1
|
Zhang M, Vuist IM, Rottschäfer V, de Lange EC. Exploring K p,uu,BBB values smaller than unity in remoxipride: A physiologically-based CNS model approach highlighting brain metabolism in drugs with passive blood-brain barrier transport. Eur J Pharm Sci 2024; 203:106883. [PMID: 39181172 DOI: 10.1016/j.ejps.2024.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
(AIM) Kp,uu,BBB values are crucial indicators of drug distribution into the brain, representing the steady-state relationship between unbound concentrations in plasma and in brain extracellular fluid (brainECF). Kp,uu,BBB values < 1 are often interpreted as indicators of dominant active efflux transport processes at the blood-brain barrier (BBB). However, the potential impact of brain metabolism on this value is typically not addressed. In this study, we investigated the brain distribution of remoxipride, as a paradigm compound for passive BBB transport with yet unexplained brain elimination that was hypothesized to represent brain metabolism. (METHODS) The physiologically-based LeiCNS pharmacokinetic predictor (LeiCNS-PK model) was used to compare brain distribution of remoxipride with and without Michaelis-Menten kinetics at the BBB and/or brain cell organelle levels. To that end, multiple in-house (IV 0.7, 3.5, 4, 5.2, 7, 8, 14 and 16 mg kg-1) and external (IV 4 and 8 mg kg-1) rat microdialysis studies plasma and brainECF data were analysed. (RESULTS) The incorporation of active elimination through presumed brain metabolism of remoxipride in the LeiCNS-PK model significantly improved the prediction accuracy of experimentally observed brainECF profiles of this drug. The model integrated with brain metabolism in both barriers and organelles levels is named LeiCNS-PK3.5. (CONCLUSION) For drugs with Kp,uu,BBB values < 1, not only the current interpretation of dominant BBB efflux transport, but also potential brain metabolism needs to be considered, especially because these may be concentration dependent. This will improve the mechanistic understanding of the processes that determine brain PK profiles.
Collapse
Affiliation(s)
- Mengxu Zhang
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands
| | - Ilona M Vuist
- Charles River Laboratories, Groningen, the Netherlands
| | - Vivi Rottschäfer
- Mathematical Institute, Leiden University, Leiden, the Netherlands; Korteweg-de Vries Institute for Mathematics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, the Netherlands
| | - Elizabeth Cm de Lange
- Division of Systems Pharmacology and Pharmacy, Predictive Pharmacology Group, Leiden Academic Centre of Drug Research, Leiden University, Gorlaeus Laboratories, Leiden, the Netherlands.
| |
Collapse
|
2
|
DuBois BN, Amirrad F, Mehvar R. Kinetics of dextromethorphan-O-demethylase activity and distribution of CYP2D in four commonly-used subcellular fractions of rat brain. Xenobiotica 2018; 49:1133-1142. [PMID: 30392427 DOI: 10.1080/00498254.2018.1539782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to compare the enzymatic kinetics and distribution of cytochrome P450 2D (CYP2D) among different rat brain subcellular fractions. Rat brains were used to prepare total membrane, crude mitochondrial, purified mitochondrial, and microsomal fractions, in addition to total homogenate. Michaelis-Menten kinetics of the brain CYP2D activity was estimated based on the conversion of dextromethorphan (DXM) to dextrorphan using UPLC-MS/MS. Protein levels of CYP2D and subcellular markers were determined by Western blot. Microsomal CYP2D exhibited high affinity and low capacity, compared with the mitochondrial CYP2D that had a much lower (∼50-fold) affinity but a higher (∼six-fold) capacity. The apparent CYP2D affinity and capacity of the crude mitochondria were in between those of the microsomes and purified mitochondria. Additionally, the CYP2D activity in the whole homogenate was much higher than that in the total membranes at higher DXM concentrations. A CYP2D immune-reactive band in the brain mitochondria appeared at a lower MW but had a much higher intensity than that in the microsomes. Mitochondrial brain CYP2D has a much higher capacity than its microsomal counterpart. Additionally, brain homogenate is more representative of the overall CYP2D activity than the widely-used total membrane fraction.
Collapse
Affiliation(s)
- Barent N DuBois
- a Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy , Chapman University , Irvine , CA , USA
| | - Farideh Amirrad
- a Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy , Chapman University , Irvine , CA , USA
| | - Reza Mehvar
- a Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy , Chapman University , Irvine , CA , USA
| |
Collapse
|
3
|
DuBois BN, Mehvar R. UPLC-MS/MS analysis of dextromethorphan-O-demethylation kinetics in rat brain microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1096:66-72. [PMID: 30149296 DOI: 10.1016/j.jchromb.2018.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Formation of dextrorphan (DXT) from dextromethorphan (DXM) has been widely used to assess cytochrome P450 2D (CYP2D) activity. Additionally, the kinetics of CYP2D activity have been well characterized in the liver microsomes. However, studies in brain microsomes are limited due to the lower microsomal content and abundance of CYP2D in the brain relative to the liver. In the present study, we developed a micro-scale enzymatic incubation method, coupled with a sensitive UPLC-MS/MS assay for the quantitation of the rate of DXT formation from DXM in brain microsomes. Rat brain microsomes were incubated with different concentrations of DXM for various times. The reaction was stopped, and the proteins were precipitated by the addition of acetonitrile, containing internal standard (d3-DXT). After centrifugation, supernatant (2 μL) was injected onto a UPLC, C18 column with gradient elution. Analytes were quantitated using triple-quadrupole MS/MS with electrospray ionization in positive ion mode. The assay, which was validated for accuracy and precision in the linear range of 0.25 nM to 100 nM DXT, has a lower limit of quantitation of 0.125 fmol on the column. Using our optimized incubation and quantitation methods, we were able to reduce the incubation volume (25 μL), microsomal protein amount (5 μg), and incubation time (20 min), compared with reported methods. The method was successfully applied to estimation of the Michaelis-Menten (MM) kinetic parameters of dextromethorphan-O-demethylase activity in the rat brain microsomes (mean ± SD, n = 4), which showed a maximum velocity of 2.24 ± 0.42 pmol/min/mg and a MM constant of 282 ± 62 μM. It is concluded that by requiring far less biological material and time, our method represents a significant improvement over the existing techniques for investigation of CYP2D activity in rat brain microsomes.
Collapse
Affiliation(s)
- Barent N DuBois
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, USA
| | - Reza Mehvar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, USA.
| |
Collapse
|
4
|
van den Brink WJ, Wong YC, Gülave B, van der Graaf PH, de Lange ECM. Revealing the Neuroendocrine Response After Remoxipride Treatment Using Multi-Biomarker Discovery and Quantifying It by PK/PD Modeling. AAPS JOURNAL 2016; 19:274-285. [PMID: 27785749 DOI: 10.1208/s12248-016-0002-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/03/2016] [Indexed: 01/10/2023]
Abstract
To reveal unknown and potentially important mechanisms of drug action, multi-biomarker discovery approaches are increasingly used. Time-course relationships between drug action and multi-biomarker profiles, however, are typically missing, while such relationships will provide increased insight in the underlying body processes. The aim of this study was to investigate the effect of the dopamine D2 antagonist remoxipride on the neuroendocrine system. Different doses of remoxipride (0, 0.7, 5.2, or 14 mg/kg) were administered to rats by intravenous infusion. Serial brain extracellular fluid (brainECF) and plasma samples were collected and analyzed for remoxipride pharmacokinetics (PK). Plasma samples were analyzed for concentrations of the eight pituitary-related hormones as a function of time. A Mann-Whitney test was used to identify the responding hormones, which were further analyzed by pharmacokinetic/pharmacodynamic (PK/PD) modeling. A three-compartment PK model adequately described remoxipride PK in plasma and brainECF. Not only plasma PRL, but also adrenocorticotrophic hormone (ACTH) concentrations were increased, the latter especially at higher concentrations of remoxipride. Brain-derived neurotropic factor (BDNF), follicle stimulating hormone (FSH), growth hormone (GH), luteinizing hormone (LH), and thyroid stimulating hormones (TSH) did not respond to remoxipride at the tested doses, while oxytocin (OXT) measurements were below limit of quantification. Precursor pool models were linked to brainECF remoxipride PK by Emax drug effect models, which could accurately describe the PRL and ACTH responses. To conclude, this study shows how a multi-biomarker identification approach combined with PK/PD modeling can reveal and quantify a neuroendocrine multi-biomarker response for single drug action.
Collapse
Affiliation(s)
- Willem J van den Brink
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Yin C Wong
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Berfin Gülave
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands
| | - Piet H van der Graaf
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands.,Certara QSP, Canterbury Innovation House, Canterbury, UK
| | - Elizatbeth C M de Lange
- Systems Pharmacology, Division of Pharmacology, Leiden Academic Center for Drug Research, Leiden University, PO box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
5
|
Toselli F, Dodd PR, Gillam EMJ. Emerging roles for brain drug-metabolizing cytochrome P450 enzymes in neuropsychiatric conditions and responses to drugs. Drug Metab Rev 2016; 48:379-404. [DOI: 10.1080/03602532.2016.1221960] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Vaglini F, Viaggi C, Piro V, Pardini C, Gerace C, Scarselli M, Corsini GU. Acetaldehyde and parkinsonism: role of CYP450 2E1. Front Behav Neurosci 2013; 7:71. [PMID: 23801948 PMCID: PMC3689266 DOI: 10.3389/fnbeh.2013.00071] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/01/2013] [Indexed: 11/23/2022] Open
Abstract
The present review update the relationship between acetaldehyde (ACE) and parkinsonism with a specific focus on the role of P450 system and CYP 2E1 isozyme particularly. We have indicated that ACE is able to enhance the parkinsonism induced in mice by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, a neurotoxin able to damage the nigrostriatal dopaminergic pathway. Similarly diethyldithiocarbamate, the main metabolite of disulfiram, a drug widely used to control alcoholism, diallylsulfide (DAS) and phenylisothiocyanate also markedly enhance the toxin-related parkinsonism. All these compounds are substrate/inhibitors of CYP450 2E1 isozyme. The presence of CYP 2E1 has been detected in the dopamine (DA) neurons of rodent Substantia Nigra (SN), but a precise function of the enzyme has not been elucidated yet. By treating CYP 2E1 knockout (KO) mice with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, the SN induced lesion was significantly reduced when compared with the lesion observed in wild-type animals. Several in vivo and in vitro studies led to the conclusion that CYP 2E1 may enhance the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice by increasing free radical production inside the dopaminergic neurons. ACE is a good substrate for CYP 2E1 enzyme as the other substrate-inhibitors and by this way may facilitate the susceptibility of dopaminergic neurons to toxic events. The literature suggests that ethanol and/or disulfiram may be responsible for toxic parkinsonism in human and it indicates that basal ganglia are the major targets of disulfiram toxicity. A very recent study reports that there are a decreased methylation of the CYP 2E1 gene and increased expression of CYP 2E1 mRNA in Parkinson's disease (PD) patient brains. This study suggests that epigenetic variants of this cytochrome contribute to the susceptibility, thus confirming multiples lines of evidence which indicate a link between environmental toxins and PD.
Collapse
Affiliation(s)
- Francesca Vaglini
- Department of Translational Research and New Technology in Medicine, University of PisaPisa, Italy
| | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
Cytochrome P450 enzymes (CYPs) metabolize many drugs that act on the central nervous system (CNS), such as antidepressants and antipsychotics; drugs of abuse; endogenous neurochemicals, such as serotonin and dopamine; neurotoxins; and carcinogens. This takes place primarily in the liver, but metabolism can also occur in extrahepatic organs, including the brain. This is important for CNS-acting drugs, as variation in brain CYP-mediated metabolism may be a contributing factor when plasma levels do not predict drug response. This review summarizes the characterization of CYPs in the brain, using examples from the CYP2 subfamily, and discusses sources of variation in brain CYP levels and metabolism. Some recent experiments are described that demonstrate how changes in brain CYP metabolism can influence drug response, toxicity and drug-induced behaviours. Advancing knowledge of brain CYP-mediated metabolism may help us understand why patients respond differently to drugs used in psychiatry and predict risk for psychiatric disorders, including neurodegenerative diseases and substance abuse.
Collapse
Affiliation(s)
| | - Rachel F. Tyndale
- Correspondence to: R.F. Tyndale, Department of Pharmacology and Toxicology, 1 King’s College Circle, Toronto ON M5S 1A8;
| |
Collapse
|
8
|
Stevens J, Ploeger BA, van der Graaf PH, Danhof M, de Lange ECM. Systemic and direct nose-to-brain transport pharmacokinetic model for remoxipride after intravenous and intranasal administration. Drug Metab Dispos 2011; 39:2275-82. [PMID: 21903866 DOI: 10.1124/dmd.111.040782] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Intranasal (IN) administration could be an attractive mode of delivery for drugs targeting the central nervous system, potentially providing a high bioavailability because of avoidance of a hepatic first-pass effect and rapid onset of action. However, controversy remains whether a direct transport route from the nasal cavity into the brain exists. Pharmacokinetic modeling is proposed to identify the existence of direct nose-to-brain transport in a quantitative manner. The selective dopamine-D2 receptor antagonist remoxipride was administered at different dosages, in freely moving rats, by the IN and intravenous (IV) route. Plasma and brain extracellular fluid (ECF) concentration-time profiles were obtained and simultaneously analyzed using nonlinear mixed-effects modeling. Brain ECF/plasma area under the curve ratios were 0.28 and 0.19 after IN and IV administration, respectively. A multicompartment pharmacokinetic model with two absorption compartments (nose-to-systemic and nose-to-brain) was found to best describe the observed pharmacokinetic data. Absorption was described in terms of bioavailability and rate. Total bioavailability after IN administration was 89%, of which 75% was attributed to direct nose-to brain transport. Direct nose-to-brain absorption rate was slow, explaining prolonged brain ECF exposure after IN compared with IV administration. These studies explicitly provide separation and quantitation of systemic and direct nose-to-brain transport after IN administration of remoxipride in the rat. Describing remoxipride pharmacokinetics at the target site (brain ECF) in a semiphysiology-based manner would allow for better prediction of pharmacodynamic effects.
Collapse
Affiliation(s)
- Jasper Stevens
- Division of Pharmacology, Leiden-Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Mann A, Tyndale RF. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells. Eur J Neurosci 2010; 31:1185-93. [PMID: 20345925 DOI: 10.1111/j.1460-9568.2010.07142.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is an enzyme that is expressed in liver and brain. It can inactivate neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, 1,2,3,4-tetrahydroisoquinoline and beta-carbolines. Genetically slow CYP2D6 metabolizers are at higher risk for developing Parkinson's disease, a risk that increases with exposure to pesticides. The goal of this study was to investigate the neuroprotective role of CYP2D6 in an in-vitro neurotoxicity model. SH-SY5Y human neuroblastoma cells express CYP2D6 as determined by western blotting, immunocytochemistry and enzymatic activity. CYP2D6 metabolized 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin and the CYP2D6-specific inhibitor quinidine (1 microM) blocked 96 +/- 1% of this metabolism, indicating that CYP2D6 is functional in this cell line. Treatment of cells with CYP2D6 inhibitors (quinidine, propanolol, metoprolol or timolol) at varying concentrations significantly increased the neurotoxicity caused by 1-methyl-4-phenylpyridinium (MPP+) at 10 and 25 microM by between 9 +/- 1 and 22 +/- 5% (P < 0.01). We found that CYP3A is also expressed in SH-SY5Y cells and inhibiting CYP3A with ketoconazole significantly increased the cell death caused by 10 and 25 microM of MPP+ by between 8 +/- 1 and 30 +/- 3% (P < 0.001). Inhibiting both CYP2D6 and CYP3A showed an additive effect on MPP+ neurotoxicity. These data further support a possible role for CYP2D6 in neuroprotection from Parkinson's disease-causing neurotoxins, especially in the human brain where expression of CYP2D6 is high in some regions (e.g. substantia nigra).
Collapse
Affiliation(s)
- Amandeep Mann
- The Centre for Mental Health and Addictions, and Centre for Addiction and Mental Health Room 4326, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada, M5S 1A8
| | | |
Collapse
|
10
|
Xenobiotic metabolizing enzymes in the central nervous system: Contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie 2008; 90:426-36. [DOI: 10.1016/j.biochi.2007.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 10/16/2007] [Indexed: 11/23/2022]
|
11
|
Arellano C, Philibert C, Dane à Yakan EN, Vachoux C, Lacombe O, Woodley J, Houin G. Validation of a liquid chromatography–mass spectrometry method to assess the metabolism of dextromethorphan in rat everted gut sacs. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 819:105-13. [PMID: 15797528 DOI: 10.1016/j.jchromb.2005.01.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Accepted: 01/31/2005] [Indexed: 11/16/2022]
Abstract
A rapid, sensitive and selective liquid chromatography-mass spectrometry (LC-MS) method was developed for the simultaneous assay of dextromethorphan and its metabolites in tissue culture medium and its intestinal metabolism studied with the rat everted gut sac model. The method was validated in the concentration range of 0.1-2.5 microM (27.1 ng/mL-0.677 microg/mL) for dextromethorphan and 0.005-0.5 microM for dextrorphan and 3-methoxymorphinan (1.28 ng/mL-0.128 microg/mL) and 3-hydroxymorphinan (1.22 ng/mL-0.122 microg/mL). The limits of quantification (LOQ) were 0.0025 microM (12.5 fmoles, 3.4 pg, 5 microL injected) for dextromethorphan; 0.0025 microM for dextrorphan, 3-methoxymorphinan (24.9 fmoles, 6.4 pg injected), and 3-hydroxymorphinan (25.1 fmoles, 6.1 pg injected) with 10 microL injected. The detection of dextrorphan and 3-methoxymorphinan showed that both the P450 isoforms CYP3A and 2D were active in the intestinal mucosa and metabolised dextromethorphan during its passage across the mucosa.
Collapse
Affiliation(s)
- C Arellano
- Laboratoire de Cinétique des Xénobiotiques, UMR 181, Physiopathologie et Toxicologie Experimentale (UPTE INRA-ENVT), Faculté des Sciences Pharmaceutiques, 35 Chemin des Maraîchers, 31062 Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Miksys S, Tyndale RF. The Unique Regulation of Brain Cytochrome P450 2 (CYP2) Family Enzymes by Drugs and Genetics. Drug Metab Rev 2004; 36:313-33. [PMID: 15237857 DOI: 10.1081/dmr-120034149] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cytochrome P450 (CYP) enzymes in the brain may have a role in the activation or inactivation of centrally acting drugs, in the metabolism of endogenous compounds, and in the generation of damaging toxic metabolites and/or oxygen stress. CYPs are distributed unevenly among brain regions, and are found in neurons, glial cells and at the blood-brain interface. They have been observed in mitochondrial membranes, in neuronal processes and in the plasma membrane, as well as in endoplastic reticulum. Brain CYPs are inducible by many common hepatic inducers, however many compounds affect liver and brain CYP expression differently, and some CYPs which are constitutively expressed in liver are inducible in brain. CYP induction is isozyme-, brain region-, cell type- and inducer-specific. While it is unlikely that brain CYPs contribute to overall clearance of xenobiotics, their punctate, region- and cell-specific expression suggests that CNS CYPs may create micro-environments in the brain with differing drug and metabolite levels (not detected or predicted by plasma drug monitoring). Coupled with the sensitivity of CNS CYPs to induction, this may in part account for inter-individual variation in response to centrally acting drugs and neurotoxins, and may have implications for individual variation in receptor adaptation and cross-tolerance to different drugs. In addition, genetic variation in brain CYPs, depending on the type of polymorphism (structural versus regulatory), will alter enzyme activity. These aspects of brain CYP expression regulation and genetic influences are illustrated in this review using mRNA, protein, and enzyme activity data for CYP2D1/6, CYP2E1 and CYP2B1/6 in rat and human brain. The role of CYP-mediated metabolism in the brain, a highly heterogeneous and complex organ, is a new and relatively unexplored field of scientific enquiry. It holds promise for furthering our undestanding of inter-individual variability in response to centrally acting drugs as well as risk for neurological diseases and pathogies.
Collapse
Affiliation(s)
- Sharon Miksys
- Centre for Addiction and Mental Health, Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
13
|
Abstract
CYP2D1, 2D2, 2D3, and 2D4 are major CYP2D isoforms expressed in the rat. In humans, only CYP2D6 is expressed. In rat brain, the mRNA for CYP2D4 is most abundant in cerebellum, striatum, pons and medulla oblongata. In human brain, CYP2D6 mRNA expression was detected in all regions with highest levels observed in cerebellum. CYP2D isoforms are involved in the metabolism of not only xenobiotics such as antidepressants, beta-adrenergic blockers, antiarrhysthmics, and antihypertensives, but also endogenous compounds such as trace amine and neurosteroids. Among 11 isoforms of human recombinant P450s, only CYP2D6 exhibited an ability to efficiently convert tyramine which exists in the brain, to dopamine. CYP2D4 and CYP2D6 which are the predominant CYP2D isoforms in the rat and human brain, respectively, possess 21-hydroxylation activity for both progesterone and allopregnanolone. CYP2D4, not P450c21, works as a steroid 21-hydroxylase in the brain. These results suggested that CYP2D in the brain may be involved in the metabolism of neuronal amines and steroids and in the regulation of the central nervous system.
Collapse
Affiliation(s)
- Yoshihiko Funae
- Department of Chemical Biology, Osaka City University, Medical School, Japan.
| | | | | | | | | |
Collapse
|
14
|
Miksys S, Rao Y, Hoffmann E, Mash DC, Tyndale RF. Regional and cellular expression of CYP2D6 in human brain: higher levels in alcoholics. J Neurochem 2002; 82:1376-87. [PMID: 12354285 DOI: 10.1046/j.1471-4159.2002.01069.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cytochrome P450 (CYP) 2D6 is expressed in liver, brain and other extrahepatic tissues where it metabolizes a range of centrally acting drugs and toxins. As ethanol can induce CYP2D in rat brain, we hypothesized that CYP2D6 expression is higher in brains of human alcoholics. We examined regional and cellular expression of CYP2D6 mRNA and protein by RT-PCR, Southern blotting, slot blotting, immunoblotting and immunocytochemistry. A significant correlation was found between mean mRNA and CYP2D6 protein levels across 13 brain regions. Higher expression was detected in 13 brain regions of alcoholics (n = 8) compared to nonalcoholics (n = 5) (anovap < 0.0001). In hippocampus this was localized in CA1-3 pyramidal cells and dentate gyrus granular neurons. In cerebellum this was localized in Purkinje cells and their dendrites. Both of these brain regions, and these same cell-types, are known to be susceptible to alcohol damage. For one case, a poor metabolizer (CYP2D6*4/*4), there was no detectable CYP2D6 protein, confirming the specificity of the antibody used. These data suggest that in alcoholics elevated brain CYP2D6 expression may contribute to altered sensitivity to centrally acting drugs and to the mediation of neurotoxic and behavioral effects of alcohol.
Collapse
Affiliation(s)
- Sharon Miksys
- Centre for Addiction and Mental Health, Department of Pharmacology, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
15
|
Chinta SJ, Pai HV, Upadhya SC, Boyd MR, Ravindranath V. Constitutive expression and localization of the major drug metabolizing enzyme, cytochrome P4502D in human brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 103:49-61. [PMID: 12106691 DOI: 10.1016/s0169-328x(02)00177-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytochrome P4502D6, an important isoform of cytochrome P450, mediates the metabolism of several psychoactive drugs in liver. Quantitatively, liver is the major drug metabolizing organ, however metabolism of drugs in brain could modulate pharmacological and pharmacodynamic effects of psychoactive drugs at their site of action and explain some of the variation typically seen in patient population. We have measured cytochrome P450 content and examined constitutive expression of CYP2D mRNA and protein in human brain regions by reverse transcription polymerase chain reaction, Northern and immunoblotting and localized it by in situ hybridization and immunohistochemistry. CYP2D mRNA was expressed constitutively in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum, reticular neurons of midbrain and pyramidal neurons of CA1, CA2 and CA3 subfields of hippocampus. Immunoblot studies demonstrated the presence of cytochrome P4502D protein in cortex, cerebellum, midbrain, striatum and thalamus of human brain. Immunohistochemical localization showed the predominant presence of cytochrome P4502D not only in neuronal soma but also in dendrites of Purkinje and cortical neurons. These studies demonstrate constitutive expression of cytochrome P4502D in neuronal cell population in human brain, indicating its possible role in metabolism of psychoactive drugs directly at or near their site of action, in neurons, in human brain.
Collapse
Affiliation(s)
- Shankar J Chinta
- Department of Neurochemistry, National Institute of Mental Health and Neurosciences, Hosur Road, Bangalore 560 029, India
| | | | | | | | | |
Collapse
|
16
|
Kosel M, Gnerre C, Voirol P, Amey M, Rochat B, Bouras C, Testa B, Baumann P. In vitro biotransformation of the selective serotonin reuptake inhibitor citalopram, its enantiomers and demethylated metabolites by monoamine oxidase in rat and human brain preparations. Mol Psychiatry 2002; 7:181-8. [PMID: 11840311 DOI: 10.1038/sj.mp.4000946] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2000] [Revised: 04/16/2001] [Accepted: 04/19/2001] [Indexed: 02/06/2023]
Abstract
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Collapse
Affiliation(s)
- M Kosel
- Unité de Biochimie et Psychopharmacologie Clinique, Département Universitaire de Psychiatrie Adulte, CH-1008 Prilly-Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Voirol P, Jonzier-Perey M, Porchet F, Reymond MJ, Janzer RC, Bouras C, Strobel HW, Kosel M, Eap CB, Baumann P. Cytochrome P-450 activities in human and rat brain microsomes. Brain Res 2000; 855:235-43. [PMID: 10677595 DOI: 10.1016/s0006-8993(99)02354-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of cytochrome P450 in the metabolism of dextromethorphan, amitriptyline, midazolam, S-mephenytoin, citalopram, fluoxetine and sertraline was investigated in rat and human brain microsomes. Depending on the parameters, the limit of quantification using gas chromatography-mass spectrometry methods was between 1.6 and 20 pmol per incubation, which generally contained 1500 microg protein. Amitriptyline was shown to be demethylated to nortriptyline by both rat and human microsomes. Inhibition studies using ketoconazole, furafylline, sulfaphenazole, omeprazole and quinidine suggested that CYP3A4 is the isoform responsible for this reaction whereas CYP1A2, CYP2C9, CYP2C19 and CYP2D6 do not seem to be involved. This result was confirmed by using a monoclonal antibody against CYP3A4. Dextromethorphan was metabolized to dextrorphan in rat brain microsomes and was inhibited by quinidine and by a polyclonal antibody against CYP2D6. Only the addition of exogenous reductase allowed the measurement of this activity in human brain microsomes. Metabolites of the other substrates could not be detected, possibly due to an insufficiently sensitive method. It is concluded that cytochrome P450 activity in the brain is very low, but that psychotropic drugs could undergo a local cerebral metabolism which could have pharmacological and/or toxicological consequences.
Collapse
Affiliation(s)
- P Voirol
- Unité de Biochimie et Psychopharmacologie Clinique, Département Universitaire de Psychiatrie Adulte, CH-1008 Prilly, Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Strobel HW, Geng J, Kawashima H, Wang H. Cytochrome P450-dependent biotransformation of drugs and other xenobiotic substrates in neural tissue. Drug Metab Rev 1997; 29:1079-105. [PMID: 9421686 DOI: 10.3109/03602539709002244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- H W Strobel
- Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School 77225, USA
| | | | | | | |
Collapse
|