1
|
Sulaj Z, Kuqo A, Vyshka G. The developmental perspective of the chronic alcoholism: Who’s holding the burden of proof? JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2015; 9:79-85. [DOI: 10.1016/j.jmhi.2015.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
2
|
Kumada T, Komuro Y, Li Y, Hu T, Wang Z, Littner Y, Komuro H. Inhibition of cerebellar granule cell turning by alcohol. Neuroscience 2010; 170:1328-44. [PMID: 20691765 PMCID: PMC2949482 DOI: 10.1016/j.neuroscience.2010.07.059] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2010] [Revised: 06/30/2010] [Accepted: 07/29/2010] [Indexed: 01/24/2023]
Abstract
Ectopic neurons are often found in the brains of fetal alcohol spectrum disorders (FASD) and fetal alcohol syndrome (FAS) patients, suggesting that alcohol exposure impairs neuronal cell migration. Although it has been reported that alcohol decreases the speed of neuronal cell migration, little is known about whether alcohol also affects the turning of neurons. Here we show that ethanol exposure inhibits the turning of cerebellar granule cells in vivo and in vitro. First, in vivo studies using P10 mice demonstrated that a single intraperitoneal injection of ethanol not only reduces the number of turning granule cells but also alters the mode of turning at the EGL-ML border of the cerebellum. Second, in vitro analysis using microexplant cultures of P0-P3 mouse cerebella revealed that ethanol directly reduces the frequency of spontaneous granule cell turning in a dose-dependent manner. Third, the action of ethanol on the frequency of granule cell turning was significantly ameliorated by stimulating Ca(2+) and cGMP signaling or by inhibiting cAMP signaling. Taken together, these results indicate that ethanol affects the frequency and mode of cerebellar granule cell turning through alteration of the Ca(2+) and cyclic nucleotide signaling pathways, suggesting that the abnormal allocation of neurons found in the brains of FASD and FSA patients results, at least in part, from impaired turning of immature neurons by alcohol.
Collapse
Affiliation(s)
- T Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Jiang Y, Kumada T, Cameron DB, Komuro H. Cerebellar granule cell migration and the effects of alcohol. Dev Neurosci 2008; 30:7-23. [PMID: 18075250 DOI: 10.1159/000109847] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/04/2007] [Indexed: 01/30/2023] Open
Abstract
In the developing brain the majority of neurons migrate from their birthplace to their final destination. This active movement is essential for the formation of cortical layers and nuclei. The impairment of migration does not affect the viability of neurons but often results in abnormal differentiation. The proper migration of neurons requires the orchestrated activities of multiple cellular and molecular events, such as pathway selection, the activation of specific receptors and channels, and the assembly and disassembly of cytoskeletal components. The migration of neurons is very vulnerable to exposure to environmental toxins, such as alcohol. In this article, we will focus on recent developments in the migration of cerebellar granule cells. First, we will describe when, where and how granule cells migrate through different cortical layers to reach their final destination. Second, we will present how internal programs control the sequential changes in granule cell migration. Third, we will review the roles of external guidance cues and transmembrane signals in granule cell migration. Finally, we will reveal mechanisms by which alcohol exposure impairs granule cell migration.
Collapse
Affiliation(s)
- Yulan Jiang
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | |
Collapse
|
4
|
Kumada T, Lakshmana MK, Komuro H. Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings. J Neurosci 2006; 26:742-56. [PMID: 16421294 PMCID: PMC6675380 DOI: 10.1523/jneurosci.4478-05.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brains of fetal alcohol syndrome patients exhibit impaired neuronal migration, but little is known about the mechanisms underlying this abnormality. Here we show that Ca2+ signaling and cyclic nucleotide signaling are the central targets of alcohol action in neuronal cell migration. Acute administration of ethanol reduced the frequency of transient Ca2+ elevations in migrating neurons and cGMP levels and increased cAMP levels. Experimental manipulations of these second-messenger pathways, through stimulating Ca2+ and cGMP signaling or inhibiting cAMP signaling, completely reversed the action of ethanol on neuronal migration in vitro as well as in vivo. Each second messenger has multiple but distinct downstream targets, including Ca2+/calmodulin-dependent protein kinase II, calcineurin, protein phosphatase 1, Rho GTPase, mitogen-activated protein kinase, and phosphoinositide 3-kinase. These results demonstrate that the aberrant migration of immature neurons in the fetal brain caused by maternal alcohol consumption may be corrected by controlling the activity of these second-messenger pathways.
Collapse
Affiliation(s)
- Tatsuro Kumada
- Department of Neurosciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
5
|
Mihalick SM, Crandall JE, Langlois JC, Krienke JD, Dube WV. Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats. Neurotoxicol Teratol 2001; 23:453-62. [PMID: 11711248 DOI: 10.1016/s0892-0362(01)00168-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prenatal ethanol exposure may cause neurological damage and subsequent mental retardation in humans, with learning deficits similar to those following damage to the prefrontal cortex. This study examined cognitive dysfunction and cortical damage after prenatal exposure to ethanol using a chronic administration model. Pregnant Sprague-Dawley rats received one of three diets during gestation: a liquid diet containing 35% ethanol-derived calories (ETOH), an isocaloric liquid diet (ISO), or standard chow (CHOW). Subjects were obtained from ETOH dams with blood alcohol concentrations (BACs) above 90 mg/dl and corresponding ISO and CHOW controls (one male pup/litter; n=6 pups/group). At approximately 90 days of age, subjects began training on a series of unique auditory discrimination problems using a successive go/no-go procedure. A criterion of 85% accuracy determined when a rat continued to the next problem. Subjects completed a varying number of problems within a 30-session limit, after which all rats were tested on a tone/click discrimination and reversal. Subjects were then sacrificed and neuronal number in the medial prefrontal cortex (mPFC) was estimated by the optical fractionator method. Prenatal ethanol exposure induced significant cell loss in the mPFC, which was associated with significantly impaired reversal learning. Poor performance by ETOH subjects on the tone/click reversal indicates a transfer of training deficit that may reflect failures of inhibitory control.
Collapse
Affiliation(s)
- S M Mihalick
- Psychological Sciences Division, University of Massachusetts Medical School-Shriver Center, 200 Trapelo Road, Waltham, MA 02452-6319, USA.
| | | | | | | | | |
Collapse
|
6
|
Abstract
The purpose of this study was to determine whether the observed swelling of smooth endoplasmic reticulum (SER) profiles in Purkinje dendrites in our old ethanol-fed F344 rats: (1) represented measurable dilatation, (2) was present in dendritic shafts and spines, and (3) was reversed following recovery from ethanol. Of the 45 rats in 3 treatment groups (chow-fed, pair-fed, and ethanol-fed), 30 rats were euthanized after 40 weeks, and 15 were maintained on rat chow for an additional 20-week recovery period. Electron microscopy of cerebellar preparations was used to analyze morphological alterations in SER profile size within the dendritic shafts and spines of Purkinje neurons. Results showed significant SER dilatation following 40 weeks of ethanol consumption, which disappeared after ethanol withdrawal.
Collapse
Affiliation(s)
- C A Dlugos
- Department of Anatomy and Cell Biology, School of Medicine and Biomedical Sciences, State University of New York at Buffialo, 14214-3000, USA.
| | | |
Collapse
|
7
|
Effect of enriched environment rearing on impairments in cortical excitability and plasticity after prenatal alcohol exposure. J Neurosci 2000. [PMID: 10594080 DOI: 10.1523/jneurosci.19-24-10993.1999] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The daily ingestion of alcohol by pregnant mammals exposes the fetal brain to varying levels of alcohol through the placental circulation. Here we focus on the lingering impact on cortical function of 6.5% alcohol administered in a liquid diet to pregnant rats throughout gestation, followed by 3 alcohol-free months before brain function was analyzed in the offspring. Both spontaneous activity of the neurons in the barrel cortex and the level of response to test stimuli applied to the whiskers remained reduced by >75% after alcohol exposure. Whisker pairing, a type of cortical plasticity induced by trimming all but two whiskers in adult rats, occurred in <1 d in controls, but required 14 d to reach significance after alcohol exposure. These long-term neuronal deficits are present in all layers of cortex and affect neurons with both fast and slow action potentials. Plasticity is first seen in the total sample of neurons at 14 d; however, by 7 d, neurons in layer II/III already show plasticity, with no change in layer IV neurons, and a reverse shift occurs toward the inactive whisker in layer V neurons. Analysis of NMDA receptor subunits shows a persistent, approximately 30-50% reduction of NR1, NR2A, and NR2B subunits at postnatal day 90 in the barrel field cortex. Exposing the prenatal alcohol-exposed rats to enriched rearing conditions significantly improves all measured cortical functions but does not restore normal values. The results predict that combinations of interventions will be necessary to completely restore cortical function after exposure of the fetal brain to alcohol.
Collapse
|
8
|
Clamp PA, Lindsley TA. Early Events in the Development of Neuronal Polarity In Vitro Are Altered by Ethanol. Alcohol Clin Exp Res 1998. [DOI: 10.1111/j.1530-0277.1998.tb03909.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Klintsova AY, Cowell RM, Swain RA, Napper RM, Goodlett CR, Greenough WT. Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats . I. Behavioral results. Brain Res 1998; 800:48-61. [PMID: 9685583 DOI: 10.1016/s0006-8993(98)00495-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of complex motor task learning on subsequent motor performance of adult rats exposed to alcohol on postnatal days 4 through 9 were studied. Male and female Long-Evans rats were assigned to one of three treatments: (1) alcohol exposure (AE) via artificial rearing to 4.5.g kg-1 day-1 of ethanol in a binge-like manner (two consecutive feedings), (2) gastrostomy control (GC) fed isocaloric milk formula via artificial rearing, and (3) suckling control (SC), where pups remained with lactating dams. After completion of the treatments, the pups were fostered back to lactating dams, and after weaning they were raised in standard cages (two-three animals per cage) until they were 6 months old. Rats from each of the postnatal treatments then spent 20 days in one of three conditions: (1) inactive condition (IC), (2) motor control condition (MC) (running on a flat oval track), or (3) rehabilitation condition (RC) (learning to traverse a set of 10 elevated obstacles). After that all the animals were tested on three tasks, sensitive to balance and coordination deficits (parallel bars, rope climbing and traversing a rotating rod). On parallel bars, both male and female rats demonstrated the same pattern of outcomes: AE-IC rats made significantly more mistakes (slips and falls) than IC rats from both control groups. After 20 days of training in the RC condition, there were no differences between AE and both SC and GC animals in their ability to perform on the parallel bars test. On rope climbing, female animals showed a similar pattern of abilities: AE-IC rats were the worst group; exercising did not significantly improve the AE rats' ability to climb, whereas the RC groups (SC, GC and AE) all performed near asymptote and there were no significant differences among three neonatal treatment groups. There was a substantial effect of the male rats' heavier body weight on climbing ability, and this may have prevented the deficits in AE rats behavior from being detected. Nevertheless, male animals from all three postnatal treatments (SC, GC and AE) were significantly better on this task after RC. Female and male rats from all three postnatal groups demonstrated significantly better performance on the rotarod task after 20 days of 'rehabilitation'. These results suggest that complex motor skill learning improves some of the motor performance deficits produced by postnatal exposure to alcohol and can potentially serve as a model for rehabilitative intervention.
Collapse
Affiliation(s)
- A Y Klintsova
- Beckman Institute, University of Illinois, Urbana-Champaign, 405 N. Mathews Ave., Urbana IL 61801, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Gruol DL, Ryabinin AE, Parsons KL, Cole M, Wilson MC, Qiu Z. Neonatal alcohol exposure reduces NMDA induced Ca2+ signaling in developing cerebellar granule neurons. Brain Res 1998; 793:12-20. [PMID: 9630481 DOI: 10.1016/s0006-8993(98)00014-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glutamatergic neurotransmission through NMDA receptors is critical for both neurogenesis and mature function of the central nervous system (CNS), and is thought to be one target for developmentally-induced damage by alcohol to brain function. In the current study we examined Ca2+ signaling linked to NMDA receptor activation as a potential site for alcohol's detrimental effects on the developing nervous system. We compared Ca2+ signals to NMDA in granule neurons cultured from cerebella of rat neonates exposed to alcohol (ethanol) during development with responses to NMDA recorded in separated control groups. Alcohol exposure was by the vapor chamber method on postnatal days 4-7. An intermittent exposure paradigm was used where the pups were exposed to alcohol vapor for 2. 5 h/day to produce peak BALs of approximately 320 mg%. Control pups were placed in an alcohol-free chamber for a similar time period or remained with their mother. After culture under alcohol-free conditions for up to 9 days, Ca2+ signaling in response to NMDA was measured using fura-2 Ca2+ imaging. Results show that the peak amplitude of the Ca2+ signal to NMDA was significantly smaller in cultured granule neurons obtained from alcohol-treated pups compared to granule neurons from control pups. In contrast, the Ca2+ signal to K+ depolarization was not depressed by the alcohol treatment. Resting Ca2+ levels were also altered by the alcohol treatment. These results show that intermittent alcohol exposure during development in vivo can induce long-term changes in CNS neurons that affect the Ca2+ signaling pathway linked to NMDA receptors and resting Ca2+ levels. Such changes could play an important role in the CNS dysfunction associated with alcohol exposure during CNS development.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology and Alcohol Research Center, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Srivastava N, Bäckman C. Effects of ethanol on development of locus coeruleus brain stem transplants in oculo. Exp Neurol 1998; 149:139-50. [PMID: 9454623 DOI: 10.1006/exnr.1997.6671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this investigation, we studied the effects of ethanol (EtOH) on the development of noradrenergic (NE) neurons of the locus coeruleus. Fetal brainstem tissue from embryonic days 15-17 was grafted into the anterior chamber of the eye of adult rats. Two different experimental groups were exposed to 16% EtOH in the drinking water during different developmental windows. The first group received EtOH 24 h after transplantation and during the whole experimental period of 7 weeks (continuous EtOH), and the second group only during the last 5 weeks of the experimental period (delayed EtOH). The control group received water ad libitum. After 7 weeks, all the animals were sacrificed and morphological evaluations were performed. Immunohistochemical analysis showed that axon bundle formation and NE fiber outgrowth into the host iris was significantly reduced in the continuous EtOH-treated group compared to controls. We also studied the morphology of TH-positive neurons and processes in the intraocular transplants. A significant decrease in TH-positive staining intensity was observed in the continuous EtOH-treated group compared to controls. Moreover, we found a significant decrease in cell size and neuronal survival in both EtOH-treated groups compared to controls. The present results suggest that chronic EtOH exposure during development leads to an altered axonal outgrowth and decreased cell sizes and number of NE neurons in intraocular brain stem grafts. Furthermore, we found that NE neurons are more sensitive to EtOH exposure during the last prenatal days and the first postnatal week of development, compared to a later developmental period.
Collapse
Affiliation(s)
- N Srivastava
- Department of Basic Science, University of Colorado Health Science Center, Denver 80262, USA
| | | |
Collapse
|
12
|
Lee YH, Spuhler-Phillips K, Randall PK, Leslle SW. Effects of prenatal ethanol exposure on voltage-dependent calcium entry into neonatal whole brain-dissociated neurons. Alcohol Clin Exp Res 1996; 20:921-8. [PMID: 8865969 DOI: 10.1111/j.1530-0277.1996.tb05272.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of prenatal ethanol exposure on voltage-dependent calcium entry into neonatal-dissociated neurons was studied. Dissociated whole brain cells were isolated from neonates of prenatally ethanol-treated (ET), pair-fed (PF) control, and ad libitum (AL) control groups and loaded with fura-2. Prenatal ethanol exposure resulted in a significant reduction of calcium entry into K(+)-depolarized cells, compared with AL and PF control treatments. Initially, in dissociated cells from AL control animals, it was found that nifedipine (1 microM), omega-agatoxin (100 nM), and omega-conotoxin (500 nM), to a much lesser extent, significantly inhibited the 45 mM KCl-stimulated calcium entry. To determine the inhibitory action of prenatal ethanol exposure on N-, P-, and L-type voltage-dependent calcium channels, treatment of neonatal-dissociated neurons with different combinations of omega-conotoxin, omega-agatoxin, and nifedipine, respectively, was compared in the prenatal ethanol and control treatment groups. The inhibition of K(+)-stimulated increase in calcium entry by prenatal ethanol exposure was significantly less in the presence or absence of single antagonist conditions (ET < AL and PF). There was no apparent interaction of ethanol exposure and antagonist condition. However, the reduced calcium entry after prenatal ethanol exposure was superseded by the stronger inhibition in dual and triple antagonist conditions. The magnitude of the calcium response inhibition by the antagonist combinations was similar among the ET, PF, and AL groups. Thus, these results suggest that prenatal ethanol exposure decreases voltage-dependent calcium entry into neonatal-dissociated neurons in a manner that does not seem to involve the selective inhibition of any individual N-, P-, or L-type calcium channel.
Collapse
Affiliation(s)
- Y H Lee
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin 78712-1074, USA
| | | | | | | |
Collapse
|
13
|
Gruol DL, Parsons KL. Chronic alcohol reduces calcium signaling elicited by glutamate receptor stimulation in developing cerebellar neurons. Brain Res 1996; 728:166-74. [PMID: 8864478 DOI: 10.1016/0006-8993(96)00185-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of chronic alcohol (33 mM ethanol) on Ca2+ signals elicited by glutamate receptor agonists (quisqualate and NMDA) was examined in developing cerebellar Purkinje and granule neurons in culture. The neurons were exposed to alcohol during the second week in culture, the main period of morphological and physiological development. The Ca2+ signals were measured with fura-2 based microscopic video imaging. Chronic exposure to alcohol during development significantly reduced the peak amplitude of the Ca2+ signals to quisqualate (1 microM; Quis) in both the somatic and dendritic regions of the Purkinje neurons. The dendritic region was affected to a greater extent than the somatic region. Granule neurons also showed a reduced somatic Ca2+ signal to Quis (dendrites not measured) in the alcohol-treated cultures, indicating that the effect was not limited to Purkinje neurons. In addition to the effects on in the response to Quis, the peak amplitude of the Ca2+ signals to NMDA (100 microM) was reduced by chronic alcohol exposure during development in both the cultured Purkinje and granule neurons. Resting Ca2+ levels were not consistently affected by alcohol treatment in either neuronal type. These results indicate that Ca2+ signaling linked to glutamate receptor activation is an important target of alcohol in the developing nervous system and could be a contributing factor in the altered CNS function and development observed in animal models of fetal alcohol syndrome.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
14
|
Macchi G, Bentivoglio M, Minciacchi D, Molinari M. Trends in the anatomical organization and functional significance of the mammalian thalamus. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1996; 17:105-29. [PMID: 8797065 DOI: 10.1007/bf02000842] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The last decade has witnessed major changes in the experimental approach to the study of the thalamus and to the analysis of the anatomical and functional interrelations between thalamic nuclei and cortical areas. The present review focuses on the novel anatomical approaches to thalamo-cortical connections and thalamic functions in the historical framework of the classical studies on the thalamus. In the light of the most recent data it is here discussed that: a) the thalamus can subserve different functions according to functional changes in the cortical and subcortical afferent systems; b) the multifarious thalamic cellular entities play a crucial role in the different functional states.
Collapse
Affiliation(s)
- G Macchi
- Istituto di Neurologia, Università Cattolica, Roma, Italy
| | | | | | | |
Collapse
|
15
|
Sousa N, Madeira MD, Ruela C, Paula-Barbosa MM. Structural reorganization in the supraoptic nucleus of withdrawn rats following long-term alcohol consumption. Alcohol Clin Exp Res 1995; 19:879-85. [PMID: 7485834 DOI: 10.1111/j.1530-0277.1995.tb00962.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have recently shown in the supraoptic nucleus (SON) of the rat that prolonged ethanol consumption induces cell degeneration and enlargement of the surviving neurons and of their subcellular organelles. We analyzed the SON of withdrawn rats to evaluate whether it displays any evidence of morphological reorganization following abstinence from ethanol, inasmuch as in this condition the ethanol-induced changes in the plasma levels of neurohormones and plasma osmolality are no longer detectable. A group of 18-month-old withdrawn rats was compared with age-matched, pair-fed control and ethanol-treated rats. To differentiate between the effects of withdrawal and the effects of rehydration, a group of 18-month-old rehydrated rats was also included in this study and compared with age-matched, pair-fed control and dehydrated rats. We estimated the volume of SON, and the total number and mean volume of its neurons. The cross-sectional areas of the vasopressinergic and oxytocinergic populations were also evaluated. At the ultrastructural level, we determined the volumes and surface areas of the rough endoplasmic reticulum and Golgi apparatus, and the volumes of neurosecretory granules and nucleoli. In withdrawn animals, the total number of SON neurons was smaller than in controls, although the neuronal volume was greater. The number of SON neurons did not differ between withdrawn and ethanol-treated rats, despite the reduced volume of SON in the former animals. The decrease of SON volume correlated with and was caused by a reduction in the volume of SON neurons and in the size of the organelles involved in neuro-hormone synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Sousa
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | |
Collapse
|
16
|
Gruol DL, Curry JG. Calcium signals elicited by quisqualate in cultured Purkinje neurons show developmental changes in sensitivity to acute alcohol. Brain Res 1995; 673:1-12. [PMID: 7757461 DOI: 10.1016/0006-8993(94)01324-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of acute alcohol (33 mM ethanol) on calcium signaling evoked by glutamate receptor activation was studied in cultured cerebellar Purkinje and granule neurons at different stages of development. Calcium signals were measured by microscopic imaging using the calcium sensitive dye fura-2. At an early stage in development (10 days in vitro), acute alcohol enhanced the calcium signals evoked in Purkinje neurons by exogenous application of quisqualate, an agonist at ionotropic and metabotropic glutamate receptors. In contrast, in mature cultured Purkinje neurons (21-24 days in vitro) the calcium signals produced by quisqualate were reduced by alcohol. At an intermediate stage of development (14 days in vitro) reflecting the main period of morphological and physiological maturation, alcohol had no significant effect on the response to quisqualate. Alcohol's actions were significantly altered by manipulation of the intracellular stores with caffeine, implicating intracellular stores in alcohol's actions. Calcium signals produced by quisqualate in the cultured granule neurons were also altered by acute alcohol, in a manner similar to that observed in the Purkinje neurons. These data demonstrate that calcium signaling pathways are a site of alcohol action in developing CNS neurons and that the cellular consequences of alcohol exposure can change with development. Such actions of alcohol could have significant effects on the immature nervous system, where the precise timing of appropriate signaling levels are important aspects of the maturation process.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
17
|
Granato A, Santarelli M, Sbriccoli A, Minciacchi D. Multifaceted alterations of the thalamo-cortico-thalamic loop in adult rats prenatally exposed to ethanol. ANATOMY AND EMBRYOLOGY 1995; 191:11-23. [PMID: 7717529 DOI: 10.1007/bf00215293] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The thalamo-cortico-thalamic loop was investigated in adult rats exposed to ethanol during the last week of fetal life. Animals underwent either cortical or thalamic injections of lectin-conjugated horseradish peroxidase. Results demonstrate that prenatal exposure to ethanol causes permanent changes in the thalamocortical circuits. Alterations of thalamo-cortical and cortico-thalamic projections are concentrated at the level of axon terminal fields. The most severe thalamic damage is observed in the anterior intralaminar and midline nuclei; crossed cortico-thalamic projections also appear to be severely impaired. In the cortex, the damage to thalamic terminals displays a medio-lateral gradient of increasing severity through sensori-motor areas, with the lateral fields more impaired. Cells of origin of thalamo-cortical and cortico-thalamic projections are less affected by prenatal ethanol exposure: in the thalamus and layer 5 of sensori-motor cortex labeled cells exhibit normal values of areal numeric density. Conversely, cortico-thalamic neurons of layer 6, especially in the lateral agranular sensori-motor field, display smaller values of areal density than those of normal animals. Possible mechanisms underlying the establishment of these abnormalities are discussed.
Collapse
Affiliation(s)
- A Granato
- Institute of Anatomy, Catholic University, Rome, Italy
| | | | | | | |
Collapse
|
18
|
Ruela C, Sousa N, Madeira MD, Paula-Barbosa MM. Stereological study of the ultrastructural changes induced by chronic alcohol consumption and dehydration in the supraoptic nucleus of the rat hypothalamus. JOURNAL OF NEUROCYTOLOGY 1994; 23:410-21. [PMID: 7964910 DOI: 10.1007/bf01207113] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have previously shown that prolonged alcohol ingestion leads to neuronal loss in the supraoptic nucleus of the rat and that the surviving neurons, mainly the vasopressinergic ones, display marked increase in volume. In an attempt to establish correlates for the volumetric alterations we have studied the organelles of supraoptic nucleus neurons in three groups of rats--ethanol-fed, pair-fed, and dehydrated, in all cases treated from 2 to 12 months of age. The volume and surface area of the rough endoplasmic reticulum and Golgi apparatus, and the volume of nucleoli and neurosecretory granules were estimated on the basis of the respective volume and surface densities. The volumes and surface areas of all quantified organelles were increased in both alcohol-fed and dehydrated animals, although the increases were greater in the former group. Changes in the organelles studied are commonly regarded as reliable indicators of the neurosecretory activity of magnocellular neurons. Thus, our results suggest that under conditions of chronic alcohol exposure, the synthesizing activity of the surviving supra-optic neurons is augmented to compensate for the alcohol-induced neuronal loss and/or as a consequence of the alcohol-induced hyperosmolality. Changes in the transport and release of the neurosecretory material cannot, however, be ruled out as an additional cause of neuronal enlargement.
Collapse
Affiliation(s)
- C Ruela
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | |
Collapse
|
19
|
Madeira MD, Sousa N, Lieberman AR, Paula-Barbosa MM. Effects of chronic alcohol consumption and of dehydration on the supraoptic nucleus of adult male and female rats. Neuroscience 1993; 56:657-72. [PMID: 8255426 DOI: 10.1016/0306-4522(93)90363-k] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ethanol ingestion affects the hypothalamo-neurohypophysial system resulting in increased diuresis, dehydration and hyperosmolality. We studied the supraoptic nucleus, of the hypothalamus, in ethanol-treated rats, to determine if ethanol alone and/or the associated disturbances of water metabolism lead to structural alterations in a nucleus known to play a central role in fluid homeostasis. Groups of male and female rats were ethanol-treated until 12 and 18 months of age and compared with age-matched pair-fed controls. Twelve and 18-month-old control groups and 12-month-old water control groups (rats submitted to chronic dehydration) were also included in this study in an attempt to differentiate between the effects of undernutrition and dehydration/hyperosmolality, and the specific neurotoxic effects of ethanol. We estimated the volume of the supraoptic nucleus and the numerical density of its neurons and calculated the total number of supraoptic neurons. The volume of both supraoptic neurons and neuropil were also estimated. In immunostained material the ratio of vasopressin to oxytocin neurons and the cross-sectional areas of the two neuronal types were evaluated. There was marked neuronal loss in alcohol-treated rats, but the volume of the supraoptic nucleus was increased. The increase in the volume of the supraoptic nucleus correlated with and was due to increases in the volume was particularly marked for vasopressin neurons. No significant differences were found between controls and pair-fed controls in any of the parameters investigated. In water control rats, the volume of the supraoptic nucleus and of the supraoptic neurons and neuropil was also greater than in pair-fed controls. However, the variations found were not as marked as in ethanol-treated rats and there was no cell loss. These findings reveal, for the first time, that chronic ethanol consumption affects the morphology of supraoptic neurons and neuropil and, consequently, the structure of the entire supraoptic nucleus. Moreover, this study supports the view that ethanol has direct neurotoxic effects on supraoptic neurons because the alterations that occur are not mimicked in animals in which water metabolism alone is disturbed.
Collapse
Affiliation(s)
- M D Madeira
- Department of Anatomy, Porto Medical School, Portugal
| | | | | | | |
Collapse
|
20
|
Abstract
Maternal alcohol abuse during pregnancy can lead to abnormalities in fetal development, including the fetal alcohol syndrome (FAS). Although intrauterine growth retardation is a hallmark of FAS, the pathophysiology is not fully understood. A contributing factor may be altered placental function, which could affect fetal growth and development. As a major endocrine organ during pregnancy, changes in the production of placental hormones could affect pregnancy and possibly fetal development. In this study, the effect of continued exposure to ethanol on placental hormone production was examined using cultured human placental trophoblasts. Ethanol exposure involved diffusion of ethanol from the atmosphere into the culture medium. This was refreshed daily, leading to daily peak concentrations of 280 to 300 mg/dl (60-65 mM) at 16 to 24 hr. This ethanol exposure for 2 or 4 days significantly increased the production of human chorionic gonadotropin and progesterone by the cultured trophoblasts. However, ethanol treatment had no effect on human placental lactogen production. Acute stimulation (10 min) of cultured trophoblasts with adenosine (50 microM) normally results in increased production of cyclic adenosine 3',5'-monophosphate (cAMP). With ethanol exposure, adenosine-stimulated cAMP production was significantly elevated relative to that in controls. However, the effect of ethanol on adenosine-stimulated cAMP did not appear to be secondary to chronic alterations in adenosine in the culture medium. Measurement of adenosine in the culture medium revealed no difference in concentration or production between control and ethanol treated groups.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- P I Karl
- Department of Pediatrics, North Shore University Hospital-Cornell University Medical College, Manhasset, New York 11030
| | | |
Collapse
|
21
|
Backman C, Granholm AC. Effects of ethanol on development of dorsal raphe transplants in oculo: a morphological and electrophysiological study. J Comp Neurol 1992; 320:136-44. [PMID: 1401240 DOI: 10.1002/cne.903200110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this project was to investigate ethanol influence on the development of serotonin-containing (5-HT) neurons of the dorsal raphe nucleus in rat. Fetal tissue of embryonic day 17 from the dorsal brainstem was grafted to the anterior chamber of the eye of adult albino rats. The experimental group was exposed to 16% ethanol in the drinking water, and the control group received water ad libitum. After 4 weeks, morphological and electrophysiological evaluations were performed. Immunohistochemical analysis showed that 5-HT-immunoreactive fibers from ethanol-treated transplants had a disturbed outgrowth pattern into the host iris as compared to the control group. Furthermore, the outgrowth area and axon bundle formation was significantly greater in the control group than in the ethanol group. Electrophysiological recordings revealed a dose-dependent biphasic effect of locally applied ethanol on transplanted monoaminergic neurons. Low doses of ethanol (0.5-3 mM) induced an increase in basal firing rate of control neurons, while higher doses (10-100 mM) caused inhibition. However, monoaminergic neurons in the ethanol group showed a decreased neuronal sensitivity to locally applied ethanol. The same dose of locally applied ethanol which produced an excitation of neuronal activity in the ethanol transplants produced an inhibition in the control grafts. The dose-response curve was shifted to the right. The present results suggest that chronic ethanol exposure during early development leads to altered axonal outgrowth from brainstem 5-HT neurons, as well as decreased sensitivity of these neurons to locally applied ethanol.
Collapse
Affiliation(s)
- C Backman
- Department of Basic Science, University of Colorado School of Dentistry, Denver 80262
| | | |
Collapse
|
22
|
Abstract
The effect of chronic ethanol exposure on inhibition in the rat hippocampal slice was investigated using paired-pulse stimulation techniques with stimulation in stratum radiatum or stratum oriens of CA1. Experimental animals were fed ethanol in a liquid diet for 20 weeks and were withdrawn for at least 8 weeks prior to electrophysiological recording. Prior ethanol treatment had no effect on basic input-output relationships for the extracellular population spike. Ethanol treatment significantly reduced the recurrent inhibition produced by antidromic stimulation in a manner dependent upon stimulus intensity. In addition, with orthodromic paired-pulse stimulation of either stratum radiatum or oriens, a trend toward an augmentation of the facilitation of population spike amplitude was observed, suggesting that feedforward inhibition may also be reduced. These results are similar to those found with treatments that reduce inhibition. Therefore, we conclude that chronic ethanol exposure produces an enduring disruption of inhibitory neuronal function in the rat hippocampus.
Collapse
Affiliation(s)
- C J Rogers
- Department of Neuroscience, University of Florida, College of Medicine, Gainesville 32610
| | | |
Collapse
|
23
|
Scott HC, Paull WK, Rudeen PK. Effects of in utero ethanol exposure on the development of LHRH neurons in the mouse. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 66:119-25. [PMID: 1600625 DOI: 10.1016/0165-3806(92)90147-o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prenatal ethanol exposure has been shown to result in craniofacial malformations as well as alterations of central nervous system morphology and function. Previous studies have demonstrated that acute ethanol exposure on gestational day 7 in the developing C57BL/6J mouse resulted in craniofacial abnormalities similar to that of children with fetal alcohol syndrome. We investigated the effect of ethanol on the migration and number of immunoreactive LHRH (irLHRH) neurons in this strain of mouse. Pregnant mice were intubated with 2 doses of a 25% solution of ethanol 4 h apart on gestational day 7 (G7). Control animals were intubated with water. Animals were sacrificed on G14 or G18 and immunocytochemistry was used to identify irLHRH neurons that were visualized by light microscopy. Fetal ethanol administration did not substantially affect the migration of the LHRH neurons from the medial nasal placode into the forebrain on G14 or G18. The total number of irLHRH neurons was not significantly different on G14 in ethanol-exposed animals as compared to the number in control animals. However, the total number of irLHRH neurons on G18 was significantly less (P less than 0.03) in 4 neuroanatomical regions in fetal ethanol-exposed mice compared to those in control mice; the nasal septum, the traverse area superior to the cribriform plate and ventromedial to the olfactory bulbs, the arch area which included the olfactory tubercle, medial septal nuclei and anterior hypothalamus in G18 fetuses, and preoptic area of the brain. Coronal investigation of the number of irLHRH neurons on G18 indicates that the loss of irLHRH neurons occurred predominantly in the medial region of the rostrum and brain.
Collapse
Affiliation(s)
- H C Scott
- Department of Anatomy and Neurobiology, University of Missouri School of Medicine, Columbia 65212
| | | | | |
Collapse
|
24
|
Austin KB, Beiswanger C, Bronzino JD, Austin-Lafrance RJ, Galler JR, Morgane PJ. Prenatal protein malnutrition alters behavioral state modulation of inhibition and facilitation in the dentate gyrus. Brain Res Bull 1992; 28:245-55. [PMID: 1596745 DOI: 10.1016/0361-9230(92)90186-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We have examined the effects of prenatal protein malnutrition on interneuronally mediated inhibition and facilitation in the dentate gyrus of the rat using the paired-pulse technique. Field potentials were recorded in the dentate gyrus in response to paired stimuli delivered to the perforant path. The paired-pulse index (PPI) was used as a measure of the net short-term facilitation or interneuronally mediated inhibition effective at the time of the paired-pulse test and was computed by dividing the amplitude of the second population spike (p2) by the amplitude of the first population spike (p1). PPIs were classified according to p1 in order to compare PPIs between behavioral states and dietary treatments since population spike amplitudes in the dentate gyrus vary in relation to behavioral state. Testing was performed during 4 behavioral states: slow-wave sleep (SWS), paradoxical sleep (REM), immobile waking (IW) and exploratory locomotion (AW) using interpulse intervals (IPI) from 20 to 400 ms. The magnitude and duration of interneuronally mediated inhibition was significantly increased in prenatal protein malnourished animals when compared with controls. Paired-pulse tests performed using an IPI of 20 ms under the high p1 (p1 greater than median) condition showed significantly smaller PPIs in prenatal protein malnourished rats regardless of behavioral state. For IPIs greater than 20 ms PPIs were consistently smaller in prenatal protein malnourished rats during SWS and IW. These data indicate that both the magnitude and duration of interneuronally mediated inhibition are increased in prenatally malnourished rats. No consistent diet-related differences were found during AW and REM using IPIs greater than 20 ms because interneuronally mediated inhibition was relatively suppressed during these behavioral states for both dietary groups. There was no consistent behavioral state modulation of paired-pulse facilitation (IPI = 40 to 80 ms) or late inhibition (IPI = 400 ms) in either diet group. In addition, a new relation between PPI and IPI was found under the low p1 (p1 greater than median) condition. During AW the PPIs observed using IPIs of 40 and 50 ms were smaller than those observed using IPIs of 30 and 60 ms. This depression interrupts what is generally considered the "facilitatory" phase of paired-pulse response and may indicate an interaction between perforant path stimulation and hippocampal theta rhythm which is masked when p1 amplitude is high.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K B Austin
- Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | | | | | | | | | |
Collapse
|
25
|
Nio E, Kogure K, Yae T, Onodera H. The effects of maternal ethanol exposure on neurotransmission and second messenger systems: a quantitative autoradiographic study in the rat brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1991; 62:51-60. [PMID: 1662122 DOI: 10.1016/0165-3806(91)90189-p] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effects of maternal ethanol exposure on neurotransmission and second messenger systems were examined in rats using histochemistry and in vitro autoradiography. Thirty % ethanol was administered to pregnant rats from gestational day 7 to the day of delivery. Quantitative autoradiography was used to map muscarinic cholinergic, dopamine D2, adenosine A1, and inositol 1,4,5-trisphosphate binding sites, as well as to localize adenylate cyclase and protein kinase C. We found no difference in the patterns of staining with acetylcholinesterase and Timm's stain between control and prenatally ethanol-exposed rats on postnatal day (PN) 30. In the ethanol-exposed rats, [3H]forskolin binding sites were increased during early development in the CA1 subfield of the hippocampus and the occipital cortex; [3H]phorbol ester binding sites were increased in the cortex, striatum, and hippocampus; hippocampal muscarinic cholinergic sites were increased on PN4 and 30; adenosine A1 binding was reduced on PN10 in most regions examined, but was increased in the CA1 subfield on PN30; dopamine D2 receptor levels were significantly reduced on PN30 in the striatum; and IP3 receptors were decreased in most regions studied, but particularly in the cerebellum. Thus, some of these changes were transient and others were long-lasting. Although histopathological abnormalities were minimal, the alterations of binding sites in the cerebellum (the coordination center) and in the hippocampus (related to memory and learning) that were detected may contribute to the behavioral and mental deterioration seen in the fetal alcohol syndrome.
Collapse
Affiliation(s)
- E Nio
- Department of Neurology, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | |
Collapse
|
26
|
Gruol DL. Chronic exposure to alcohol during development alters the membrane properties of cerebellar Purkinje neurons in culture. Brain Res 1991; 558:1-12. [PMID: 1933370 DOI: 10.1016/0006-8993(91)90707-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The active and passive membrane properties of developing Purkinje neurons in control cultures and cultures chronically treated with 20 or 40 mM ethanol for 1 or 2 weeks were examined using whole-cell current-clamp techniques. The membrane properties were characterized by the features of the voltage responses evoked by intracellular current injection of a series of depolarizing and hyperpolarizing current pulses. Analysis of these responses and background spontaneous activity showed several differences between the control and ethanol-treated Purkinje neurons: (1) membrane input resistance was significantly larger in the ethanol-treated neurons; (2) the percentage of neurons exhibiting immature firing patterns was significantly higher in the ethanol-treated neurons; (3) the afterhyperpolarization following a current-evoked train of action potentials was significantly larger in the ethanol-treated neurons; (4) spontaneous activity (synaptic potentials and synaptically evoked spike events) was significantly reduced in neurons treated with 40 mM ethanol for 1 week; spontaneous activity in neurons treated with 20 mM ethanol for 1 or 2 weeks was similar to that observed in the control group. These differences indicate that ethanol exposure during development directly alters the physiological properties of this CNS neuronal type. These neuronal actions of ethanol may contribute to the behavioral deficits observed in animals models of fetal alcohol syndrome. Similar target sites of ethanol action are likely to be present in the human CNS neurons and may be involved in human fetal alcohol syndrome.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, Research Institute of Scripps Clinic, La Jolla, CA 92037
| |
Collapse
|
27
|
Dildy-Mayfield JE, Leslie SW. Mechanism of inhibition of N-methyl-D-aspartate-stimulated increases in free intracellular Ca2+ concentration by ethanol. J Neurochem 1991; 56:1536-43. [PMID: 1707437 DOI: 10.1111/j.1471-4159.1991.tb02048.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dissociated brain cells were isolated from newborn rat pups and loaded with fura-2. These cells were sensitive to low N-methyl-D-aspartate (NMDA) concentrations with EC50 values for NMDA-induced intracellular Ca2+ concentration ([Ca2+]i) increases of approximately 7-16 microM measured in the absence of Mg2+. NMDA-stimulated [Ca2+]i increases could be observed in buffer with Mg2+ when the cells were predepolarized with 15 mM KCl prior to NMDA addition. Under these predepolarized conditions, 100 mM ethanol inhibited 25 microM NMDA responses by approximately 50%, which was similar to the ethanol inhibition observed in buffer without added Mg2+. Ethanol did not alter [Ca2+]i prior to NMDA addition. In the absence of Mg2+, 50 and 100 mM ethanol did not significantly alter the EC50 value for NMDA, but did inhibit NMDA-induced increases in [Ca2+]i in a concentration-dependent manner at 4, 16, 64, and 256 microM NMDA. Whereas NMDA-induced increases in [Ca2+]i were dependent on extracellular Ca2+ and were inhibited by Mg2+, the ability of 100 mM ethanol to inhibit 25 microM NMDA responses was independent of the external Ca2+ or Mg2+ concentrations. Glycine (1, 10, and 100 microM) enhanced 25 microM NMDA-induced increases in [Ca2+]i by approximately 50%. Glycine (1-100 microM) prevented the 100 mM ethanol inhibition of NMDA-stimulated [Ca2+]i observed in the absence of exogenous glycine. MK-801 (25-400 nM) inhibited 25 microM NMDA-stimulated rises in [Ca2+]i in a concentration-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J E Dildy-Mayfield
- Division of Pharmacology, College of Pharmacy, University of Texas, Austin 78712
| | | |
Collapse
|
28
|
Quesada A, Prada FA, Espinar A, Génis-Gálvez JM. Effect of ethanol on the morphohistogenesis and differentiation of cerebellar granule cells in the chick embryo. Alcohol 1990; 7:419-28. [PMID: 2222845 DOI: 10.1016/0741-8329(90)90026-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this present study we analyse, with the help of the Golgi method, the effect of ethanol on the morphological differentiation of the cerebellar granule cells in the chick embryo. Ethanol seems to affect the process of cell migration from the early stages of differentiation. Some granule cells appear to differentiate in an inverted position. These observations also confirm, on the basis of their axon morphology, the existence of three types of granule cells in the chick cerebellum.
Collapse
Affiliation(s)
- A Quesada
- Instituto de Biologia del Desarrollo, Facultad de Medicina, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
29
|
Abstract
There is convincing evidence that alcohol is teratogenic both in humans and animals and that its most devastating effects are on the developing brain. However, much information is still needed to determine the circumstances that increase the risk and severity of fetal alcohol-induced brain damage and to identify the mechanisms underlying such damage. Animal research has been used to address these issues because, for the most part, they are unapproachable experimentally in humans. In the past, the rather restricted focus of research into the teratology of alcohol has led to several theoretical biases. Recent findings conflict with these biases. Alcohol-induced damage to the developing brain encompasses a longer developmental time-frame, affects more cell populations, occurs at lower levels of exposure, produces greater numbers of permanent effects, and is modulated by more factors than was initially suggested by earlier teratological studies.
Collapse
Affiliation(s)
- J R West
- Department of Anatomy, College of Medicine, University of Iowa, Iowa City 52242
| | | |
Collapse
|
30
|
al-Rabiai S, Miller MW. Effect of prenatal exposure to ethanol on the ultrastructure of layer V of mature rat somatosensory cortex. JOURNAL OF NEUROCYTOLOGY 1989; 18:711-29. [PMID: 2621473 DOI: 10.1007/bf01187226] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent data have shown that the structure and function of layer V pyramidal neurons, e.g. corticospinal neurons, is altered by prenatal exposure to ethanol. We examined the effect of ethanol on the ultrastructure of layer V in somatosensory cortex. Timed pregnant rats were fed a diet containing 6.7% (v/v) ethanol (E) or pair-fed a nutritionally matched control diet (C). Thirty-day-old offspring of these mothers were prepared by standard electron microscopic techniques. The somata of pyramidal and local circuit neurons and the neuropil were analysed. Prenatal exposure to ethanol induced alterations in the somata of both populations of neurons. The parallel stacking of cisternae characteristic of C-treated rats was disorganized in E-treated rats. Moreover, the Golgi complex and lysosomes occupied a larger fraction of the somata of E-treated rats. The number and frequency of symmetric axosomatic synapses, but not asymmetric axosomatic synapses, formed by both types of neurons were significantly greater in E-treated rats. Gestational exposure to ethanol produced a variety of changes in the neuropil. Dendrites, particularly dendritic shafts, occupied less space in E-treated rats. In contrast, axons accounted for significantly more of the neuropil in E-treated rats than in controls. This increase in axonal space was due to a significantly greater coverage by non-myelinated axons and a significantly smaller coverage by myelinated axons in E-treated rats than in C-treated rats. Although the overall frequency of synapses was similar in both treatment groups, there were significantly more asymmetric synapses in E-treated rats, and most of these were axospinous synapses. These differences may contribute to documented physiological changes such as the lower rate of glucose utilization in layer V of somatosensory cortex of E-treated rats and they may underlie the mental retardation which is characteristic of children with foetal alcohol syndrome.
Collapse
Affiliation(s)
- S al-Rabiai
- Department of Anatomy, School of Osteopathic Medicine, University of Medicine and Dentistry of New Jersey, Piscataway 08854
| | | |
Collapse
|
31
|
Vigliecca NS, Fulginiti S, Minetti SA. Acute ethanol exposure during pregnancy in rats: effects upon a multiple learning task. Alcohol 1989; 6:363-8. [PMID: 2818839 DOI: 10.1016/0741-8329(89)90005-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pregnant rats received 4.8 g/kg of 20% (v/v) ethanol IP or identical volume of saline during gestational Day 8. No signs of gross physical teratogenesis were evident in the offspring as expressed by litter size, weight and external malformations at birth. However, when offspring were subjected to a multiple fixed ratio-4/differential reinforcement of low rate of responding 10-sec ( FR 4/DRL 10 sec) schedule of reinforcement at 60 days of age, significant differences were observed in the performance of DRL 10-sec schedule that required visual discrimination and response inhibition, but not in the FR 4 schedule that required a relatively simple nondiscrimination task of active-response. Bar press rates were unaffected by prenatal treatment since no differences between groups were found in the number of total responses performed on either component of the multiple schedule. Present results are discussed in terms of either response perseveration or a lower aptitude to deal with low rates of responding-discrimination learning tasks on the animals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- N S Vigliecca
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | |
Collapse
|
32
|
Ferrer I, Galofré E, Fábregues I, López-Tejero D. Effects of chronic ethanol consumption beginning at adolescence: increased numbers of dendritic spines on cortical pyramidal cells in the adulthood. Acta Neuropathol 1989; 78:528-32. [PMID: 2816299 DOI: 10.1007/bf00687715] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To increase our understanding of the effects of chronic ethanol consumption beginning at adolescence, 25% ethanol in drinking water (v/v) was administered daily to young rats aged 45-50 days for 5 months. Increased numbers of dendritic spines on the apical dendrite of layer V pyramidal neurons of the somatosensory cortex (U-Mann-Whitney test, P less than 0.01-0.05) were found in almost every 50-micron-long segment over a distance of 500 microns from the cell body in ethanol-treated rats at the age of 195-200 days when compared with age-matched controls. Although the mechanisms leading to this unusual finding are not know, it is suggested that impairment of the naturally occurring elimination of redundant synapses can not be ruled out.
Collapse
Affiliation(s)
- I Ferrer
- Departamento de Anatomía Patológica, Hospital Príncipes de España
| | | | | | | |
Collapse
|