1
|
Pavlova I, Ruda-Kucerova J. Brain metabolic derangements examined using 1H MRS and their (in)consistency among different rodent models of depression. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110808. [PMID: 37301420 DOI: 10.1016/j.pnpbp.2023.110808] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Major depressive disorder (MDD) is underlined by neurochemical changes in the brain. Proton magnetic resonance spectroscopy (1H MRS) is a useful tool for their examination as it provides information about the levels of metabolites. This review summarises the current knowledge of 1H MRS findings from rodent models of MDD, assesses the results from both a biological and a technical perspective, and identifies the main sources of bias. From a technical point of view, bias-introducing factors are the diversity of the measured volumes and their positioning in the brain, the data processing, and the metabolite concentration expression. The biological variables are strain, sex, and species, as well as the model itself, and in vivo vs. ex vivo exploration. This review identified some consistency in the 1H MRS findings in the models of MDD: lower levels of glutamine, glutamate + glutamine, and higher levels of myo-inositol and taurine in most of the brain regions of MDD models. This may suggest changes in regional metabolism, neuronal dysregulation, inflammation, and a compensatory effect reaction in the MDD rodent models.
Collapse
Affiliation(s)
- Iveta Pavlova
- Institute of Scientific Instruments of the Czech Academy of Sciences, Královopolská 147, 612 00 Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic.
| | - Jana Ruda-Kucerova
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic.
| |
Collapse
|
2
|
Du E, Hu X, Roy S, Wang P, Deasy K, Mochizuki T, Zhang Y. Taurine-modified Ru(ii)-complex targets cancerous brain cells for photodynamic therapy. Chem Commun (Camb) 2017; 53:6033-6036. [DOI: 10.1039/c7cc03337k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Symmetrical taurine modification not only enhances the intracellular affinity of a polypyridyl Ru-complex to cancer cells, but also boosts the quantum yield in a pH-independent manner without sacrificing water solubility for cytosolic photosensitizers of photodynamic therapy, with prominent efficacy in cancerous brain cells.
Collapse
Affiliation(s)
- Enming Du
- Bioinspired Soft Matter Unit
- Okinawa Institute of Science and Technology
- Onna-son
- Japan
| | - Xunwu Hu
- Bioinspired Soft Matter Unit
- Okinawa Institute of Science and Technology
- Onna-son
- Japan
| | - Sona Roy
- Bioinspired Soft Matter Unit
- Okinawa Institute of Science and Technology
- Onna-son
- Japan
| | - Peng Wang
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- People's Republic of China
| | - Kieran Deasy
- Mechanical Engineering & Microfabrication Support Section
- Okinawa Institute of Science and Technology
- Onna-son
- Japan
| | | | - Ye Zhang
- Bioinspired Soft Matter Unit
- Okinawa Institute of Science and Technology
- Onna-son
- Japan
| |
Collapse
|
3
|
Milioni F, Malta EDS, Rocha LGSDA, Mesquita CAA, de Freitas EC, Zagatto AM. Acute administration of high doses of taurine does not substantially improve high-intensity running performance and the effect on maximal accumulated oxygen deficit is unclear. Appl Physiol Nutr Metab 2016; 41:498-503. [DOI: 10.1139/apnm-2015-0435] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to investigate the effects of acute administration of taurine overload on time to exhaustion (TTE) of high-intensity running performance and alternative maximal accumulated oxygen deficit (MAODALT). The study design was a randomized, placebo-controlled, crossover design. Seventeen healthy male volunteers (age: 25 ± 6 years; maximal oxygen uptake: 50.5 ± 7.6 mL·kg−1·min−1) performed an incremental treadmill-running test until voluntary exhaustion to determine maximal oxygen uptake and exercise intensity at maximal oxygen uptake. Subsequently, participants completed randomly 2 bouts of supramaximal treadmill-running at 110% exercise intensity at maximal oxygen uptake until exhaustion (placebo (6 g dextrose) or taurine (6 g) supplementation), separated by 1 week. MAODALT was determined using a single supramaximal effort by summating the contribution of the phosphagen and glycolytic pathways. When comparing the results of the supramaximal trials (i.e., placebo and taurine conditions) no differences were observed for high-intensity running TTE (237.70 ± 66.00 and 277.30 ± 40.64 s; p = 0.44) and MAODALT (55.77 ± 8.22 and 55.06 ± 7.89 mL·kg−1; p = 0.61), which seem to indicate trivial and unclear differences using the magnitude-based inferences approach, respectively. In conclusion, acute 6 g taurine supplementation before exercise did not substantially improve high-intensity running performance and showed an unclear effect on MAODALT.
Collapse
Affiliation(s)
- Fabio Milioni
- Laboratory of Physiology and Human Performance, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
- Department of Physical Education, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Elvis de Souza Malta
- Laboratory of Physiology and Human Performance, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
- Department of Physical Education, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | | | - Ellen Cristini de Freitas
- School of Physical Education and Sports of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alessandro Moura Zagatto
- Laboratory of Physiology and Human Performance, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
- Department of Physical Education, UNESP – Univ Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
4
|
Selective breeding for helplessness in rats alters the metabolic profile of the hippocampus and frontal cortex: a 1H-MRS study at 9.4 T. Int J Neuropsychopharmacol 2013; 16:199-212. [PMID: 22272798 DOI: 10.1017/s1461145711001994] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In humans metabolic changes, particularly in frontal areas of the brain, accompany depressive disorders, but few studies were conducted in animal models of depression. We used hydrogen-1 magnetic resonance spectroscopy at 9.4 T to measure the metabolic profiles of the hippocampus and frontal cortex in congenital learned helpless (cLH) and wild-type (WT) rats. The learned helplessness model of depression exposes animals to uncontrollable stress to induce changes in emotion, cognition and behaviour, but cLH rats were selectively bred to show changes in behaviour even without exposure to uncontrollable stress. Experimentally naive male 8- to 10-wk-old cLH (n = 10) and WT rats (n = 22) underwent spectroscopy and were exposed to uncontrollable stress 1 wk after the scan. We found that cLH compared to WT rats had lower levels of glutamate in the hippocampus and lower levels of choline-containing compounds in the hippocampus and frontal cortex, but higher levels of taurine and phosphocreatine in these regions, pointing to compensatory efforts of the brain to reduce excitotoxic potential and to increase neuroprotection and energy, possibly as a result of cellular stress and damage. The reduction in choline-containing phospholipids might represent a source or correlate of such stress. Overall, the results indicate that metabolic abnormalities are present in animals with a predisposition to helplessness even without exposure to explicit stress and may help identify non-invasive biomarkers in individuals who are prone to depression.
Collapse
|
5
|
Lehmann A, Hagberg H, Huxtable RJ, Sandberg M. Reduction of brain taurine: Effects on neurotoxic and metabolic actions of kainate. Neurochem Int 2012; 10:265-74. [PMID: 20501095 DOI: 10.1016/0197-0186(87)90099-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1986] [Accepted: 09/18/1986] [Indexed: 11/28/2022]
Abstract
The effects of chronic administration of 2-guanidinoethane sulfonic acid on the levels of intra- and extracellular amino acids in the rat hippocampus were studied. The tissue content of taurine was selectively reduced by almost one third after 9 days of peroral administration of 1% 2-guanidinoethane sulfonate. Extracellular levels of amino acids were monitored with the brain microdialysis method. The taurine concentration in the extracellular fluid was depressed in relation to the decrease in intracellular taurine. Unexpectedly, extracellular (but not intracellular) glutamate was doubled in 2-guanidinoethane sulfonate treated animals. The kainic acid evoked release of taurine was suppressed in the 2-guanidinoethane sulfonate group, whereas the kainate stimulated efflux of glutamate was elevated after 2-guanidinoethane sulfonate administration. The acute metabolic effects of kainate were studied by measuring the efflux of the adenosine triphosphate breakdown products hypoxanthine, xanthine, inosine and adenosine. No differences were found between control and 2-guanidinoethane sulfonate treated rats with respect to basal or kainic acid evoked release of purine catabolites. Also, the neuronal loss caused by kainate injection into the hippocampus was not modified by 2-guanidinoethane sulfonate treatment, suggesting that endogenous taurine does not affect these responses. We conclude that chronic administration of 2-guanidinoethane sulfonate does not sensitize central neurons to the metabolic and toxic actions of kainate.
Collapse
Affiliation(s)
- A Lehmann
- Institute of Neurobiology, University of Göteborg, Göteborg, Sweden; Department of Zoophysiology, University of Göteborg, Göteborg, Sweden
| | | | | | | |
Collapse
|
6
|
COMMUNICATIONS. Br J Pharmacol 2012. [DOI: 10.1111/j.1476-5381.1985.tb14736.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Mak KMC, Lo ACY, Lam AKM, Yeung PKK, Ko BCB, Chung SSM, Chung SK. Nuclear factor of activated T cells 5 deficiency increases the severity of neuronal cell death in ischemic injury. Neurosignals 2012; 20:237-51. [PMID: 23172129 DOI: 10.1159/000331899] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/11/2011] [Indexed: 11/19/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has been implicated in regulating several genes that are thought to be neuroprotective in ischemic injury. Because of the embryonic lethality of NFAT5 knockout (NFAT5(-/-)) mice, the heterozygous (NFAT5(+/-)) mice were used to study the in vivo role of NFAT5 in hypoxia/ischemia (H/I) condition. The NFAT5(+/-) mice exhibited more severe neurological deficits, larger infarct area and edema formation associated with increased aquaporin 4 expressions in the brain. Under in vitro H/I condition, increased apoptotic cell death was found in NFAT5(-/-) neurons. Moreover, SMIT, a downstream to NFAT5, was upregulated in NFAT5(+/+) neurons, while the SMIT level could not be upregulated in NFAT5(-/-) neurons under H/I condition. The elevation of reactive oxygen species generation in NFAT5(-/-) neurons under H/I condition further confirmed that NFAT5(-/-) neurons were more susceptible to oxidative stress. The present study demonstrated that activation of NFAT5 and its downstream SMIT induction is important in protecting neurons from ischemia-induced oxidative stress.
Collapse
Affiliation(s)
- Keri Man Chi Mak
- Department of Anatomy, Li Ka Shing Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Arnold KE, Ramsay SL, Donaldson C, Adam A. Parental prey selection affects risk-taking behaviour and spatial learning in avian offspring. Proc Biol Sci 2007; 274:2563-9. [PMID: 17698490 PMCID: PMC2275882 DOI: 10.1098/rspb.2007.0687] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early nutrition shapes life history. Parents should, therefore, provide a diet that will optimize the nutrient intake of their offspring. In a number of passerines, there is an often observed, but unexplained, peak in spider provisioning during chick development. We show that the proportion of spiders in the diet of nestling blue tits, Cyanistes caeruleus, varies significantly with the age of chicks but is unrelated to the timing of breeding or spider availability. Moreover, this parental prey selection supplies nestlings with high levels of taurine particularly at younger ages. This amino acid is known to be both vital and limiting for mammalian development and consequently found in high concentrations in placenta and milk. Based on the known roles of taurine in mammalian brain development and function, we then asked whether by supplying taurine-rich spiders, avian parents influence the stress responsiveness and cognitive function of their offspring. To test this, we provided wild blue tit nestlings with either a taurine supplement or control treatment once daily from the ages of 2-14 days. Then pairs of size- and sex-matched siblings were brought into captivity for behavioural testing. We found that juveniles that had received additional taurine as neonates took significantly greater risks when investigating novel objects than controls. Taurine birds were also more successful at a spatial learning task than controls. Additionally, those individuals that succeeded at a spatial learning task had shown intermediate levels of risk taking. Non-learners were generally very risk-averse controls. Early diet therefore has downstream impacts on behavioural characteristics that could affect fitness via foraging and competitive performance. Fine-scale prey selection is a mechanism by which parents can manipulate the behavioural phenotype of offspring.
Collapse
Affiliation(s)
- Kathryn E Arnold
- Division of Environmental and Evolutionary Biology, Institute of Biomedical and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | |
Collapse
|
9
|
Baran H. Alterations of taurine in the brain of chronic kainic acid epilepsy model. Amino Acids 2006; 31:303-7. [PMID: 16622602 DOI: 10.1007/s00726-005-0278-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 12/01/2005] [Indexed: 01/27/2023]
Abstract
The aim of the study was to investigate the changes of taurine in the kainic acid (KA, 10 mg/kg, s.c.) chronic model of epilepsy, six months after KA application. The KA-rats used were divided into a group of animals showing weak behavioural response to KA (WDS, rare focal convulsion; rating scale <2 up to 3 h after KA injection) and a group of strong response to KA (WDS, seizures; rating >3 up to 3 h after KA injection). The brain regions investigated were caudate nucleus, substantia nigra, septum, hippocampus, amygdala/piriform cortex, and frontal, parietal, temporal and occipital cortices. KA-rats with rating <2 developed spontaneous WDS which occurred chronically and six months after KA injection increased taurine levels were found in the hippocampus (125.4% of control). KA-rats with rating >3 developed spontaneous recurrent seizures and six months after injection increased taurine levels were found in the caudate nucleus (162.5% of control) and hippocampus (126.6% of control), while reduced taurine levels were seen in the septum (78.2% of control). In summary, increased taurine levels in the hippocampus may involve processes for membrane stabilisation, thus favouring recovery after neuronal hyperactivity. The increased taurine levels in the caudate nucleus could be involved in the modulation of spontaneous recurrent seizure activity.
Collapse
Affiliation(s)
- H Baran
- Department of Natural Sciences, Institute of Physiology, Veterinary Medical University Vienna, Vienna, Austria.
| |
Collapse
|
10
|
García Dopico J, Perdomo Díaz J, Alonso TJ, González Hernández T, Castro Fuentes R, Rodríguez Díaz M. Extracellular taurine in the substantia nigra: Taurine-glutamate interaction. J Neurosci Res 2004; 76:528-38. [PMID: 15114625 DOI: 10.1002/jnr.20108] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Taurine has been proposed as an inhibitory transmitter in the substantia nigra (SN), but the mechanisms involved in its release and uptake remain practically unexplored. We studied the extracellular pool of taurine in the rat's SN by using microdialysis methods, paying particular attention to the taurine-glutamate (GLU) interaction. Extracellular taurine increased after cell depolarization with high-K(+) in a Ca(2+)-dependent manner, being modified by the local perfusion of GLU, GLU receptor agonists, and zinc. Nigral administration of taurine increased the extracellular concentration of gamma-aminobutyric acid (GABA) and GLU, the transmitters of the two main inputs of the SN. The modification of the glial metabolism with fluocitrate and L-methionine sulfoximine also changed the extracellular concentration of taurine. The complex regulation of the extracellular pool of taurine, its interaction with GABA and GLU, and the involvement of glial cells in its regulation suggest a volume transmission role for taurine in the SN.
Collapse
Affiliation(s)
- José García Dopico
- Unidad de Investigación del Hospital Universitario de Canarias, La Laguna, Tenerife, Canary Islands, Spain
| | | | | | | | | | | |
Collapse
|
11
|
Schousboe A, Larsson OM, Frandsen A, Belhage B, Pasantes-Morales H, Krogsgaard-Larsen P. Neuromodulatory actions of glutamate, GABA and taurine: regulatory role of astrocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 296:165-80. [PMID: 1685849 DOI: 10.1007/978-1-4684-8047-4_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- A Schousboe
- Dept. of Biology, Royal Danish School of Pharmacy, Copenhagen
| | | | | | | | | | | |
Collapse
|
12
|
Aschner M, Cao CC, Wu Q, Friedman MA. The acute effects of acrylamide on astrocyte functions. Ann N Y Acad Sci 2003; 993:296-304; discussion 345-9. [PMID: 12853321 DOI: 10.1111/j.1749-6632.2003.tb07537.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We assessed biochemical endpoints indicative of acute toxicity in neonatal rat primary astrocyte cultures exposed to acrylamide. Metallothionein (MT), glutamine synthetase (GS), glutamate/aspartate transporter (GLAST), and taurine transporter (tau-T) mRNA expression levels as well as cell volume were determined in astrocytes acutely treated with 0.1 and 1.0 mM acrylamide. Statistically significant changes in acrylamide treated astrocytes were noted for GS (0.1 mM) and GLAST (1.0 mM) mRNA expression levels. All other measurements were insignificant in comparison with controls, suggesting that astrocytic function is minimally compromised even at exceedingly high levels of acute acrylamide exposure.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Physiology and Pharmacology and Interdisciplinary Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | | | |
Collapse
|
13
|
Ibuki T, Marsala M, Masuyama T, Yaksh TL. Spinal amino acid release and repeated withdrawal in spinal morphine tolerant rats. Br J Pharmacol 2003; 138:689-97. [PMID: 12598423 PMCID: PMC1573708 DOI: 10.1038/sj.bjp.0705102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. We used spinal microdialysis in awake rats to investigate whether the repeated withdrawal with naloxone during continuous spinal infusion of morphine would lead to a progressively greater spinal glutamate release and a more pronounced intrathecal tolerance. 2. Rats received lumbar intrathecal (IT) infusion of morphine (IT-M: 20 nmol microl(-1) h(-1)) or saline (IT-S: 1 microl h(-1)) continuously for 3 days. Both groups were further subdivided to receive intraperitoneal (i.p.) injection of naloxone (IP-N: 0.6 mg kg(-1)) or saline (IP-S: 3 ml kg(-1)) every 24 h after the beginning of IT infusion. Daily thermal escape latencies, withdrawal signs, the resting basal release of spinal amino acids before IP injection and the release immediately after the injection (evoked) were measured. 3. Rats receiving IT morphine showed a maximum increase in thermal escape latency on day 1, after which this value declined, with the fastest decline observed in IT morphine + IP naloxone group. On day 1, no significant difference was observed among groups in the resting basal release of amino acids. Rats in IT morphine + i.p. naloxone group displayed a progressive increase in this value. The release was not significantly altered in other groups. 4. For the IT-M + IP-N group, basal resting dialysate concentrations of Glu, Asp and Tau rose steadily over the 3-day infusion interval. No change in basal resting release was noted for any other treatment. 5. Evoked release (after i.p. naloxone) in IT-M animals displayed a progressive increase over the three repeated exposures. Evoked release did not change significantly in other treatment groups. 6. The degree of precipitated withdrawal significantly correlated with the increase in glutamate acutely evoked by i.p. injection. 7. The present results show that periodic transient withdrawal of spinal opiate agonist activity leads to a progressive increase in glutamate outflow and withdrawal signs, in a manner consistent with an enhanced development of spinal tolerance.
Collapse
Affiliation(s)
- Takae Ibuki
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093-0818, USA.
| | | | | | | |
Collapse
|
14
|
Allen JW, Mutkus LA, Aschner M. Chronic ethanol produces increased taurine transport and efflux in cultured astrocytes. Neurotoxicology 2002; 23:693-700. [PMID: 12520759 DOI: 10.1016/s0161-813x(02)00027-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Due to ethanol's low potency and low level of toxicity, high amounts of ethanol are consumed to achieve pharmacological effects. Blood levels of ethanol in chronic alcoholics may reach as high as 80-100 mM. We undertook a series of studies to determine if these high levels of ethanol stimulated osmoregulatory processes in cultured astrocytes. The uptake and efflux of taurine, the major osmoregulatory amino acid with potentially neuroprotective actions, was assessed. In addition, uptake and efflux of the excitatory amino acid aspartate was studied since astrocytes are vital in maintaining proper synaptic excitatory amino levels through uptake, metabolism, and efflux. Ethanol exposure for 96 h resulted in increased uptake of both 3H-taurine and 3H-D-asparate. There were no significant changes in transporter function at 24 h consistent with the delayed time course of transporter up-regulation seen during chronic hyperosmotic stress. Following EtOH withdrawal, efflux of preloaded 3H-taurine was significantly increased as compared to controls for up to 1 h. In contrast to the efflux profile seen during hypotonic induced swelling and regulatory volume decrease (RVD), no increased 3H-D-asparate efflux was demonstrated. Cell volume measurements suggest that inhibition of the normal RVD response be involved in the increased taurine release.
Collapse
Affiliation(s)
- Jeffrey W Allen
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
15
|
Chen WQ, Jin H, Nguyen M, Carr J, Lee YJ, Hsu CC, Faiman MD, Schloss JV, Wu JY. Role of taurine in regulation of intracellular calcium level and neuroprotective function in cultured neurons. J Neurosci Res 2001; 66:612-9. [PMID: 11746381 DOI: 10.1002/jnr.10027] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate-induced excitotoxicity has been implicated as an important mechanism underlying a variety of brain injuries and neurodegenerative diseases. Previously we have shown that taurine has protective effects against glutamate-induced neuronal injury in cultured neurons. Here we propose that the primary underlying mechanism of the neuroprotective function of taurine is due to its action in preventing or reducing glutamate-induced elevation of intracellular free calcium, [Ca(2+)](i). This hypothesis is supported by the following findings. First, taurine transport inhibitors, e.g., guanidinoethyl sulfonate and beta-alanine, have no effect on taurine's neuroprotective function, suggesting that taurine protects against glutamate-induced neuronal damage through its action on the extracellular membranes. Second, glutamate-induced elevation of [Ca(2+)](i) is reduced to the basal level upon addition of taurine. Third, pretreatment of cultured neurons with taurine prevents or greatly suppresses the elevation of [Ca(2+)](i) induced by glutamate. Furthermore, taurine was found to inhibit the influx but not the efflux of (45)Ca(2+) in cultured neurons. Taurine has little effect on the binding of [(3)H]glutamate to the agonist binding site and of [(3)H]MDL 105,519 to the glycine binding site of the N-methyl-D-aspartic acid receptors, suggesting that taurine inhibits (45)Ca(2+) influx through other mechanisms, including its inhibitory effect on the reverse mode of the Na(+)/Ca(2+) exchangers (Wu et al. [2000] In: Taurine 4: taurine and excitable tissues. New York: Kluwer Academic/Plenum Publishers. p 35-44) rather than serving as an antagonist to the N-methyl-D-aspartic acid receptors.
Collapse
Affiliation(s)
- W Q Chen
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Del Arco A, Segovia G, Prieto L, Mora F. Endogenous glutamate-taurine interaction in striatum and nucleus accumbens of the freely moving rat: studies during the normal process of aging. Mech Ageing Dev 2001; 122:401-14. [PMID: 11240162 DOI: 10.1016/s0047-6374(00)00252-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using microdialysis, the effects of endogenous glutamate on extracellular concentrations of taurine, in striatum and nucleus accumbens of the awake rat during the normal process of aging were investigated. The glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) was perfused through the microdialysis probe to increase the endogenous concentration of glutamate. Young (2-4 months), middle aged (12-14 months), aged (27-32 months) and very aged (37 months) male Wistar rats were used. PDC (1, 2 and 4 mM) produced a dose-related increase of extracellular concentrations of glutamate and taurine in striatum and nucleus accumbens in all groups of age. Increases of glutamate, but not of taurine, decreased during aging in striatum. In nucleus accumbens there were no age-related changes in the increases of glutamate and taurine induced by PDC. In all age groups, increases of extracellular taurine were significantly correlated with increases of extracellular glutamate. However, when these taurine-glutamate correlations for all groups of age were compared, no statistical differences were found. These results show first that a decrease in the increases of glutamate produced by the glutamate reuptake inhibitor in striatum, but not in nucleus accumbens, is produced by age; second that glutamate-taurine interaction in striatum and nucleus accumbens does not change during the normal process of aging.
Collapse
Affiliation(s)
- A Del Arco
- Department of Physiology, Faculty of Medicine, University Complutense, Cuidad Universitaria, s/n 28040 Madrid, Spain
| | | | | | | |
Collapse
|
17
|
Ooboshi H, Ibayashi S, Takano K, Sadoshima S, Kondo A, Uchimura H, Fujishima M. Hypothermia inhibits ischemia-induced efflux of amino acids and neuronal damage in the hippocampus of aged rats. Brain Res 2000; 884:23-30. [PMID: 11082483 DOI: 10.1016/s0006-8993(00)02861-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain hypothermia has been reported to protect against ischemic damages in adult animals. Our goal in this study was to examine whether brain hypothermia attenuates ischemic neuronal damages in the hippocampus of aged animals. We also determined effects of hypothermia on ischemia-induced releases of amino acids in the hippocampus. Temperature in the hippocampus of aged rats (19-23 months) was maintained at 36 degrees C (normothermia), 33 degrees C (mild hypothermia) or 30 degrees C (moderately hypothermia) using a thermoregulator during 20 min of transient forebrain ischemia. Cerebral ischemia increased extracellular concentrations of glutamate and aspartate by 6- and 5-fold, respectively, in the normothermic group. Mild and moderate hypothermia, however, markedly inhibited the rise of these amino acids to less than 2-fold. Elevation of extracellular taurine, a putative inhibitory amino acid, was 16-fold in the normothermic rats. Mild hypothermia attenuated ischemia-induced increase in taurine (10-fold), and moderate hypothermia inhibited the increase. Ischemic damages, evaluated by histopathological grading of hippocampal CA1 area 7 days after ischemia, was significantly ameliorated in the mild (1.3+/-0.5, mean+/-S.E.M.) and moderate hypothermic rats (0.8+/-0.3) compared with the normothermic ones (3.4+/-0.4). These results suggest that brain hypothermia protects against ischemic neuronal damages even in the aged animals, and the protection is associated with inhibition of excessive effluxes of both excitatory and inhibitory amino acids.
Collapse
Affiliation(s)
- H Ooboshi
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, 812-8582, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Larson AA, Giovengo SL, Russell JI, Michalek JE. Changes in the concentrations of amino acids in the cerebrospinal fluid that correlate with pain in patients with fibromyalgia: implications for nitric oxide pathways. Pain 2000; 87:201-211. [PMID: 10924813 DOI: 10.1016/s0304-3959(00)00284-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substance P (SP), a putative nociceptive transmitter, is increased in the CSF of patients with fibromyalgia syndrome (FMS). Because excitatory amino acids (EAAs) also appear to transmit pain, we hypothesized that CSF EAAs may be similarly involved in this syndrome. We found that the mean concentrations of most amino acids in the CSF did not differ amongst groups of subjects with primary FMS (PFMS), fibromyalgia associated with other conditions (SFMS), other painful conditions not exhibiting fibromyalgia (OTHER) or age-matched, healthy normal controls (HNC). However, in SFMS patients, individual measures of pain intensity, determined using an examination-based measure of pain intensity, the tender point index (TPI), covaried with their respective concentrations of glutamine and asparagine, metabolites of glutamate and aspartate, respectively. This suggests that re-uptake and biotransformation mask pain-related increases in EAAs. Individual concentrations of glycine and taurine also correlated with their respective TPI values in patients with PFMS. While taurine is affected by a variety of excitatory manipulations, glycine is an inhibitory transmitter as well as a positive modulator of the N-methyl-D-asparate (NMDA) receptor. In both PFMS and SFMS patients, TPI covaried with arginine, the precursor to nitric oxide (NO), whose concentrations, in turn, correlated with those of citrulline, a byproduct of NO synthesis. These events predict involvement of NO, a potent signaling molecule thought to be involved in pain processing. Together these metabolic changes that covary with the intensity of pain in patients with FMS may reflect increased EAA release and a positive modulation of NMDA receptors by glycine, perhaps resulting in enhanced synthesis of NO.
Collapse
Affiliation(s)
- Alice A Larson
- Graduate Program in Neuroscience, 295 Animal Science/Veterinary Medicine Building, University of Minnesota, 1988 Fitch Avenue, St. Paul, MN 55108, USA Department of Veterinary Pathobiology, University of Minnesota, 1988 Fitch Avenue, Rm 295, St. Paul, MN 55108, USA Department of Medicine/Clinical Immunology, University of Texas Health Science Center, 7703 Floyd Curl Drive, Box 7868, San Antonio, TX 78229-3900, USA University of Texas Health Science Center, University Clinical Research Center, 7434 Louis Pasteur Drive, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
19
|
del Olmo N, Bustamante J, del Río RM, Solís JM. Taurine activates GABA(A) but not GABA(B) receptors in rat hippocampal CA1 area. Brain Res 2000; 864:298-307. [PMID: 10802037 DOI: 10.1016/s0006-8993(00)02211-3] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated if taurine, an endogenous GABA analog, could mimic both hyperpolarizing and depolarizing GABA(A)-mediated responses as well as pre- and postsynaptic GABA(B)-mediated actions in the CA1 region of rat hippocampal slices. Taurine (10 mM) perfusion induced changes in membrane potential and input resistance that are compatible with GABA(A) receptor activation. Local pressure application of taurine and GABA from a double barrel pipette positioned along the dendritic shaft of pyramidal cells revealed that taurine evoked a very small change of membrane potential and resistance compared with the large changes induced by GABA in these parameters. Moreover, in the presence of GABA(A) antagonists, local application of GABA on the dendrites evoked a GABA(B)-mediated hyperpolarization while taurine did not induce any change. Taurine neither mimicked baclofen inhibitory actions on presynaptic release of glutamate and GABA as judging by the lack of taurine effect on paired-pulse facilitation ratio and slow inhibitory postsynaptic potentials, respectively. These results show that taurine mainly activates GABA(A) receptors located on the cell body, indicating therefore that if taurine has any action on the dendrites it will not be mediated by either GABA(A) or GABA(B) receptors activation.
Collapse
Affiliation(s)
- N del Olmo
- Servicio de Neurobiología, Departamento de Investigación, Hospital Ramón y Cajal, Ctra. de Colmenar Km 9, 28034, Madrid, Spain
| | | | | | | |
Collapse
|
20
|
Ishikawa T, Marsala M, Sakabe T, Yaksh TL. Characterization of spinal amino acid release and touch-evoked allodynia produced by spinal glycine or GABA(A) receptor antagonist. Neuroscience 2000; 95:781-6. [PMID: 10670445 DOI: 10.1016/s0306-4522(99)00461-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrathecal strychnine (glycine antagonist) or bicuculline (GABA(A) antagonist) yields a touch-evoked agitation that is blocked by N-methyl-D-aspartate receptor antagonism. We examined the effects of intrathecal strychnine and bicuculline on touch-evoked agitation and the spinal release of amino acids. Fifty-two Sprague-Dawley rats were prepared under halothane anesthesia with a lumbar intrathecal catheter and a loop dialysis catheter. Four days after implantation, rats were randomized to receive an intrathecal injection of N-methyl-D-aspartate (3 microg), strychnine (3 microg) or bicuculline (10 microg), or a combination of N-methyl-D-aspartate with bicuculline or strychnine. The agitation produced by brief light tactile stroking of the flank (tactile allodynia), and the spontaneous spinal release of glutamate, taurine and serine was measured. Intrathecal N-methyl-D-aspartate, strychnine and bicuculline produced similar touch-evoked allodynia. Intrathecal bicuculline and N-methyl-D-aspartate alone evoked a transient spinal release of glutamate and taurine, but not serine, in the 0- 10 min sample, while strychnine did not affect spinal transmitter release at any time. As GABA(A) but not glycine receptor inhibition at equi-allodynic doses increases glutamate release, while the allodynia of both is blocked by N-methyl-D-aspartate receptor antagonism, we hypothesize that GABA(A) sites regulate presynaptic glutamate release, while glycine regulates the excitability of neurons postsynaptic to glutamatergic terminals.
Collapse
Affiliation(s)
- T Ishikawa
- Department of Anesthesiology, University of California at San Diego, La Jolla 92093, USA
| | | | | | | |
Collapse
|
21
|
Saransaari P, Oja SS. Characteristics of ischemia-induced taurine release in the developing mouse hippocampus. Neuroscience 1999; 94:949-54. [PMID: 10579587 DOI: 10.1016/s0306-4522(99)00384-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Taurine release in the developing hippocampus is markedly potentiated in ischemia. The mechanisms of the ischemia-induced release were studied in hippocampal slices from seven-day-old mice using a superfusion system. The basal release of [3H]taurine was significantly increased in media under normal conditions, but the ischemia-evoked release decreased in Na+ -free media, indicating the participation of Na+ -dependent transport processes. The involvement of taurine transporters in the release was confirmed with the structural analogs, hypotaurine and beta-alanine. These amino acids potentiated the release by trans-stimulation, but not in Na+ -free media. In the absence of Ca2+, the basal taurine release was markedly increased in normoxia but diminished in ischemia, indicating that a part of basal taurine release in ischemia is Ca2+ dependent. On the other hand, the K+ stimulation of taurine release was preserved in Ca2+ -free medium. The phospholipase and protein kinase inhibitors had no effect on ischemia-induced taurine release, nor did the chloride channel blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonate (2 mM) and diisothiocyanostilbene-2,2'-disulfonate (0.1 mM) affect the release in ischemia. The increase in extracellular levels of taurine in the immature hippocampus in ischemia may serve as an important protective mechanism against excitotoxicity, to which the developing brain is particularly vulnerable, and contribute to the resistance of the immature brain to hypoxia.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
22
|
Saransaari P, Oja SS. Taurine release is enhanced in cell-damaging conditions in cultured cerebral cortical astrocytes. Neurochem Res 1999; 24:1523-9. [PMID: 10591401 DOI: 10.1023/a:1021195830773] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of preloaded [3H]taurine from cultured cerebral cortical astrocytes was studied under various cell-damaging conditions, including hypoxia, ischemia, aglycemia and oxidative stress, and in the presence of free radicals. Astrocytic taurine release was enhanced by K+ (50 mM), veratridine (0.1 mM) and the ionotropic glutamate receptor agonist kainate (1.0 mM). Metabotropic glutamate receptor agonists had only weak effects on taurine release. Similarly to the swelling-induced taurine release the efflux in normoxia seems to be mediated mainly by DIDS-(diisothiocyanostilbene-2,2'-disulphonate) and SITS-(4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate) sensitive CI- channels, since these blockers were able to reduce both basal and K+ -stimulated release. The basal release of taurine was moderately enhanced in hypoxia and ischemia, whereas the potentiation in the presence of free radicals was marked. The small basal release from astrocytes signifies that taurine release from brain tissue in ischemia may originate from neurons rather than glial cells. On the other hand, the release evoked by K+ in hypoxia and ischemia was greater than in normoxia, with a very slow time-course. The enhanced release of the inhibitory amino acid taurine from astrocytes in ischemia may be beneficial to surrounding neurons, outlasting the initial stimulus and counteracting overexcitation.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, University of Tampere Medical School, Finland.
| | | |
Collapse
|
23
|
Venero C, Borrell J. Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 1999; 11:2465-73. [PMID: 10383636 DOI: 10.1046/j.1460-9568.1999.00668.x] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucocorticoids can rapidly affect neuronal function and behaviour in mammals. Several studies have suggested the possible existence of rapid, non-genomic effects of glucocorticoids in the hippocampus. To investigate whether glucocorticoids could affect neurotransmission in the hippocampus through rapid, non-genomic mechanisms, we studied the effects of acute glucocorticoid administration on extracellular amino acid levels in the CA1 area of the hippocampus. By means of microdialysis on freely moving rats, we observed that an intraperitoneal injection of corticosterone (2.5 mg/kg) induced a rapid (within 15 min) and transient (returning to basal levels by 35-45 min) increase in extracellular aspartate and glutamate levels ( approximately 155-160%), both in sham-operated and adrenalectomized rats. These effects occurred in parallel with a rise in corticosterone concentration, also detected by microdialysis, in this hippocampal area. Intrahippocampal perfusion of corticosterone by retrodialysis also produced the same fast and reversible effects on excitatory amino acid (EAA) levels. Extracellular concentrations of taurine and gamma-aminobutyric acid (GABA) were unchanged after intrahippocampal glucocorticoid administration. This corticosterone-mediated rise in EAA levels was not inhibited by the presence of specific antagonists for the two types of intracellular corticosteroid receptors, nor by a protein synthesis inhibitor, anisomycin. Perfusion of dexamethasone, a synthetic glucocorticoid, elicited a similar effect to that observed with corticosterone treatment in all studied cases. However, non-glucocorticoid steroids did not affect amino acid transmission in this hippocampal area. These results indicate that glucocorticoids induce a rapid and transient increase in hippocampal EAA levels in vivo that might be exerted through a novel non-genomic mechanism of action.
Collapse
Affiliation(s)
- C Venero
- Psychobiology Research Group, Cajal Institute, CSIC, Avda Dr Arce 37, 28002 Madrid, Spain
| | | |
Collapse
|
24
|
Li PA, He QP, Miyashita H, Howllet W, Siesjö BK, Shuaib A. Hypothermia ameliorates ischemic brain damage and suppresses the release of extracellular amino acids in both normo- and hyperglycemic subjects. Exp Neurol 1999; 158:242-53. [PMID: 10448438 DOI: 10.1006/exnr.1999.7088] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
It has previously been shown that hypothermia markedly reduces cellular release of the excitatory amino acid glutamate and ameliorates ischemic damage. Based on extensive data showing that preischemic hyperglycemia exaggerates brain damage due to transient forebrain ischemia we posed the question whether glutamate release during ischemia in hyperglycemic rats is attenuated or prevented by induced hypothermia, and if such attenuation/prevention correlates with amelioration of the characteristic brain damage observed in hyperglycemic subjects. The experiments were performed in rats subjected to a 15-min period of forebrain ischemia, plasma glucose concentration being maintained at approximately 5 mM (control) or approximately 20 mM (hyperglycemia) prior to ischemia. Extracellular amino acid concentrations were measured by HPLC techniques on microdialysis samples which were collected from left dorsal hippocampus and right neocortex, and tissue damage was assessed by histopathology. Hypothermia (30 degrees C), which was induced 45 min prior to ischemia, reduced the neuronal damage not only in the ischemia-vulnerable regions but also in the normally ischemia-resistant areas that are recruited in the damage process in hyperglycemic subjects. The extracellular glutamate concentration was markedly increased in response to the ischemic insult in normothermic-normoglycemic animals. The concentration of glutamate was further increased in normothermic-hyperglycemic animals. Hypothermia inhibited the rise in glutamate concentrations, as well as in the concentrations of other excitatory and inhibitory amino acids. It is discussed whether hypothermia reduces the hyperglycemia-mediated damage by inhibiting extracellular glutamate release during an ischemic transient.
Collapse
Affiliation(s)
- P A Li
- Saskatchewan Stroke Research Centre, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Gruss M, Bredenkötter M, Braun K. N-methyl-D-aspartate receptor-mediated modulation of monoaminergic metabolites and amino acids in the chick forebrain: an in vivo microdialysis and electrophysiology study. JOURNAL OF NEUROBIOLOGY 1999; 40:116-35. [PMID: 10398076 DOI: 10.1002/(sici)1097-4695(199907)40:1<116::aid-neu10>3.0.co;2-m] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The associative avian forebrain region medio-rostral neostriatum/hyperstriatum ventrale (MNH) is involved in auditory filial imprinting and may be considered the avian analogue of the mammalian prefrontal cortex. In search of the neurochemical and physiological mechanisms which play a role in this learning process, we introduced microdialysis and a combined microdialysis/electrophysiological approach in domestic chicks a few days old. With this technique, we were able to follow changes of the extracellular levels of glutamate, taurine, 5-hydroxyindoleacetic acid (5-HIAA), a metabolite of serotonin, and homovanillic acid (HVA), a metabolite of dopamine, and neuronal activity simultaneously in freely moving animals. We obtained first evidence of a modulatory interaction between glutamatergic and monoaminergic neurotransmission mediated by N-methyl-D-aspartate (NMDA) receptors. During local intracerebral infusion of 300 microM NMDA via reverse microdialysis, an increase of taurine and a decrease of 5-HIAA and HVA were detected, accompanied by enhanced extracellular spike rates. Glutamate was increased only during consecutive infusion of increasing NMDA concentrations, when higher (1 mM) NMDA concentrations were infused. The effects of NMDA were antagonized by D, L-2-amino-5-phosphonovaleric acid (1 mM). Infusion of high potassium induced similar changes in taurine, 5-HIAA, and HVA, as found during infusion of NMDA, but decreased extracellular spike rates, which indicates that different cellular mechanisms may underlie the observed neurochemical changes. Neither urethane anesthesia nor different delays between probe implantation and experiment influenced the neurochemical and electrophysiological results; however, changes of taurine were observed only in chronically implanted, awake animals. In summary, microdialysis in combination with electrophysiology provides a powerful tool to detect changes of neuronal activity and transmitter release in the avian brain, with which the role of transmitter interactions can be followed during and after different learning events.
Collapse
Affiliation(s)
- M Gruss
- Leibniz Institute for Neurobiology, Project Group Juvenile Learning, POB 1860, 39008 Magdeburg, Germany
| | | | | |
Collapse
|
26
|
Geddes JW, Chang NG, Ackley DC, Soultanian NS, McGillis JP, Yokel RA. Postmortem elevation in extracellular glutamate in the rat hippocampus when brain temperature is maintained at physiological levels: implications for the use of human brain autopsy tissues. Brain Res 1999; 831:104-12. [PMID: 10411988 DOI: 10.1016/s0006-8993(99)01403-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Postmortem alterations in the neuronal cytoskeleton resemble some aspects of the cytoskeletal disruption associated with neurodegenerative disorders, and are also similar to those observed following ischemia and produced by excitotoxins in vivo and in vitro. This suggests the involvement of excitotoxic mechanisms during the postmortem interval. The purpose of this study was to determine if extracellular levels of glutamate are elevated postmortem. Extracellular levels of GABA and taurine were also monitored using in vivo microdialysis. These three amino acids were analyzed using high-performance liquid chromatography. When postmortem rat brain temperature cooled rapidly to near room temperature, dialysate concentrations of glutamate were not increased in the hippocampal CA1 region during a 2-h postmortem interval, although increased extracellular levels of GABA and taurine were observed. In contrast, maintenance of brain temperature at 37 degrees C resulted in a 12-to-40 fold elevation in extracellular glutamate levels 20-120 min postmortem. In addition, the elevation in dialysate taurine concentration was greater than that observed in rats in which postmortem brain temperature was not maintained. Excitatory amino acid antagonists, NBQX (2, 3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline) and MK-801 (dizocilpine, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cylohepten-5, 10-imine hydrogen maleate blocked the additional elevation in taurine associated with maintaining brain at 37 degrees C, but had less robust effects against glutamate and GABA release. The results indicate that extracellular concentrations of glutamate, taurine and GABA increase in postmortem rat brain when physiologic temperatures are maintained, but that these increases are blunted when brain temperature decreases. After death, the human brain cools much more slowly than does the rat brain. Therefore, extracellular glutamate levels are likely to increase in the postmortem human brain and may contribute to excitotoxic neuronal damage occurring in the interval between death and autopsy.
Collapse
Affiliation(s)
- J W Geddes
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0230, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Hua XY, Chen P, Marsala M, Yaksh TL. Intrathecal substance P-induced thermal hyperalgesia and spinal release of prostaglandin E2 and amino acids. Neuroscience 1999; 89:525-34. [PMID: 10077333 DOI: 10.1016/s0306-4522(98)00488-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Substance P is an important neuromediator in spinal synaptic transmission, particularly in processing nociceptive afferent information. The effects of substance P are mediated by activation of the neurokinin 1 receptor. Evidence has suggested that excitatory amino acids such as glutamate, and prostaglandins including prostaglandin E2 are involved in the enhanced spinal excitability and hyperalgesia produced by spinal substance P. In the present study, we have demonstrated that intrathecal injection of substance P (20 nmol) in rats chronically implanted with intrathecal dialysis catheters induced a decrease in thermal paw withdrawal latency (before: 10.4+/-0.3 s; after 7.6+/-0.6 s), which was accompanied by an increase in prostaglandin E2 (362+/-37% of baseline), glutamate (267+/-84%) and taurine (279+/-57%), but not glycine, glutamine, serine or asparagine. Intrathecal injection of artificial cerebrospinal fluid had no effect upon the behavior or release. Substance P-induced thermal hyperalgesia and prostaglandin E2 release were significantly attenuated by a selective neurokinin 1 receptor antagonist RP67580, but not by an enantiomer RP68651. However, substance P-induced release of glutamate and taurine was not reduced by treatment with RP67580. SR140333, another neurokinin 1 receptor antagonist, displayed the same effects as RP67580 (i.e. block of thermal hyperalgesia and prostaglandin E2 release, but not release of amino acids). These results provide direct evidence suggesting that the spinal substance P-induced thermal hyperalgesia is mediated by an increase in spinal prostaglandin E2 via activation of the neurokinin 1 receptor. These findings define an important linkage between small afferents, sensory neurotransmitter release and spinal prostanoids in the cascade of spinally-mediated hyperalgesia. The evoked release of glutamate is apparently not a result of activation of neurokinin 1 receptors. Accordingly, consistent with other pharmacological data, acute spinal glutamate release does not contribute to the hyperalgesia induced by activation of spinal neurokinin 1 receptors.
Collapse
Affiliation(s)
- X Y Hua
- Department of Anesthesiology, University of California, San Diego, La Jolla 92093-0818, USA
| | | | | | | |
Collapse
|
28
|
Attenuated neurotransmitter release and spreading depression-like depolarizations after focal ischemia in mutant mice with disrupted type I nitric oxide synthase gene. J Neurosci 1998. [PMID: 9801393 DOI: 10.1523/jneurosci.18-22-09564.1998] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) plays a complex role in the pathophysiology of cerebral ischemia. In this study, mutant mice with disrupted type I (neuronal) NO synthase (nNOS) were compared with wild-type littermates after permanent focal ischemia. Cerebral blood flow in the central and peripheral zones of the ischemic distribution were measured with laser doppler flowmetry. Simultaneously, microdialysis electrodes were used to measure extracellular amino acid concentrations and DC potential in these same locations. Blood flow was reduced to <25 and 60% of baseline levels in the central and peripheral zones, respectively; there were no differences in nNOS mutants versus wild-type mice. Within the central ischemic zone, DC potentials rapidly shifted to -20 mV in all mice. In the ischemic periphery, spreading depression (SD)-like waves of depolarization were observed. SD-like events were significantly fewer in the nNOS mutant mice. Concurrent with these hemodynamic and electrophysiological perturbations, extracellular elevations in amino acids occurred after ischemia. There were no detectable differences between wild-type and mutant mice in the ischemic periphery. However, in the central zone of ischemia, elevations in glutamate and GABA were significantly lower in the nNOS mutants. Twenty-four hour infarct volumes in the nNOS mutant mice were significantly smaller than in their wild-type littermates. Overall, the number of SD-like depolarizations and the integrated efflux of glutamate were significantly correlated with infarct size. These results suggest that NO derived from the nNOS isoform contributes to tissue damage after focal ischemia by amplifying excitotoxic amino acid release in the core and deleterious waves of SD-like depolarizations in the periphery.
Collapse
|
29
|
Abstract
Estrogen deficiency, hyperinsulinemia, type II diabetes, atherosclerosis, and a past history of elevated blood pressure may be associated with increased risk of Alzheimer's disease (AD). Common to all of these risk factors is a diminished capacity of vascular endothelium to generate nitric oxide (NO). Vascular NO has the potential to enhance the membrane polarization of cerebral neurons by increasing the open probability of calcium-activated potassium channels; this may protect neurons from the excessive calcium influx, potentiated by beta-amyloid peptides that is thought to mediate neuronal damage in AD. The possibility that NO/cyclic guanosine 3', 5'-phosphate (cGMP) may modulate the synthesis or processing of the amyloid precursor protein, also merits evaluation. Practical measures for promoting vascular NO production may include increased intakes of arginine, potassium, antioxidants, and fish-oil, as well as lifestyle measures that typically lower elevated blood pressure; potential benefits of chromium, glucosamine, and silicon should also be explored. In hypertensives, angiotensin-converting enzyme (ACE) inhibitors and sodium restriction may favorably influence endothelial function. Fish-oil should have the additional benefit of antagonizing the contribution of interleukin-1 to AD pathogenesis. Ancillary anti-excitotoxic measures such as magnesium, taurine, phenytoin, and vasodilators targeting ATP-dependent potassium (KATP) channels, may likewise reduce AD risk. Most of the nutritional measures suggested here would in any case be recommendable for preservation of vascular health.
Collapse
|
30
|
Kakinohana M, Taira Y, Marsala M. Effect of intrathecal pretreatment with taurine on neurological outcome after transient spinal cord ischemia in the rat. J Anesth 1998; 12:215-218. [PMID: 28921320 DOI: 10.1007/bf02481734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 07/15/1998] [Indexed: 10/24/2022]
Affiliation(s)
- Manabu Kakinohana
- Department of Anesthesiology, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, 903-0215, Okinawa, Japan
| | - Yutaka Taira
- Department of Anesthesiology, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, 903-0215, Okinawa, Japan
| | - Martin Marsala
- Department of Anesthesiology, University of California, San Diego, CA, USA
| |
Collapse
|
31
|
Abrahám I, Juhász G, Kékesi KA, Kovács KJ. Corticosterone peak is responsible for stress-induced elevation of glutamate in the hippocampus. Stress 1998; 2:171-81. [PMID: 9787265 DOI: 10.3109/10253899809167281] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Effect of ether stress on dialysate concentration of extracellular amino acids in the hippocampus was studied by microdialysis in freely moving rats that have been either sham operated (SHAM) or adrenalectomized and supplemented with subcutaneous steroid pellets (ADX+CORT) providing constant corticosterone (CORT) plasma levels. In SHAM rats, ether stress resulted in a peak of glutamate and taurine 30 min after stress, while extracellular aspartate concentration was increased 120 min after challenge. These changes in amino acid levels as well as in glutamate/glutamine ratio were paralleled by stress-induced rise of plasma CORT. No significant alterations were detected in the concentration of hippocampal arginine, alanine, glycine, glutamine, threonine or serine. In contrast to SHAM animals, ether stress failed to have an effect on dialysate concentration of amino acid transmitters in the hippocampus of adrenalectomized rats supplemented with 50 mg CORT-pellets. Our results demonstrate that ether stress alters aspartate, glutamate, glutamate/glutamine ratio and taurine concentration in the hippocampus and indicate that stress-induced CORT release in plasma may be responsible for these amino acid alterations. These changes may also contribute to negative feedback effect of CORT on hypothalamo-pituitary-adrenocortical (HPA) axis via the hippocampus during stress.
Collapse
Affiliation(s)
- I Abrahám
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| | | | | | | |
Collapse
|
32
|
Lo EH, Bosque-Hamilton P, Meng W. Inhibition of poly(ADP-ribose) polymerase: reduction of ischemic injury and attenuation of N-methyl-D-aspartate-induced neurotransmitter dysregulation. Stroke 1998; 29:830-6. [PMID: 9550519 DOI: 10.1161/01.str.29.4.830] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND PURPOSE The nuclear enzyme poly(ADP-ribose) polymerase (PARP) may play a role in DNA repair. However, in cerebral ischemia, excessive PARP activation may lead to energy depletion and exacerbation of neuronal damage. We examined the effect of inhibiting PARP on (1) the degree of cerebral injury in a rat model of transient focal ischemia and (2) the degree of neurotransmitter dysregulation induced by local cortical perfusion of N-methyl-D-aspartate (NMDA). METHODS In experiment 1, rats were subjected to transient ischemia for 90 minutes by occlusion of the middle cerebral artery. After 22.5 hours of reperfusion, lesions were quantified by tetrazolium staining. Untreated rats were compared with those treated with the PARP inhibitor 3-aminobenzamide (10 mg/kg). In experiment 2, rats were implanted with microdialysis probes in the cortex, and 1 mmol/L NMDA was perfused for 2 hours. Extracellular concentrations of neurotransmitter and neuromodulator amino acids were measured. Untreated rats were compared with those given 10 mg/kg 3-aminobenzamide. RESULTS In experiment 1, PARP inhibition significantly reduced lesion volumes: 204+/-43 mm3 (untreated) versus 90+/-24 mm3 (treated). Neuroprotection was primarily manifested in the cortex. In experiment 2, NMDA perfusion resulted in large elevations of glutamate, taurine, and the lipid component phosphoethanolamine. Levels of the NMDA site modulator D-serine were reduced, and glycine levels appeared unchanged. 3-Aminobenzamide significantly attenuated the elevations in glutamate and phosphoethanolamine but had no effects on D-serine and glycine. CONCLUSIONS Inhibition of PARP reduced injury after transient focal ischemia in rats and attenuated NMDA-induced glutamate efflux and overall neurotransmitter dysregulation. The deleterious effects of excessive PARP activation may be related in part to amplification of excitotoxicity, possibly by cellular energy depletion and additional transmitter release and/or reduced reuptake.
Collapse
Affiliation(s)
- E H Lo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown 02129, USA.
| | | | | |
Collapse
|
33
|
Lo EH, Pierce AR, Matsumoto K, Kano T, Evans CJ, Newcomb R. Alterations in K+ evoked profiles of neurotransmitter and neuromodulator amino acids after focal ischemia-reperfusion. Neuroscience 1998; 83:449-58. [PMID: 9460753 DOI: 10.1016/s0306-4522(97)00434-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Secondary elevations in extracellular amino acids occur during reperfusion after transient cerebral ischemia. The delayed accumulation of excitatory amino acids may contribute to the progressive development of neuronal injury. In this study, we explored the mechanisms that may be involved in this phenomenon. Microdialysis samples from probes located in rabbit cortex were analysed with a chiral amino acid procedure. Concentrations of neurotransmitters (L-Glu, GABA), N-methyl-D-aspartate receptor modulators (D-Ser, Gly), an inhibitory neuromodulator (Tau), the lipid component phosphoethanolamine, and L-Gln, L-Ser and L-Ala were measured. Depolarization via perfusion with potassium was used to assess the status of release/reuptake systems at 2 and 4 h reperfusion after 2 h transient focal ischemia. Background experiments classified potassium evoked responses as calcium dependent or calcium-independent by inclusion of 30 microM omega-conopeptide MVIIC or by inclusion of 20 mM magnesium and ommision of calcium. During ischemia, large elevations of almost all amino acids occurred. During reperfusion, secondary elevations in transmitter amino acids (L-Glu, GABA) and N-methyl-D-aspartate receptor modulators (D-Ser, Gly) occurred. Tau remained slightly elevated whereas the lipid component phosphoethanolamine remained high and stable during reperfusion. Reperfusion significantly potentiated the potassium response for amino acids with calcium-dependent responses (L-Glu and GABA). In contrast, calcium-independent responses (Tau, phosphoethanolamine, L-Gln) were significantly attenuated. Intermediate behavior was observed with Gly, while no potassium responses were observed for D-Ser, L-Ser or L-Ala. These data demonstrate that perturbations in evoked amino acid profiles after ischemia-reperfusion are selective. Reduction of calcium-independent responses implicate a general decline in efficacy of transporter mechanisms that restore transmembrane gradients of ions and transmitters. Decreased efficacy of transporter systems may reduce transmitter reuptake and account for the amplified release of L-Glu and GABA, thus contributing to progressive neural dysfunction after cerebral ischemia.
Collapse
Affiliation(s)
- E H Lo
- Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | |
Collapse
|
34
|
Hua XY, Calcutt NA, Malmberg AB. Neonatal capsaicin treatment abolishes formalin-induced spinal PGE2 release. Neuroreport 1997; 8:2325-9. [PMID: 9243634 DOI: 10.1097/00001756-199707070-00045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We investigated the effect of neonatal capsaicin treatment on formalin-evoked pain behavior and spinal levels of nociceptive neuromodulators using in vivo intrathecal microdialysis in conscious adult rats and age-matched controls. Capsaicin-treated rats displayed thermal hypoalgesia and a significant decrease in tissue content of calcitonin gene-related peptide. Paw swelling, flinching and release of spinal prostaglandin E2 induced by injection of formalin into the hindpaw were also reduced in capsaicin-treated rats compared with controls, whereas glutamate, aspartate and taurine release was unaffected. These data suggest that formalin-induced inflammation, pain behavior and spinal prostaglandin E2 release are mediated by mechanisms sensitive to neonatal capsaicin while the formalin-evoked release of amino acids in the spinal cord is not.
Collapse
Affiliation(s)
- X Y Hua
- Department of Anesthesiology, University of California, San Diego, La Jolla 92093, USA
| | | | | |
Collapse
|
35
|
Malmberg AB, Hedner T, Fallgren B, Calcutt NA. The effect of alpha-trinositol (D-myo-inositol 1,2,6-trisphosphate) on formalin-evoked spinal amino acid and prostaglandin E2 levels. Brain Res 1997; 747:160-4. [PMID: 9042542 DOI: 10.1016/s0006-8993(96)01299-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effect of the inositol trisphosphate analog alpha-trinositol on noxious-evoked behavior, amino acid and prostaglandin E2 (PGE2) release was examined in unanesthetized rats using intrathecal microdialysis probes. Subcutaneous injection of 50 microliters 5% formalin solution produced two phases of pain-like behavior and significant elevation of glutamate, aspartate, glycine, taurine and serine during phase 1. PGE2 concentrations were increased during both phases 1 and 2. Intraperitoneal delivery of 300 mg/kg alpha-trinositol significantly suppressed both phases 1 and 2 of formalin-induced behavior and the associated elevation of amino acids and PGE2. These data demonstrate that the antinociceptive effect of alpha-trinositol corresponds to suppression of noxious-evoked release of amino acids and PGE2 from the spinal cord.
Collapse
Affiliation(s)
- A B Malmberg
- Department of Physiology and Pharmacology, University of Göteborg, Sweden.
| | | | | | | |
Collapse
|
36
|
Abstract
Although the pathogenesis of migraine is still poorly understood, various clinical investigations, as well as consideration of the characteristic activities of the wide range of drugs known to reduce migraine incidence, suggest that such phenomena as neuronal hyperexcitation, cortical spreading depression, vasospasm, platelet activation and sympathetic hyperactivity often play a part in this syndrome. Increased tissue levels of taurine, as well as increased extracellular magnesium, could be expected to dampen neuronal hyperexcitation, counteract vasospasm, increase tolerance to focal hypoxia and stabilize platelets; taurine may also lessen sympathetic outflow. Thus it is reasonable to speculate that supplemental magnesium taurate will have preventive value in the treatment of migraine. Fish oil, owing to its platelet-stabilizing and antivasospastic actions, may also be useful in this regard, as suggested by a few clinical reports. Although many drugs have value for migraine prophylaxis, the two nutritional measures suggested here may have particular merit owing to the versatility of their actions, their safety and lack of side-effects and their long-term favorable impact on vascular health.
Collapse
|
37
|
Abrahám I, Juhász G, Kékesi KA, Kovács KJ. Effect of intrahippocampal dexamethasone on the levels of amino acid transmitters and neuronal excitability. Brain Res 1996; 733:56-63. [PMID: 8891248 DOI: 10.1016/0006-8993(96)00538-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Direct effect of type-II corticosteroid receptor agonist dexamethasone on extracellular amino acid levels and neuronal excitability in the hippocampus was studied by simultaneous application of in vivo microdialysis and recording hippocampal evoked responses in freely moving male rats. Microdialysis probes and hippocampal recording electrodes were implanted to the CA1-CA3 regions of dorsal hippocampus. Local dexamethasone infusion via microdialysis resulted in a transient increase in glutamate level at 30 min, while glutamine decreased by 30-40% throughout the 180-min sampling period. Taurine increased by 50% and remained elevated up to 180 min. No significant changes were detected in extracellular concentration of asparagine, arginine, glycine, threonine, alanine and serine. In contrast, dexamethasone infusion to the striatum had no effect on the extracellular levels of amino acid transmitters. Effect of dexamethasone injected via microdialysis on the neural activity elicited by perforant path stimulation was a decrease in population spikes after 60 min starting dexamethasone infusion. Steroid effect on neural excitability was reversible. Our data indicate that local infusion of type-II receptor agonist dexamethasone has a complex effect in the hippocampus, starts with a change in extracellular glutamate and glutamine concentration and followed by a reduced synaptic excitability.
Collapse
Affiliation(s)
- I Abrahám
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary.
| | | | | | | |
Collapse
|
38
|
Hada J, Kaku T, Morimoto K, Hayashi Y, Nagai K. Adenosine transport inhibitors enhance high K(+)-evoked taurine release from rat hippocampus. Eur J Pharmacol 1996; 305:101-7. [PMID: 8813538 DOI: 10.1016/0014-2999(96)00171-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We examined the effects of Ca(2+)-free medium containing 20 mM Mg2+, a non-selective adenosine receptor antagonist, theophylline, and adenosine transport inhibitors, dipyridamole and nitrobenzylthioinosine, on high K(+)-evoked spreading depression, glutamate, and taurine release from the rat hippocampus using brain microdialysis. High K+ alone perfusion evoked spreading depression and increased glutamate release followed by taurine efflux. Perfusion of Ca(2+)-free medium with high K+ never evoked spreading depression and decreased the high K(+)-evoked taurine release. Perfusion of theophylline (1 mM) increased the occurrence of high K(+)-evoked spreading depression and glutamate release, but did not modify taurine release. In contrast, simultaneous perfusion of dipyridamole (100 microM) and nitrobenzylthioinosine (50 microM) reduced the occurrence of spreading depression and the high K(+)-evoked glutamate release, but enhanced significantly the taurine efflux. These findings suggest that endogenous taurine with adenosine may have neuroprotective actions against high K(+)-evoked glutamate release and spreading depression in the rat hippocampus, in addition to its osmoregulatory action.
Collapse
Affiliation(s)
- J Hada
- Department of Physiology, Hyogo College of Medicine, Japan
| | | | | | | | | |
Collapse
|
39
|
Clark EC, Thomas D, Baer J, Sterns RH. Depletion of glutathione from brain cells in hyponatremia. Kidney Int 1996; 49:470-6. [PMID: 8821831 DOI: 10.1038/ki.1996.66] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In response to hyponatremia, brain cells extrude electrolytes and organic osmolytes, thereby minimizing brain edema. We demonstrate that rat brain is depleted of the antioxidant glutathione in response to hyponatremia and that osmotically-induced loss of glutathione makes neuronal cells more susceptible to oxidative injury. Total glutathione content of brain tissue decreased from 6.80 +/- 0.14 mumol/g dry wt in normonatremic controls to 5.00 +/- 0.31 mumol/g dry wt after 72 hours of hyponatremia. Following slow correction of hyponatremia, brain glutathione content returned to control values (6.77 +/- 0.34 mumol/g dry wt). Brain content of taurine, a beta-amino acid with antioxidant properties, similarly decreased in hyponatremia (29.6 +/- 0.9 to 17.1 +/- 1.2 mumol/g dry wt), then increased with slow correction (24.8 +/- 1.3 mumol/g dry wt). Although taurine served as an osmolyte in rat heart, liver and brain, osmotically-induced changes in glutathione content were found only in brain. We also studied osmotically-induced changes in glutathione and taurine content in C6 glioma and SK-N-SH neuroblastoma cells. In both cell lines, adaptive decreases in glutathione and taurine content were found in response to lowering medium sodium concentration from 140 mM to 100 mM. The cell content of these solutes increased after returning to media containing 140 mM sodium. Following exposure of both cell lines to hypoosmolar media, there was no increase in media content of glutathione. This suggest that osmotic depletion of glutathione is not due to cellular efflux of intact glutathione. We questioned if osmotic depletion of glutathione and taurine renders brain cells more susceptible to oxidative stress. Incubation of SK-N-SH cells with 1.0 mM H2O2 for four hours induced greater cytolytic injury in cells adapted to hypoosmolar media than in isoosmolar controls. Hypoosmolar C6 glioma cells were not significantly more sensitive to cytolytic injury from H2O2 than were cells grown in isosmolar media. We conclude that hypoosmolality induces glutathione depletion in rat brain in vivo and in cultured brain cells in vitro. Osmotic depletion of this antioxidant renders SK-N-SH neuronal cells more susceptible to oxidative injury.
Collapse
Affiliation(s)
- E C Clark
- Department of Medicine, University of Rochester School of Medicine, New York, USA
| | | | | | | |
Collapse
|
40
|
Magnusson KR. Distributions of taurine, glutamate, and glutamate receptors during post-natal development and plasticity in the rat brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 403:435-44. [PMID: 8915381 DOI: 10.1007/978-1-4899-0182-8_47] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In summary, taurine and glutamate distributions seemed to be related spatio-temporally during development in the hippocampus and cerebellum and during plasticity of the adult dentate gyrus. In some cases, the amino acids appeared to be setting up adult localizations, while others involved a change in distribution from early development to adulthood that may indicate a related role for taurine and glutamate in dendritic outgrowth and synapse formation. Further elucidation of the subcellular localizations should provide some insight into the functions of taurine and glutamate during these critical periods in development. In addition, there appeared to be developmental patterns of decreased density of kainate and Met2 glutamate receptors that may be worth exploring in terms of interrelationships with taurine.
Collapse
Affiliation(s)
- K R Magnusson
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523, USA
| |
Collapse
|
41
|
Ooboshi H, Sadoshima S, Yao H, Ibayashi S, Matsumoto T, Uchimura H, Fujishima M. Ischemia-induced release of amino acids in the hippocampus of aged hypertensive rats. J Cereb Blood Flow Metab 1995; 15:227-34. [PMID: 7860656 DOI: 10.1038/jcbfm.1995.28] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have recently demonstrated the age-related vulnerability of hippocampal neurons to 20-min forebrain ischemia in spontaneously hypertensive rats (SHR). In the present study, we investigated the effect of aging on the release of amino acids in the hippocampus during transient cerebral ischemia for 20 min. Concentrations of extracellular amino acids and cerebral blood flow in the CA1 subfield were examined by an in vivo brain dialysis technique and a hydrogen clearance method, respectively, in adult (5-7 month) and aged (19-23 month) female SHR. During cerebral ischemia by bilateral carotid artery occlusion, cerebral blood flow to the hippocampus decreased to 20% of the resting values in both groups. After recirculation, both groups showed delayed hypoperfusion which was more prominent in the aged SHR. In the adult rats, concentrations of both aspartate and glutamate increased to approximately 8-fold of the resting values during ischemia. The elevation of these excitatory amino acids in the adult SHR was not significantly different from that in the aged rats. In contrast, the concentration of taurine increased 26-fold in the adult SHR but only 16-fold in the aged rats. Changes in other amino acids were not different between the two groups. These results indicate that an imbalance of excitatory and inhibitory amino acids, e.g., smaller release of taurine, during ischemia may, at least in part, contribute to the age-related vulnerability of hippocampal neurons to transient cerebral ischemia in SHR.
Collapse
Affiliation(s)
- H Ooboshi
- Second Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Marsala M, Sorkin LS, Yaksh TL. Transient spinal ischemia in rat: characterization of spinal cord blood flow, extracellular amino acid release, and concurrent histopathological damage. J Cereb Blood Flow Metab 1994; 14:604-14. [PMID: 8014207 DOI: 10.1038/jcbfm.1994.75] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Extracellular concentrations of amino acids in halothane-anesthetized rats were measured using a microdialysis fiber inserted transversely through the dorsal spinal cord at the level of the lumbar enlargement in conjunction with HPLC and ultraviolet detection. After a 2-h washout and a 1-h control period, 20 min of reversible spinal cord ischemia was achieved by the inflation of a Fogarty F2 catheter passed through the femoral artery to the descending thoracic aorta. After 2 h of postischemic reperfusion, animals were transcardially perfused with saline followed by 10% formalin or 4% paraformaldehyde. The glutamate concentration in the dialysate was significantly elevated after 10 min of occlusion and returned to near-baseline during the first 30 min of reperfusion. Taurine was elevated significantly 0.5 h postocclusion and continued to increase throughout the 2 h of reperfusion. Glycine concentrations showed a tendency to be slightly above baseline during the reperfusion period. Glutamine concentrations modestly increased following 2 h of reperfusion. No significant changes in aspartate, asparagine, and serine were detected. In control animals no significant changes in any amino acids were detected. To assess the role of complete spinal ischemia on spinal glutamate release, studies were carried out using cardiac arrest. Twenty minutes after induction of cardiac arrest, the glutamate concentration was increased about 350-400%. In a separate group of animals, spinal cord blood flow (SCBF) and its response to decreased CO2 were measured using a laser probe implanted into the epidural space at the level of the L2 vertebral segment. SCBF decreased to 5-6% of the control during aortic occlusion. After reversible ischemia, marked hyperemia was seen for the first 15 min, followed by hypoperfusion at 60 min. Under control-preischemic conditions a decrease in arterial CO2 content caused a decrease in SCBF of about 25%. This autoregulatory response was almost completely absent when assessed 60 min after a 20-min interval of aortic occlusion. Histopathological analysis of spinal cord tissue from these animals demonstrated heavy neuronal argyrophilia affecting small and medium-sized neurons located predominantly in laminae III-V. These changes corresponded to signs of irreversible damage at the ultrastructural level. Occasionally, small areas of focal necrosis, located in the dorsolateral part of the dorsal horn and anterolateral part of the ventral horn, were found. The results are consistent with a role for glutamate in ischemically induced spinal cord damage and suggest that taurine elevation detected during the early reperfusion period may serve as an important indicator of irreversible spinal cord neuronal damage.
Collapse
Affiliation(s)
- M Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice
| | | | | |
Collapse
|
43
|
Uchiyama-Tsuyuki Y, Araki H, Yae T, Otomo S. Changes in the extracellular concentrations of amino acids in the rat striatum during transient focal cerebral ischemia. J Neurochem 1994; 62:1074-8. [PMID: 8113794 DOI: 10.1046/j.1471-4159.1994.62031074.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Although considerable evidence supports a role for amino acids in transient global cerebral ischemia and permanent focal cerebral ischemia, effects of transient focal cerebral ischemia on the extracellular concentrations of amino acids have not been reported. Accordingly, our study was undertaken to examine the patterns of changes of extracellular glutamate, aspartate, GABA, taurine, glutamine, alanine, and phosphoethanolamine in the striatum of transient focal cerebral ischemia, as evidence to support their pathogenic roles. Focal ischemia was induced using the middle cerebral artery occlusion model, with no need for craniotomy. Microdialysis was used to sample the brain's extracellular space before, during, and after the ischemic period. One hour of middle cerebral artery occlusion followed by recirculation caused neuronal damage that was common in the frontoparietal cortex and the lateral segment of the caudate nucleus. During 1 h of ischemia, the largest increase occurred for GABA and moderate increases were observed for taurine, glutamate, and aspartate. Alanine, which is a nonneuroactive amino acid, increased little. After recirculation, the levels of glutamate and aspartate reverted to normal baseline values right after reperfusion. Despite these rapid normalizations, neuronal damage occurred. Therefore, uptake of excitatory amino acids can still be restored after 1 h of middle cerebral artery occlusion, and tissue damage occurs even though high extracellular levels of glutamate are not maintained.
Collapse
|
44
|
Lewin L, Rassin DK, Sellström A. Net taurine transport and its inhibition by a taurine antagonist. Neurochem Res 1994; 19:347-52. [PMID: 8177375 DOI: 10.1007/bf00971584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
P2-fractions were isolated from rat brain, and used to study net taurine transport. The fractions were incubated in increasing concentrations of [3H]taurine and the intraterminal concentration measured by liquid scintillation and amino acid analysis. The membrane potential of the isolated fractions was estimated using 86Rb+ as a marker for intracellular K+. Taurine was synthesized in the P2-fraction when incubated in taurine free medium. At external taurine concentrations below 370 microM a significant amount of the endogenous taurine was released to the incubation medium. Net taurine uptake into the P2-fraction was achieved at external taurine concentrations exceeding 370 microM. The taurine antagonist 6-aminomethyl-3-methyl-4H, 1, 2, 4-benzothiadiazine-1, 1-dioxide (TAG) competitively inhibited taurine and [3H]taurine transport into the P2-fraction. As the external concentration of taurine was increased, the accumulation of 86Rb+ into the P2-fraction was facilitated. This indicated an increasing hyperpolarization of the neuronal membrane as taurine transport shifted from release towards uptake. TAG reduced the hyperpolarization that paralleled taurine accumulation, in a dose dependent manner. Our results indicate that relatively low transmembranal gradients of taurine may be maintained by an electrogenic taurine transporter having a large transport capacity. Such a transporter may well serve the needs of osmotic regulation, i.e. to transport large amounts of taurine in any direction across the neuronal membrane.
Collapse
Affiliation(s)
- L Lewin
- Department of Zoophysiology, University of Umeå, Sweden
| | | | | |
Collapse
|
45
|
Magnusson KR. Changes in the localization of taurine-like immunoreactivity during development and regeneration in the rat brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 359:235-43. [PMID: 7887264 DOI: 10.1007/978-1-4899-1471-2_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In summary, taurine appeared to be present in certain cell types, such as cerebellar Purkinje cells and hippocampal pyramidal cells, throughout development to adulthood and a differential function for taurine between these periods would be difficult to hypothesize simply based on localization. However, in both the cerebellum and hippocampus, there was a period including post-natal day 7 in the cerebellum and including both post-natal days 7 and 14 in the hippocampus in which taurine appeared not to be confined only to the dendrites of the aforementioned cells, but seemed ubiquitously present in the molecular layers of these two brain regions. This suggests that the taurine may be present in significantly higher concentrations in certain cell types or subcellular structures during development than in the adult rat brain. The elucidation of these taurine-containing structures with the use of electron microscopy may provide some insight into the functions of taurine during these critical periods in development. Finally, taurine appeared to reverse its developmental decline in concentration in the presence of regeneration, suggesting that it may play a role in axonal sprouting and/or synapse formation.
Collapse
Affiliation(s)
- K R Magnusson
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins 80523
| |
Collapse
|
46
|
Wu JY, Lin CT, Johansen FF, Liu JW. Taurine neurons in rat hippocampal formation are relatively inert to cerebral ischemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1994; 359:289-98. [PMID: 7887268 DOI: 10.1007/978-1-4899-1471-2_29] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- J Y Wu
- Department of Physiology and Cell Biology, University of Kansas, Lawrence 66045-2106
| | | | | | | |
Collapse
|
47
|
Shibanoki S, Kogure M, Sugahara M, Ishikawa K. Effect of systemic administration of N-methyl-D-aspartic acid on extracellular taurine level measured by microdialysis in the hippocampal CA1 field and striatum of rats. J Neurochem 1993; 61:1698-704. [PMID: 7901330 DOI: 10.1111/j.1471-4159.1993.tb09806.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The extracellular concentrations of amino acids in the hippocampal CA1 field and striatum of conscious freely moving rats were monitored simultaneously by in vivo brain microdialysis using HPLC with electrochemical detection. Under basal conditions, aspartate, glutamate, glutamine, glycine, taurine, and alanine were detected, but gamma-aminobutyric acid was undetectable in both regions. Intraperitoneal injection of N-methyl-D-aspartic acid (NMDA; 10 mg/kg) caused a significant increase (three- to fivefold) in the taurine concentration in the dialysate obtained from both the hippocampal CA1 and striatum, whereas other amino acids (aspartate, glutamate, and alanine) did not show significant changes. Local application of NMDA (300 microM) to both regions via the dialysis probes also caused a similar increase (three- to fivefold) in both regions. Under infusion of hypertonic Ringer's solution containing 150 mM sucrose, the effect of NMDA on the level of taurine in both the regional dialysates was not affected. The effect of NMDA was totally reduced by intraperitoneal administration of MK-801 (0.3-1.0 mg/kg), a noncompetitive antagonist of NMDA receptors. Continuous infusion of DL-2-amino-5-phosphonovaleric acid (1.0 mM), a competitive antagonist of NMDA receptors, via the dialysis probes completely inhibited the effect of NMDA. These findings suggest that systemic administration of NMDA is effective as well as local administration into the brain and that NMDA receptors might be involved in the regulation of the extracellular taurine level in the brain without dependence on cell swelling.
Collapse
Affiliation(s)
- S Shibanoki
- Department of Pharmacology, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Lehmann A, Hagberg H, Orwar O, Sandberg M. Cysteine sulphinate and cysteate: mediators of cysteine toxicity in the neonatal rat brain? Eur J Neurosci 1993; 5:1398-412. [PMID: 7903894 DOI: 10.1111/j.1460-9568.1993.tb00926.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Excitotoxic amino acids contain two acidic groups, but cysteine represents an exception to this rule. The hypothesis that cysteine toxicity is mediated by the oxidized and diacidic metabolites cysteine sulphinate and/or cysteate was tested in the present study. The issue was approached in three different ways. Firstly, the distribution of brain injury after subcutaneous administration of cysteine (1 mg/g) to 4-day-old rats was compared with that caused by cysteine sulphinate (3 mg/g). Secondly, the effects of excitatory amino acid receptor antagonists on cysteine and cysteine sulphinate toxicity were investigated. Thirdly, the cerebral concentrations of cysteine sulphinate were determined after cysteine administration and compared with those obtained after cysteine sulphinate injection. The cerebral cortex was the region most vulnerable to cysteine toxicity, followed by the hippocampus (especially the medial subicular neurons), amygdala, caudoputamen, cerebellum and septum. Pronounced extravasation of red blood cells was observed in lesioned areas. One day after cysteine administration, the injury was infarction-like and sharply demarcated. Cysteine sulphinate-induced damage resembled cysteine-induced lesions in some respects: the anterior cingulate and retrosplenial cortices, as well as medial subicular cells, were quite vulnerable. However, the differences prevailed. Cysteine sulphinate, but not cysteine, killed neurons of the superficial part of the tectum, the medial habenula, the ventromedial hypothalamus and the arcuate nucleus. Further, while cysteine toxicity was prominent in deep cortical layers, cysteine sulphinate preferentially damaged superficial cortical neurons. Cysteine toxicity was abolished by pretreatment with MK-801, a selective NMDA antagonist, but not by 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline, a selective AMPA receptor blocker. In contrast, the considerably smaller lesion seen after cysteine sulphinate administration was only partially prevented by MK-801. Large (19-fold) increases in cortical cysteine sulphinate concentration were noted after injection of a toxic dose of cysteine. This corresponds to 90 nmol cysteine sulphinate/g protein. The cysteate concentration was not increased above the detection limit. Injection of a toxic dose of cysteine sulphinate elevated cysteine sulphinate concentration in the frontomedial cortex (a region consistently injured by cysteine sulphinate) almost three orders of magnitude more than that observed after cysteine administration. Taken together, these results strongly suggest that neither cysteine sulphinate nor cysteate alone mediate cysteine toxicity.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Lehmann
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
49
|
Menéndez N, Solís JM, Herreras O, Galarreta M, Conejero C, Martín del Río R. Taurine release evoked by NMDA receptor activation is largely dependent on calcium mobilization from intracellular stores. Eur J Neurosci 1993; 5:1273-9. [PMID: 8275229 DOI: 10.1111/j.1460-9568.1993.tb00912.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
It is known that the activation of N-methyl-D-aspartate (NMDA) receptors leads to an increase in extracellular taurine concentration in different brain regions. The mechanism that mediates this effect is not totally understood. In this study, rat hippocampal slices were used to determine the dependence of NMDA-induced taurine release on extracellular calcium and/or on calcium mobilization from intracellular stores. NMDA was administered through a microdialysis probe inserted into the slice, at the level of CA1 stratum radiatum, which was also used to collect amino acids from the extracellular space. Field potentials evoked by stimulation of the Schaffer collaterals and recorded in the stratum pyramidale of CA1 were used as a control of NMDA receptor activation. NMDA induced a marked increase in extracellular taurine levels and a decrease in field potential amplitude, and both effects were suppressed in the presence of MK-801, a blocker of the NMDA receptor-linked channel. Dantrolene, an inhibitor of calcium release from intracellular stores, partially inhibited the extracellular taurine increase, while 2-nitro-4-carboxyphenyl-N,N-diphenyl carbamate (NCDC), an inhibitor of phosphatidylinositol-specific phospholipase C activation, had no effect. Removal of extracellular calcium diminished, but did not abolish, the extracellular taurine increase caused by NMDA. The remaining taurine response was totally suppressed by dantrolene, and also by NCDC. These results demonstrate that the release of taurine induced by NMDA receptor activation is triggered by the increase in cytoplasmic calcium concentration. We suggest that, under physiological conditions, calcium influx provides the signal for NMDA-induced taurine release, which is amplified by calcium-dependent calcium mobilization from intracellular stores.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- N Menéndez
- Departamento de Investigación, Hospital Ramón y Cajal, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Nürnberger A, Rapus J, Eckert M, Penzlin H. Taurine-like immunoreactivity in octopaminergic neurones of the cockroach, Periplaneta americana (L.). HISTOCHEMISTRY 1993; 100:285-92. [PMID: 8276643 DOI: 10.1007/bf00270048] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Taurine (2-aminoethanesulphonic acid) is reported to interact with the octopaminergic system. The distribution of taurine-like immunoreactivity (-LIR) in relation to octopamine-like immunoreactive dorsal unpaired median (DUM) neurones was investigated with the aim of revealing possible colocalization of these two neuromediators. The specificity of the anti-taurine serum used was demonstrated by dot blot immunoassay and by use of preabsorption controls. There was no crossreactivity with octopamine. The specificity of the octopamine antiserum employed has been described elsewhere. Taurine-LIR could be demonstrated in large dorso-median cells in the suboesophageal and the mesothoracic ganglion as well as in the abdominal ganglia. In addition taurine-LIR is distributed in numerous other regions of the ganglia. A comparison of the immunostaining for taurine and octopamine indicates that several of the taurine-like immunoreactive (-LI) neurones are probably members of the octopamine-immunoreactive DUM cell population. These taurine-LI neurones resemble octopamine-LI DUM cells in soma position and size as well as in the projections of their primary neurites. Colocalization of octopamine-LIR and taurine-LIR within the same neuronal element could be shown by alternate immunostaining of consecutive sections. It is probable that all octopamine-LI DUM neurones also exhibit taurine-LIR, and the possible physiological significance of this coexistence is discussed.
Collapse
Affiliation(s)
- A Nürnberger
- Institut für Allgemeine Zoologie and Tierphysiologie, Biologische Fakultät, Friedrich-Schiller-Universität, Jena, Germany
| | | | | | | |
Collapse
|