1
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
2
|
Tryptophanyl-tRNA Synthetase 1 Signals Activate TREM-1 via TLR2 and TLR4. Biomolecules 2020; 10:biom10091283. [PMID: 32899943 PMCID: PMC7565148 DOI: 10.3390/biom10091283] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022] Open
Abstract
Tryptophanyl-tRNA synthetase 1 (WARS1) is an endogenous ligand of mammalian Toll-like receptors (TLR) 2 and TLR4. Microarray data, using mRNA from WARS1-treated human peripheral blood mononuclear cells (PBMCs), had indicated WARS1 to mainly activate innate inflammatory responses. However, exact molecular mechanism remains to be understood. The triggering receptor expressed on myeloid cells (TREM)-1 is an amplifier of pro-inflammatory processes. We found WARS1 to significantly activate TREM-1 at both mRNA and protein levels, along with its cell surface expression and secretion in macrophages. WARS1 stimulated TREM-1 production via TLR2 and TLR4, mediated by both MyD88 and TRIF, since targeted deletion of TLR4, TLR2, MyD88, and TRIF mostly abrogated TREM-1 activation. Furthermore, WARS1 promoted TREM-1 downstream phosphorylation of DAP12, Syk, and AKT. Knockdown of TREM-1 and inhibition of Syk kinase significantly suppressed the activation of inflammatory signaling loop from MyD88 and TRIF, leading to p38 MAPK, ERK, and NF-κB inactivation. Finally, MyD88, TRIF, and TREM-1 signaling pathways were shown to be cooperatively involved in WARS1-triggered massive production of IL-6, TNF-α, IFN-β, MIP-1α, MCP-1, and CXCL2, where activation of Syk kinase was crucial. Taken together, our data provided a new insight into WARS1′s strategy to amplify innate inflammatory responses via TREM-1.
Collapse
|
3
|
Wakasugi K, Yokosawa T. Non-canonical functions of human cytoplasmic tyrosyl-, tryptophanyl- and other aminoacyl-tRNA synthetases. Enzymes 2020; 48:207-242. [PMID: 33837705 DOI: 10.1016/bs.enz.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aminoacyl-tRNA synthetases catalyze the aminoacylation of their cognate tRNAs. Here we review the accumulated knowledge of non-canonical functions of human cytoplasmic aminoacyl-tRNA synthetases, especially tyrosyl- (TyrRS) and tryptophanyl-tRNA synthetase (TrpRS). Human TyrRS and TrpRS have an extra domain. Two distinct cytokines, i.e., the core catalytic "mini TyrRS" and the extra C-domain, are generated from human TyrRS by proteolytic cleavage. Moreover, the core catalytic domains of human TyrRS and TrpRS function as angiogenic and angiostatic factors, respectively, whereas the full-length forms are inactive for this function. It is also known that many synthetases change their localization in response to a specific signal and subsequently exhibit alternative functions. Furthermore, some synthetases function as sensors for amino acids by changing their protein interactions in an amino acid-dependent manner. Further studies will be necessary to elucidate regulatory mechanisms of non-canonical functions of aminoacyl-tRNA synthetases in particular, by analyzing the effect of their post-translational modifications.
Collapse
Affiliation(s)
- Keisuke Wakasugi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Takumi Yokosawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Abstract
Enterovirus 71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease. EV-A71 infection is sometimes associated with severe neurological diseases such as acute encephalitis, acute flaccid paralysis, and cardiopulmonary failure. Therefore, EV-A71 is a serious public health concern. Scavenger receptor class B, member 2 (SCARB2) is a type III transmembrane protein that belongs to the CD36 family and is a major receptor for EV-A71. SCARB2 supports attachment and internalization of the virus and initiates conformational changes that lead to uncoating of viral RNA in the cytoplasm. The three-dimensional structure of the virus-receptor complex was elucidated by cryo-electron microscopy. Two α-helices in the head domain of SCARB2 bind to the G-H loop of VP1 and the E-F loop of VP2 capsid proteins of EV-A71. Uncoating takes place in a SCARB2- and low pH-dependent manner. In addition to SCARB2, other molecules support cell surface binding of EV-A71. Heparan sulfate proteoglycans, P-selectin glycoprotein ligand-1, sialylated glycan, annexin II, vimentin, fibronectin, and prohibitin enhance viral infection by retaining the virus on the cell surface. These molecules are known as “attachment receptors” because they cannot initiate uncoating. In vivo, SCARB2 expression was observed in EV-A71 antigen-positive neurons and epithelial cells in the crypts of the palatine tonsils in patients that died of EV-A71 infection. Adult mice are not susceptible to infection by EV-A71, but transgenic mice that express human SCARB2 become susceptible to EV-A71 infection and develop neurological diseases similar to those observed in humans. Attachment receptors may also be involved in EV-A71 infection in vivo. Although heparan sulfate proteoglycans are expressed by many cultured cell lines and enhance infection by a subset of EV-A71 strains, they are not expressed by cells that express SCARB2 at high levels in vivo. Thus, heparan sulfate-positive cells merely adsorb the virus and do not contribute to replication or dissemination of the virus in vivo. In addition to these attachment receptors, cyclophilin A and human tryptophanyl aminoacyl-tRNA synthetase act as an uncoating regulator and an entry mediator that can confer susceptibility to non-susceptibile cells in the absence of SCARB2, respectively. The roles of attachment receptors and other molecules in EV-A71 pathogenesis remain to be elucidated.
Collapse
Affiliation(s)
- Kyousuke Kobayashi
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan
| | - Satoshi Koike
- Neurovirology Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo, 156-8506, Japan.
| |
Collapse
|
5
|
Salazar-Coria L, Rocha-Gómez MA, Matadamas-Martínez F, Yépez-Mulia L, Vega-López A. Proteomic analysis of oxidized proteins in the brain and liver of the Nile tilapia (Oreochromis niloticus) exposed to a water-accommodated fraction of Maya crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:609-620. [PMID: 30658296 DOI: 10.1016/j.ecoenv.2019.01.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Crude oil (CO) is a super mixture of chemical compounds whose toxic effects are reported in fish species according to international guidelines. In the current study a proteomic analysis of oxidized proteins (ox) was performed on the brain and liver of Nile tilapia exposed to WAF obtained from relevant environmental loads (0.01, 0.1 and 1.0 g/L) of Maya CO. Results have shown that oxidation of specific proteins was a newly discovered organ-dependent process able to disrupt key functions in Nile tilapia. In control fish, enzymes involved on aerobic metabolism (liver aldehyde dehydrogenase and brain dihydrofolate reductase) and liver tryptophan--tRNA ligase were oxidized. In WAF-treated liver specimens, fructose-bisphosphate aldolase (FBA), β-galactosidase (β-GAL) and dipeptidyl peptidase 9 (DPP-9) were detected in oxidized form. oxDPP-9 could be favorable by reducing the risk associated with altered glucose metabolism, the opposite effects elicited by oxFBA and oxβ-GAL. oxTrypsin showed a clear adverse effect by reducing probably the hepatocyte capacity to achieve proteolysis of oxidized proteins as well as for performing the proper digestive function. Additionally, enzyme implicated in purine metabolism adenosine (deaminase) was oxidized. Cerebral enzymes of mitochondrial respiratory chain complex (COX IV, COX5B), of glycosphingolipid biosynthesis (β-N-acetylhexosaminidase), involved in catecholamines degradation (catechol O-methyltransferase), and microtubule cytoskeleton (stathmin) were oxidized in WAF-treated specimens. This response suggests, in the brain, an adverse scenario for the mitochondrial respiration process and for ATP provision as for ischemia/reoxygenation challenges. Proteomic analysis of oxidized proteins is a promising tool for monitoring environmental quality influenced by hydrocarbons dissolved in water.
Collapse
Affiliation(s)
- Lucía Salazar-Coria
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - María Alejandra Rocha-Gómez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico
| | - Félix Matadamas-Martínez
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, UMAE Hospital de Pediatría, Centro Médico Siglo XXI, Instituto Mexicano del Seguro Social, 06720 Mexico City, Mexico
| | - Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu s/n, Unidad Profesional Zacatenco, 07738 Mexico City, Mexico.
| |
Collapse
|
6
|
Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution. Sci Rep 2016; 6:24750. [PMID: 27094087 PMCID: PMC4837363 DOI: 10.1038/srep24750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 04/04/2016] [Indexed: 11/28/2022] Open
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) exists in two forms: a full-length TrpRS and a mini TrpRS. We previously found that human mini, but not full-length, TrpRS is an angiostatic factor. Moreover, it was shown that the interaction between mini TrpRS and the extracellular domain of vascular endothelial (VE)-cadherin is crucial for its angiostatic activity. However, the molecular mechanism of the angiostatic activity of human mini TrpRS is only partly understood. In the present study, we investigated the effects of truncated (mini) form of TrpRS proteins from human, bovine, or zebrafish on vascular endothelial growth factor (VEGF)-stimulated chemotaxis of human umbilical vein endothelial cells (HUVECs). We show that both human and bovine mini TrpRSs inhibited VEGF-induced endothelial migration, whereas zebrafish mini TrpRS did not. Next, to identify residues crucial for the angiostatic activity of human mini TrpRS, we prepared several site-directed mutants based on amino acid sequence alignments among TrpRSs from various species and demonstrated that a human mini K153Q TrpRS mutant cannot inhibit VEGF-stimulated HUVEC migration and cannot bind to the extracellular domain of VE-cadherin. Taken together, we conclude that the Lys153 residue of human mini TrpRS is a VE-cadherin binding site and is therefore crucial for its angiostatic activity.
Collapse
|
7
|
Zhang SM, Loker ES, Sullivan JT. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:25-36. [PMID: 26592964 PMCID: PMC5335875 DOI: 10.1016/j.dci.2015.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/30/2023]
Abstract
The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of GiMAP in protostome animals. Moreover, altered expression of genes encoding cytochrome P450, glutathione-S-transferase, multiple drug resistance protein as well as a large number of genes encoding enzymes associated with degradation and detoxification metabolism was elicited in response to the injected substances.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
| | - Eric S Loker
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA; Parasite Division, Museum of Southwestern Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
8
|
Zhou X, Xu N, Li R, Xiao Y, Gao G, Lu Q, Ding L, Li L, Li Y, Du Q, Liu X. A comparative proteomic study of Homoharringtonine-induced apoptosis in leukemia K562 cells. Leuk Lymphoma 2015; 56:2162-9. [PMID: 25330443 DOI: 10.3109/10428194.2014.976818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The objective of this study was to determine the changes in protein profiles of K562 chronic myeloid leukemia (CML) cells in response to Homoharringtonine (HHT). HHT treatment significantly increased apoptosis of K562 cells. Proteomic analyses indicated 32 differentially expressed proteins, 13 of which were identified by mass spectrometry (nine down-regulated and four up-regulated). Aside from alterations in apoptotic proteins and proteins associated with transcription and translation, our data also revealed changes in oxidative stress response and redox reaction-related proteins, such as heat shock proteins (Hsps), DJ-1 and thioredoxin. Specifically, these proteins were validated to decrease after HHT treatment in K562 cells and in primary CML cells by immunoblot analysis. Additionally, Hsps, DJ-1 and thioredoxin, which were also shown to decrease in primary cells from imatinib-resistant patients, may be promising potential targets for mechanistic research and new clinical treatments.
Collapse
|
9
|
Khan S, Garg A, Sharma A, Camacho N, Picchioni D, Saint-Léger A, de Pouplana LR, Yogavel M, Sharma A. An appended domain results in an unusual architecture for malaria parasite tryptophanyl-tRNA synthetase. PLoS One 2013; 8:e66224. [PMID: 23776638 PMCID: PMC3680381 DOI: 10.1371/journal.pone.0066224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/02/2013] [Indexed: 01/03/2023] Open
Abstract
Specific activation of amino acids by aminoacyl-tRNA synthetases (aaRSs) is essential for maintaining fidelity during protein translation. Here, we present crystal structure of malaria parasite Plasmodium falciparum tryptophanyl-tRNA synthetase (Pf-WRS) catalytic domain (AAD) at 2.6 Å resolution in complex with L-tryptophan. Confocal microscopy-based localization data suggest cytoplasmic residency of this protein. Pf-WRS has an unusual N-terminal extension of AlaX-like domain (AXD) along with linker regions which together seem vital for enzymatic activity and tRNA binding. Pf-WRS is not proteolytically processed in the parasites and therefore AXD likely provides tRNA binding capability rather than editing activity. The N-terminal domain containing AXD and linker region is monomeric and would result in an unusual overall architecture for Pf-WRS where the dimeric catalytic domains have monomeric AXDs on either side. Our PDB-wide comparative analyses of 47 WRS crystal structures also provide new mechanistic insights into this enzyme family in context conserved KMSKS loop conformations.
Collapse
Affiliation(s)
- Sameena Khan
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Ankur Garg
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Arvind Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Noelia Camacho
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Daria Picchioni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Adélaïde Saint-Léger
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Manickam Yogavel
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Amit Sharma
- Structural and Computational Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- * E-mail:
| |
Collapse
|
10
|
Oliveira RAS, Correia-Oliveira J, Tang LJ, Garcia RC. A proteomic insight into the effects of the immunomodulatory hydroxynaphthoquinone lapachol on activated macrophages. Int Immunopharmacol 2012; 14:54-65. [PMID: 22705049 DOI: 10.1016/j.intimp.2012.05.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Accepted: 05/29/2012] [Indexed: 12/31/2022]
Abstract
We report the effect of an immunomodulatory and anti-mycobacterial naphthoquinone, lapachol, on the bi-dimensional patterns of protein expression of toll-like receptor 2 (TLR2)-agonised and IFN-γ-treated THP-1 macrophages. This non-hypothesis driven proteomic analysis intends to shed light on the cellular functions lapachol may be affecting. Proteins of both cytosol and membrane fractions were analysed. After quantification of the protein spots, the protein levels corresponding to macrophages activated in the absence or presence of lapachol were compared. A number of proteins were identified, the levels of which were appreciably and significantly increased or decreased as a result of the action of lapachol on the activated macrophages: cofilin-1, fascin, plastin-2, glucose-6-P-dehydrogenase, adenylyl cyclase-associated protein 1, pyruvate kinase, sentrin-specific protease 6, cathepsin B, cathepsin D, cytosolic aminopeptidase, proteasome β type-4 protease, tryptophan-tRNA ligase, DnaJ homolog and protein disulphide isomerase. Altogether, the comparative analysis performed indicates that lapachol could be hypothetically causing an impairment of cell migration and/or phagocytic capacity, an increase in NADPH availability, a decrease in pyruvate concentration, protection from proteosomal protein degradation, a decrease in lysosomal protein degradation, an impairment of cytosolic peptide generation, and an interference with NOS2 activation and grp78 function. The present proteomic results suggest issues that should be experimentally addressed ex- and in-vivo, to establish more accurately the potential of lapachol as an anti-infective drug. This study also constitutes a model for the pre-in-vivo evaluation of drug actions.
Collapse
Affiliation(s)
- Renato A S Oliveira
- Leukocyte Biology Group, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy.
| | | | | | | |
Collapse
|
11
|
Bogdanov AA, Karpov VL. RNA-protein interactions at the initial and terminal stages of protein biosynthesis as investigated by Lev Kisselev (on the occasion of his 70th anniversary). BIOCHEMISTRY (MOSCOW) 2006; 71:915-24. [PMID: 16978156 DOI: 10.1134/s0006297906080141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review highlights studies by Lev L. Kisselev and his colleagues on the initial and terminal stages of protein biosynthesis, which cover the period of the last 45 years (1961-2006). They investigated spatial structure of tRNAs, structure and functions of aminoacyl-tRNA-synthetases of higher organisms, and the final step of protein synthesis, termination of translation. L. Kisselev and his team have made three major contributions to these fields of molecular biology; (i) they proposed the hypothesis on the role of anticodon triplet of tRNA in recognition by cognate aminoacyl-tRNA synthetase, which has been experimentally confirmed and is now included in textbooks; (ii) identified primary structures and functions of two eukaryotic protein factors (eRF1 and eRF3) playing a pivotal role in translation termination; (iii) characterized a structural basis for stop codon recognition by eRF1 within the ribosome and discovered the negative structural elements of eRF1, limiting its recognition of one or two stop-codons.
Collapse
Affiliation(s)
- A A Bogdanov
- Lomonosov Moscow State University, Moscow, 119992, Russia.
| | | |
Collapse
|
12
|
Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Köhrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P. Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J 2006; 25:2919-29. [PMID: 16724112 PMCID: PMC1500858 DOI: 10.1038/sj.emboj.7601154] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/27/2006] [Indexed: 11/09/2022] Open
Abstract
Aminoacylation of tRNA is the first step of protein synthesis. Here, we report the co-crystal structure of human tryptophanyl-tRNA synthetase and tRNATrp. This enzyme is reported to interact directly with elongation factor 1alpha, which carries charged tRNA to the ribosome. Crystals were generated from a 50/50% mixture of charged and uncharged tRNATrp. These crystals captured two conformations of the complex, which are nearly identical with respect to the protein and a bound tryptophan. They are distinguished by the way tRNA is bound. In one, uncharged tRNA is bound across the dimer, with anticodon and acceptor stem interacting with separate subunits. In this cross-dimer tRNA complex, the class I enzyme has a class II-like tRNA binding mode. This structure accounts for biochemical investigations of human TrpRS, including species-specific charging. In the other conformation, presumptive aminoacylated tRNA is bound only by the anticodon, the acceptor stem being free and having space to interact precisely with EF-1alpha, suggesting that the product of aminoacylation can be directly handed off to EF-1alpha for the next step of protein synthesis.
Collapse
Affiliation(s)
- Xiang-Lei Yang
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kise Y, Lee SW, Park SG, Fukai S, Sengoku T, Ishii R, Yokoyama S, Kim S, Nureki O. A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 2004; 11:149-56. [PMID: 14730354 DOI: 10.1038/nsmb722] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 12/15/2003] [Indexed: 11/08/2022]
Abstract
Human tryptophanyl-tRNA synthetase (TrpRS) is secreted into the extracellular region of vascular endothelial cells. The splice variant form (mini TrpRS) functions in vascular endothelial cell apoptosis as an angiostatic cytokine. In contrast, the closely related human tyrosyl-tRNA synthetase (TyrRS) functions as an angiogenic cytokine in its truncated form (mini TyrRS). Here, we determined the crystal structure of human mini TrpRS at a resolution of 2.3 A and compared the structure with those of prokaryotic TrpRS and human mini TyrRS. Deletion of the tRNA anticodon-binding (TAB) domain insertion, consisting of eight residues in the human TrpRS, abolished the enzyme's apoptotic activity for endothelial cells, whereas its translational catalysis and cell-binding activities remained unchanged. Thus, we have identified the inserted peptide motif that activates the angiostatic signaling.
Collapse
Affiliation(s)
- Yoshiaki Kise
- Department of Biophysics and Biochemistry, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kitabatake M, Ali K, Demain A, Sakamoto K, Yokoyama S, Söll D. Indolmycin resistance of Streptomyces coelicolor A3(2) by induced expression of one of its two tryptophanyl-tRNA synthetases. J Biol Chem 2002; 277:23882-7. [PMID: 11970956 DOI: 10.1074/jbc.m202639200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases, a family of enzymes essential for protein synthesis, are promising targets of antimicrobials. Indolmycin, a secondary metabolite of Streptomyces griseus and a selective inhibitor of prokaryotic tryptophanyl-tRNA synthetase (TrpRS), was used to explore the mechanism of inhibition and to explain the resistance of a naturally occurring strain. Streptomyces coelicolor A3(2), an indolmycin-resistant strain, contains two trpS genes encoding distinct TrpRS enzymes. We show that TrpRS1 is indolmycin-resistant in vitro and in vivo, whereas TrpRS2 is sensitive. The lysine (position 9) in the enzyme tryptophan binding site is essential for making TrpRS1 indolmycin-resistant. Replacement of lysine 9 by glutamine, which at this position is conserved in most bacterial TrpRS proteins, abolished the ability of the mutant trpS gene to confer indolmycin resistance in vivo. Molecular modeling suggests that lysine 9 sterically hinders indolmycin binding to the enzyme. Tryptophan recognition (assessed by k(cat)/K(M)) by TrpRS1 is 4-fold lower than that of TrpRS2. Examination of the mRNA for the two enzymes revealed that only TrpRS2 mRNA is constitutively expressed, whereas mRNA for the indolmycin-resistant TrpRS1 enzyme is induced when the cells are exposed to indolmycin.
Collapse
Affiliation(s)
- Makoto Kitabatake
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Xu F, Jia J, Jin Y, Wang DT. High-level expression and single-step purification of human tryptophanyl-tRNA synthetase. Protein Expr Purif 2001; 23:296-300. [PMID: 11676605 DOI: 10.1006/prep.2001.1500] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human trpS gene was cloned into the expression vector pET-24a(+) to yield pET-24a(+)-HTrpRS, which could direct the synthesis of a mammalian derived protein in Escherichia coli BL21-CodonPlus(DE3)-RIL. The vector allows overproduction and single-step purification of His(6)-tagged human tryptophanyl-tRNA synthetase by the facilitation of metal (Ni(2+)) chelate affinity chromatography. The expression level of human TrpRS was about 40% of total cell proteins after isopropyl beta-D-thiogalactoside induction. The overproduced human TrpRS-His(6) could be purified to homogeneity within 2 h and about 24 mg purified enzyme could be obtained from 400 ml cell culture. The His(6) tag at C terminus had little effect on the binding ability of its substrates.
Collapse
Affiliation(s)
- F Xu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Life Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | | | | | | |
Collapse
|
16
|
Jorgensen R, Søgaard TM, Rossing AB, Martensen PM, Justesen J. Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 2000; 275:16820-6. [PMID: 10828066 DOI: 10.1074/jbc.275.22.16820] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A full-length cDNA clone encoding the human mitochondrial tryptophanyl-tRNA synthetase (h(mt)TrpRS) has been identified. The deduced amino acid sequence shows high homology to both the mitochondrial tryptophanyl-tRNA synthetase ((mt)TrpRS) from Saccharomyces cerevisiae and to different eubacterial forms of tryptophanyl-tRNA synthetase (TrpRS). Using the baculovirus expression system, we have expressed and purified the protein with a carboxyl-terminal histidine tag. The purified His-tagged h(mt)TrpRS catalyzes Trp-dependent exchange of PP(i) in the PP(i)-ATP exchange assay. Expression of h(mt)TrpRS in both human and insect cells leads to high levels of h(mt)TrpRS localizing to the mitochondria, and in insect cells the first 18 amino acids constitute the mitochondrial localization signal sequence. Until now the human cytoplasmic tryptophanyl-tRNA synthetase (hTrpRS) was thought to function as the h(mt)TrpRS, possibly in the form of a splice variant. However, no mitochondrial localization signal sequence was ever detected and the present identification of a different (mt)TrpRS almost certainly rules out that possibility. The h(mt)TrpRS shows kinetic properties similar to human mitochondrial phenylalanyl-tRNA synthetase (h(mt)PheRS), and h(mt)TrpRS is not induced by interferon-gamma as is hTrpRS.
Collapse
Affiliation(s)
- R Jorgensen
- Department of Molecular and Structural Biology, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
17
|
Turpaev K, Hartmann R, Kisselev L, Justesen J. Ap3A and Ap4A are primers for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. FEBS Lett 1997; 408:177-81. [PMID: 9187362 DOI: 10.1016/s0014-5793(97)00365-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The biological role of Ap3A synthesized in cells by tryptophanyl-tRNA synthetase (WRS) is unknown. Previously we have demonstrated that the cellular level of Ap3A significantly increases after interferon treatment. Here we show that the human 46 kDa 2-5A synthetase efficiently utilizes Ap3A as a primer for oligoadenylate synthesis. The Km for Ap3A is several-fold lower than for Ap4A and 100-fold lower than for ATP. This implies that Ap3A might be a natural primer for the 2'-adenylation reaction catalysed by 2-5A synthetase. Since WRS and 2-5A synthetase are both interferon-inducible proteins, a new link between two interferon-dependent enzymes is established.
Collapse
Affiliation(s)
- K Turpaev
- Department of Molecular and Structural Biology, Aarhus University, Denmark
| | | | | | | |
Collapse
|
18
|
Culver GM, McCraith SM, Consaul SA, Stanford DR, Phizicky EM. A 2'-phosphotransferase implicated in tRNA splicing is essential in Saccharomyces cerevisiae. J Biol Chem 1997; 272:13203-10. [PMID: 9148937 DOI: 10.1074/jbc.272.20.13203] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The last step of tRNA splicing in the yeast Saccharomyces cerevisiae is catalyzed by an NAD-dependent 2'-phosphotransferase, which transfers the splice junction 2'-phosphate from ligated tRNA to NAD to produce ADP-ribose 1"-2" cyclic phosphate. We have purified the phosphotransferase about 28,000-fold from yeast extracts and cloned its structural gene by reverse genetics. Expression of this gene (TPT1) in yeast or in Escherichia coli results in overproduction of 2'-phosphotransferase activity in extracts. Tpt1 protein is essential for vegetative growth in yeast, as demonstrated by gene disruption experiments. No obvious binding motifs are found within the protein. Several candidate homologs in other organisms are identified by searches of the data base, the strongest of which is in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- G M Culver
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- D C Yang
- Department of Chemistry, Georgetown University, Washington DC 20057, USA
| |
Collapse
|
20
|
Kisselev LL, Wolfson AD. Aminoacyl-tRNA synthetases from higher eukaryotes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1994; 48:83-142. [PMID: 7938555 DOI: 10.1016/s0079-6603(08)60854-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- L L Kisselev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow
| | | |
Collapse
|