1
|
Mellor C, Perez C, Sale JE. Creation and resolution of non-B-DNA structural impediments during replication. Crit Rev Biochem Mol Biol 2022; 57:412-442. [PMID: 36170051 PMCID: PMC7613824 DOI: 10.1080/10409238.2022.2121803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 08/02/2022] [Accepted: 08/25/2022] [Indexed: 01/27/2023]
Abstract
During replication, folding of the DNA template into non-B-form secondary structures provides one of the most abundant impediments to the smooth progression of the replisome. The core replisome collaborates with multiple accessory factors to ensure timely and accurate duplication of the genome and epigenome. Here, we discuss the forces that drive non-B structure formation and the evidence that secondary structures are a significant and frequent source of replication stress that must be actively countered. Taking advantage of recent advances in the molecular and structural biology of the yeast and human replisomes, we examine how structures form and how they may be sensed and resolved during replication.
Collapse
Affiliation(s)
- Christopher Mellor
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Consuelo Perez
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
2
|
Eswaramoorthy R, Hailekiros H, Kedir F, Endale M. In silico Molecular Docking, DFT Analysis and ADMET Studies of Carbazole Alkaloid and Coumarins from Roots of Clausena anisata: A Potent Inhibitor for Quorum Sensing. Adv Appl Bioinform Chem 2021; 14:13-24. [PMID: 33584098 PMCID: PMC7875078 DOI: 10.2147/aabc.s290912] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/03/2021] [Indexed: 01/04/2023] Open
Abstract
Introduction In modern drug design, in silico methods are largely used to understand drug-receptor interactions and quantum chemical properties. In the present study, a computational de novo design approach was used to confirm mode of binding for antibacterial activity, elucidating quantum chemical properties and ADMET-drug-likeness of carbazole alkaloid (1) and three coumarins (2-4) isolated from roots of Clausena anisata. Methods Docking studies were performed with DNA-Gyrase (6F86) and LasR binding domain (2UV0) employing a flexible ligand docking approach using AutoDock Vina. SwissADME prediction and toxicological predictions were performed by ADMET. The optimized structures and molecular electrostatic potential surface of the isolated compounds were predicted by DFT analysis using B3LYP/6-31G basis levels. Results and Discussion The docking results revealed that compound 3 showed better docking scores against both DNA gyrase B and LasR binding domain compared with ciprofloxacin with potential as an inhibitor of bacterial DNA gyrase and quorum sensing LasR binding domain. The SwissADME prediction results showed that all the isolated compounds (1-4) satisfy Lipinski's rule of five with zero violations. Toxicological prediction results suggested that all compounds and ciprofloxacin are non-hepatotoxic, non-carcinogenic, non-irritant, immunogenic, and non-cytotoxic. The DFT analysis results revealed that compound 3 has large electronegativity (χeV), global softness (σ eV-1), global electrophilicity (ωeV), and mutagenicity value closer to ciprofloxacin (with LD50 value of 480 mg/kg) suggesting better bioactivity and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups. Conclusion Overall, compound 3 may serve as a lead molecule that could be developed into a potent E. coli DNA gyrase B inhibitor and efficient inhibitor for quorum sensing auto-inducer LasR binding domain of Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Rajalakshmanan Eswaramoorthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Hadgu Hailekiros
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Fedlu Kedir
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, 1888, Ethiopia
| |
Collapse
|
3
|
Trapped topoisomerase II initiates formation of de novo duplications via the nonhomologous end-joining pathway in yeast. Proc Natl Acad Sci U S A 2020; 117:26876-26884. [PMID: 33046655 DOI: 10.1073/pnas.2008721117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Topoisomerase II (Top2) is an essential enzyme that resolves catenanes between sister chromatids as well as supercoils associated with the over- or under-winding of duplex DNA. Top2 alters DNA topology by making a double-strand break (DSB) in DNA and passing an intact duplex through the break. Each component monomer of the Top2 homodimer nicks one of the DNA strands and forms a covalent phosphotyrosyl bond with the 5' end. Stabilization of this intermediate by chemotherapeutic drugs such as etoposide leads to persistent and potentially toxic DSBs. We describe the isolation of a yeast top2 mutant (top2-F1025Y,R1128G) the product of which generates a stabilized cleavage intermediate in vitro. In yeast cells, overexpression of the top2-F1025Y,R1128G allele is associated with a mutation signature that is characterized by de novo duplications of DNA sequence that depend on the nonhomologous end-joining pathway of DSB repair. Top2-associated duplications are promoted by the clean removal of the enzyme from DNA ends and are suppressed when the protein is removed as part of an oligonucleotide. TOP2 cells treated with etoposide exhibit the same mutation signature, as do cells that overexpress the wild-type protein. These results have implications for genome evolution and are relevant to the clinical use of chemotherapeutic drugs that target Top2.
Collapse
|
4
|
Abstract
In recent years it has become clear that complex regulatory circuits control the initiation step of DNA replication by directing the assembly of a multicomponent molecular machine (the orisome) that separates DNA strands and loads replicative helicase at oriC, the unique chromosomal origin of replication. This chapter discusses recent efforts to understand the regulated protein-DNA interactions that are responsible for properly timed initiation of chromosome replication. It reviews information about newly identified nucleotide sequence features within Escherichia coli oriC and the new structural and biochemical attributes of the bacterial initiator protein DnaA. It also discusses the coordinated mechanisms that prevent improperly timed DNA replication. Identification of the genes that encoded the initiators came from studies on temperature-sensitive, conditional-lethal mutants of E. coli, in which two DNA replication-defective phenotypes, "immediate stop" mutants and "delayed stop" mutants, were identified. The kinetics of the delayed stop mutants suggested that the defective gene products were required specifically for the initiation step of DNA synthesis, and subsequently, two genes, dnaA and dnaC, were identified. The DnaA protein is the bacterial initiator, and in E. coli, the DnaC protein is required to load replicative helicase. Regulation of DnaA accessibility to oriC, the ordered assembly and disassembly of a multi-DnaA complex at oriC, and the means by which DnaA unwinds oriC remain important questions to be answered and the chapter discusses the current state of knowledge on these topics.
Collapse
|
5
|
Pastor N, Domínguez I, Orta ML, Campanella C, Mateos S, Cortés F. The DNA topoisomerase II catalytic inhibitor merbarone is genotoxic and induces endoreduplication. Mutat Res 2012; 738-739:45-51. [PMID: 22921906 DOI: 10.1016/j.mrfmmm.2012.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/03/2012] [Accepted: 07/19/2012] [Indexed: 06/01/2023]
Abstract
In the last years a number of reports have shown that the so-called topoisomerase II (topo II) catalytic inhibitors are able to induce DNA and chromosome damage, an unexpected result taking into account that they do not stabilize topo II-DNA cleavable complexes, a feature of topo II poisons such as etoposide and amsacrine. Merbarone inhibits the catalytic activity of topo II by blocking DNA cleavage by the enzyme. While it was first reported that merbarone does not induce genotoxic effects in mammalian cells, this has been challenged by reports showing that the topo II inhibitor induces efficiently chromosome and DNA damage, and the question as to a possible behavior as a topo II poison has been put forward. Given these contradictory results, and the as yet incomplete knowledge of the molecular mechanism of action of merbarone, in the present study we have tried to further characterize the mechanism of action of merbarone on cell proliferation, cell cycle, as well as chromosome and DNA damage in cultured CHO cells. Merbarone was cytotoxic as well as genotoxic, inhibited topo II catalytic activity, and induced endoreduplication. We have also shown that merbarone-induced DNA damage depends upon ongoing DNA synthesis. Supporting this, inhibition of DNA synthesis causes reduction of DNA damage and increased cell survival.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, University of Seville, Spain
| | | | | | | | | | | |
Collapse
|
6
|
DNA-Platinum Thin Films for Use in Chemoradiation Therapy Studies. Bioinorg Chem Appl 2011; 2012:923914. [PMID: 21977010 PMCID: PMC3184495 DOI: 10.1155/2012/923914] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/03/2011] [Indexed: 11/17/2022] Open
Abstract
Dry films of platinum chemotherapeutic drugs covalently bound to plasmid DNA (Pt-DNA) represent a useful experimental model to investigate direct effects of radiation on DNA in close proximity to platinum chemotherapeutic agents, a situation of considerable relevance to understand the mechanisms underlying concomitant chemoradiation therapy. In the present paper we determine the optimum conditions for preparation of Pt-DNA films for use in irradiation experiments. Incubation conditions for DNA platination reactions have a substantial effect on the structure of Pt-DNA in the films. The quantity of Pt bound to DNA as a function of incubation time and temperature is measured by inductively coupled plasma mass spectroscopy. Our experiments indicate that chemical instability and damage to DNA in Pt-DNA samples increase when DNA platination occurs at 37°C for 24 hours, the condition which has been extensively used for in vitro studies. Platination of DNA for the formation of Pt-DNA films is optimal at room temperature for reaction times less than 2 hours. By increasing the concentration of Pt compounds relative to DNA and thus accelerating the rate of their mutual binding, it is possible to prepare Pt-DNA samples containing known concentrations of Pt while reducing DNA degradation caused by more lengthy procedures.
Collapse
|
7
|
Predicting sites of ADAR editing in double-stranded RNA. Nat Commun 2011; 2:319. [PMID: 21587236 PMCID: PMC3113232 DOI: 10.1038/ncomms1324] [Citation(s) in RCA: 299] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/19/2011] [Indexed: 11/08/2022] Open
Abstract
ADAR (adenosine deaminase that acts on RNA) editing enzymes target coding and noncoding double-stranded RNA (dsRNA) and are essential for neuronal function. Early studies showed that ADARs preferentially target adenosines with certain 5' and 3' neighbours. Here we use current Sanger sequencing protocols to perform a more accurate and quantitative analysis. We quantified editing sites in an ∼800-bp dsRNA after reaction with human ADAR1 or ADAR2, or their catalytic domains alone. These large data sets revealed that neighbour preferences are mostly dictated by the catalytic domain, but ADAR2's dsRNA-binding motifs contribute to 3' neighbour preferences. For all proteins, the 5' nearest neighbour was most influential, but adjacent bases also affected editing site choice. We developed algorithms to predict editing sites in dsRNA of any sequence, and provide a web-based application. The predictive power of the algorithm on fully base-paired dsRNA, compared with biological substrates containing mismatches, bulges and loops, elucidates structural contributions to editing specificity.
Collapse
|
8
|
Tellez AB, Wang J, Tanner EJ, Spagnolo JF, Kirkegaard K, Bullitt E. Interstitial contacts in an RNA-dependent RNA polymerase lattice. J Mol Biol 2011; 412:737-50. [PMID: 21839092 DOI: 10.1016/j.jmb.2011.07.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 11/16/2022]
Abstract
Catalytic activities can be facilitated by ordered enzymatic arrays that co-localize and orient enzymes and their substrates. The purified RNA-dependent RNA polymerase from poliovirus self-assembles to form two-dimensional lattices, possibly facilitating the assembly of viral RNA replication complexes on the cytoplasmic face of intracellular membranes. Creation of a two-dimensional lattice requires at least two different molecular contacts between polymerase molecules. One set of polymerase contacts, between the "thumb" domain of one polymerase and the back of the "palm" domain of another, has been previously defined. To identify the second interface needed for lattice formation and to test its function in viral RNA synthesis, we used a hybrid approach of electron microscopic and biochemical evaluation of both wild-type and mutant viral polymerases to evaluate computationally generated models of this second interface. A unique solution satisfied all constraints and predicted a two-dimensional structure formed from antiparallel arrays of polymerase fibers that use contacts from the flexible amino-terminal region of the protein. Enzymes that contained mutations in this newly defined interface did not form lattices and altered the structure of wild-type lattices. When reconstructed into virus, mutations that disrupt lattice assembly exhibited growth defects, synthetic lethality or both, supporting the function of the oligomeric lattice in infected cells. Understanding the structure of polymerase lattices within the multimeric RNA-dependent RNA polymerase complex should facilitate antiviral drug design and provide a precedent for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Andres B Tellez
- Department of Biomedical Informatics, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
9
|
Vetcher AA, McEwen AE, Abujarour R, Hanke A, Levene SD. Gel mobilities of linking-number topoisomers and their dependence on DNA helical repeat and elasticity. Biophys Chem 2010; 148:104-11. [PMID: 20346570 PMCID: PMC2867096 DOI: 10.1016/j.bpc.2010.02.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/15/2022]
Abstract
Agarose-gel electrophoresis has been used for more than thirty years to characterize the linking-number (Lk) distribution of closed-circular DNA molecules. Although the physical basis of this technique remains poorly understood, the gel-electrophoretic behavior of covalently closed DNAs has been used to determine the local unwinding of DNA by proteins and small-molecule ligands, characterize supercoiling-dependent conformational transitions in duplex DNA, and to measure helical-repeat changes due to shifts in temperature and ionic strength. Those results have been analyzed by assuming that the absolute mobility of a particular topoisomer is mainly a function of the integral number of superhelical turns, and thus a slowly varying function of plasmid molecular weight. In examining the mobilities of Lk topoisomers for a series of plasmids that differ incrementally in size over more than one helical turn, we found that the size-dependent agarose-gel mobility of individual topoisomers with identical values of Lk (but different values of the excess linking number, DeltaLk) vary dramatically over a duplex turn. Our results suggest that a simple semi-empirical relationship holds between the electrophoretic mobility of linking-number topoisomers and their average writhe in solution.
Collapse
Affiliation(s)
- Alexandre A. Vetcher
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Abbye E. McEwen
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Ramzey Abujarour
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
| | - Andreas Hanke
- Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 USA
| | - Stephen D. Levene
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083 USA
- Department of Physics, University of Texas at Dallas, Richardson, TX 75083 USA
| |
Collapse
|
10
|
Spagnolo JF, Rossignol E, Bullitt E, Kirkegaard K. Enzymatic and nonenzymatic functions of viral RNA-dependent RNA polymerases within oligomeric arrays. RNA (NEW YORK, N.Y.) 2010; 16:382-93. [PMID: 20051491 PMCID: PMC2811667 DOI: 10.1261/rna.1955410] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Few antivirals are effective against positive-strand RNA viruses, primarily because the high error rate during replication of these viruses leads to the rapid development of drug resistance. One of the favored current targets for the development of antiviral compounds is the active site of viral RNA-dependent RNA polymerases. However, like many subcellular processes, replication of the genomes of all positive-strand RNA viruses occurs in highly oligomeric complexes on the cytosolic surfaces of the intracellular membranes of infected host cells. In this study, catalytically inactive polymerases were shown to participate productively in functional oligomer formation and catalysis, as assayed by RNA template elongation. Direct protein transduction to introduce either active or inactive polymerases into cells infected with mutant virus confirmed the structural role for polymerase molecules during infection. Therefore, we suggest that targeting the active sites of polymerase molecules is not likely to be the best antiviral strategy, as inactivated polymerases do not inhibit replication of other viruses in the same cell and can, in fact, be useful in RNA replication complexes. On the other hand, polymerases that could not participate in functional RNA replication complexes were those that contained mutations in the amino terminus, leading to altered contacts in the folded polymerase and mutations in a known polymerase-polymerase interaction in the two-dimensional protein lattice. Thus, the functional nature of multimeric arrays of RNA-dependent RNA polymerase supplies a novel target for antiviral compounds and provides a new appreciation for enzymatic catalysis on membranous surfaces within cells.
Collapse
Affiliation(s)
- Jeannie F Spagnolo
- 1Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | |
Collapse
|
11
|
Biochemical characterization of DNA-binding proteins from Pyrobaculum aerophilum and Aeropyrum pernix. Extremophiles 2007; 12:235-46. [DOI: 10.1007/s00792-007-0120-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Accepted: 10/24/2007] [Indexed: 11/25/2022]
|
12
|
Mayán-Santos ML, Martínez-Robles MD, Hernández P, Krimer D, Schvartzman JB. DNA is more negatively supercoiled in bacterial plasmids than in minichromosomes isolated from budding yeast. Electrophoresis 2007; 28:3845-53. [DOI: 10.1002/elps.200700294] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Britton RA, Küster-Schöck E, Auchtung TA, Grossman AD. SOS induction in a subpopulation of structural maintenance of chromosome (Smc) mutant cells in Bacillus subtilis. J Bacteriol 2007; 189:4359-66. [PMID: 17416649 PMCID: PMC1913351 DOI: 10.1128/jb.00132-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The structural maintenance of chromosome (Smc) protein is highly conserved and involved in chromosome compaction, cohesion, and other DNA-related processes. In Bacillus subtilis, smc null mutations cause defects in DNA supercoiling, chromosome compaction, and chromosome partitioning. We investigated the effects of smc mutations on global gene expression in B. subtilis using DNA microarrays. We found that an smc null mutation caused partial induction of the SOS response, including induction of the defective prophage PBSX. Analysis of SOS and phage gene expression in single cells indicated that approximately 1% of smc mutants have fully induced SOS and PBSX gene expression while the other 99% of cells appear to have little or no expression. We found that induction of PBSX was not responsible for the chromosome partitioning or compaction defects of smc mutants. Similar inductions of the SOS response and PBSX were observed in cells depleted of topoisomerase I, an enzyme that relaxes negatively supercoiled DNA.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Biology, Building 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
14
|
Macbeth MR, Bass BL. Large-scale overexpression and purification of ADARs from Saccharomyces cerevisiae for biophysical and biochemical studies. Methods Enzymol 2007; 424:319-31. [PMID: 17662848 PMCID: PMC2376799 DOI: 10.1016/s0076-6879(07)24015-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many biochemical and biophysical analyses of enzymes require quantities of protein that are difficult to obtain from expression in an endogenous system. To further complicate matters, native adenosine deaminases that act on RNA (ADARs) are expressed at very low levels, and overexpression of active protein has been unsuccessful in common bacterial systems. Here we describe the plasmid construction, expression, and purification procedures for ADARs overexpressed in the yeast Saccharomyces cerevisiae. ADAR expression is controlled by the Gal promoter, which allows for rapid induction of transcription when the yeast are grown in media containing galactose. The ADAR is translated with an N-terminal histidine tag that is cleaved by the tobacco etch virus protease, generating one nonnative glycine residue at the N-terminus of the ADAR protein. ADARs expressed using this system can be purified to homogeneity, are highly active in deaminating RNA, and are produced in quantities (from 3 to 10mg of pure protein per liter of yeast culture) that are sufficient for most biophysical studies.
Collapse
Affiliation(s)
- Mark R Macbeth
- Department of Biochemistry and Howard Hughes Medical Institute, University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
15
|
Wang L, Roy SK, Eastmond DA. Differential cell cycle-specificity for chromosomal damage induced by merbarone and etoposide in V79 cells. Mutat Res 2006; 616:70-82. [PMID: 17174356 DOI: 10.1016/j.mrfmmm.2006.11.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Merbarone, a topoisomerase II (topo II) inhibitor which, in contrast to etoposide, does not stabilize topo II-DNA cleavable complexes, was previously shown to be a potent clastogen in vitro and in vivo. To investigate the possible mechanisms, we compared the cell cycle-specificity of the clastogenic effects of merbarone and etoposide in V79 cells. Using flow cytometry and BrdU labeling techniques, etoposide was shown to cause a rapid and persistent G2 delay while merbarone was shown to cause a prolonged S-phase followed by a G2 delay. To identify the stages which are susceptible to DNA damage, we performed the micronucleus (MN) assay with synchronized cells or utilized a combination of BrdU pulse labeling and the cytokinesis-blocked MN assay with non-synchronized cells. Treatment of M phase cells with either agent did not result in increased MN formation. Etoposide but not merbarone caused a significant increase in MN when cells were treated during G2 phase. When treated during S-phase, both chemicals induced highly significant increases in MN. However, the relative proportion of MN induced by merbarone was substantially higher than that induced by etoposide. Both chemicals also caused significant increases in MN in cells that were treated during G1 phase. To confirm the observations in the MN assay, first division metaphases were evaluated in the chromosome aberration assay. The chromosomes of cells treated with merbarone and etoposide showed increased frequencies of both chromatid- and chromosome-type of aberrations. Our findings indicate that while etoposide causes DNA damage more evenly throughout the G1, S and G2 phases of the cell cycle, an outcome which may be closely associated with topo II-mediated DNA strand cleavage, merbarone induces DNA breakage primarily during S-phase, an effect which is likely due to the stalling of replication forks by inhibition of topo II activity.
Collapse
Affiliation(s)
- Ling Wang
- Environmental Toxicology Graduate Program, 2109 Biological Sciences Building, University of California, Riverside, CA 92521, USA
| | | | | |
Collapse
|
16
|
Jeong KS, Xie Y, Hiasa H, Khodursky AB. Analysis of pleiotropic transcriptional profiles: a case study of DNA gyrase inhibition. PLoS Genet 2006; 2:e152. [PMID: 17009874 PMCID: PMC1584274 DOI: 10.1371/journal.pgen.0020152] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 08/02/2006] [Indexed: 01/05/2023] Open
Abstract
Genetic and environmental perturbations often result in complex transcriptional responses involving multiple genes and regulons. In order to understand the nature of a response, one has to account for the contribution of the downstream effects to the formation of a response. Such analysis can be carried out within a statistical framework in which the individual effects are independently collected and then combined within a linear model. Here, we modeled the contribution of DNA replication, supercoiling, and repair to the transcriptional response of inhibition of the Escherichia coli gyrase. By representing the gyrase inhibition as a true pleiotropic phenomenon, we were able to demonstrate that: (1) DNA replication is required for the formation of spatial transcriptional domains; (2) the transcriptional response to the gyrase inhibition is coordinated between at least two modules involved in DNA maintenance, relaxation and damage response; (3) the genes whose transcriptional response to the gyrase inhibition does not depend on the main relaxation activity of the cell can be classified on the basis of a GC excess in their upstream and coding sequences; and (4) relaxation by topoisomerase I dominates the transcriptional response, followed by the effects of replication and RecA. We functionally tested the effect of the interaction between relaxation and repair activities, and found support for the model derived from the microarray data. We conclude that modeling compound transcriptional profiles as a combination of downstream transcriptional effects allows for a more realistic, accurate, and meaningful representation of the transcriptional activity of a genome. Pleiotropism—a movement, or reaction, in multiple directions: although it was initially used specifically to describe the effect of a single genetic mutation on multiple characters in the offspring, the transcriptional responses of cells are often best described in terms of pleiotropy, when a single input affects multiple components inside the cell. This, in turn, presents a dilemma with the analysis and interpretation of the observed effects: which effects are directly due to the input itself and which are not? How are the effects related to each other and which are more important? And finally, can the overall transcriptional response be summarized as a combination of the effects? There is, however, a problem with recording the effects when they occur almost simultaneously in the same organism. The authors approached this by recording the effects independently, using mutants that could generate all of the effects of interest but one, and then estimating the effects and their interactions from a multivariate linear model. The authors applied this method to explain the transcriptional response of Escherichia coli to a quinolone antibacterial, a relative of Cipro (ciprofloxacin hydrochloride), and discovered unexpected interactions between DNA maintenance modules in the cell.
Collapse
Affiliation(s)
- Kyeong Soo Jeong
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Yang Xie
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hiroshi Hiasa
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Arkady B Khodursky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, Minnesota, United States of America
- Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
17
|
Parker GS, Eckert DM, Bass BL. RDE-4 preferentially binds long dsRNA and its dimerization is necessary for cleavage of dsRNA to siRNA. RNA (NEW YORK, N.Y.) 2006; 12:807-18. [PMID: 16603715 PMCID: PMC1440910 DOI: 10.1261/rna.2338706] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In organisms ranging from Arabidopsis to humans, Dicer requires dsRNA-binding proteins (dsRBPs) to carry out its roles in RNA interference (RNAi) and micro-RNA (miRNA) processing. In Caenorhabditis elegans, the dsRBP RDE-4 acts with Dicer during the initiation of RNAi, when long dsRNA is cleaved to small interfering RNAs (siRNAs). RDE-4 is not required in subsequent steps, and how RDE-4 distinguishes between long dsRNA and short siRNA is unclear. We report the first detailed analysis of RDE-4 binding, using purified recombinant RDE-4 and various truncated proteins. We find that, similar to other dsRBPs, RDE-4 is not sequence-specific. However, consistent with its in vivo roles, RDE-4 binds with higher affinity to long dsRNA. We also observe that RDE-4 is a homodimer in solution, and that the C-terminal domain of the protein is required for dimerization. Using extracts from wild-type and rde-4 mutant C. elegans, we show that the C-terminal dimerization domain is required for the production of siRNA. Our findings suggest a model for RDE-4 function during the initiation of RNAi.
Collapse
Affiliation(s)
- Greg S Parker
- Department of Biochemistry/HHMI, University of Utah, Salt Lake City 84112-5650, USA
| | | | | |
Collapse
|
18
|
Abstract
DNA in bacterial cells is maintained in a negatively supercoiled state. This contributes to the organization of the bacterial nucleoid and also influences the global gene expression pattern in the cell through modulatory effects on transcription. Supercoiling arises as a result of changes to the linking number of the relaxed double-stranded DNA molecule and is set and reset by the action of DNA topoisomerases. This process is subject to a multitude of influences that are usually summarized as environmental stress. Responsiveness of linking number change to stress offers the promise of a mechanism for the wholesale adjustment of the transcription programme of the cell as the bacterium experiences different environments. Recent data from DNA microarray experiments support this proposition. The emerging picture is one of DNA supercoiling acting at or near the apex of a regulatory hierarchy where it collaborates with nucleoid-associated proteins and transcription factors to determine the gene expression profile of the cell.
Collapse
|
19
|
Random mutagenesis of the B'A' core domain of yeast DNA topoisomerase II and large-scale screens of mutants resistant to the anticancer drug etoposide. Biochem Biophys Res Commun 2005; 327:597-603. [PMID: 15629155 DOI: 10.1016/j.bbrc.2004.12.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Indexed: 11/23/2022]
Abstract
Mutagenic PCR method was applied to introduce point mutations to the B'A' core domain of yeast DNA topoisomerase II. Screens for mutants resistant to the anticancer drug etoposide were carried out in a yeast ts system in the presence of high concentrations of the drug or in a drug-hypersensitive genetic background. 129 mutants were obtained from a total of 47,000 transformants. Nucleotide sequencing of 40 selected mutants showed that a large number of the mutations map to regions encoding the linker that joins the ATPase domain to the B' module and the B'A' linker. Significant reduction in catalytic activity was evident for a large fraction of mutant enzymes and all mutants were also resistant to amsacrine, another topoisomerase II drug with a different chemical structure, suggesting that few of the mutations reflect simple changes of specific amino acid side chains that are directly involved in enzyme-drug interactions.
Collapse
|
20
|
Macbeth MR, Lingam AT, Bass BL. Evidence for auto-inhibition by the N terminus of hADAR2 and activation by dsRNA binding. RNA (NEW YORK, N.Y.) 2004; 10:1563-71. [PMID: 15383678 PMCID: PMC1370643 DOI: 10.1261/rna.7920904] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Adenosine deaminases that act on RNA (ADARs) catalyze adenosine to inosine conversion in RNA that is largely double stranded. Human ADAR2 (hADAR2) contains two double-stranded RNA binding motifs (dsRBMs), separated by a 90-amino acid linker, and these are followed by the C-terminal catalytic domain. We assayed enzymatic activity of N-terminal deletion constructs of hADAR2 to determine the role of the dsRBMs and the intervening linker peptide. We found that a truncated protein consisting of one dsRBM and the deaminase domain was capable of deaminating a short 15-bp substrate. In contrast, full-length hADAR2 was inactive on this short substrate. In addition, we observed that the N terminus, which was deleted from the truncated protein, inhibits editing activity when added in trans. We propose that the N-terminal domain of hADAR2 contains sequences that cause auto-inhibition of the enzyme. Our results suggest activation requires binding to an RNA substrate long enough to accommodate interactions with both dsRBMs.
Collapse
Affiliation(s)
- Mark R Macbeth
- Howard Hughes Medical Institute and Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
21
|
Eriksson M, Nordén B, Jernström B, Gräslund A. B to Z transition in poly(dG-dC) modified with benzo(a)pyrene diol epoxides studied with polarized light spectroscopy. Biopolymers 2004. [DOI: 10.1002/bip.360290815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Abstract
Because the level of DNA superhelicity varies with the cellular energy charge, it can change rapidly in response to a wide variety of altered nutritional and environmental conditions. This is a global alteration, affecting the entire chromosome and the expression levels of all operons whose promoters are sensitive to superhelicity. In this way, the global pattern of gene expression may be dynamically tuned to changing needs of the cell under a wide variety of circumstances. In this article, we propose a model in which chromosomal superhelicity serves as a global regulator of gene expression in Escherichia coli, tuning expression patterns across multiple operons, regulons, and stimulons to suit the growth state of the cell. This model is illustrated by the DNA supercoiling-dependent mechanisms that coordinate basal expression levels of operons of the ilv regulon both with one another and with cellular growth conditions.
Collapse
Affiliation(s)
- G Wesley Hatfield
- Department of Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
23
|
Serban D, Benevides JM, Thomas GJ. DNA secondary structure and Raman markers of supercoiling in Escherichia coli plasmid pUC19. Biochemistry 2002; 41:847-53. [PMID: 11790106 DOI: 10.1021/bi011004z] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Negative supercoiling in the 2686 bp Escherichia coli plasmid pUC19 is comparable in linking number (Lk(0) = 258) and superhelical density (sigma = -0.05) to the moderate supercoiling exhibited by many eukaryotic chromosomal DNAs in vivo. Supercoiled and relaxed forms of purified pUC19 in aqueous solution (0.1 M NaCl, pH 8.3, 20 degrees C) have been investigated by Raman spectroscopy to assess changes in B-DNA secondary structure induced by superhelical stress and to identify putative Raman markers of DNA supercoiling. We find that supercoiling leads to small but significant changes to the B-form Raman signature of linear DNA. Spectral band shifts in the 780-850 cm(-1) interval are interpreted as resulting from a small net change in the average phosphodiester torsions alpha (O3'-P->-O5'-C5') and zeta (C3'-O3'->-P-O5') from the gauche(-)/gauche(-) range to the gauche(-)/trans range with supercoiling. The magnitude of the spectral intensity change implies that approximately 5% of the nucleotide moieties are affected. Supercoiling also introduces small redistributions of Raman intensity within the 1460-1490 and 1660-1670 cm(-1) intervals, consistent with small structural perturbations. Importantly, no Raman markers of Watson-Crick base pairing, base stacking, or C2'-endo/anti deoxynucleoside conformations are perturbed significantly by supercoiling of pUC19, indicating that the B-DNA structure is largely conserved under moderate superhelical stress. Peak and trough features at 814 and 783 cm(-1), and at 1462 and 1489 cm(-1), respectively, in the Raman difference spectrum between superhelical and relaxed DNA are proposed as markers of moderate negative supercoiling. We also show that in Tris-buffered solutions the Raman signature of supercoiled DNA can be obscured by Raman bands of Tris counterions. The subtle structural perturbations to B-DNA induced by moderate supercoiling are consistent with proposed mechanisms of transcriptional activation.
Collapse
Affiliation(s)
- Doinita Serban
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110-2499, USA
| | | | | |
Collapse
|
24
|
Chen CC, Fang M, Majumder A, Wu HY. A 72-base pair AT-rich DNA sequence element functions as a bacterial gene silencer. J Biol Chem 2001; 276:9478-85. [PMID: 11121424 DOI: 10.1074/jbc.m010501200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously demonstrated that sequential activation of the bacterial ilvIH-leuO-leuABCD gene cluster involves a promoter-relay mechanism. In the current study, we show that the final activation of the leuABCD operon is through a transcriptional derepression mechanism. The leuABCD operon is transcriptionally repressed by the presence of a 318-base pair AT-rich upstream element. LeuO is required for derepressing the repressed leuABCD operon. Deletion analysis of the repressive effect of the 318-bp element has led to the identification of a 72-bp AT-rich (78% A+T) DNA sequence element, AT4, which is capable of silencing a number of unrelated promoters in addition to the leuABCD promoter. AT4-mediated gene silencing is orientation-independent and occurs within a distance of 300 base pairs. Furthermore, an increased gene-silencing effect was observed with a tandemly repeated AT4 dimer. The possible mechanism of AT4-mediated gene silencing in bacteria is discussed.
Collapse
Affiliation(s)
- C C Chen
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
25
|
Lehmann KA, Bass BL. Double-stranded RNA adenosine deaminases ADAR1 and ADAR2 have overlapping specificities. Biochemistry 2000; 39:12875-84. [PMID: 11041852 DOI: 10.1021/bi001383g] [Citation(s) in RCA: 231] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenosine deaminases that act on RNA (ADARs) deaminate adenosines to produce inosines within RNAs that are largely double-stranded (ds). Like most dsRNA binding proteins, the enzymes will bind to any dsRNA without apparent sequence specificity. However, once bound, ADARs deaminate certain adenosines more efficiently than others. Most of what is known about the intrinsic deamination specificity of ADARs derives from analyses of Xenopus ADAR1. In addition to ADAR1, mammalian cells have a second ADAR, named ADAR2; the deamination specificity of this enzyme has not been rigorously studied. Here we directly compare the specificity of human ADAR1 and ADAR2. We find that, like ADAR1, ADAR2 has a 5' neighbor preference (A approximately U > C = G), but, unlike ADAR1, also has a 3' neighbor preference (U = G > C = A). Simultaneous analysis of both neighbor preferences reveals that ADAR2 prefers certain trinucleotide sequences (UAU, AAG, UAG, AAU). In addition to characterizing ADAR2 preferences, we analyzed the fraction of adenosines deaminated in a given RNA at complete reaction, or the enzyme's selectivity. We find that ADAR1 and ADAR2 deaminate a given RNA with the same selectivity, and this appears to be dictated by features of the RNA substrate. Finally, we observed that Xenopus and human ADAR1 deaminate the same adenosines on all RNAs tested, emphasizing the similarity of ADAR1 in these two species. Our data add substantially to the understanding of ADAR2 specificity, and aid in efforts to predict which ADAR deaminates a given editing site adenosine in vivo.
Collapse
Affiliation(s)
- K A Lehmann
- Department of Biochemistry and HHMI, University of Utah, 50 North Medical Drive, Room 211, Salt Lake City, Utah 84132, USA
| | | |
Collapse
|
26
|
Baird CL, Harkins TT, Morris SK, Lindsley JE. Topoisomerase II drives DNA transport by hydrolyzing one ATP. Proc Natl Acad Sci U S A 1999; 96:13685-90. [PMID: 10570133 PMCID: PMC24125 DOI: 10.1073/pnas.96.24.13685] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA topoisomerase II is a homodimeric molecular machine that couples ATP usage to the transport of one DNA segment through a transient break in another segment. In the presence of a nonhydrolyzable ATP analog, the enzyme is known to promote a single turnover of DNA transport. Current models for the enzyme's mechanism based on this result have hydrolysis of two ATPs as the last step, used only to reset the enzyme for another round of reaction. Using rapid-quench techniques, topoisomerase II recently was shown to hydrolyze its two bound ATPs in a strictly sequential manner. This result is incongruous with the models based on the nonhydrolyzable ATP analog data. Here we present evidence that hydrolysis of one ATP by topoisomerase II precedes, and accelerates, DNA transport. These results indicate that important features of this enzyme's mechanism previously have been overlooked because of the reliance on nonhydrolyzable analogs for studying a single reaction turnover. A model for the mechanism of topoisomerase II is presented to show how hydrolysis of one ATP could drive DNA transport.
Collapse
Affiliation(s)
- C L Baird
- Department of Biochemistry, University of Utah School of Medicine, 50 North Medical Drive, Salt Lake City, UT 84132, USA
| | | | | | | |
Collapse
|
27
|
Dupuy LC, Dobson S, Bitko V, Barik S. Casein kinase 2-mediated phosphorylation of respiratory syncytial virus phosphoprotein P is essential for the transcription elongation activity of the viral polymerase; phosphorylation by casein kinase 1 occurs mainly at Ser(215) and is without effect. J Virol 1999; 73:8384-92. [PMID: 10482589 PMCID: PMC112856 DOI: 10.1128/jvi.73.10.8384-8392.1999] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The major site of in vitro phosphorylation by casein kinase 2 (CK2) was the conserved Ser(232) in the P proteins of human, bovine, and ovine strains of respiratory syncytial virus (RSV). Enzymatic removal of this phosphate group from the P protein instantly halted transcription elongation in vitro. Transcription reconstituted in the absence of P protein or in the presence of phosphate-free P protein produced abortive initiation products but no full-length transcripts. A recombinant P protein in which Ser(232) was mutated to Asp exhibited about half of the transcriptional activity of the wild-type phosphorylated protein, suggesting that the negative charge of the phosphate groups is an important contributor to P protein function. Use of a temperature-sensitive CK2 mutant yeast revealed that in yeast, phosphorylation of recombinant P by non-CK2 kinase(s) occurs mainly at Ser(215). In vitro, P protein could be phosphorylated by purified CK1 at Ser(215) but this phosphorylation did not result in transcriptionally active P protein. A triple mutant P protein in which Ser(215), Ser(232), and Ser(237) were all mutated to Ala was completely defective in phosphorylation in vitro as well as ex vivo. The xanthate compound D609 inhibited CK2 but not CK1 in vitro and had a very modest effect on P protein phosphorylation and RSV yield ex vivo. Together, these results suggest a role for CK2-mediated phosphorylation of the P protein in the promoter clearance and elongation properties of the viral RNA-dependent RNA polymerase.
Collapse
Affiliation(s)
- L C Dupuy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | | | | | | |
Collapse
|
28
|
Morris SK, Harkins TT, Tennyson RB, Lindsley JE. Kinetic and thermodynamic analysis of mutant type II DNA topoisomerases that cannot covalently cleave DNA. J Biol Chem 1999; 274:3446-52. [PMID: 9920889 DOI: 10.1074/jbc.274.6.3446] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase II catalyzes two different chemical reactions as part of its DNA transport cycle: ATP hydrolysis and DNA breakage/religation. The coordination between these reactions was studied using mutants of yeast topoisomerase II that are unable to covalently cleave DNA. In the absence of DNA, the ATPase activities of these mutant enzymes are identical to the wild type activity. DNA binding stimulates the ATPase activity of the mutant enzymes, but with steady-state parameters different from those of the wild type enzyme. These differences were examined through DNA binding experiments and pre-steady-state ATPase assays. One mutant protein, Y782F, binds DNA with the same affinity as wild type protein. This mutant topologically traps one DNA circle in the presence of a nonhydrolyzable ATP analog under the same conditions that the wild type protein catenates two circles. Rapid chemical quench and pulse-chase ATPase experiments reveal that the mutant proteins bound to DNA have the same sequential hydrolysis reaction cycle as the wild type enzyme. Binding of ATP to the mutants is not notably impaired, but hydrolysis of the first ATP is slower than for the wild type enzyme. Models to explain these results in the context of the entire DNA topoisomerase II reaction cycle are discussed.
Collapse
Affiliation(s)
- S K Morris
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA
| | | | | | | |
Collapse
|
29
|
Nitiss JL. Investigating the biological functions of DNA topoisomerases in eukaryotic cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:63-81. [PMID: 9748506 DOI: 10.1016/s0167-4781(98)00128-6] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA topoisomerases participate in nearly all events relating to DNA metabolism including replication, transcription, and chromosome segregation. Recent studies in eukaryotic cells have led to the discovery of several novel topoisomerases, and to new questions concerning the roles of these enzymes in cellular processes. Gene knockout studies are helping to delineate the roles of topoisomerases in mammalian cells, just as similar studies in yeast established paradigms concerning the functions of topoisomerases in lower eukaryotes. The application of new technologies for identifying interacting proteins has connected the studies on topoisomerases to other areas of human biology including genome stability and aging. These studies highlight the importance of understanding how topoisomerases participate in the normal processes of transcription, DNA replication, and genome stability.
Collapse
Affiliation(s)
- J L Nitiss
- St. Jude Children's Research Hospital, Molecular Pharmacology Department, 332 N. Lauderdale, Memphis, TN 38105, USA.
| |
Collapse
|
30
|
Li W, Wang JC. Footprinting of yeast DNA topoisomerase II lysyl side chains involved in substrate binding and interdomainal interactions. J Biol Chem 1997; 272:31190-5. [PMID: 9388273 DOI: 10.1074/jbc.272.49.31190] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Footprinting of yeast DNA topoisomerase II and its NH2- and COOH-terminal truncation derivatives was carried out to map the locations of lysyl side chains that are involved in enzyme-DNA interaction, in the binding of ATP, or in interaction between domains of the same enzyme molecule. Several conclusions were drawn based on these measurements and the crystal structures of a 92-kDa fragment of the yeast enzyme and a 43-kDa fragment of Escherichia coli gyrase B-subunit. First, the footprinting results support the model previously inferred from the 92-kDa fragment crystal structure that the main site of DNA binding is comprised of a pair of semicircular grooves. Second, the binding of a nonhydrolyzable ATP analog to the yeast enzyme appears to affect citraconylation at a minimum of six lysines in the ATPase domain of each polypeptide. Two of these lysines are probably involved in contacting the nucleotide directly, and one probably becomes buried when the two ATPase domains of a dimeric enzyme come into contact upon ATP binding; for the others, changes in lysine reactivity appear to reflect allosteric changes following ATP binding. Third, from a comparison of the footprint of the intact enzyme and those of the truncated polypeptides comprised of either the NH2- or the COOH-terminal half of the intact polypeptide, it appears that there are few contacts between the NH2- and COOH-terminal half of yeast DNA topoisomerase II.
Collapse
Affiliation(s)
- W Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
31
|
Tennyson RB, Lindsley JE. Type II DNA topoisomerase from Saccharomyces cerevisiae is a stable dimer. Biochemistry 1997; 36:6107-14. [PMID: 9166781 DOI: 10.1021/bi970152f] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type II DNA topoisomerases function as homodimeric enzymes in transiently cleaving double-stranded DNA to catalyze unlinking and unknotting reactions. The dimeric enzyme creates a DNA double-strand break by forming a covalent attachment between an active site tyrosine from each monomer and a 5'-phosphate from each strand of DNA. The dimer must be very stable to dissociation or subunit exchange when covalently attached to DNA to prevent directly or indirectly catalyzed rearrangements of the genome. Past studies have indicated conflicting results for the monomer-dimer stability of topoisomerase II in solution. Here, we report results from sedimentation equilibrium studies and two different subunit exchange assays indicating that purified Saccharomyces cerevisiae DNA topoisomerase II exists as a stable dimer in solution, with a Kd estimated to be < or = 10(-11) M. This high dimer stability is not detectably altered by a change of ionic strength or by the presence of ATP, ADP, or DNA.
Collapse
Affiliation(s)
- R B Tennyson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City 84132, USA
| | | |
Collapse
|
32
|
Roca J, Berger JM, Harrison SC, Wang JC. DNA transport by a type II topoisomerase: direct evidence for a two-gate mechanism. Proc Natl Acad Sci U S A 1996; 93:4057-62. [PMID: 8633016 PMCID: PMC39486 DOI: 10.1073/pnas.93.9.4057] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent biochemical and crystallographic results suggest that a type II DNA topoisomerase acts as an ATP-modulated clamp with two sets of jaws at opposite ends: a DNA-bound enzyme can admit a second DNA through one set of jaws; upon binding ATP, this DNA is passed through an enzyme-mediated opening in the first DNA and expelled from the enzyme through the other set of jaws. Experiments based on the introduction of reversible disulfide links across one dimer interface of yeast DNA topoisomerase II have confirmed this mechanism. The second DNA is found to enter the enzyme through the gate formed by the N-terminal parts of the enzyme and leave it through the gate close to the C termini.
Collapse
Affiliation(s)
- J Roca
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
33
|
Hanai R, Caron PR, Wang JC. Human TOP3: a single-copy gene encoding DNA topoisomerase III. Proc Natl Acad Sci U S A 1996; 93:3653-7. [PMID: 8622991 PMCID: PMC39666 DOI: 10.1073/pnas.93.8.3653] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A human cDNA encoding a protein homologous to the Escherichia coli DNA topoisomerase I subfamily of enzymes has been identified through cloning and sequencing. Expressing the cloned human cDNA in yeast (delta)top1 cells lacking endogenous DNA topoisomerase I yielded an activity in cell extracts that specifically reduces the number of supercoils in a highly negatively supercoiled DNA. On the basis of these results, the human gene containing the cDNA sequence has been denoted TOP3, and the protein it encodes has been denoted DNA topoisomerase III. Screening of a panel of human-rodent somatic hybrids and fluorescence in situ hybridization of cloned TOP3 genomic DNA to metaphase chromosomes indicate that human TOP3 is a single-copy gene located at chromosome 17p11.2-12.
Collapse
Affiliation(s)
- R Hanai
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
34
|
Marincs F, White DW. Divergent transcription and a remote operator play a role in control of expression of a nopaline catabolism promoter in Agrobacterium tumefaciens. J Biol Chem 1995; 270:12339-42. [PMID: 7759474 DOI: 10.1074/jbc.270.21.12339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The nocP-nocR divergent gene arrangement of the nopaline catabolism (noc) operon of the Agrobacterium tumefaciens Ti plasmid pTiT37 was examined with respect to the expression of the nocP promoter. Under repressive conditions, i.e. in the absence of nopaline, four distinct levels of PnocP expression were observed. The lowest level of expression, i.e. full repression, was detected in the presence of the NocR repressor, together with the remote noc operator and productive transcription from the divergent nocR promoter. The next level was observed in the absence of either the NocR protein or of the operator or of both. The third level was detected when abortive transcription from the nocR promoter occurred, irrespective of the presence or absence of the NocR protein. The highest level of PnocP expression was observed in the absence of both productive transcription from PnocR and the operator sequence, whether or not the NocR protein was present. Under inductive conditions, i.e. in the presence of nopaline, expression of PnocP was activated if both the NocR protein and the operator were present. Absence of either NocR or the operator resulted in lack of inducibility of the nocP promoter. Transcription from the divergent nocR promoter had no influence on the activation of PnocP. It was also found that the absence of the operator affected plasmid supercoiling in vivo. The results suggest that DNA topology has a role in the regulation of the nocP promoter.
Collapse
Affiliation(s)
- F Marincs
- Plant Molecular Genetics Laboratory, AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | |
Collapse
|
35
|
Hildebrandt ER, Cozzarelli NR. Comparison of recombination in vitro and in E. coli cells: measure of the effective concentration of DNA in vivo. Cell 1995; 81:331-40. [PMID: 7736586 DOI: 10.1016/0092-8674(95)90386-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the extremely high concentration of DNA in nucleoid/nuclear regions, chromosomal dimerization and entanglement are avoided. To help understand this, we measured the effective concentration of DNA in E. coli, a value that reflects the functional impact of the cellular milieu on DNA site reactivity. We used as probes plasmid fusion reactions by two site-specific recombinases. The normalized extents and rates of fusion in these systems were much lower in vivo than in analogous in vitro reactions. We calculate that the effective concentration of plasmid DNA is about one order of magnitude lower than the chemical concentration. We suggest that in bacterial cells DNA accessibility is highly restricted and that this dominates the forces that increase DNA activity, such as macromolecular crowding.
Collapse
Affiliation(s)
- E R Hildebrandt
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA
| | | |
Collapse
|
36
|
Shang HS, Wong SM, Tan HM, Wu M. YKE2, a yeast nuclear gene encoding a protein showing homology to mouse KE2 and containing a putative leucine-zipper motif. Gene 1994; 151:197-201. [PMID: 7828874 DOI: 10.1016/0378-1119(94)90656-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The nucleotide sequence of YKE2, a yeast nuclear gene, has been determined. The deduced YKE2 protein has 114 amino acids (12 kDa), shows significant homology with the murine KE2 and contains a putative Leu-zipper motif characteristic of a group of DNA-binding proteins [Landschulz et al., Science 240 (1988) 1759-1764]. Strains in which YKE2 has been disrupted show normal cell growth in glucose and galactose media over the temperature range of 16 to 40 degrees C. Disrupted strains also display normal mating and sporulation abilities. Northern analysis revealed that the transcription of YKE2 is unresponsive to catabolite repression by glucose.
Collapse
Affiliation(s)
- H S Shang
- Department of Botany, National University of Singapore
| | | | | | | |
Collapse
|
37
|
Lee SC, Wu M, Wong SM. Nucleotide sequence of a Singapore isolate of zucchini yellow mosaic virus coat protein gene revealed an altered DAG motif. Virus Genes 1993; 7:381-7. [PMID: 8122397 DOI: 10.1007/bf01703393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A cDNA clone of zucchini yellow mosaic virus (ZYMV) RNA was mapped to the 3' terminal region. The nucleotide sequence revealed a single open reading frame of 1035 nucleotides followed by a 3' noncoding region of 215 nucleotides. The putative protease cleavage site for the release of coat protein (CP) was deduced to be between Glu-Ser (at amino acid position 66-67), which would result in a protein of 279 amino acids. This non-aphid-transmissible Singapore isolate of ZYMV showed a change of DAG to GAG triplet near the N-terminal of the CP. The CP gene was expressed as a protein fused to the beta-galactosidase in Escherichia coli and as an unfused protein in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- S C Lee
- Department of Botany, National University of Singapore
| | | | | |
Collapse
|
38
|
Cardenas ME, Walter R, Hanna D, Gasser SM. Casein kinase II copurifies with yeast DNA topoisomerase II and re-activates the dephosphorylated enzyme. J Cell Sci 1993; 104 ( Pt 2):533-43. [PMID: 8389377 DOI: 10.1242/jcs.104.2.533] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitotic division in yeast requires the activity of topoisomerase II, a DNA topology modifying enzyme that is able to disentangle sister chromatids after DNA replication. Previous work has shown that topoisomerase II is a phosphoprotein in intact yeast cells. We show here that when dephosphorylated in vitro, topoisomerase II is unable to cleave or decatenate kinetoplast DNA. An efficient kinase activity that modifies topoisomerase II on seven major sites was found to copurify with the enzyme purified from yeast. Characterization of this kinase, analysis of phosphotryptic peptides, and studies with a yeast mutant deficient in casein kinase II, indicate that the copurifying kinase is casein kinase II (CKII). Topoisomerase II itself has no self-phosphorylating activity. Modification of topoisomerase II by the copurifying kinase is sufficient to restore decatenation activity after dephosphorylation by alkaline phosphatase. The CKII target sites have been mapped to multiple serine and threonine residues on 4 tryptic fragments within the C-terminal 350 amino acids of yeast topoisomerase II. These results are consistent with a model in which the C-terminal domain of topoisomerase II is a negative regulatory domain that is neutralized by phosphorylation.
Collapse
Affiliation(s)
- M E Cardenas
- Swiss Institute for Experimental Cancer Research, Epalinges s/Lausanne
| | | | | | | |
Collapse
|
39
|
Abstract
Two DNA topoisomerases control the level of negative supercoiling in bacterial cells. DNA gyrase introduces supercoils, and DNA topoisomerase I prevents supercoiling from reaching unacceptably high levels. Perturbations of supercoiling are corrected by the substrate preferences of these topoisomerases with respect to DNA topology and by changes in expression of the genes encoding the enzymes. However, supercoiling changes when the growth environment is altered in ways that also affect cellular energetics. The ratio of [ATP] to [ADP], to which gyrase is sensitive, may be involved in the response of supercoiling to growth conditions. Inside cells, supercoiling is partitioned into two components, superhelical tension and restrained supercoils. Shifts in superhelical tension elicited by nicking or by salt shock do not rapidly change the level of restrained supercoiling. However, a steady-state change in supercoiling caused by mutation of topA does alter both tension and restrained supercoils. This communication between the two compartments may play a role in the control of supercoiling.
Collapse
Affiliation(s)
- K Drlica
- Public Health Research Institute, New York, New York 10016
| |
Collapse
|
40
|
Richter A, Ruff J. DNA topoisomerase I cleavage sites in DNA and in nucleoprotein complexes. Biochemistry 1991; 30:9741-8. [PMID: 1655019 DOI: 10.1021/bi00104a025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The intracellular substrate for eukaryotic DNA topoisomerases is chromatin rather than protein-free DNA. Yet, little is known about the action of topoisomerases on chromatin-associated DNA. We have analyzed to what extent the organization of DNA in chromatin influences the accessibility of DNA molecules for topoisomerase I cleavage in vitro. Using potassium dodecyl sulfate precipitation (Trask et al., 1984), we found that DNA in chromatin is cleaved by the enzyme with somewhat reduced efficiency compared to protein-free DNA. Furthermore, using native SV40 chromatin and mononucleosomes assembled in vitro, we show that DNA bound to histone octamer complexes is cleaved by topoisomerase I and that the cleavage sites as well as their overall distribution are identical in histone-bound and in protein-free DNA molecules.
Collapse
Affiliation(s)
- A Richter
- Division of Biology, University of Konstanz, FRG
| | | |
Collapse
|
41
|
Hammond GG, Cassidy PJ, Overbye KM. Novobiocin-dependent topA deletion mutants of Escherichia coli. J Bacteriol 1991; 173:5564-7. [PMID: 1653212 PMCID: PMC208273 DOI: 10.1128/jb.173.17.5564-5567.1991] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous reports of the transduction of topA deletions in Escherichia coli suggested that delta top A transductants grow normally only if they acquire spontaneous mutations that compensate for the topoisomerase I defect. We show that P1-mediated transduction of delta topA in the presence of sublethal concentrations of novobiocin, an inhibitor of the DNA gyrase B subunit, yields uncompensated Top- isolates which are dependent on novobiocin for optimum growth. In the absence of novobiocin these delta topA strains grow slowly, indicating that topA deletions are deleterious but not lethal to the cell. We propose that inhibitors of DNA gyrase B, presumably by lowering intracellular levels of DNA supercoiling, can phenotypically suppress a topoisomerase I defect in E. coli.
Collapse
Affiliation(s)
- G G Hammond
- Merck Sharp and Dohme Research Laboratories, Merck and Co., Inc., Rahway, New Jersey 07065-0900
| | | | | |
Collapse
|
42
|
Dröge P, Nordheim A. Transcription-induced conformational change in a topologically closed DNA domain. Nucleic Acids Res 1991; 19:2941-6. [PMID: 1647523 PMCID: PMC328255 DOI: 10.1093/nar/19.11.2941] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have tested in vitro the occurrence of a B-to-Z transition in a region of alternating purines and pyrimidines as a consequence of transcription-induced negative supercoiling. By using a monoclonal antibody as a specific Z-DNA stabilizing agent, we demonstrate that the formation of left-handed DNA can transiently occur when a topologically unconstrained template is transcribed. The B-to-Z transition, observed in a subpopulation of templates, appears to be induced by negative supercoiling generated in the wake of an elongating T7 RNA polymerase. Consistent with this, the presence of topoisomerases during the transcription period prevents the change in DNA conformation. These data agree with the 'twin-supercoiled-domain' model for transcription of Liu and Wang (1). Interestingly, our results suggest that the diffusion rate of transcription-induced superhelical twists must be relatively slow compared to their generation, and that under in vitro conditions localized transient supercoiling can reach unexpectedly high levels.
Collapse
Affiliation(s)
- P Dröge
- Institute for Molecular Biology, Hannover Medical School, FRG
| | | |
Collapse
|
43
|
Jaworski A, Higgins NP, Wells RD, Zacharias W. Topoisomerase mutants and physiological conditions control supercoiling and Z-DNA formation in vivo. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)52284-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
44
|
Kellenberger E. Functional consequences of improved structural information on bacterial nucleoids. Res Microbiol 1991; 142:229-38. [PMID: 1925022 DOI: 10.1016/0923-2508(91)90035-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Section of Escherichia coli cells, cryofixed, freeze-substituted into acetone and resin-embedded, show nucleoids with coralline shape. The excrescencies reach far into the cytoplasm. Membrane contact is no longer excluded. Comparison with phase contrast light microscopy shows that the fine excrescencies cannot be resolved and therefore lead "artificially" to a more confined aspect of the nucleoid. The packing density of the DNA in the nucleoids is like that of eukaryotic interphase nuclei and would thus allow diffusion in and out of even large macromolecules. The transcription has, however, been demonstrated to occur only at the periphery; it requires a very dynamic state of the chromatin. The chromatin fine structure is now more granular than fibrillar, as it was previously. The granular structure is compatible with--but there is no proof for--the existence of compactosomes, which would form as a consequence of unrestrained supercoiling.
Collapse
|
45
|
Abstract
The role of topoisomerase II (topo II) in chromosome condensation was studied in a mitotic extract derived from Xenopus eggs by specific immunodepletion. HeLa nuclei, which have a high complement of endogenous topo II, are converted to mitotic chromosomes in the topo II-depleted extract equally well as in the control. Chicken erythrocyte nuclei, however, which have a very low content of topo II, do not convert to condensed chromosomes in the depleted extract, although their condensation is normal upon addition of purified topo II. Dosage experiments support the possible notion of a structural involvement of topo II in chromosome condensation. In the topo II-depleted extract the erythrocyte nuclei progress to precondensation chromosomes, which lack the nuclear membrane-lamina complex and consist of a cluster of swollen chromatids.
Collapse
Affiliation(s)
- Y Adachi
- University of Geneva, Department of Biochemistry, Switzerland
| | | | | |
Collapse
|
46
|
Abstract
The DNA double helix exhibits local sequence-dependent polymorphism at the level of the single base pair and dinucleotide step. Curvature of the DNA molecule occurs in DNA regions with a specific type of nucleotide sequence periodicities. Negative supercoiling induces in vitro local nucleotide sequence-dependent DNA structures such as cruciforms, left-handed DNA, multistranded structures, etc. Techniques based on chemical probes have been proposed that make it possible to study DNA local structures in cells. Recent results suggest that the local DNA structures observed in vitro exist in the cell, but their occurrence and structural details are dependent on the DNA superhelical density in the cell and can be related to some cellular processes.
Collapse
Affiliation(s)
- E Palecek
- Max-Planck Institut für Biophysikalische Chemie, Göttingen, BRD
| |
Collapse
|
47
|
Abstract
A DNA structure is defined as paranemic if the participating strands can be separated without mutual rotation of the opposite strands. The experimental methods employed to detect paranemic, unwound, DNA regions is described, including probing by single-strand specific nucleases (SNN), conformation-specific chemical probes, topoisomer analysis, NMR, and other physical methods. The available evidence for the following paranemic structures is surveyed: single-stranded DNA, slippage structures, cruciforms, alternating B-Z regions, triplexes (H-DNA), paranemic duplexes and RNA, protein-stabilized paranemic DNA. The problem of DNA unwinding during gene copying processes is analyzed; the possibility that extended paranemic DNA regions are transiently formed during replication, transcription, and recombination is considered, and the evidence supporting the participation of paranemic DNA forms in genes committed to or undergoing copying processes is summarized.
Collapse
MESH Headings
- Animals
- Base Sequence
- Chromosomes/ultrastructure
- DNA/drug effects
- DNA/metabolism
- DNA/ultrastructure
- DNA Helicases/metabolism
- DNA Replication
- DNA Topoisomerases, Type I/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Single-Stranded/drug effects
- DNA, Single-Stranded/metabolism
- DNA, Single-Stranded/ultrastructure
- DNA, Superhelical/drug effects
- DNA, Superhelical/metabolism
- DNA, Superhelical/ultrastructure
- DNA-Binding Proteins/metabolism
- Endonucleases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Nucleic Acid Conformation/drug effects
- Nucleic Acid Denaturation
- Plasmids
- Transcription, Genetic
Collapse
Affiliation(s)
- G Yagil
- Department of Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
48
|
Karlovsky P, Pecinka P, Vojtiskova M, Makaturova E, Palecek E. Protonated triplex DNA in E. coli cells as detected by chemical probing. FEBS Lett 1990; 274:39-42. [PMID: 2253780 DOI: 10.1016/0014-5793(90)81324-h] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The triplex structure in vitro is well established; however, no direct evidence has been available concerning its existence in the cell. Using the direct chemical probing here we show that the triplex H structure can exist in E. coli cells at acidic intracellular pH values; this structure differs in some details from that observed in vitro.
Collapse
Affiliation(s)
- P Karlovsky
- Institute of Biophysics, Czechoslovak Academy of Sciences, Brno
| | | | | | | | | |
Collapse
|
49
|
Song L, Fujimoto BS, Wu PG, Thomas JC, Shibata JH, Schurr JM. Evidence for allosteric transitions in secondary structure induced by superhelical stress. J Mol Biol 1990; 214:307-26. [PMID: 2370668 DOI: 10.1016/0022-2836(90)90163-g] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Previous studies suggest that the global secondary structures of native supercoiled and equilibrium linear DNAs may differ somewhat. Recent evidence also indicates that metastable secondary structure commonly persists following complete relaxation of the superhelical stress by intercalating dyes or by the action of topoisomerase I. In this work, the torsion constants (alpha) of pBR322, pUC8 and M13mp7 (replicative form) DNAs are determined by time-resolved fluorescence polarization anisotropy at various times subsequent to linearization. In all three cases, the torsion constants are relatively low immediately after linearization, and evolve for eight to ten weeks before reaching their apparent equilibrium values. It is shown in detail how the persistence of metastable secondary structure, subsequent to relaxation of superhelical stress, necessarily implies that one or more transitions in equilibrium secondary structure are induced as the superhelix density is varied from zero to native, or vice versa. Samples of pUC8 dimer (5434 base-pairs) with different superhelix densities are prepared by the action of topoisomerase I in the presence of various amounts of ethidium. Their median linking number differences are determined by standard band counting methods. The translational diffusion coefficient (Do) and the plateau diffusion coefficient (Dplat) characterizing internal motions over short distances (225 A) are determined by dynamic light-scattering. The torsion constant (alpha) between base-pairs and the circular dichroism spectrum are also measured for each sample. Curves of Dplat, Do, alpha and molar ellipticity ([theta]) (at the minimum near 250 nm) versus superhelix density (sigma) are constructed. The curve of Do versus sigma is very similar to that for sedimentation coefficient versus sigma for simian virus 40 (SV40) and polyoma DNAs. The curves of Dplat, Do, alpha and [theta] versus sigma show that, with increasing negative superhelix density, a structural transition occurs near sigma = -0.020 to an intermediate state with low torsion constant, and a second structural transition occurs near sigma = -0.035 to a state that exhibits more normal properties by sigma = -0.048. These data are consistent with the hypothesis that supercoiling induces two successive allosteric transitions to alternative global secondary structures. The data are much less consistent with the hypothesis that supercoiling induces some radical secondary structure at one or a few sites of small extent at sigma = -0.020, and at other sites at sigma = -0.035, or with hypotheses based on changes in tertiary structure alone.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L Song
- Department of Chemistry, University of Washington, Seattle 98195
| | | | | | | | | | | |
Collapse
|
50
|
Koo HS, Wu HY, Liu LF. Effects of transcription and translation on gyrase-mediated DNA cleavage in Escherichia coli. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38345-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|