1
|
Cheng X, Luo H, Hou Z, Huang Y, Sun J, Zhou L. Neuronal nitric oxide synthase, as a downstream signaling molecule of c‑jun, regulates the survival of differentiated PC12 cells. Mol Med Rep 2014; 10:1881-6. [PMID: 25069402 DOI: 10.3892/mmr.2014.2415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
The high expression of c-jun and neuronal nitric oxide synthase (nNOS) generally occurs in neurons following the generation of various animal models of central neuronal diseases. However, the mechanism between them in neuronal disease remains to be elucidated. Our previous studies demonstrated that the expression of c‑jun always occurs prior to expression of nNOS in motoneuron injuries and suppression of c‑jun expression by c‑jun siRNA decreased nNOS expression in differentiated PC12 cells. The present study aimed to examine whether there was an association of up and downstream regulation or crosstalk between c‑jun and nNOS in neurons. Using a culture of differentiated PC12 cells in vitro, the expression of nNOS and c-jun in cells was investigated by immunofluorescence. The nNOS inhibitor 7‑nitroindazole (7‑NI) was used in differentiated PC12 cells to downregulate the expression of nNOS. The optimal concentration of 7‑NI on the viability and survival of cultured differentiated PC12 cells was selected using a 3‑(4,5-dimethylthiazol-2-yl)‑2,5-diphenyltetrazolium assay and the effects of 7‑NI on the activity of constitutive nitric oxide synthase (cNOS) in differentiated PC12 cells were determined using a NOS Activity Detection kit. The effects of 7‑NI on the gene expression of nNOS and c‑jun were detected by western blot analysis. The results from the immunofluorescence demonstrated that the c‑jun and nNOS protein were constantly expressed in PC12 cells. The cell viability of differentiated PC12 cells were significantly inhibited by treatment with 200 and 400 µmol/l 7‑NI, and the expression levels of the nNOS protein were significantly inhibited by treatment with 200 µmol/l 7‑NI. However, 7‑NI had no significant effect on the protein expression level of c‑jun and the total activities of cNOS. Based on our previous studies, which revealed that the nNOS gene was a downstream signaling molecule of the JNK/c‑jun signaling pathway in cultured neurons, the expression of nNOS downstream was able to be regulated by c‑jun which was the upstream molecule. Therefore, these results indicated that the association between them involved up and downregulation instead of crosstalk.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Haoxuan Luo
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zijun Hou
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Yan Huang
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Jingbo Sun
- Department of Encephalopathy, Encephalopathy Center, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, Guangdong 510120, P.R. China
| | - Lihua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
2
|
Cheng JC, Bai A, Beckham TH, Marrison ST, Yount CL, Young K, Lu P, Bartlett AM, Wu BX, Keane BJ, Armeson KE, Marshall DT, Keane TE, Smith MT, Jones EE, Drake RR, Bielawska A, Norris JS, Liu X. Radiation-induced acid ceramidase confers prostate cancer resistance and tumor relapse. J Clin Invest 2013; 123:4344-58. [PMID: 24091326 DOI: 10.1172/jci64791] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/11/2013] [Indexed: 01/06/2023] Open
Abstract
Escape of prostate cancer (PCa) cells from ionizing radiation-induced (IR-induced) killing leads to disease progression and cancer relapse. The influence of sphingolipids, such as ceramide and its metabolite sphingosine 1-phosphate, on signal transduction pathways under cell stress is important to survival adaptation responses. In this study, we demonstrate that ceramide-deacylating enzyme acid ceramidase (AC) was preferentially upregulated in irradiated PCa cells. Radiation-induced AC gene transactivation by activator protein 1 (AP-1) binding on the proximal promoter was sensitive to inhibition of de novo ceramide biosynthesis, as demonstrated by promoter reporter and ChIP-qPCR analyses. Our data indicate that a protective feedback mechanism mitigates the apoptotic effect of IR-induced ceramide generation. We found that deregulation of c-Jun induced marked radiosensitization in vivo and in vitro, which was rescued by ectopic AC overexpression. AC overexpression in PCa clonogens that survived a fractionated 80-Gy IR course was associated with increased radioresistance and proliferation, suggesting a role for AC in radiotherapy failure and relapse. Immunohistochemical analysis of human PCa tissues revealed higher levels of AC after radiotherapy failure than those in therapy-naive PCa, prostatic intraepithelial neoplasia, or benign tissues. Addition of an AC inhibitor to an animal model of xenograft irradiation produced radiosensitization and prevention of relapse. These data indicate that AC is a potentially tractable target for adjuvant radiotherapy.
Collapse
|
3
|
Cheng X, Fu R, Gao M, Liu S, Li YQ, Song FH, Bruce I, Zhou LH, Wu W. Intrathecal application of short interfering RNA knocks down c-jun expression and augments spinal motoneuron death after root avulsion in adult rats. Neuroscience 2013; 241:268-79. [DOI: 10.1016/j.neuroscience.2013.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 03/07/2013] [Accepted: 03/07/2013] [Indexed: 12/21/2022]
|
4
|
Deng Z, Sui G, Rosa PM, Zhao W. Radiation-induced c-Jun activation depends on MEK1-ERK1/2 signaling pathway in microglial cells. PLoS One 2012; 7:e36739. [PMID: 22606284 PMCID: PMC3351464 DOI: 10.1371/journal.pone.0036739] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 04/09/2012] [Indexed: 12/04/2022] Open
Abstract
Radiation-induced normal brain injury is associated with acute and/or chronic inflammatory responses, and has been a major concern in radiotherapy. Recent studies suggest that microglial activation is a potential contributor to chronic inflammatory responses following irradiation; however, the molecular mechanism underlying the response of microglia to radiation is poorly understood. c-Jun, a component of AP-1 transcription factors, potentially regulates neural cell death and neuroinflammation. We observed a rapid increase in phosphorylation of N-terminal c-Jun (on serine 63 and 73) and MAPK kinases ERK1/2, but not JNKs, in irradiated murine microglial BV2 cells. Radiation-induced c-Jun phosphorylation is dependent on the canonical MEK-ERK signaling pathway and required for both ERK1 and ERK2 function. ERK1/2 directly interact with c-Jun in vitro and in cells; meanwhile, the JNK binding domain on c-Jun is not required for its interaction with ERK kinases. Radiation-induced reactive oxygen species (ROS) potentially contribute to c-Jun phosphorylation through activating the ERK pathway. Radiation stimulates c-Jun transcriptional activity and upregulates c-Jun-regulated proinflammatory genes, such as tumor necrosis factor-α, interleukin-1β, and cyclooxygenase-2. Pharmacologic blockade of the ERK signaling pathway interferes with c-Jun activity and inhibits radiation-stimulated expression of c-Jun target genes. Overall, our study reveals that the MEK-ERK1/2 signaling pathway, but not the JNK pathway, contributes to the c-Jun-dependent microglial inflammatory response following irradiation.
Collapse
Affiliation(s)
- Zhiyong Deng
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Guangchao Sui
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Paulo Mottin Rosa
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Weiling Zhao
- Department of Radiation Oncology and Brain Tumor Center of Excellence, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
5
|
Mahmoud-Ahmed AS, Atkinson S, Wong CS. Early gene expression profile in mouse brain after exposure to ionizing radiation. Radiat Res 2006; 165:142-54. [PMID: 16435913 DOI: 10.1667/rr3485.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acute changes in the gene expression profile in mouse brain after exposure to ionizing radiation were studied using microarray analysis. RNA was isolated at 0.25, 1, 5 and 24 h after exposure to 20 Gy and at 5 h after exposure of the whole brain of adult mice to 2 or 10 Gy. RNA was hybridized onto 15K cDNA microarrays, and data were analyzed using GeneSpring and Significant Analysis of Microarray. Radiation modulated the expression of 128, 334, 325 and 155 genes and ESTs at 0.25, 1, 5 and 24 h after 20 Gy and 60 and 168 at 5 h after 2 and 10 Gy, respectively. The expression profiles showed dose- and time-dependent changes in both expression levels and numbers of differentially modulated genes and ESTs. Seventy-eight genes were modulated at two or more times. Differentially modulated genes were associated with 12 different classes of molecular function and 24 different biological pathways and showed time- and dose-dependent changes. The change in expression of four genes (Jak3, Dffb, Nsep1 and Terf1) after irradiation was validated using quantitative real-time PCR. Up-regulation of Jak3 was observed in another mouse strain. In mouse brain, there was an increase of Jak3 immunoreactivity after irradiation. In conclusion, changes in the gene profile in the brain after irradiation are complex and are dependent on time and dose, and genes with diverse functions and pathways are modulated.
Collapse
Affiliation(s)
- Ashraf S Mahmoud-Ahmed
- Department of Radiation Oncology, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, M4N 3M5 Canada
| | | | | |
Collapse
|
6
|
Yang YM, Jhanwar-Uniyal M, Schwartz J, Conaway CC, Halicka HD, Traganos F, Chung FL. N-acetylcysteine conjugate of phenethyl isothiocyanate enhances apoptosis in growth-stimulated human lung cells. Cancer Res 2005; 65:8538-47. [PMID: 16166335 DOI: 10.1158/0008-5472.can-05-0236] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously showed that dietary treatment with the N-acetylcysteine conjugate of phenethyl isothiocyanate (PEITC-NAC) inhibited benzo(a)pyrene-induced lung tumorigenesis in A/J mice, and that tumor inhibition was associated with induction of activator protein-1 (AP-1) activity and stimulation of apoptosis in the lungs of mice. In the present study, we show that PEITC-NAC also induces apoptosis and AP-1 activity in human lung adenocarcinoma A549 cells, and that activation of AP-1 is important in PEITC-NAC induced apoptosis in these cells. PEITC-NAC induced AP-1 binding activity in A549 cells in a dose- and time-dependent manner; peak activity appeared at 10 micromol/L after 24 hours. At that time, flow cytometric analysis showed a sub-G1 peak, indicating that approximately 4.5% of the cells had undergone apoptosis. When wild-type c-jun cDNA was transfected into A549 cells, PEITC-NAC-mediated apoptosis was greatly increased in the c-jun-transfected cells compared with the control vector-transfected cells, based on cell morphology and analysis of DNA fragmentation. Furthermore, cells that were pretreated with 100 nmol/L 12-O-tetradecanoyl phorbol-13-acetate, and then treated with 25 micromol/L PEITC-NAC, underwent enhanced apoptosis compared with cells that were treated with PEITC-NAC alone; cells treated with 12-O-tetradecanoyl phorbol-13-acetate alone showed active cell growth without apoptosis. Bivariate flow cytometric analysis of DNA strand breaks versus DNA content showed that apoptosis induced by PEITC-NAC occurred predominantly in the G2-M phase. These findings suggest that growth-stimulated cells with an elevated basal AP-1 activity, i.e., A549 cells transfected with wild-type c-jun or treated with a tumor promoter, were more sensitive to PEITC-NAC-mediated apoptosis. The observation that PEITC-NAC induces apoptosis predominantly in growth-promoted cells, such as neoplastic cells, suggests a selective mechanism by which PEITC-NAC inhibits lung carcinogenesis.
Collapse
Affiliation(s)
- Yang-Ming Yang
- Division of Carcinogenesis, American Health Foundation Cancer Center, Institute for Cancer Prevention, Valhalla, New York, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Kikuchi-Horie K, Kawakami E, Kamata M, Wada M, Hu JG, Nakagawa H, Ohara K, Watabe K, Oyanagi K. Distinctive expression of midkine in the repair period of rat brain during neurogenesis: immunohistochemical and immunoelectron microscopic observations. J Neurosci Res 2004; 75:678-87. [PMID: 14991843 DOI: 10.1002/jnr.20015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Distinctive expression of midkine (MK) was observed during the repair period of fetal brain neuroepithelium. MK is a heparin-binding growth factor that occurs as a product of a retinoic acid-inducible gene, and has a molecular mass of 13 kDa. MK expression was examined immunohistochemically and by immunoelectron microscopy during a period of repair in developing rat brain at the neurogenesis stage. Injury was induced in rat fetuses by transplacental administration of ethylnitrosourea (ENU) on embryonic Day (E) 16, and histological changes were examined up to 48 hr thereafter (i.e., up to E 18). In normal rat fetuses, MK immunostaining was observed in the cytoplasm and radial and horizontal processes of all cells in the neuroepithelium (NE), subventricular zone (SV), and intermediate zone (IMZ). In ENU-administered brains, cells in the NE, SV, and IMZ were damaged severely, especially 16-24 hr after ENU administration. The remaining neuroepithelial cells, with the exception of those in M-phase and the tips of processes at the ventricular surface, were negative for MK immunohistochemistry 16-24 hr after the administration of ENU. Forty-eight hours after the administration, the cytoplasm and processes of cells in the NE, SV, and IMZ were MK immunopositive. Our previous data reported that the cell cycle of most NE cells is synchronized to the S-phase 16 hr after ENU administration and to the M-phase at 24 hr, and many NE cells were recovered 48 hr after ENU administration. The previous results taken together with the present results indicate that: (1) MK expression does not increase during the repair period of the NE, being different from adults; (2) MK expression is likely to be suppressed at S-phase according to the condition of the NE; and (3) MK expression is not essential for every cell cycle phase of NE cells; but (4) is necessary to maintain the M-phase of NE cells.
Collapse
Affiliation(s)
- Kae Kikuchi-Horie
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
He YY, Huang JL, Sik RH, Liu J, Waalkes MP, Chignell CF. Expression profiling of human keratinocyte response to ultraviolet A: implications in apoptosis. J Invest Dermatol 2004; 122:533-43. [PMID: 15009741 DOI: 10.1046/j.0022-202x.2003.22123.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ultraviolet A radiation from sunlight is a major human health concern, as it is not absorbed by the ozone layer and can deeply penetrate into the skin causing skin damage. To study the molecular mechanism involved in the ultraviolet A effect, human HaCaT keratinocytes were exposed to ultraviolet A at doses of 10 J per cm2 and 30 J per cm2. Ultraviolet A irradiation caused dose- and time-dependent apoptotic cell death, as evidenced by DNA fragmentation, flow cytometry, and the activation of caspase-3. To study the genes altered by ultraviolet A at an apoptosis-inducing dose (30 J per cm2), cells were harvested immediately after ultraviolet A treatment (0 h), and 6 h and 24 h after ultraviolet A exposure. Total RNA was extracted for microarray and real-time RT-PCR analysis, and cellular proteins were extracted for western blot analysis. Of the selected critical genes/proteins, the induction of c-Jun, c-myc, and p33ING1, and the repression of epidermal growth factor receptor, inhibitor of apoptosis protein, and survivin pathways, could be involved in ultraviolet-A-induced apoptosis. On the other hand, the late induction of cyclin D1 and cyclin-dependent kinase 4 was indicative of possible cell cycle recovery in surviving cells. Real-time RT-PCR analysis confirmed these results and a majority of the protein levels paralleled their corresponding RNA levels. In addition, ultraviolet A treatment altered the expression of genes involved in signal transduction, RNA processing, structural proteins, and metabolism in a time-dependent manner. This initial microarray analysis could advance our understanding of cellular responses to ultraviolet A exposure, and provide a platform from which to further study ultraviolet-A-induced apoptosis and carcinogenesis.
Collapse
Affiliation(s)
- Yu-Ying He
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Yin E, Nelson DO, Coleman MA, Peterson LE, Wyrobek AJ. Gene expression changes in mouse brain after exposure to low-dose ionizing radiation. Int J Radiat Biol 2004; 79:759-75. [PMID: 14630535 DOI: 10.1080/09553000310001610961] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE To characterize the cellular functions associated with the altered transcript profiles of mouse brain exposed to low-dose in vivo gamma-irradiation. MATERIALS AND METHODS Cerebral RNA was isolated at 30 min and 4 h after whole-body irradiation at 0.1 or 2 Gy, hybridized to random oligonucleotide arrays, and evaluated for time and dose-response patterns by multifactorial analyses. RESULTS Brain irradiation modulated the expression patterns of 1574 genes, of which 855 showed more than 1.5-fold variation. about 30% of genes showed dose-dependent variations, including genes exclusively affected by 0.1 Gy. About 60% of genes showed time-dependent variation with more genes affected at 30 min than at 4 h. Early changes involved signal transduction, ion regulation and synaptic signalling. Later changes involved metabolic functions including myelin and protein synthesis. Low-dose radiation also modulated the expression of genes involved in stress response, cell-cycle control and DNA synthesis/repair. CONCLUSIONS Doses of 0.1 Gy induced changes in gene expression that were qualitatively different from those at 2 Gy. The findings suggest that low-dose irradiation of the brain induces the expression of genes involved in protective and reparative functions, while down-modulating genes involved in neural signalling activity.
Collapse
Affiliation(s)
- E Yin
- Biology and Biotechnology Research Program Lawrence Livermore National Laboratory Livermore CA 94 550 USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
In its 1990 recommendations, the ICRP considered the radiation risks after exposure during prenatal development. This report is a critical review of new experimental animal data on biological effects and evaluations of human studies after prenatal radiation published since the 1990 recommendations.Thus, the report discusses the effects after radiation exposure during pre-implantation, organogenesis, and fetogenesis. The aetiology of long-term effects on brain development is discussed, as well as evidence from studies in man on the effects of in-utero radiation exposure on neurological and mental processes. Animal studies of carcinogenic risk from in-utero radiation and the epidemiology of childhood cancer are discussed, and the carcinogenic risk to man from in-utero radiation is assessed. Open questions and needs for future research are elaborated.The report reiterates that the mammalian embryo and fetus are highly radiosensitive. The nature and sensitivity of induced biological effects depend upon dose and developmental stage at irradiation. The various effects, as studied in experimental systems and in man, are discussed in detail. It is concluded that the findings in the report strengthen and supplement the 1990 recommendations of the ICRP.
Collapse
|
11
|
Chiarini LB, de Freitas FG, Leal-Ferreira ML, Tolkovsky A, Linden R. Cytoplasmic c-Jun N-terminal immunoreactivity: a hallmark of retinal apoptosis. Cell Mol Neurobiol 2002; 22:711-26. [PMID: 12585690 PMCID: PMC11533790 DOI: 10.1023/a:1021857007976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
1. We investigated the association of c-Jun with apoptosis within retinal tissue. Explants of the retina of neonatal rats were subject to a variety of procedures that cause apoptosis of specific classes of retinal cells at distinct stages of differentiation. The expression of c-Jun was detected by Western Blot, and immunohistochemistry was done with antibodies made for either N-terminal or C-terminal domains of c-Jun, and correlated with apoptosis detected either by chromatin condensation or by in situ nick end labeling of fragmented DNA. 2. c-Jun protein content was increased in retinal tissue subject to induction of both photoreceptor and ganglion cell death. 3. c-Jun N-terminal immunoreactivity was found mainly in the cytoplasm of apoptotic cells regardless of cell type, of the stage of differentiation, including proliferating cells, or of the means of induction of apoptosis. 4. The data are consistent with the hypothesis that c-Jun is involved in the control of cell death in retinal tissue, but other proteins that cross-react with c-Jun N-terminal antibodies may also be major markers of retinal apoptosis. 5. Antibodies directed to c-Jun N-terminal (aa 91-105) are useful tools to follow apoptotic changes in retinal tissue.
Collapse
|
12
|
Vaudano E, Rosenblad C, Björklund A. Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor. Eur J Neurosci 2001. [DOI: 10.1111/j.1460-9568.2001.01356.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Vaudano E, Rosenblad C, Bjorklund A. Injury induced c-Jun expression and phosphorylation in the dopaminergic nigral neurons of the rat: correlation with neuronal death and modulation by glial-cell-line-derived neurotrophic factor. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01356.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Justicia C, Gabriel C, Planas AM. Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 2000; 30:253-70. [PMID: 10756075 DOI: 10.1002/(sici)1098-1136(200005)30:3<253::aid-glia5>3.0.co;2-o] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
JAK/STAT is one of the pathways bearing signals from the cell membrane to the nucleus in response to extracellular growth factors and cytokines. In the present study, we examined the cellular distribution of Jak1 and Stat3, and activation of the JAK/STAT pathway following transient focal cerebral ischemia in the rat. Jak1 was mainly seen in white matter astrocytes and in certain neurons. Notably, large pyramidal neurons of cortical layer V showed the highest neuronal Jak1 expression within cerebral cortex and, in addition, expressed Stat3 indicating that the JAK/STAT pathway is involved in signaling in the corticofugal projection system. Shortly following ischemia, Jak1 immunoreactive astrocytes located in the ipsilateral neighbouring white matter and ischemic cortex and striatum showed nuclear translocation of Stat3. These features were maintained in large reactive astrocytes that surrounded the infarct from 3 to 7 days. At these later times, the abundant reactive microglia/macrophages were strongly immunoreactive to Stat3 and, to a lesser extent, Jak1. Two main protein complexes showing DNA binding activity at the sis-inducible element site were found under basal conditions, followed by changes in this pattern following ischemia concomitant with neuronal cell loss and activation of glia. This study showed basal cerebral activity of JAK/STAT signaling pathway, involving Jak1 and Stat3 proteins, and selective activation following ischemia. It is suggested that the kinase activity of Jak1 mediates nuclear translocation of Stat3 in astrocytes, and that this signaling pathway is involved in the astroglial response to focal cerebral ischemia.
Collapse
Affiliation(s)
- C Justicia
- Departament de Farmacologia i Toxicologia, Institut d'Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPS
| | | | | |
Collapse
|
15
|
Affiliation(s)
- I Ferrer
- Unitat de Neuropatologia, Servei d'Anatomia Patològica, Hospital Princeps d'Espanya, Universitat de Barcelona, 08907 Hospitalet de Llobregat, Barcelona, Spain.
| | | | | |
Collapse
|
16
|
Gabriel C, Justicia C, Camins A, Planas AM. Activation of nuclear factor-kappaB in the rat brain after transient focal ischemia. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 65:61-9. [PMID: 10036308 DOI: 10.1016/s0169-328x(98)00330-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nuclear factor-kappaB (NF-kappaB) becomes activated under inflammatory conditions and triggers induction of gene expression. Here, activation of NF-kappaB was studied after transient middle cerebral artery occlusion in the rat. Expression of p65 and p50, protein subunits of NF-kappaB, was examined by Western blotting, and immunohistochemistry for p65 was carried out. Double-labelling with specific markers for astroglia and microglia was used for cell type identification. Neurons located within and surrounding the ischemic core were identified during the first 24 h post-ischemia by using an antibody against 72-kDa heat shock protein. NF-kappaB binding activity was evaluated at different times post-ischemia with electrophoretic mobility gel shift assays. The results showed constitutive expression of p65 and p50, and NF-kappaB binding activity. Basal p65 was seen in certain neurons and resting astrocytes. Constitutive NF-kappaB binding activity was attributable to one main protein complex possibly formed in neurons and astrocytes, although two minor complexes were also detected. At 1 day post-ischemia selective induction of p65 was seen in neurons located in a penumbra-like area. At this time, however, no disturbances of basal NF-kappaB binding activity were found. Western blotting showed delayed induction of p65 several days after ischemia, whereas no changes were detected for p50. From 4 days post-ischemia, a substantial increase in the amount of p65 was detected due to induction in reactive astrocytes and microglia/macrophages. This was correlated with a robust enhancement of NF-kappaB binding activity with formation of three major specific complexes binding DNA. It is proposed that the highly inducible NF-kappaB complexes resulted from induction of p65 and activation of NF-kappaB in post-ischemic reactive glia.
Collapse
Affiliation(s)
- C Gabriel
- Departament of Farmacologia i Toxicologia, IIBB, CSIC-IDIBAPS, Jordi Girona 18-26, 08034, Barcelona, Spain
| | | | | | | |
Collapse
|
17
|
Haas CA, Bach A, Heimrich B, Linke R, Otten U, Frotscher M. Axotomy-induced c-JUN expression in young medial septal neurons is regulated by nerve growth factor. Neuroscience 1998; 87:831-44. [PMID: 9759971 DOI: 10.1016/s0306-4522(98)00188-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In the present study we investigated the axotomy-induced expression of the proto-oncogene c-jun in young rat medial septal neurons and its regulation by nerve growth factor. First, medial septal neurons were retrogradely labelled by Fast Blue injection into the hippocampus at postnatal day 1 (P1). Rats of different developmental ages (P6, P9, P14, P21, P28 and P42) were then subjected to bilateral fimbria-fornix transection resulting in the axotomy of septohippocampal projection neurons. After the lesion, c-JUN immunoreactivity was observed in the nuclei of axotomized medial septal neurons of all stages examined, suggesting that c-JUN induction is an age-independent feature of axotomized medial septal neurons. Double immunolabelling for choline acetyltransferase and c-JUN or parvalbumin and c-JUN, respectively, revealed that both cholinergic and GABAergic septohippocampal projection neurons express c-JUN after axotomy. In addition, a co-localization of immunostaining for c-JUN and the neuropeptide galanin was found after lesion, as both proteins were induced in the same medial septal neurons following fimbria-fornix transection. Next, the regulation of c-JUN expression in axotomized medial septal neurons was studied in organotypic cultures of the medial septum. Axotomized medial septal neurons in culture did not express c-JUN in contrast to the in vivo situation. With the concept that nerve growth factor suppresses c-JUN expression, slice cultures of the medial septum were treated with antibodies against nerve growth factor. This treatment caused a dose-dependent increase in c-JUN-positive cells in these slice cultures. Simultaneous addition of nerve growth factor and antibodies against nerve growth factor resulted in the reversal of this effect. These data suggest an age-independent induction of c-JUN in axotomized medial septal neurons and its regulation by nerve growth factor.
Collapse
Affiliation(s)
- C A Haas
- Institute of Anatomy, University of Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1064] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
19
|
Oyanagi K, Kakita A, Yamada M, Kawasaki K, Hayashi S, Ikuta F. Process of repair in the neuroepithelium of developing rat brain during neurogenesis: chronological and quantitative observation of DNA-replicating cells. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 108:229-38. [PMID: 9693799 DOI: 10.1016/s0165-3806(98)00053-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuroepithelium (NE) of the cerebrum of the developing brain has been reported to 'regenerate' within a certain period after being injured. To clarify the process of repair of the NE during neurogenesis, we chronologically examined the number of cells in the neocortex, and the rate of DNA-replicating cells and the mitotic figure ratio in the NE of rats after injury. The injury was induced by transplacental administration of ethylnitrosourea (ENU), which is cytotoxic immediately after administration, to the pregnant rats on embryonic day 16. The number of living and pyknotic cells in a 220-micron width of the neocortex was evaluated in each of three groups, such as NE, subventricular zone (SVZ) + intermediate zone (IMZ) + subplate (SP), and cortical plate (CP). The 5-bromo-2-deoxyuridine (BrdU)-labeling index and the mitotic index were examined 4, 8, 16, 24, 36, and 48 h after ENU administration. Up to 16 h after ENU administration, the number of living cells per 220 microns width in the NE and SVZ + IMZ + SP decreased, but increased in CP. From 16 to 24 h, the living cell number per 220 microns width in the NE and CP was unchanged, but increased in the SVZ + IMZ + SP. From 24 to 36 h, the living cell number per 220 microns width increased in all the groups, NE, SVZ + IMZ + SP and CP. From 36 to 48 h, the living cell number per 220 microns width in the NE was unchanged, but increased in the SVZ + IMZ + SP and CP. The BrdU-labeling index reached its nadir at 8 h, but markedly increased by 16 h, and then decreased to the control level by 36 h. No mitotic figures were observed at 16 h after administration, but a significant increase in mitotic index was noted at 24 h, and after which it decreased to almost the control value by 36 h. These findings indicate: (i) that temporary arrest of neuroepithelial cell cycle occurs in the G1-phase from 4 to 8 h after ENU administration, (ii) that the cell synchronizes in the S-phase at 16 h, (iii) that a proportion of neuroepithelial cells of rat fetal neocortex at the neurogenesis stage return to neuroepithelial cell proliferation stage, to repair the NE, and (iv) that regulation of the cell kinetics of neuroepithelial cells depends on the number of cells in a certain width of NE during regeneration.
Collapse
Affiliation(s)
- K Oyanagi
- Department of Neuropathology, Tokyo Metropolitan Institute for Neuroscience, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Blottner D, Herdegen T. Neuroprotective fibroblast growth factor type-2 down-regulates the c-Jun transcription factor in axotomized sympathetic preganglionic neurons of adult rat. Neuroscience 1998; 82:283-92. [PMID: 9483520 DOI: 10.1016/s0306-4522(97)00287-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immediate-early gene encoded transcription factor c-Jun is highly inducible following axotomy and therefore serves as a valuable marker in neuronal de- and regeneration. As the signals that may trigger c-Jun expression are still obscure, molecules derived from lesioned neurons and/or their targets such as growth factors or cytokines have been proposed as candidates for interneuronal transcriptional regulation in vivo. We therefore tested whether local administration of the neuroprotective cytokine fibroblast growth factor type-2 in vivo has an effect on the axotomy-induced nuclear expression patterns of the activator protein-1 transcription factors c-Fos and JunB, or c-Jun in the spinal cord-intermedolateral nucleus-adrenal axis lesion paradigm in the rat. Partial axotomy of preganglionic nerve fibres by selective unilateral removal of the adrenal medulla resulted in strong staining patterns of c-Jun in the nuclei of preganglionic cell bodies located in the spinal intermediolateral cell column identified by in vivo retrograde prelabelling with the fluorescent tracer Fast Blue prior to lesion. Axotomy-induced nuclear c-Jun expression was highly increased when compared with the moderate baseline expression in normal or sham-operated animals. In animals treated with fibroblast growth factor-2 gelfoams implanted to the lesioned adrenal gland the nuclear c-Jun staining pattern is reduced or even absent from these neurons. By contrast, c-Fos and JunB induction did not occur in the intermediolateral nucleus in the lesion paradigm investigated. These results support the idea of functional links between neurotrophic cytokines such as fibroblast growth factor-2 and transcriptional effectors such as c-Jun. The target derived fibroblast growth factor-2 thus may signal the intactness of the neuron-target axis resulting in suppression of central extrinsic neurons and promotion of neuroprotective gene activation. Neuronal survival in absence of c-Jun indicates that c-Jun exerts negative actions in vulnerated neurons.
Collapse
Affiliation(s)
- D Blottner
- Department of Anatomy, Benjamin Franklin University Clinics, Freie Universität Berlin, Germany
| | | |
Collapse
|
21
|
Herdegen T, Skene P, Bähr M. The c-Jun transcription factor--bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20:227-31. [PMID: 9141200 DOI: 10.1016/s0166-2236(96)01000-4] [Citation(s) in RCA: 401] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Axon interruption elicits a complex neuronal response that leaves neurons poised precariously between death and regeneration. The signals underlying this dichotomy are not fully understood. The transcription factor c-Jun is one of the earliest and most consistent markers for neurons that respond to nerve-fiber transection, and its expression can be related to both degeneration and survival including target re-innervation. In vitro experiments have demonstrated that expression of c-Jun can kill neonatal neurons but, in the adult nervous system, c-Jun might also be involved in neuroprotection and regeneration. The functional characteristics of c-Jun offer a model for the ability of a single molecule to serve as pivotal regulator for death or survival, not only in the response of the cell body to axonal lesions but also following neurodegenerative disorders. In this model, the fate of neurons is determined by a novel transcriptional network comprising c-Jun, ATF-2 (activating transcription factor-2) and JNKs (c-Jun N-terminal kinases).
Collapse
Affiliation(s)
- T Herdegen
- Dept of Pharmacology, University of Kiel, Germany
| | | | | |
Collapse
|
22
|
Planas AM, Soriano MA, Estrada A, Sanz O, Martin F, Ferrer I. The heat shock stress response after brain lesions: induction of 72 kDa heat shock protein (cell types involved, axonal transport, transcriptional regulation) and protein synthesis inhibition. Prog Neurobiol 1997; 51:607-36. [PMID: 9175159 DOI: 10.1016/s0301-0082(97)00004-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The cerebral stress response is examined following a variety of pathological conditions such as focal and global ischemia, administration of excitotoxins, and hyperthermia. Expression of 72 kDa heat shock protein (Hsp70) and hsp70 mRNA, the mechanism underlying induction of hsp70 mRNA involving activation of heat shock factor 1, and inhibition of cerebral protein synthesis are different aspects of the stress response considered here. The results are compared with those in the literature on induction, transcriptional regulation, expression, and cellular location of Hsp70, with a view to getting more insight into the function of the stress response in the injured brain. The present results illustrate that Hsp70 can be expressed in cells affected at various degrees following an insult that will either survive or dic as the brain lesion develops, depending on the severity of cell injury. This indicates that, under certain circumstances, synthesized Hsp70 might be necessary but not sufficient to ensure cell survival. Other situations involve uncoupling between synthesis of hsp70 mRNA and protein, probably due to very strict protein synthesis blockade, and often result in cell loss. Cells eventually will die if protein synthesis rates do not go back to normal after a period of protein synthesis inhibition. The stress response is a dynamic event that is switched on in neural cells sensitive to a brain insult. The stress response is, however, tricky, as affected cells seem to need it, have to deal transiently with it, but eventually be able to get rid of it, in order to survive. Putative therapeutic treatments can act either selectively, potentiating the synthesis of Hsp70 protein and recovery of protein synthesis, or preventing the stress response by deadening the insult severity.
Collapse
Affiliation(s)
- A M Planas
- Department of Farmacologia i Toxicologia, Institut d Investigacions Biomèdiques de Barcelona, CSIC, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Ferrer I. Cell death in the normal developing brain, and following ionizing radiation, methyl-azoxymethanol acetate, and hypoxia-ischaemia in the rat. Neuropathol Appl Neurobiol 1996; 22:489-94. [PMID: 9004234 DOI: 10.1111/j.1365-2990.1996.tb01121.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Naturally occurring (programmed) cell death in the developing brain has morphological characteristics of apoptosis and is associated with internucleosomal DNA fragmentation. Apoptosis also plays a role in cell death following hypoxia-ischaemia in the developing rat brain. Ionizing radiation-induced cell death in the brain of the young rat has morphological characteristics of apoptosis, is mediated by protein synthesis and is associated with internucleosomal DNA fragmentation. Methyl-azoxymethanol (MAM) acetate injection in the young rat produces apoptotic cell death in the external granule cell layer of the cerebellum. In addition, strong c-Jun immunore-activity is observed in apoptotic cells during normal development and following experimentally induced cell death. Moreover, c-Jun mRNA induction and de novo c-Jun protein synthesis, together with activation of c-Jun/AP-1, as revealed with gel mobility shift assay, occurs in irradiated animals. Western blotting of total brain homogenates shows a c-Jun-immunoreactive band at p39, which corresponds to the molecular weight of c-Jun, in control rats. However, a thick c-Jun-immunoreactive band at about p62, accompanied by a decrease of the p39 band, occurs in irradiated and MAM-treated rats. A thin band immediately above the thick p62 band, suggestive of c-Jun phosphorylation, is also observed in treated rats. Taken together, these observations indicate that c-Jun expression is associated with apoptotic cell death in the developing central nervous system.
Collapse
Affiliation(s)
- I Ferrer
- Unitat de Neuropatologia, Hospital Princeps d'Espanya, Universitat de Barcelona, Spain
| |
Collapse
|
24
|
Strong c-Jun immunoreactivity is associated with apoptotic cell death in human tumors of the central nervous system. Neurosci Lett 1996. [DOI: 10.1016/0304-3940(96)12879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|