Kim GH, Cha DH, Jeong TC. Assessment of skin sensitizing potential of metals with β-galactosidase-expressing E. coli culture system. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:879-889. [PMID: 31507242 DOI: 10.1080/15287394.2019.1664958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been a challenge to develop in vitro alternative test methods for accurate prediction of metallic products which may exert skin sensitization, as several test methods adopted by OECD were relatively ineffective in assessing the capacity for metallic compounds to exert sensitizing reactions, compared with organic test substances. Based upon these findings, a system that incorporates β-galactosidase producing E. coli cultures was tested for its predictive capacity to well-known metallic sensitizers. In this system, E. coli cells were incubated with metal salts at various concentrations and β-galactosidase suppression by each test metal was determined. Fourteen local lymph node assay (LLNA) categorized metal salts were examined. Although color interference from metal salts was minimal, a fluorometric detection system was also employed using 4-methylumbelliferyl galactopyranoside as a substrate for β-galactosidase to avoid the color interference, concomitantly with the original UV-spectrometric method. Data demonstrated that two detection methods were comparable and complementary. In addition, most of the metallic sensitizers were correctly identified at 0.6 and 0.8 mM concentrations. Despite the lower specificity obtained in the current study and small number of substances tested, the developed method appears to be a relatively simple and effective in vitro method for detecting metallic sensitizers. When 61 chemicals tested in the β-galactosidase producing E. coli cultures including the present study were collectively analyzed, the prediction capacity was as high as other OECD-adopted tests: 95.6% of sensitivity, 66.7% of specificity, and 88.5% of accuracy. It is important to emphasize that animals or mammalian cell cultures were not required in the current method, which are in accordance with the EU guidelines on restricted or banned animal testing.
Collapse
Affiliation(s)
- Mahesh Raj Nepal
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Geon Ho Kim
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Dong Ho Cha
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| | - Tae Cheon Jeong
- College of Pharmacy, Yeungnam University , Gyeongsan , South Korea
| |
Collapse
|
21
|
Api AM, Belmonte F, Belsito D, Biserta S, Botelho D, Bruze M, Burton GA, Buschmann J, Cancellieri MA, Dagli ML, Date M, Dekant W, Deodhar C, Fryer AD, Gadhia S, Jones L, Joshi K, Lapczynski A, Lavelle M, Liebler DC, Na M, O'Brien D, Patel A, Penning TM, Ritacco G, Rodriguez-Ropero F, Romine J, Sadekar N, Salvito D, Schultz TW, Sipes IG, Sullivan G, Thakkar Y, Tokura Y, Tsang S. RIFM fragrance ingredient safety assessment, cinnamaldehyde, CAS Registry Number 104-55-2. Food Chem Toxicol 2019; 134 Suppl 1:110710. [PMID: 31356911 DOI: 10.1016/j.fct.2019.110710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 10/26/2022]
Affiliation(s)
- A M Api
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Belmonte
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Belsito
- Member RIFM Expert Panel, Columbia University Medical Center, Department of Dermatology, 161 Fort Washington Ave., New York, NY, 10032, USA
| | - S Biserta
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Botelho
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Bruze
- Member RIFM Expert Panel, Malmo University Hospital, Department of Occupational & Environmental Dermatology, Sodra Forstadsgatan 101, Entrance 47, Malmo, SE-20502, Sweden
| | - G A Burton
- Member RIFM Expert Panel, School of Natural Resources & Environment, University of Michigan, Dana Building G110, 440 Church St., Ann Arbor, MI, 58109, USA
| | - J Buschmann
- Member RIFM Expert Panel, Fraunhofer Institute for Toxicology and Experimental Medicine, Nikolai-Fuchs-Strasse 1, 30625, Hannover, Germany
| | - M A Cancellieri
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M L Dagli
- Member RIFM Expert Panel, University of Sao Paulo, School of Veterinary Medicine and Animal Science, Department of Pathology, Av. Prof. Dr. Orlando Marques de Paiva, 87, Sao Paulo, CEP 05508-900, Brazil
| | - M Date
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - W Dekant
- Member RIFM Expert Panel, University of Wuerzburg, Department of Toxicology, Versbacher Str. 9, 97078, Würzburg, Germany
| | - C Deodhar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A D Fryer
- Member RIFM Expert Panel, Oregon Health Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - S Gadhia
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - L Jones
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - K Joshi
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Lapczynski
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - M Lavelle
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D C Liebler
- Member RIFM Expert Panel, Vanderbilt University School of Medicine, Department of Biochemistry, Center in Molecular Toxicology, 638 Robinson Research Building, 2200 Pierce Avenue, Nashville, TN, 37232-0146, USA
| | - M Na
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D O'Brien
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - A Patel
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T M Penning
- Member of RIFM Expert Panel, University of Pennsylvania, Perelman School of Medicine, Center of Excellence in Environmental Toxicology, 1316 Biomedical Research Building (BRB) II/III, 421 Curie Boulevard, Philadelphia, PA, 19104-3083, USA
| | - G Ritacco
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - F Rodriguez-Ropero
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - J Romine
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - N Sadekar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - D Salvito
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - T W Schultz
- Member RIFM Expert Panel, The University of Tennessee, College of Veterinary Medicine, Department of Comparative Medicine, 2407 River Dr., Knoxville, TN, 37996- 4500, USA
| | - I G Sipes
- Member RIFM Expert Panel, Department of Pharmacology, University of Arizona, College of Medicine, 1501 North Campbell Avenue, P.O. Box 245050, Tucson, AZ, 85724-5050, USA
| | - G Sullivan
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA.
| | - Y Thakkar
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| | - Y Tokura
- Member RIFM Expert Panel, The Journal of Dermatological Science (JDS), Editor-in-Chief, Professor and Chairman, Department of Dermatology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
| | - S Tsang
- Research Institute for Fragrance Materials, Inc., 50 Tice Boulevard, Woodcliff Lake, NJ, 07677, USA
| |
Collapse
|
22
|
Fujita M, Yamamoto Y, Watanabe S, Sugawara T, Wakabayashi K, Tahara Y, Horie N, Fujimoto K, Kusakari K, Kurokawa Y, Kawakami T, Kojima K, Sozu T, Nakayama T, Kusao T, Richmond J, Nicole K, Kim B, Kojima H, Kasahara T, Ono A. The within‐ and between‐laboratory reproducibility and predictive capacity of the in chemico amino acid derivative reactivity assay: Results of validation study implemented in four participating laboratories. J Appl Toxicol 2019; 39:1492-1505. [DOI: 10.1002/jat.3834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Shinichi Watanabe
- Human & Environmental Safety Evaluation CenterLion Corporation Kanagawa Japan
| | - Tsunetsugu Sugawara
- Human & Environmental Safety Evaluation CenterLion Corporation Kanagawa Japan
| | | | - Yu Tahara
- Chemical Safety DepartmentMitsui Chemicals, Inc Chiba Japan
| | - Nobuyuki Horie
- Environmental Health Science LaboratorySumitomo Chemical Co., Ltd Osaka Japan
| | - Keiichi Fujimoto
- Environmental Health Science LaboratorySumitomo Chemical Co., Ltd Osaka Japan
| | - Kei Kusakari
- Biological Research LaboratoriesNissan Chemical Corporation Saitama Japan
| | - Yoshihiko Kurokawa
- Biological Research LaboratoriesNissan Chemical Corporation Saitama Japan
| | - Tsuyoshi Kawakami
- Division of Environmental ChemistryNational Institute of Health Sciences Tokyo Japan
| | | | - Takashi Sozu
- Faculty of EngineeringTokyo University of Science Tokyo Japan
| | - Takuto Nakayama
- Faculty of EngineeringTokyo University of Science Tokyo Japan
| | - Takeru Kusao
- Faculty of EngineeringTokyo University of Science Tokyo Japan
| | - Jon Richmond
- Dr. Jon Richmond: Advice and Consultancy Fife UK
| | - Kleinstreuer Nicole
- NTP Interagency Center for the Evaluation of Alternative Toxicological Methods North Carolina USA
| | - Bae‐Hwa Kim
- College of Natural Sciences Keimyung University Daegu South Korea
| | - Hajime Kojima
- Biological Safety Research Center, Division of Risk AssessmentNational Institute of Health Sciences Tokyo Japan
| | | | - Atsushi Ono
- Graduate School of Medicine, Dentistry and Pharmaceutical sciences, Division of Pharmaceutical SciencesOkayama University Okayama Japan
| |
Collapse
|
23
|
Kim MK, Kim KB, Kim HS, Lee BM. Alternative skin sensitization prediction and risk assessment using proinflammatory biomarkers, interleukin-1 beta (IL-1β) and inducible nitric oxide synthase (iNOS). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:361-378. [PMID: 31025611 DOI: 10.1080/15287394.2019.1609183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
As an alternative to animal tests for skin sensitization potency and risk assessment, cell viability and biomarkers related to skin sensitization were analyzed in THP-1 human monocytic leukemia cells. Cell viabilities of 90% (CV90) and 75% (CV75) were determined for 24 selected test chemicals. Further biomarkers related to skin sensitization were also determined under equivalent comparative conditions. In cell viability analyses, potent skin sensitizers exhibited high cytotoxicity, but non-sensitizers did not display this tendency. In biomarker analyses, interleukin-I beta (IL-1β), inducible nitric oxide synthase (iNOS), IL-1β+iNOS, and THP-1 IL-1β+Raw 264.7 IL-1β were found to be suitable for prediction of skin sensitization potency following classification as either skin sensitizers or non-sensitizers (accuracies of 91.7%, 87.5%, 83.3%, and 82.6%, respectively). A significant positive correlation was found between biomarkers and skin sensitization potency, with a correlation coefficient (R) of 0.7 or more (correlation coefficients of 0.77, 0.72, 0.7, and 0.84, respectively). Finally, the skin sensitization potency effective threefold concentration (EC) 3% was predicted using a biomarker equation, with resulting prediction rates (match rate with actual data) of 58.3%, 54.2%, 62.5%, and 60.9%, respectively. The prediction accuracy for the EC3 value obtained from animal data was calculated as 83.3%, 79.2%, 79.2%, and 73.9%, respectively. Thus, these biomarkers, IL-1β and iNOS, may be alternatively used to predict skin sensitization potency and risk assessment.
Collapse
Affiliation(s)
- Min Kook Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Kyu-Bong Kim
- b College of Pharmacy , Dankook University , Cheonan , Chungnam , South Korea
| | - Hyung Sik Kim
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| | - Byung-Mu Lee
- a Division of Toxicology , College of Pharmacy, Sungkyunkwan University , Suwon , Gyeonggi-do , South Korea
| |
Collapse
|
24
|
Basketter D, Cockshott A, Corsini E, Gerberick GF, Idehara K, Kimber I, Van Loveren H, Matheson J, Mehling A, Omori T, Rovida C, Sozu T, Takeyoshi M, Casati S. An Evaluation of Performance Standards and Non-radioactive Endpoints for the Local Lymph Node Assay. Altern Lab Anim 2019; 36:243-57. [DOI: 10.1177/026119290803600211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- David Basketter
- St John's Institute of Dermatology, St Thomas’ Hospital, London, UK
| | | | - Emanuela Corsini
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - G. Frank Gerberick
- Procter & Gamble Company, Miami Valley Innovation Center, Cincinnati, OH, USA
| | | | - Ian Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Henk Van Loveren
- National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | - Takashi Omori
- Kyoto University School of Public Health, Kyoto, Japan
| | - Costanza Rovida
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Silvia Casati
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
25
|
Bil W, Schuur A, Ezendam J, Bokkers B. Probabilistic derivation of the interspecies assessment factor for skin sensitization. Regul Toxicol Pharmacol 2017; 88:34-44. [DOI: 10.1016/j.yrtph.2017.05.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/09/2017] [Accepted: 05/18/2017] [Indexed: 11/16/2022]
|
26
|
Yang F, Ma L, Zhou J, Wu Y, Gao J, Song S, Geng X, Guo Q, Li Z, Li W, Liao G, Li Y. Development and identification of a new Vero cell-based live attenuated influenza B vaccine by a modified classical reassortment method. Expert Rev Vaccines 2017; 16:855-863. [PMID: 28581345 DOI: 10.1080/14760584.2017.1337514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. METHODS According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. RESULTS A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. CONCLUSION The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.
Collapse
Affiliation(s)
- Fan Yang
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China.,b Medical Faculty , Kunming University of Science and Technology , Kunming , People's Republic of China
| | - Lei Ma
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jian Zhou
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yinjie Wu
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Jingxia Gao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Shaohui Song
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Xingliang Geng
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Qi Guo
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Zhuofan Li
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Weidong Li
- c The Department of Production Administration, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Guoyang Liao
- a The fifth Department of Biological products, Institute of Medical Biology , Chinese Academy of Medical Science and Peking Union Medical College , Kunming , People's Republic of China
| | - Yufeng Li
- d Department of Cardiology , Chinese PLA General Hospital , Beijing , People's Republic of China
| |
Collapse
|
27
|
Wang CC, Lin YC, Wang SS, Shih C, Lin YH, Tung CW. SkinSensDB: a curated database for skin sensitization assays. J Cheminform 2017; 9:5. [PMID: 28194231 PMCID: PMC5285290 DOI: 10.1186/s13321-017-0194-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Skin sensitization is an important toxicological endpoint for chemical hazard determination and safety assessment. Prediction of chemical skin sensitizer had traditionally relied on data from rodent models. The development of the adverse outcome pathway (AOP) and associated alternative in vitro assays have reshaped the assessment of skin sensitizers. The integration of multiple assays as key events in the AOP has been shown to have improved prediction performance. Current computational models to predict skin sensitization mainly based on in vivo assays without incorporating alternative in vitro assays. However, there are few freely available databases integrating both the in vivo and the in vitro skin sensitization assays for development of AOP-based skin sensitization prediction models. To facilitate the development of AOP-based prediction models, a skin sensitization database named SkinSensDB has been constructed by curating data from published AOP-related assays. In addition to providing datasets for developing computational models, SkinSensDB is equipped with browsing and search tools which enable the assessment of new compounds for their skin sensitization potentials based on data from structurally similar compounds. SkinSensDB is publicly available at http://cwtung.kmu.edu.tw/skinsensdb.
Collapse
Affiliation(s)
- Chia-Chi Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053 Taiwan.,Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, 80424 Taiwan
| | - Ying-Chi Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Shan-Shan Wang
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Chieh Shih
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Yi-Hui Lin
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708 Taiwan.,PhD Program in Toxicology, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan.,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County, 35053 Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| |
Collapse
|
28
|
Safety Assessment of Salicylic Acid, Butyloctyl Salicylate, Calcium Salicylate, C12–15 Alkyl Salicylate, Capryloyl Salicylic Acid, Hexyldodecyl Salicylate, Isocetyl Salicylate, Isodecyl Salicylate, Magnesium Salicylate, MEA-Salicylate, Ethylhexyl Salicylate, Potassium Salicylate, Methyl Salicylate, Myristyl Salicylate, Sodium Salicylate, TEA-Salicylate, and Tridecyl Salicylate. Int J Toxicol 2016. [DOI: 10.1177/1091581803022s303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salicylic Acid is an aromatic acid used in cosmetic formulations as a denaturant, hair-conditioning agent, and skin-conditioning agent—miscellaneous in a wide range of cosmetic products at concentrations ranging from 0.0008% to 3%. The Calcium, Magnesium, and MEA salts are preservatives, and Potassium Salicylate is a cosmetic biocide and preservative, not currently in use. Sodium Salicylate is used as a denaturant and preservative (0.09% to 2%). The TEA salt of Salicylic Acid is used as an ultraviolet (UV) light absorber (0.0001% to 0.75%). Several Salicylic Acid esters are used as skin conditioning agents—miscellaneous (Capryloyl, 0.1% to 1%; C12–15 Alkyl, no current use; Isocetyl, 3% to 5%; Isodecyl, no current use; and Tridecyl, no current use). Butyloctyl Salicylate (0.5% to 5%) and Hexyldodecyl Salicylate (no current use) are hair-conditioning agents and skin-conditioning agents—miscellaneous. Ethylhexyl Salicylate (formerly known as Octyl Salicylate) is used as a fragrance ingredient, sunscreen agent, and UV light absorber (0.001% to 8%), and Methyl Salicylate is used as a denaturant and flavoring agent (0.0001% to 0.6%). Myristyl Salicylate has no reported function. Isodecyl Salicylate is used in three formulations, but no concentration of use information was reported. Salicylates are absorbed percutaneously. Around 10% of applied salicylates can remain in the skin. Salicylic Acid is reported to enhance percutaneous penetration of some agents (e.g., vitamin A), but not others (e.g., hydrocortisone). Little acute toxicity (LD50 in rats; >2 g/kg) via a dermal exposure route is seen for Salicylic Acid, Methyl Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate. Short-term oral, inhalation, and parenteral exposures to salicylates sufficient to produce high blood concentrations are associated primarily with liver and kidney damage. Subchronic dermal exposures to undiluted Methyl Salicylate were associated with kidney damage. Chronic oral exposure to Methyl Salicylate produced bone lesions as a function of the level of exposure in 2-year rat studies; liver damage was seen in dogs exposed to 0.15 g/kg/day in one study; kidney and liver weight increases in another study at the same exposure; but no liver or kidney abnormalities in a study at 0.167 g/kg/day. Applications of Isodecyl, Tridecyl, and Butyloctyl Salicylate were not irritating to rabbit skin, whereas undiluted Ethylhexyl Salicylate produced minimal to mild irritation. Methyl Salicylate at a 1% concentration with a 70% ethanol vehicle were irritating, whereas a 6% concentration in polyethylene glycol produced little or no irritation. Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were not ocular irritants. Although Salicylic Acid at a concentration of 20% in acetone was positive in the local lymph node assay, a concentration of 20% in acetone/olive oil was not. Methyl Salicylate was negative at concentrations up to 25% in this assay, independent of vehicle. Maximization tests of Methyl Salicylate, Ethylhexyl Salicylate, and Butyloctyl Salicylate produced no sensitization in guinea pigs. Neither Salicylic Acid nor Tridecyl Salicylate were photosensitizers. Salicylic Acid, produced when aspirin is rapidly hydrolyzed after absorption from the gut, was reported to be the causative agent in aspirin teratogenesis in animals. Dermal exposures to Methyl Salicylate, oral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate, and parenteral exposures to Salicylic Acid, Sodium Salicylate, and Methyl Salicylate are all associated with reproductive and developmental toxicity as a function of blood levels reached as a result of exposure. An exposure assessment of a representative cosmetic product used on a daily basis estimated that the exposure from the cosmetic product would be only 20% of the level seen with ingestion of a “baby” aspirin (81 mg) on a daily basis. Studies of the genotoxic potential of Salicylic Acid, Sodium Salicylate, Isodecyl Salicylate, Methyl Salicylate, Ethylhexyl (Octyl) Salicylate, Tridecyl Salicylate, and Butyloctyl Salicylate were generally negative. Methyl Salicylate, in a mouse skin-painting study, did not induce neoplasms. Likewise, Methyl Salicylate was negative in a mouse pulmonary tumor system. In clinical tests, Salicylic Acid (2%) produced minimal cumulative irritation and slight or no irritation(1.5%); TEA-Salicylate (8%) produced no irritation; Methyl Salicylate (>12%) produced pain and erythema, a 1% aerosol produced erythema, but an 8% solution was not irritating; Ethylhexyl Salicylate (4%) and undiluted Tridecyl Salicylate produced no irritation. In atopic patients, Methyl Salicylate caused irritation as a function of concentration (no irritation at concentrations of 15% or less). In normal skin, Salicylic Acid, Methyl Salicylate, and Ethylhexyl (Octyl) Salicylate are not sensitizers. Salicylic Acid is not a photosensitizer, nor is it phototoxic. Salicylic Acid and Ethylhexyl Salicylate are low-level photoprotective agents. Salicylic Acid is well-documented to have keratolytic action on normal human skin. Because of the possible use of these ingredients as exfoliating agents, a concern exists that repeated use may effectively increase exposure of the dermis and epidermis to UV radiation. It was concluded that the prudent course of action would be to advise the cosmetics industry that there is a risk of increased UV radiation damage with the use of any exfoliant, including Salicylic Acid and the listed salicylates, and that steps need to be taken to formulate cosmetic products with these ingredients as exfoliating agents so as not to increase sun sensitivity, or when increased sun sensitivity would be expected, to include directions for the daily use of sun protection. The available data were not sufficient to establish a limit on concentration of these ingredients, or to identify the minimum pH of formulations containing these ingredients, such that no skin irritation would occur, but it was recognized that it is possible to formulate cosmetic products in a way such that significant irritation would not be likely, and it was concluded that the cosmetics industry should formulate products containing these ingredients so as to be nonirritating. Although simultaneous use of several products containing Salicylic Acid could produce exposures greater than would be seen with use of baby aspirin (an exposure generally considered to not present a reproductive or developmental toxicity risk), it was not considered likely that consumers would simultaneously use multiple cosmetic products containing Salicylic Acid. Based on the available information, the Cosmetic Ingredient Review Expert Panel reached the conclusion that these ingredients are safe as used when formulated to avoid skin irritation and when formulated to avoid increasing the skin's sun sensitivity, or, when increased sun sensitivity would be expected, directions for use include the daily use of sun protection.
Collapse
|
29
|
Ahn I, Kim TS, Jung ES, Yi JS, Jang WH, Jung KM, Park M, Jung MS, Jeon EY, Yeo KU, Jo JH, Park JE, Kim CY, Park YC, Seong WK, Lee AY, Chun YJ, Jeong TC, Jeung EB, Lim KM, Bae S, Sohn S, Heo Y. Performance standard-based validation study for local lymph node assay: 5-bromo-2-deoxyuridine-flow cytometry method. Regul Toxicol Pharmacol 2016; 80:183-94. [DOI: 10.1016/j.yrtph.2016.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 11/15/2022]
|
30
|
Abstract
An assessment of the safety of Hydroquinone was first published in 1986 (J Am Coll Toxicol 5:123-65). The ingredient was found to be safe for use at limited concentrations for certain formulations. This addendum reviews new data and presents a revised conclusion regarding safety. Hydroquinone is an aromatic compound used principally in hair dyes and colors, but it is also in lipsticks, skin fresheners, and other skin care preparations. Hydroquinone in an aqueous solution was shown to be absorbed through human skin at a rate of 0.55 ± 0.13 μg/cm2/h. Hydroquinone is rapidly absorbed and excreted in urine in rats following oral administration. Absorption from an alcohol vehicle is greater than from an aqueous solution. Hydroquinone was found to be cytotoxic to rat hepatoma cells in culture, and nephrotoxic in male rats dosed orally by gavage. Oral administration of Hydroquinone to rats resulted in dose-dependent mortality, lethargy, tremors, and increased liver and kidney weights. Oral administration did not produce embryotoxic, fetotoxic, or teratogenic effects in rats. In rats, dermal application produced slight to severe irritation. In a guinea pig maximization test, induction with 2% Hydroquinone injected intradermal, followed by challenge with 0.5% Hydroquinone, showed extreme sensitization. In 80 patients known to be sensitive to aromatic compounds, 0.5% Hydroquinone elicited no reactions. Hydroquinone can cause depigmentation of skin. Various genotoxicity assays show that Hydroquinone can induce sister chromatid exchanges, chromosomal aberrations and loss, and increased frequency of mitotic crossovers. It also induced DNA strand breaks and inhibited DNA and RNA synthesis in rabbit bone marrow mitochondria. Forward mutation assays with or without metabolic activation were positive, but the results with the Ames test, a mouse test for somatic mutations, and other tests were negative. Hydroquinone, given to rats orally by gavage five times per week for up to 103 weeks at doses of 25 or 50 mg/kg, resulted in a significant increase of renal adenomas in males given 50 mg/kg and of mononuclear cell leukemia in females with both doses. At doses of 50 or 100 mg/kg on the same schedule, there was a significant increase in hepatocellular adenomas in both male and female mice. Other studies of Hydroquinone showed no significant difference in tumors between control and exposed groups, and marginal to no activity as a tumor promoter. It is concluded that Hydroquinone is safe at concentrations of ≤1% for aqueous cosmetic formulations designed for discontinuous, brief use followed by rinsing from the skin and hair. Hydroquinone should not be used in leave-on, nondrug cosmetic products.
Collapse
|
31
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
32
|
Stoffmonographie für 2-Mercaptobenzothiazol (2-MBT) und HBM-Werte für 2-MBT im Urin von Erwachsenen und Kindern. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2015; 58:1027-40. [DOI: 10.1007/s00103-015-2212-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Kim B, Lee SH, Yoon CJ, Gho YS, Ahn GO, Kim KH. In vivo visualization of skin inflammation by optical coherence tomography and two-photon microscopy. BIOMEDICAL OPTICS EXPRESS 2015; 6:2512-2521. [PMID: 26203377 PMCID: PMC4505705 DOI: 10.1364/boe.6.002512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 05/23/2023]
Abstract
Inflammation is a non-specific immune response to injury intended to protect biological tissue from harmful stimuli such as pathogens, irritants, and damaged cells. In vivo optical tissue imaging has been used to provide spatial and dynamic characteristics of inflammation within the tissue. In this paper, we report in vivo visualization of inflammation in the skin at both cellular and physiological levels by using a combination of label-free two-photon microscopy (TPM) and optical coherence tomography (OCT). Skin inflammation was induced by topically applying lipopolysaccharide (LPS) on the mouse ear. Temporal OCT imaging visualized tissue swelling, vasodilation, and increased capillary density 30 min and 1 hour after application. TPM imaging showed immune cell migration within the inflamed skin. Combined OCT and TPM was applied to obtain complementary information from each modality in the same region of interest. The information provided by each modality were consistent with previous reports about the characteristics of inflammation. Therefore, the combination of OCT and TPM holds potential for studying inflammation of the skin.
Collapse
Affiliation(s)
- Bumju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Seung Hun Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Calvin J. Yoon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Yong Song Gho
- Department of Life Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
- Division of Molecular and Life Sciences, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - G-One Ahn
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
- Department of Life Science, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| | - Ki Hean Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 790-784, South Korea
| |
Collapse
|
34
|
Bregnbak D, Johansen JD, Jellesen MS, Zachariae C, Menné T, Thyssen JP. Chromium allergy and dermatitis: prevalence and main findings. Contact Dermatitis 2015; 73:261-80. [DOI: 10.1111/cod.12436] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 12/14/2022]
Affiliation(s)
- David Bregnbak
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Jeanne D. Johansen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Morten S. Jellesen
- Materials and Surface Engineering, Department of Mechanical Engineering; Technical University of Denmark; DK-2800 Lyngby Denmark
| | - Claus Zachariae
- Department of Dermato-Allergology; Gentofte University Hospital; Hellerup 2900 Denmark
| | - Torkil Menné
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; Hellerup 2900 Denmark
| |
Collapse
|
35
|
Hirota M, Fukui S, Okamoto K, Kurotani S, Imai N, Fujishiro M, Kyotani D, Kato Y, Kasahara T, Fujita M, Toyoda A, Sekiya D, Watanabe S, Seto H, Takenouchi O, Ashikaga T, Miyazawa M. Evaluation of combinations of in vitro sensitization test descriptors for the artificial neural network-based risk assessment model of skin sensitization. J Appl Toxicol 2015; 35:1333-47. [PMID: 25824844 DOI: 10.1002/jat.3105] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/04/2014] [Accepted: 11/22/2014] [Indexed: 11/06/2022]
Abstract
The skin sensitization potential of chemicals has been determined with the use of the murine local lymph node assay (LLNA). However, in recent years public concern about animal welfare has led to a requirement for non-animal risk assessment systems for the prediction of skin sensitization potential, to replace LLNA. Selection of an appropriate in vitro test or in silico model descriptors is critical to obtain good predictive performance. Here, we investigated the utility of artificial neural network (ANN) prediction models using various combinations of descriptors from several in vitro sensitization tests. The dataset, collected from published data and from experiments carried out in collaboration with the Japan Cosmetic Industry Association (JCIA), consisted of values from the human cell line activation test (h-CLAT), direct peptide reactivity assay (DPRA), SH test and antioxidant response element (ARE) assay for chemicals whose LLNA thresholds have been reported. After confirming the relationship between individual in vitro test descriptors and the LLNA threshold (e.g. EC3 value), we used the subsets of chemicals for which the requisite test values were available to evaluate the predictive performance of ANN models using combinations of h-CLAT/DPRA (N = 139 chemicals), the DPRA/ARE assay (N = 69), the SH test/ARE assay (N = 73), the h-CLAT/DPRA/ARE assay (N = 69) and the h-CLAT/SH test/ARE assay (N = 73). The h-CLAT/DPRA, h-CLAT/DPRA/ARE assay and h-CLAT/SH test/ARE assay combinations showed a better predictive performance than the DPRA/ARE assay and the SH test/ARE assay. Our data indicates that the descriptors evaluated in this study were all useful for predicting human skin sensitization potential, although combinations containing h-CLAT (reflecting dendritic cell-activating ability) were most effective for ANN-based prediction.
Collapse
Affiliation(s)
- Morihiko Hirota
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa, 224-8558, Japan
| | - Shiho Fukui
- Kanebo Cosmetics Inc., 3-28, Kotobukicho 5-chome, Odawara, Kanagawa, 250-0002, Japan
| | - Kenji Okamoto
- Kanebo Cosmetics Inc., 3-28, Kotobukicho 5-chome, Odawara, Kanagawa, 250-0002, Japan
| | - Satoru Kurotani
- Kose Corporation, 1-18-4 Azusawa, Itabashi-ku, Tokyo, 174-0051, Japan
| | - Noriyasu Imai
- Kose Corporation, 1-18-4 Azusawa, Itabashi-ku, Tokyo, 174-0051, Japan
| | - Miyuki Fujishiro
- Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, Tokyo, 174-0046, Japan
| | - Daiki Kyotani
- Cosmos Technical Center Co., Ltd., 3-24-3 Hasune, Itabashi-ku, Tokyo, 174-0046, Japan
| | - Yoshinao Kato
- Nippon Menard Cosmetic Co., Ltd., 2-7, Torimi-cho, Nishi-ku, Nagoya, 451-0071, Japan
| | - Toshihiko Kasahara
- Fujifilm Corporation, 210, Nakamura, Minamiashigara-shi, Kanagawa, 250-0193, Japan
| | - Masaharu Fujita
- Fujifilm Corporation, 210, Nakamura, Minamiashigara-shi, Kanagawa, 250-0193, Japan
| | - Akemi Toyoda
- Pola Chemical Industries, Inc., 560 Kashio-cho, Totsuka-ku, Yokohama, 244-0812, Japan
| | - Daisuke Sekiya
- Lion Corporation, 100, Tajima, Odawara, Kanagawa, 256-0811, Japan
| | | | - Hirokazu Seto
- P&G Japan K.K., 1-17, Koyo-cho Naka, Higashinada-ku, Kobe, 658-0032, Japan
| | - Osamu Takenouchi
- Kao Corporation, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497
| | - Takao Ashikaga
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa, 224-8558, Japan
| | - Masaaki Miyazawa
- Kao Corporation, 2606, Akabane, Ichikai-Machi, Haga-Gun, Tochigi, 321-3497
| |
Collapse
|
36
|
Ouyang Q, Wang L, Mu Y, Xie XQ. Modeling skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol compounds with quantum mechanistic properties. BMC Pharmacol Toxicol 2014; 15:76. [PMID: 25539579 PMCID: PMC4298069 DOI: 10.1186/2050-6511-15-76] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 11/20/2014] [Indexed: 11/17/2022] Open
Abstract
Background Advanced structure-activity relationship (SAR) modeling can be used as an alternative tool for identification of skin sensitizers and in improvement of the medical diagnosis and more effective practical measures to reduce the causative chemical exposures. It can also circumvent ethical concern of using animals in toxicological tests, and reduce time and cost. Compounds with aniline or phenol moieties represent two large classes of frequently skin sensitizing chemicals but exhibiting very variable, and difficult to predict, potency. The mechanisms of action are not well-understood. Methods A group of mechanistically hard-to-be-classified aniline and phenol chemicals were collected. An in silico model was established by statistical analysis of quantum descriptors for the determination of the relationship between their chemical structures and skin sensitization potential. The sensitization mechanisms were investigated based on the features of the established model. Then the model was utilized to analyze a subset of FDA approved drugs containing aniline and/or phenol groups for prediction of their skin sensitization potential. Results and discussion A linear discriminant model using the energy of the highest occupied molecular orbital (ϵHOMO) as the descriptor yielded high prediction accuracy. The contribution of ϵHOMO as a major determinant may suggest that autoxidation or free radical binding could be involved. The model was further applied to predict allergic potential of a subset of FDA approved drugs containing aniline and/or phenol moiety. The predictions imply that similar mechanisms (autoxidation or free radical binding) may also play a role in the skin sensitization caused by these drugs. Conclusions An accurate and simple quantum mechanistic model has been developed to predict the skin sensitization potential of mechanistically hard-to-be-classified aniline and phenol chemicals. The model could be useful for the skin sensitization potential predictions of a subset of FDA approved drugs. Electronic supplementary material The online version of this article (doi:10.1186/2050-6511-15-76) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, School of Pharmacy, NIH National Center, of Excellence for Computational Drug Abuse Research, Drug Discovery Institute, Pittsburgh, PA 15261, USA.
| |
Collapse
|
37
|
Fage SW, Faurschou A, Thyssen JP. Copper hypersensitivity. Contact Dermatitis 2014; 71:191-201. [DOI: 10.1111/cod.12273] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 05/13/2014] [Accepted: 05/20/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Simon W. Fage
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| | - Annesofie Faurschou
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| | - Jacob P. Thyssen
- Department of Dermato-Allergology; National Allergy Research Centre, Copenhagen University Hospital Gentofte; 2900 Hellerup Denmark
| |
Collapse
|
38
|
Development of a prediction method for skin sensitization using novel cysteine and lysine derivatives. J Pharmacol Toxicol Methods 2014; 70:94-105. [DOI: 10.1016/j.vascn.2014.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/08/2014] [Accepted: 06/02/2014] [Indexed: 12/29/2022]
|
39
|
Guyard-Nicodème M, Gerault E, Platteel M, Peschard O, Veron W, Mondon P, Pascal S, Feuilloley MGJ. Development of a multiparametric in vitro model of skin sensitization. J Appl Toxicol 2014; 35:48-58. [PMID: 24496914 DOI: 10.1002/jat.2986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 12/09/2013] [Accepted: 12/09/2013] [Indexed: 11/12/2022]
Abstract
Most animal experiments on cosmetics safety are prohibited and since March 2013, this obligation includes sensitization tests. However, until now there has been no validated alternative in vitro method. In this work, 400 compounds used in the cosmetic industry were selected to cover the greatest diversity of structures, biological activities and sensitizing potential. These molecules were submitted to a series of tests aimed at reproducing essential steps in sensitization and to distinguish between sensitization and irritations, i.e., transcutaneous permeation (factor A), haptenation (factor B), sensitization cytokines production (factor C) and acute toxicity (factor D). The transcutaneous diffusion was measured on human skin explants using Franz cells. Haptenation was tested in solution on human serum albumin. Sensitization cytokine production was investigated by measurement of interleukin-18 release by keratinocytes. Acute toxicity was determined using an 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(75) cell viability test. As only sufficiently stable, soluble and detectable compounds are usable, 33, 72, 68 and 68 molecules were finally tested on factors A, B, C and D, respectively, and 32 were completely screened by the four factors. The individual correlation of the four factors with the reference in vivo tests was limited but the combination of these factors led to a correlation between in vivo and in vitro assays of 81.2% and the safety of the test (risk of false negative) reached 96.8%. The techniques employed are simple and inexpensive and this model of four tests appears as a promising technique to evaluate in vitro the skin sensitization potential of unknown molecules.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Laboratory of Microbiology Signals and Microenvironment (LMSM), EA 4312, University of Rouen, 55 rue Saint Germain, F-27000, Evreux, France; Hygiene and Quality of Poultry and Pork Products Unit, Ploufragan/Plouzané Laboratory, ANSES, BP53, F-22440, Ploufragan, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Tsujita-Inoue K, Hirota M, Ashikaga T, Atobe T, Kouzuki H, Aiba S. Skin sensitization risk assessment model using artificial neural network analysis of data from multiple in vitro assays. Toxicol In Vitro 2014; 28:626-39. [PMID: 24444449 DOI: 10.1016/j.tiv.2014.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 12/25/2022]
Abstract
The sensitizing potential of chemicals is usually identified and characterized using in vivo methods such as the murine local lymph node assay (LLNA). Due to regulatory constraints and ethical concerns, alternatives to animal testing are needed to predict skin sensitization potential of chemicals. For this purpose, combined evaluation using multiple in vitro and in silico parameters that reflect different aspects of the sensitization process seems promising. We previously reported that LLNA thresholds could be well predicted by using an artificial neural network (ANN) model, designated iSENS ver.1 (integrating in vitro sensitization tests version 1), to analyze data obtained from two in vitro tests: the human Cell Line Activation Test (h-CLAT) and the SH test. Here, we present a more advanced ANN model, iSENS ver.2, which additionally utilizes the results of antioxidant response element (ARE) assay and the octanol-water partition coefficient (LogP, reflecting lipid solubility and skin absorption). We found a good correlation between predicted LLNA thresholds calculated by iSENS ver.2 and reported values. The predictive performance of iSENS ver.2 was superior to that of iSENS ver.1. We conclude that ANN analysis of data from multiple in vitro assays is a useful approach for risk assessment of chemicals for skin sensitization.
Collapse
Affiliation(s)
- Kyoko Tsujita-Inoue
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan
| | - Morihiko Hirota
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan.
| | - Takao Ashikaga
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan
| | - Tomomi Atobe
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan
| | - Hirokazu Kouzuki
- Shiseido Research Center, Shiseido Co. Ltd., 2-2-1 Hayabuchi, Tsuzuki-ku, Yokohama-shi, Kanagawa 224-8558, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
41
|
Assessment of immunotoxicity induced by chemicals in human precision-cut lung slices (PCLS). Toxicol In Vitro 2014; 28:588-99. [PMID: 24412833 DOI: 10.1016/j.tiv.2013.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/23/2022]
Abstract
Occupational asthma can be induced by a number of chemicals at the workplace. Risk assessment of potential sensitizers is mostly performed in animal experiments. With increasing public demand for alternative methods, human precision-cut lung slices (PCLS) have been developed as an ex vivo model. Human PCLS were exposed to increasing concentrations of 20 industrial chemicals including 4 respiratory allergens, 11 contact allergens, and 5 non-sensitizing irritants. Local respiratory irritation was characterized and expressed as 75% (EC25) and 50% (EC50) cell viability with respect to controls. Dose-response curves of all chemicals except for phenol were generated. Local respiratory inflammation was quantified by measuring the production of cytokines and chemokines. TNF-α and IL-1α were increased significantly in human PCLS after exposure to the respiratory sensitizers trimellitic anhydride (TMA) and ammonium hexachloroplatinate (HClPt) at subtoxic concentrations, while contact sensitizers and non-sensitizing irritants failed to induce the release of these cytokines to the same extent. Interestingly, significant increases in T(H)1/T(H)2 cytokines could be detected only after exposure to HClPt at a subtoxic concentration. In conclusion, allergen-induced cytokines were observed but not considered as biomarkers for the differentiation between respiratory and contact sensitizers. Our preliminary results show an ex vivo model which might be used for prediction of chemical-induced toxicity, but is due to its complex three-dimensional structure not applicable for a simple screening of functional and behavior changes of certain cell populations such as dendritic cells and T-cells in response to allergens.
Collapse
|
42
|
Varani J. Human skin organ culture for assessment of chemically induced skin damage. ACTA ACUST UNITED AC 2014; 7:295-303. [PMID: 26989431 DOI: 10.1586/edm.12.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The move away from animal models for skin safety testing is inevitable. It is a question of when, not if. As skin safety studies move away from traditional animal-based approaches, a number of replacement technologies are becoming available. Human skin in organ culture is one such technology. Organ-cultured skin has several features that distinguish it from other technologies. First and foremost, organ-cultured skin is real skin. Almost by definition, therefore, it approximates the intact skin better than other alternative models. Organ culture is an easy-to-use and relatively inexpensive approach to preclinical safety assessment. Although organ culture is not likely to replace high-throughput enzyme assays or monolayer culture/skin equivalent cultures for initial compound assessment, organ culture should find use when the list of compounds to be evaluated is small and when simpler models have narrowed the dose range. Organ-cultured skin also provides a platform for mechanistic studies.
Collapse
Affiliation(s)
- James Varani
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA, Tel.: +1 734 615 0298,
| |
Collapse
|
43
|
Hirota M, Kouzuki H, Ashikaga T, Sono S, Tsujita K, Sasa H, Aiba S. Artificial neural network analysis of data from multiple in vitro assays for prediction of skin sensitization potency of chemicals. Toxicol In Vitro 2013; 27:1233-46. [PMID: 23458967 DOI: 10.1016/j.tiv.2013.02.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/16/2022]
Abstract
In order to develop in vitro risk assessment systems for skin sensitization, it is important to predict a threshold from the murine local lymph node assay (LLNA). We first confirmed that the combination of the human Cell Line Activation Test (h-CLAT) and the SH test improved the accuracy and sensitivity of prediction of LLNA data compared with each individual test. Next, we assessed the mutual correlations among maximum amount of change of cell-surface thiols (MAC value) in the SH test, CV75 value (concentration giving 75% cell viability) in a cytotoxicity assay, EC150 and EC200 values (thresholds concentrations of CD86 and CD54 expression, respectively) in h-CLAT and published LLNA thresholds of 64 chemicals. Based on the results, we selected MAC value and the minimum of CV75, EC150 (CD86) and EC200 (CD54) as descriptors for the input layer of an artificial neural network (ANN) system. The ANN-predicted values were well correlated with reported LLNA thresholds. We also found a correlation between the SH test and the peptide-binding assay used to evaluate hapten-protein complex formation. Thus, this model, which we designate as the "iSENS ver. 1", may be useful for risk assessment of skin sensitization potential of chemicals from in vitro test data.
Collapse
Affiliation(s)
- Morihiko Hirota
- Shiseido Research Center, Shiseido Co Ltd, 2-12-1 Fukuura, Kanazawa-ku, Yokohama-shi, Kanagawa 236-8643, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Differentiation of skin sensitizers from irritant chemicals by interleukin-1α and macrophage inflammatory protein-2 in murine keratinocytes. Toxicol Lett 2013. [DOI: 10.1016/j.toxlet.2012.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Przybylak KR, Madden JC, Cronin MTD, Hewitt M. Assessing toxicological data quality: basic principles, existing schemes and current limitations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2012; 23:435-459. [PMID: 22507180 DOI: 10.1080/1062936x.2012.664825] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Existing toxicological data may be used for a variety of purposes such as hazard and risk assessment or toxicity prediction. The potential use of such data is, in part, dependent upon their quality. Consideration of data quality is of key importance with respect to the application of chemicals legislation such as REACH. Whether data are being used to make regulatory decisions or build computational models, the quality of the output is reflected by the quality of the data employed. Therefore, the need to assess data quality is an important requirement for making a decision or prediction with an appropriate level of confidence. This study considers the biological and chemical factors that may impact upon toxicological data quality and discusses the assessment of data quality. Four general quality criteria are introduced and existing data quality assessment schemes are discussed. Two case study datasets of skin sensitization data are assessed for quality providing a comparison of existing assessment methods. This study also discusses the limitations and difficulties encountered during quality assessment, including the use of differing quality schemes and the global versus chemical-specific assessments of quality. Finally, a number of recommendations are made to aid future data quality assessments.
Collapse
Affiliation(s)
- K R Przybylak
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | | | | | | |
Collapse
|
46
|
McKim JM, Keller DJ, Gorski JR. Anin vitromethod for detecting chemical sensitization using human reconstructed skin models and its applicability to cosmetic, pharmaceutical, and medical device safety testing. Cutan Ocul Toxicol 2012; 31:292-305. [DOI: 10.3109/15569527.2012.667031] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Takahashi T, Kimura Y, Saito R, Nakajima Y, Ohmiya Y, Yamasaki K, Aiba S. An in vitro test to screen skin sensitizers using a stable THP-1-derived IL-8 reporter cell line, THP-G8. Toxicol Sci 2011; 124:359-69. [PMID: 21920952 DOI: 10.1093/toxsci/kfr237] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several studies have suggested that interleukin (IL)-8 can serve as a biomarker for discrimination of skin sensitizers from nonsensitizers. We established a stable THP-1-derived IL-8 reporter cell line, THP-G8, which harbors SLO and SLR luciferase genes under the control of IL-8 and glyceraldehyde 3-phosphate dehydrogenase promoters, respectively. After 6 h treatment with chemicals, normalized SLO luciferase activity (nSLO-LA) was calculated by dividing SLO-LA by SLR-LA, and the fold induction of nSLO-LA (FInSLO-LA) was calculated by dividing nSLO-LA of chemically treated cells by that of nontreated cells. The nSLO-LA of THP-G8 cells increased in response to lipopolysaccharide (LPS) and several sensitizers. The FInSLO-LA in THP-G8 cells induced by LPS or sensitizers positively correlated with their induction of IL-8 messenger RNA in THP-1 cells. The nSLO-LA value of THP-G8 cells was significantly increased (FInSLO-LA ≥ 1.4) by 13 of the 15 sensitizers as well as by 5 of the 7 nonsensitizers. Interestingly, pretreatment with N-acetylcysteine suppressed the increase in FInSLO-LA induced by all sensitizers (inhibition index (II) ≤ 0.8) but did not suppress that induced by most of the nonsensitizers. We then evaluated the performance of this assay using values of FInSLO-LA ≥ 1.4 and II ≤ 0.8 in at least two of three independent experiments as the criteria of a sensitizer, which resulted in test accuracies of 82% for the 22 chemicals used and of 88% for the chemicals proposed by European Center for the Validation of Alternative Methods. This newly developed assay is a candidate replacement for animal tests of skin sensitization because of its accuracy, convenience, and high throughput performance.
Collapse
Affiliation(s)
- Toshiya Takahashi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Classification of skin sensitizing substances: a comparison between approaches used by the DFG-MAK Commission and the European Union legislation. Regul Toxicol Pharmacol 2011; 61:1-8. [PMID: 21798301 DOI: 10.1016/j.yrtph.2011.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/29/2011] [Indexed: 11/23/2022]
Abstract
A systematic classification of substances (or mixtures of substances) with regard to various toxicological endpoints is a prerequisite for the implementation of occupational safety strategies. As its principal task the "Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area" of the "Deutsche Forschungsgemeinschaft" (DFG-MAK Commission) derives and recommends maximum workplace concentrations and biological tolerance values (MAK and BAT values) based exclusively on scientific arguments. Several endpoints are evaluated separately in detail, e.g. carcinogenicity, risks during pregnancy, germ cell mutagenicity or contribution to systemic toxicity after cutaneous absorption. Skin- and airway sensitization is also considered; the present paper focuses on these two endpoints.
Collapse
|
49
|
In vitro detection of contact allergens: Development of an optimized protocol using human peripheral blood monocyte-derived dendritic cells. Toxicol In Vitro 2011; 25:315-23. [DOI: 10.1016/j.tiv.2010.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 01/20/2023]
|
50
|
van Triel JJ, van Bree BW, Roberts DW, Muijser H, Duistermaat E, Woutersen RA, Kuper CF. The respiratory allergen glutaraldehyde in the local lymph node assay: Sensitization by skin exposure, but not by inhalation. Toxicology 2011; 279:115-22. [DOI: 10.1016/j.tox.2010.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 09/27/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
|