1
|
Odierna GL, Stednitz S, Pruitt A, Arnold J, Hoffman EJ, Scott EK. Generation of stable brain cell cultures from embryonic zebrafish to interrogate phenotypes in zebrafish mutants of neurodevelopmental disorders. J Neurosci Methods 2025; 418:110426. [PMID: 40086601 DOI: 10.1016/j.jneumeth.2025.110426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Zebrafish are a popular model system to study the genetic and neural basis of perception and behavior. Cultured primary neurons provide a complementary tool for such studies, but existing protocols for culturing embryonic zebrafish neurons are limited by short cell survival and low neuronal purity. In this study, we set out to establish a protocol to produce long lived brain cell cultures from zebrafish that could be used to study the mechanistic contributions of genes to neuronal networks. NEW METHOD This protocol improves the viability of embryonic zebrafish primary brain cell cultures. We successfully optimized several parameters to generate long lived mixed cell type or pure neuronal cultures derived from embryonic zebrafish. RESULTS Our optimized protocol produces cultures that form stable networks of neurons expressing the structural hallmarks of mature synaptic connections. As proof of principle, we apply our protocol to explore the cellular consequences of scn1lab loss of function. We find that loss of scn1lab results in increased prevalence of non-neuronal cells consistent with transcriptional signatures from embryonic tissue, providing support for the utility of our protocol. COMPARISON WITH EXISTING METHOD(S) Most existing embryonic zebrafish primary neuron culture protocols describe growing mixed cell types for short durations, with a reported maximum of 9 days in vitro. Here, we describe a protocol that produces cultures viable for over 100 days. CONCLUSIONS The protocol reported in this study raises embryonic zebrafish primary brain cell culture to similar standards observed by well-established methods using cell lines or mammalian tissue.
Collapse
Affiliation(s)
- G Lorenzo Odierna
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia.
| | - Sarah Stednitz
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - April Pruitt
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Joshua Arnold
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia
| | - Ellen J Hoffman
- Child Study Center, Program on Neurogenetics, Yale School of Medicine, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Ethan K Scott
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland, Australia; Department of Anatomy and Physiology, The University of Melbourne, Australia
| |
Collapse
|
2
|
Eghan K, Lee S, Yoo D, Kim WK. 2-Ethylhexanol induces autism-like neurobehavior and neurodevelopmental disorders in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137469. [PMID: 39904159 DOI: 10.1016/j.jhazmat.2025.137469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/26/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder characterized by impaired social interaction, communication deficits, and repetitive behaviors. The rising prevalence of ASD necessitates intensified research. 2-Ethylhexanol, is a synthetically produced branched-chain alcohol used in plasticizer synthesis. However, its role in ASD-like symptoms and potential neurotoxic effects remains largely unexplored. This study employed a multimodal neurotoxicity testing approach to evaluate the adverse effects of 2-ethylhexanol on zebrafish neurobehavior and neurodevelopment. Wild-type and transgenic zebrafish lines (tg(elavl3: eGFP) and tg(mbp:mGFP)) were exposed to 2-ethylhexanol for 120 hours post-fertilization (hpf). Significant disruptions were observed in early motor activities, such as tail coiling and touch-evoked responses, which aligned with later locomotor impairments, including reduced distance traveled and increased turn angle. These behavioral changes were accompanied by decreased levels of acetylcholinesterase (AChE) and dopamine (DA). Deficits in social behavior (e.g., reduced body contact) were identified, potentially linked to altered transcription of autism-associated genes (adsl, eif4a1, mbd5, vps13b, and tsc1b). Abnormalities in neurogenesis, including reduced brain and spinal cord size, and demyelination of oligodendrocytes and Schwann cells, were evident. Additionally, transcriptional changes related to neurodevelopment (gap43, manf, sox2) and neurotransmitter signaling (drd1, mao, htr1bd) were observed. Our findings provide compelling evidence that 2-ethylhexanol exposure leads to neurodevelopmental impairments and behavioral alterations reminiscent of ASD. This research highlights the importance of further investigations to assess the potential risks of 2-ethylhexanol exposure and develop prevention and mitigation strategies.
Collapse
Affiliation(s)
- Kojo Eghan
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea.
| | - Sangwoo Lee
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Donggon Yoo
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| | - Woo-Keun Kim
- Center for Predictive Model Research, Division of Advanced Predictive Research, Korea Institute of Toxicology, Daejeon 34114, South Korea; Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
3
|
Tsai FY, Lin CY, Su YH, Yu JK, Kuo DH. Evolutionary History of Bilaterian FoxP Genes: Complex Ancestral Functions and Evolutionary Changes Spanning 2R-WGD in the Vertebrate Lineage. Mol Biol Evol 2025; 42:msaf072. [PMID: 40155202 PMCID: PMC11998571 DOI: 10.1093/molbev/msaf072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Human and fly FoxP homologs are well-known for their roles in the development of cognitive abilities. These findings have led to the hypothesis that the ancestral function of FoxP was in the development of cognitive neural circuits. However, complex brains in human and fly evolved independently, and the similar cognitive function of FoxP in human and fly may thus be interpreted as a result of convergent evolution. In addition, the 4 gnathostome FoxP paralogs also possess diverse developmental functions unrelated to neurodevelopment, which might have been overlooked in comparative studies of invertebrate FoxP homologs. To resolve these uncertainties, we set out to improve the phylogenetic reconstruction of vertebrate FoxP homologs and broaden the taxonomic sampling of gene expression profiling to include an invertebrate chordate, ambulacrarian deuterostomes, and a spiralian protostome. Using phylogenetic analysis combined with synteny mapping, we elaborated the hypothesis that the 4 FoxP paralogs arose through the 2R-WGD events shared by all gnathostome species. Based on this evolutionary scenario, we examined the FoxP expression pattern in amphioxus development and concluded that FoxP already had complex developmental functions across all germ layers in the chordate ancestor. Moreover, in sea urchin, hemichordate, and catenulid flatworm, FoxP was expressed in the gut prominently, in addition to the anterior neurogenic ectoderm. This surprising similarity shared among these distantly related species implies that FoxP may have a significant function in gut development in addition to the neural development function in the last common ancestor of bilaterians.
Collapse
Affiliation(s)
- Fu-Yu Tsai
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Che-Yi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Hsien Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Dian-Han Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Museum of Zoology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
4
|
Yang W, Li R, Yan X, Fan P, Cheng W, Liu C, Zhang Y, Li J. Developmental and neurotoxic effects of dimethyl phthalate on zebrafish embryos and larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107241. [PMID: 39799758 DOI: 10.1016/j.aquatox.2025.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/12/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
Dimethyl phthalate (DMP) has been extensively utilized as a plasticizer on a global scale for many years. Its presence in the environment and its harmful effects on living organisms have raised concerns. This study aimed to examine its potential developmental neurotoxicity by utilizing zebrafish as a model. Zebrafish embryos were exposed to different concentrations of DMP (5-100 mg/L) from 4 to 120 h post-fertilization (hpf). The survival, hatching, and malformation rates were recorded for each group. Behavioral analysis was conducted on zebrafish larvae, and transgenic zebrafish Tg(elavl3:EGFP) were used to assess the impact of DMP on neuronal cells. The mRNA levels of key neurological marker genes were evaluated at 96 hpf of DMP exposure. The study revealed that exposure to DMP resulted in decreased survival and hatching rates in zebrafish. Embryos treated with 50 mg/L of DMP exhibited lower average survival rates (72.78-78.33%) between 24-96 hpf, while treatment with 25-50 mg/L of DMP resulted in reduced hatching rates (39.44% and 2.22%, respectively) at 48 hpf compared to the control group. Moreover, exposure to 25-50 mg/L of DMP caused an increase in malformations, such as tail curvature, spinal curvature, yolk sac edema and pericardial edema. Interestingly, at 24 hpf, DMP also resulted in an increase in spontaneous tail coiling in zebrafish embryos, as well as a decrease in their swimming distance at 120 hpf. Furthermore, treatment with 50 mg/L of DMP led to a decrease in the fluorescence intensity of transgenic zebrafish Tg(elavl3: EGFP). RT-qPCR analysis showed a significant down-regulation of marker genes (gap43, mbp, α1-tubulin, syn2a) associated with nervous system function in DMP-treated zebrafish. Overall, these findings offer a thorough understanding of the mechanisms underlying the neurotoxicity caused by DMP, highlighting the risk of DMP on developmental and neurotoxic effects in zebrafish. Therefore, strict supervision of DMP use and release is essential to safeguard ecological and aquatic organisms.
Collapse
Affiliation(s)
- Weili Yang
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Ruijing Li
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Xingxue Yan
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Pengkai Fan
- Key Laboratory of Pediatric Hematology of Henan Province, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Weyland Cheng
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Cuihua Liu
- Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
| | - Yaodong Zhang
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| | - Jitong Li
- Henan Engineering Research Center of Zebrafish Models for Human Disease and Drug Screening, Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China; Department of Nephrology and Rheumatology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
5
|
Vásárhelyi E, Rácz G, Urbányi B, Szabó BP, Szepesi-Bencsik D, Szabó I, Bock I, Volner C, Griffitts JD, Kriszt B, Bakos K, Csenki Z. The acute and sub-chronic toxicological effects of 3-amino-9-ethylcarbazole (AEC) on zebrafish. Hum Exp Toxicol 2025; 44:9603271251318968. [PMID: 39982205 DOI: 10.1177/09603271251318968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
INTRODUCTION In this study, we sought to determine the sub-chronic toxicological effects of AEC on zebrafish embryos. METHODS We utilized fish early life stage (FELS) and fish embryo toxicity (FET) tests, vascular, neurological, and renal transgenic zebrafish lines, and gene expression anal-ysis of the zebrafish tissue. RESULTS In the FET tests, AEC caused several abnormalities in the larvae, with the LC50 at 24 hpf being 4.076 ± 0.221 mg/L and 3.296 ± 0.127 mg/L at 96 hpf. In the FELS test, AEC was shown to be lethal following 16 days of exposure at 0.5 mg/L, 1 mg/L and 2 mg/L. Some of the transgenic zebrafish lines exhibited slight changes in fluorescent signaling pat-terns after exposure to AEC at 1 mg/L and 2 mg/L. Notable results of the gene expression analysis revealed: gpx4b and got2 were downregulated in the liver; HIF1a was downregulated at 0.25 mg/L and 0.5 mg/L concentrations, NOTCH1a and fli-1 genes were downregulated at all concentrations, and A2b was upregulated in the vasculature; a1T, ngn1, elavl3, syn2a, mbp, gap43 were down-regulated in the nervous system; and wt1b was downregulated in the kidney. DISCUCCION Altogether, the results of our study indicate the potential for AEC to cause harm to organisms.
Collapse
Affiliation(s)
- Erna Vásárhelyi
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Gergely Rácz
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Balázs P Szabó
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - Dóra Szepesi-Bencsik
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, Hungary
| | - István Szabó
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Illés Bock
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Cintia Volner
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Jeffrey Daniel Griffitts
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| | - Katalin Bakos
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
- Premonstratensian St Norbert High School, Gödöllő, Hungary
| | - Zsolt Csenki
- Department of Environmental Toxicology, Institute of Aquaculture and Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary
| |
Collapse
|
6
|
Desantis D, Yang Y, Lai KP, Wu RSS, Schunter C. Sex-specific neurotoxicity and transgenerational effects of an emerging pollutant, tris(1,3-dichloro-2-propyl)phosphate (TDCIPP). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177520. [PMID: 39551216 DOI: 10.1016/j.scitotenv.2024.177520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/19/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
The growing production and usage of flame retardants (FRs) results in their extensive environmental distribution, potentially posing a threat on both ecological and human health. Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), a commonly used FR, is commonly found in aquatic ecosystems, and aquatic organisms, including fish, may be exposed to TDCIPP during specific stages of their life cycles, or across generations. Here, we aim to identify and compare the neurotoxic effects of TDCIPP on the brains of female and male adult marine medaka (Oryzias melastigma) across three generations (F0 to F3). Sex-specific effects of TDCIPP related to synaptic transmission signaling pathways and regulation of neuronal synaptic plasticity underlying 1917 differentially expressed genes (DEGs) were evident in the brain transcriptomes of F0 females, while only five DEGs were found in F0 males. However, chronic exposure over three generations (F0 to F3) revealed neurotoxic effects of TDCIPP on both sexes with males altering their innate immune response and visual perception upon prolonged exposure. Lastly, female medaka exhibited signals of transgenerational effects at the F3, as shown by increased transcriptional adjustments of 2347 DEGs including epigenetic regulatory genes. This outcome resulted from the ancestral exposure to TDCIPP only in F0, without any direct TDCIPP exposure in F1 and F2. Our findings show that even brief exposure to TDCIPP result in long-lasting effects, posing a significant risk to marine organisms and potentially other vertebrates.
Collapse
Affiliation(s)
- Debora Desantis
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China
| | - Yi Yang
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China
| | - Keng Po Lai
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Applied Science, Hong Kong Metropolitan University, Hong Kong, China
| | - Rudolf S S Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Celia Schunter
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China.
| |
Collapse
|
7
|
Wang S, Zou M, Zhu Z, Wang Z, Li K, Ruan J, Zhao B, Pan C, Lan X, Zhang S, Foulkes NS, Zhao H. Oseltamivir phosphate (Tamiflu) alters neurobehavior of zebrafish larvae by inducing mitochondrial dysfunction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177077. [PMID: 39461536 DOI: 10.1016/j.scitotenv.2024.177077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/29/2024]
Abstract
Antiviral drugs are widely used, yet their potential risks during early development, particularly within the central nervous system, remain contentious. Oseltamivir phosphate (OSE), a commonly prescribed antiviral, is increasingly detected in various environments. However, its toxicity to organisms and the underlying mechanisms are not well understood. In this study, we employed the zebrafish model to evaluate the developmental neurotoxic effects of OSE at environmentally and therapeutically relevant doses, through high-throughput behavioral analysis, in vivo two-photon imaging, transcriptomic sequencing, pharmacological intervention, and biochemical and molecular assays. Our results indicated that OSE exposure increased heart rate and induced pericardial edema in zebrafish larvae. Additionally, OSE-exposed larvae exhibited hyperactive behavior, impaired social interactions, and reduced habitual learning capacity. Although OSE at our selected levels did not significantly affect neuron count in the brain, it activated neuroinflammatory responses, altered blood vessel morphology, modulated neurotransmitter levels and the expression of neurodevelopment-related genes. Transcriptomic analysis revealed upregulation of mitochondria-related genes associated with oxidative phosphorylation. Further assessments of mitochondrial function demonstrated altered activities of respiratory chain complexes, reduced mitochondrial membrane potential (MMP), and decreased ATP content. Notably, co-treatment with mitochondrial protectants acetyl-l-carnitine-hydrochloride (ALC) or nicotinamide riboside (NR) effectively mitigated OSE-induced neurobehavioral disorders. These findings suggest that overuse of OSE can pose neurodevelopmental risks for both humans and animals, potentially attributable to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuang Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Minjian Zou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zhirui Zhu
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Zuo Wang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Kemin Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Jiayi Ruan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Bixi Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Chuanyin Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
8
|
Yan Z, Liao W, Liu H, Zhang X, Lin Q, Feng C, Wu F. Temperature dependent cholinergic synapse induced by triphenyl phosphate and tris(1.3-dichloroisopropyl) phosphate via thyroid hormone synthesis in Cyprinus carpio. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135822. [PMID: 39276737 DOI: 10.1016/j.jhazmat.2024.135822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Triphenyl phosphate (TPHP) and tris(1.3-dichloroisopropyl) phosphate (TDCIPP) are emerging contaminants that pervade diverse ecosystems and impair the thyroid and neural signaling pathways. The intricate interactions between thyroid and neurodevelopmental effects mediated by TPHP and TDCIPP remain elusive. This study integrates in vivo, in vitro, and in silico approaches to elucidate these mechanisms in Cyprinus carpio at varying temperatures. It showed that TPHP and TDCIPP hindered fish growth, particularly at low temperatures, by interfering with thyroid hormone synthesis and transport processes. Both compounds have been identified as environmental hormones that mimic thyroid hormone activity and potentially inhibit acetylcholinesterase, leading to neurodevelopmental disorders characterized by brain tissue damage and disrupted cholinergic synapses, such as axon guidance and regeneration. Notably, the bioaccumulation of TPHP was 881.54 % higher than that of TDCIPP, exhibiting temperature-dependent variations with higher levels of TDCIPP at low temperatures (20.50 % and 250.84 % above optimum and high temperatures, respectively), suggesting that temperature could exacerbate the toxicity effects of OPEs. This study sheds new light on the mechanisms underlying thyroid endocrine disruption and neurodevelopmental toxicity in C. carpio. More importantly, these findings indicate that temperature affects the environmental fate and effects of TPHP and TDCIPP, which could provide an important basis for ecological environmental zoning control of emerging contaminants in the future.
Collapse
Affiliation(s)
- Zhenfei Yan
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Wei Liao
- Wetland Research Center, Jiangxi Academy of Forestry, Nanchang 330032, China
| | - Hangshuo Liu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Xiaoyi Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- College of Environment, Hohai University, Nanjing 210098, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
9
|
Baranykova S, Gupta RK, Kajdasz A, Wasilewska I, Macias M, Szybinska A, Węgierski T, Nahia KA, Mondal SS, Winata CL, Kuźnicki J, Majewski L. Loss of Stim2 in zebrafish induces glaucoma-like phenotype. Sci Rep 2024; 14:24442. [PMID: 39424970 PMCID: PMC11489432 DOI: 10.1038/s41598-024-74909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Calcium is involved in vision processes in the retina and implicated in various pathologies, including glaucoma. Rod cells rely on store-operated calcium entry (SOCE) to safeguard against the prolonged lowering of intracellular calcium ion concentrations. Zebrafish that lacked the endoplasmic reticulum Ca2+ sensor Stim2 (stim2 knockout [KO]) exhibited impaired vision and lower light perception-related gene expression. We sought to understand mechanisms that are responsible for vision impairment in stim2 KO zebrafish. The single-cell RNA (scRNA) sequencing of neuronal cells from brains of 5 days postfertilization larvae distinguished 27 cell clusters, 10 of which exhibited distinct gene expression patterns, including amacrine and γ-aminobutyric acid (GABA)ergic retinal interneurons and GABAergic optic tectum cells. Five clusters exhibited significant changes in cell proportions between stim2 KO and controls, including GABAergic diencephalon and optic tectum cells. Transmission electron microscopy of stim2 KO zebrafish revealed decreases in width of the inner plexiform layer, ganglion cells, and their dendrites numbers (a hallmark of glaucoma). GABAergic neuron densities in the inner nuclear layer, including amacrine cells, as well as photoreceptors significantly decreased in stim2 KO zebrafish. Our study suggests a novel role for Stim2 in the regulation of neuronal insulin expression and GABAergic-dependent vision causing glaucoma-like retinal pathology.
Collapse
Affiliation(s)
- Sofiia Baranykova
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Rishikesh Kumar Gupta
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, 201313, India
| | - Arkadiusz Kajdasz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Zygmunta Noskowskiego 12/14, 61-704, Poznan, Poland
- Xenstats sp. z o.o., Otwarta 1, 60-008, Poznan, Poland
| | - Iga Wasilewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Adolfa Pawińskiego 5, 02-106, Warsaw, Poland
| | - Matylda Macias
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Aleksandra Szybinska
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Tomasz Węgierski
- Microscopy and Cytometry Facility, International Institute of Molecular and Cell Biology, Ks. Trojdena 4, 02-109, WarsawWarsaw, Poland
| | - Karim Abu Nahia
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Shamba S Mondal
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Cecilia L Winata
- Laboratory of Zebrafish Developmental Genomics, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Jacek Kuźnicki
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland
| | - Lukasz Majewski
- Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology in Warsaw, Ks. Trojdena 4, 02-109, Warsaw, Poland.
| |
Collapse
|
10
|
Zhou W, Ghersi JJ, Ristori E, Semanchik N, Prendergast A, Zhang R, Carneiro P, Baldissera G, Sessa WC, Nicoli S. Akt is a mediator of artery specification during zebrafish development. Development 2024; 151:dev202727. [PMID: 39101673 PMCID: PMC11441982 DOI: 10.1242/dev.202727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/16/2024] [Indexed: 08/06/2024]
Abstract
The dorsal aorta (DA) is the first major blood vessel to develop in the embryonic cardiovascular system. Its formation is governed by a coordinated process involving the migration, specification, and arrangement of angioblasts into arterial and venous lineages, a process conserved across species. Although vascular endothelial growth factor a (VEGF-A) is known to drive DA specification and formation, the kinases involved in this process remain ambiguous. Thus, we investigated the role of protein kinase B (Akt) in zebrafish by generating a quadruple mutant (aktΔ/Δ), in which expression and activity of all Akt genes - akt1, -2, -3a and -3b - are strongly decreased. Live imaging of developing aktΔ/Δ DA uncovers early arteriovenous malformations. Single-cell RNA-sequencing analysis of aktΔ/Δ endothelial cells corroborates the impairment of arterial, yet not venous, cell specification. Notably, endothelial specific expression of ligand-independent activation of Notch or constitutively active Akt1 were sufficient to re-establish normal arterial specification in aktΔ/Δ. The Akt loss-of-function mutant unveils that Akt kinase can act upstream of Notch in arterial endothelial cells, and is involved in proper embryonic artery specification. This sheds light on cardiovascular development, revealing a mechanism behind congenital malformations.
Collapse
Affiliation(s)
- Wenping Zhou
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Joey J Ghersi
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
- Pathologies Foetomaternelles et Néonatales, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Emma Ristori
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nicole Semanchik
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Andrew Prendergast
- Department of Comparative Medicine, Yale zebrafish Research Core, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Rong Zhang
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Paola Carneiro
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Baldissera
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - William C Sessa
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Stefania Nicoli
- Vascular Biology & Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale University School of Medicine, New Haven, CT 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
11
|
Zhao X, Meng X, Yang D, Dong S, Xu J, Chen D, Shi Y, Sun Y, Ding G. Thyroid disrupting effects and the developmental toxicity of hexafluoropropylene oxide oligomer acids in zebrafish during early development. CHEMOSPHERE 2024; 361:142462. [PMID: 38815816 DOI: 10.1016/j.chemosphere.2024.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
As perfluorooctanoic acid (PFOA) alternatives, hexafluoropropylene oxide dimeric acid (HFPO-DA) and hexafluoropropylene oxide trimeric acid (HFPO-TA) have been increasingly used and caused considerable water pollution. However, their toxicities to aquatic organisms are still not well known. Therefore, in this study, zebrafish embryos were exposed to PFOA (0, 1.5, 3 and 6 mg/L), HFPO-DA (0, 3, 6 and 12 mg/L) and HFPO-TA (0, 1, 2 and 4 mg/L) to comparatively investigate their thyroid disrupting effects and the developmental toxicity. Results demonstrated that waterborne exposure to PFOA and its two alternatives decreased T4 contents, the heart rate and swirl-escape rate of zebrafish embryos/larvae. The transcription levels of genes related to thyroid hormone regulation (crh), biosynthesis (tpo and tg), function (trα and trβ), transport (transthyretin, ttr), and metabolism (dio1, dio2 and ugt1ab), were differently altered after the exposures, which induced the thyroid disrupting effects and decreased the heart rate. In addition, the transcription levels of some genes related to the nervous system development were also significantly affected, which was associated with the thyroid disrupting effects and consequently affected the locomotor activity of zebrafish. Therefore, HFPO-DA and HFPO-TA could not be safe alternatives to PFOA. Further studies to uncover the underlying mechanisms of these adverse effects are warranted.
Collapse
Affiliation(s)
- Xiaohui Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xianghan Meng
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dan Yang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Shasha Dong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Jianhui Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dezhi Chen
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yawei Shi
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Ya Sun
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
12
|
Gyimah E, Xu H, Fosu S, Kenneth Mensah J, Dong X, Akoto O, Issaka E, Zhang Z. Gene expression patterns and DNA methylation of neuron and pancreatic β-cell developments in zebrafish embryos treated with bisphenol F and AF. Heliyon 2024; 10:e33805. [PMID: 39050442 PMCID: PMC11267006 DOI: 10.1016/j.heliyon.2024.e33805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Bisphenol F (BPF) and bisphenol AF (BPAF) are structural analogues of bisphenol A (BPA) that are used in the manufacture of a myriad of BPA-free products; however, there is a paucity of information regarding their developmental effects. The present study investigates the effects of BPF and BPAF on neurodevelopment and pancreatic β-cell differentiation via altering DNA methylation and gene expression patterns using the zebrafish model. BPF and BPAF induced behavioral perturbations: increased average speed, increased maximum acceleration, increased mania time and decreased static time, in 0.3 and 1.0 μM groups in zebrafish embryos. Glucose level was significantly increased in 1.0 μM BPF (28 %); while a monotonic increase of 29 %, 55 %, and 74 % were observed in 0.1, 0.3, and 1.0 μM BPAF, respectively. Consistent with a decreased insulin mRNA level, the expression of two critical transcription factors (pdx-1 and foxa2) essential for the development and functioning of beta-cells decreased following the bisphenols exposure. In addition, embryonic exposure to BPF and BPAF upregulated the transcription of developmental genes (vegfa, wnt8a, and mstn1) and neuron-related genes (mbp, elavl3, gap43, gfap). Also, the expressions of DNA methyltransferases (dnmt1, dnmt3, dnmt4, dnmt5, dnmt6, dnmt7, and dnmt8) were significantly aberrant compared with the control group. The Bisulfite PCR results indicate increased DNA methylation at promoter regions of pdx-1 in BPF (8.2 %) and BPAF (7.6 %); α1-tubulin in BPF (5.3 %) and in BPAF (4.1 %), congruous with the increased dnmt1 and dnmt3 transcription, at early stage of zebrafish development. The present study indicates that zebrafish embryonic exposure to BPF and BPAF elicits islet dysfunction and neuron perturbations resulting in increased DNA methylation levels.
Collapse
Affiliation(s)
- Eric Gyimah
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shadrack Fosu
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - John Kenneth Mensah
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Xing Dong
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Osei Akoto
- Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Eliasu Issaka
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhen Zhang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
13
|
Abu Nahia K, Sulej A, Migdał M, Ochocka N, Ho R, Kamińska B, Zagorski M, Winata CL. scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation. iScience 2024; 27:110083. [PMID: 38872974 PMCID: PMC11170199 DOI: 10.1016/j.isci.2024.110083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
We utilized scRNA-seq to delineate the diversity of cell types in the zebrafish heart. Transcriptome profiling of over 50,000 cells at 48 and 72 hpf defined at least 18 discrete cell lineages of the developing heart. Utilizing well-established gene signatures, we identified a population of cells likely to be the primary pacemaker and characterized the transcriptome profile defining this critical cell type. Two previously uncharacterized genes, atp1b3b and colec10, were found to be enriched in the sinoatrial cardiomyocytes. CRISPR/Cas9-mediated knockout of these two genes significantly reduced heart rate, implicating their role in cardiac development and conduction. Additionally, we describe other cardiac cell lineages, including the endothelial and neural cells, providing their expression profiles as a resource. Our results established a detailed atlas of the developing heart, providing valuable insights into cellular and molecular mechanisms, and pinpointed potential new players in heart rhythm regulation.
Collapse
Affiliation(s)
- Karim Abu Nahia
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Maciej Migdał
- International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Natalia Ochocka
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Richard Ho
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
- The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway
| | - Bożena Kamińska
- Laboratory of Molecular Neurobiology, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Marcin Zagorski
- Institute of Theoretical Physics and Mark Kac Center for Complex Systems Research, Jagiellonian University, Cracow, Poland
| | | |
Collapse
|
14
|
Oger MJL, Vermeulen O, Lambert J, Madanu TL, Kestemont P, Cornet V. Down to size: Exploring the influence of plastic particle Dimensions on physiological and nervous responses in early-stage zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124094. [PMID: 38703983 DOI: 10.1016/j.envpol.2024.124094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The chorion is the first protective barrier set to prevent numerous pollutants from damaging the developing embryo. However, depending on their size, some nanoplastics (NPs) can pass through this barrier and reach the embryo, while all microplastics (MPs) remain on the outside. This study brings a straight approach to compare MPs and NPs, and assess their direct and indirect effects on zebrafish embryos and larvae. Zebrafish eggs were exposed before 2 h post fertilization (hpf) to polystyrene MPs (5 μm) and NPs (250 nm) at a concentration of 1000 μg/L until 96 hpf. Physiotoxicity and neurotoxicity were assessed prior and post-hatching through several biomarkers. Response to hypoxia (upregulation of hif-1aa and hif-1ab) were found in embryos exposed to MPs, and partly found in those exposed to NPs. Embryos exposed to NPs showed significant tachycardia, reduced O2 consumption and increased apoptosis in the eyes, whereas MPs affected the expressions of all genes related to the neurodevelopment of embryos (elavl3, pax2a, pax6a, act1b). Post-hatching, physiological responses were muted. MPs and NPs exposures ended by evaluating larval behaviours during dark-and-light cycles. Both sizes of plastic particles negatively affected the visual motor response (VMR) and vibrational startle response (VSR). Thigmotaxis levels were significantly increased by NPs whereas MPs showed anxiolytic properties. This study shows that both MPs and NPs affect the physiology and neurodevelopment of zebrafish at different levels, before and after hatching.
Collapse
Affiliation(s)
- Mathilde J L Oger
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium.
| | - Océane Vermeulen
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Jérôme Lambert
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Thomas L Madanu
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Patrick Kestemont
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment, University of Namur, Rue de Bruxelles, 61-B-5000, Namur, Belgium
| |
Collapse
|
15
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. SCIENCE ADVANCES 2024; 10:eadn6603. [PMID: 38838146 PMCID: PMC11152119 DOI: 10.1126/sciadv.adn6603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 06/07/2024]
Abstract
Standard zebrafish transgenesis involves random transgene integration with resource-intensive screening. While phiC31 integrase-based attP/attB recombination has streamlined transgenesis in mice and Drosophila, validated attP-based landing sites for universal applications are lacking in zebrafish. Here, we developed phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET) as transgenesis approach, with two attP landing sites pIGLET14a and pIGLET24b from well-validated Tol2 transgenes. Both sites facilitate diverse transgenesis applications including reporters and Cre/loxP transgenes. The pIGLET14a and pIGLET24b landing sites consistently yield 25 to 50% germline transmission, substantially reducing the resources needed for transgenic line generation. Transgenesis into these sites enables reproducible expression patterns in F0 zebrafish embryos for enhancer discovery and testing of gene regulatory variants. Together, our new landing sites streamline targeted, reproducible zebrafish transgenesis as a robust platform for various applications while minimizing the workload for generating transgenic lines.
Collapse
Affiliation(s)
| | | | - Cassie L. Kemmler
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | | | | |
Collapse
|
16
|
Chen Z, Li X, Gao J, Liu Y, Zhang N, Guo Y, Wang Z, Dong Z. Effects of salinity on behavior and reproductive toxicity of BPA in adult marine medaka. CHEMOSPHERE 2024; 357:142103. [PMID: 38653400 DOI: 10.1016/j.chemosphere.2024.142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/25/2024]
Abstract
Salinity is an important environmental factor influencing the toxicity of chemicals. Bisphenol A (BPA) is an environmental endocrine disruptor with adverse effects on aquatic organisms, such as fish. However, the influence of salinity on the biotoxicity of BPA and the underlying mechanism are unclear. In this study, we exposed marine medaka (Oryzias melastigma) to BPA at different salinities (0 psμ, 15 psμ, and 30 psμ) for 70days to investigate the toxic effects. At 0 psμ salinity, BPA had an inhibitory effect on the swimming behavior of female medaka. At 15 psμ salinity, exposure to BPA resulted in necrotic cells in the ovaries but not on the spermatozoa. In addition, BPA exposure changed the transcript levels of genes related to the nervous system (gap43, elavl3, gfap, mbpa, and α-tubulin) and the hypothalamic-pituitary-gonadal (HPG) axis (fshr, lhr, star, arα, cyp11a, cyp17a1, cyp19a, and erα); the expression changes differed among salinity levels. These results suggest that salinity influences the adverse effects of BPA on the nervous system and reproductive system of medaka. These results emphasize the importance of considering the impact of environmental factors when carrying out ecological risk assessment of pollutants.
Collapse
Affiliation(s)
- Zuchun Chen
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xueyou Li
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yue Liu
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ning Zhang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yusong Guo
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongduo Wang
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
17
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
18
|
Doostdar P, Hawley J, Chopra K, Marinopoulou E, Lea R, Arashvand K, Biga V, Papalopulu N, Soto X. Cell coupling compensates for changes in single-cell Her6 dynamics and provides phenotypic robustness. Development 2024; 151:dev202640. [PMID: 38682303 PMCID: PMC11190438 DOI: 10.1242/dev.202640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 05/01/2024]
Abstract
This paper investigates the effect of altering the protein expression dynamics of the bHLH transcription factor Her6 at the single-cell level in the embryonic zebrafish telencephalon. Using a homozygote endogenous Her6:Venus reporter and 4D single-cell tracking, we show that Her6 oscillates in neural telencephalic progenitors and that the fusion of protein destabilisation (PEST) domain alters its expression dynamics, causing most cells to downregulate Her6 prematurely. However, counterintuitively, oscillatory cells increase, with some expressing Her6 at high levels, resulting in increased heterogeneity of Her6 expression in the population. These tissue-level changes appear to be an emergent property of coupling between single-cells, as revealed by experimentally disrupting Notch signalling and by computationally modelling alterations in Her6 protein stability. Despite the profound differences in the single-cell Her6 dynamics, the size of the telencephalon is only transiently altered and differentiation markers do not exhibit significant differences early on; however, a small increase is observed at later developmental stages. Our study suggests that cell coupling provides a compensation strategy, whereby an almost normal phenotype is maintained even though single-cell gene expression dynamics are abnormal, granting phenotypic robustness.
Collapse
Affiliation(s)
- Parnian Doostdar
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Joshua Hawley
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kunal Chopra
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Elli Marinopoulou
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Robert Lea
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Kiana Arashvand
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Veronica Biga
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health,The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Ximena Soto
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
19
|
Yin X, Wang L, Mao L. Comparing the Developmental Toxicity Delay and Neurotoxicity of Benzothiazole and Its Derivatives (BTHs) in Juvenile Zebrafish. TOXICS 2024; 12:341. [PMID: 38787120 PMCID: PMC11125584 DOI: 10.3390/toxics12050341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024]
Abstract
In this study, a semi-static water exposure method was employed to investigate the early developmental and neurotoxic effects of four benzothiazole substances (BTHs), namely benzothiazole (BTH), 2-mercaptobenzothiazole (MBT), 2-hydroxybenzothiazole (BTON), and 2-aminobenzothiazole (2-ABTH), on zebrafish at an equimolar concentration of 10 μM. The findings revealed that all four BTHs exerted certain impacts on early development in zebrafish. MBT stimulated spontaneous movement in juvenile zebrafish, whereas BTON inhibited such movements. Moreover, all four BTHs hindered the hatching process of zebrafish larvae, with MBT exhibiting the strongest inhibition at 24 h post-fertilization (hpf). Notably, MBT acted as a melanin inhibitor by suppressing melanin production in juvenile zebrafish eyes and weakening phototaxis. Additionally, both BTH and BTON exhibited significantly lower speeds than the control group and other test groups under conditions without bright field stimulation; however, their speeds increased to average levels after percussion stimulation, indicating no significant alteration in motor ability among experimental zebrafish groups. Short-term exposure to these four types of BTHs induced oxidative damage in zebrafish larvae; specifically, BTH-, MBT-, and BTON-exposed groups displayed abnormal expression patterns of genes related to oxidative damage. Exposure to both BTH and MBT led to reduced fluorescence intensity in transgenic zebrafish labeled with central nervous system markers, suggesting inhibition of central nervous system development. Furthermore, real-time quantitative PCR results demonstrated abnormal gene expression associated with neural development. However, no significant changes were observed in 2-ABTH gene expression at this concentration. Overall findings indicate that short-term exposure to BTHs stimulates neurodevelopmental gene expression accompanied by oxidative damage.
Collapse
Affiliation(s)
- Xiaogang Yin
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Lei Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China;
| | - Lianshan Mao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
20
|
Kairišs K, Sokolova N, Zilova L, Schlagheck C, Reinhardt R, Baumbach T, Faragó T, van de Kamp T, Wittbrodt J, Weinhardt V. Visualisation of gene expression within the context of tissues using an X-ray computed tomography-based multimodal approach. Sci Rep 2024; 14:8543. [PMID: 38609416 PMCID: PMC11015006 DOI: 10.1038/s41598-024-58766-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The development of an organism is orchestrated by the spatial and temporal expression of genes. Accurate visualisation of gene expression patterns in the context of the surrounding tissues offers a glimpse into the mechanisms that drive morphogenesis. We developed correlative light-sheet fluorescence microscopy and X-ray computed tomography approach to map gene expression patterns to the whole organism`s 3D anatomy. We show that this multimodal approach is applicable to gene expression visualized by protein-specific antibodies and fluorescence RNA in situ hybridisation offering a detailed understanding of individual phenotypic variations in model organisms. Furthermore, the approach offers a unique possibility to identify tissues together with their 3D cellular and molecular composition in anatomically less-defined in vitro models, such as organoids. We anticipate that the visual and quantitative insights into the 3D distribution of gene expression within tissue architecture, by multimodal approach developed here, will be equally valuable for reference atlases of model organisms development, as well as for comprehensive screens, and morphogenesis studies of in vitro models.
Collapse
Affiliation(s)
- Kristaps Kairišs
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
| | - Natalia Sokolova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Lucie Zilova
- Centre for Organismal Studies, 69120, Heidelberg, Germany
| | - Christina Schlagheck
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- HeiKa Graduate School On "Functional Materials", Heidelberg, Germany
- Heidelberg International Biosciences Graduate School HBIGS, Heidelberg, Germany
| | - Robert Reinhardt
- Centre for Organismal Studies, 69120, Heidelberg, Germany
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tilo Baumbach
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Tomáš Faragó
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Thomas van de Kamp
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Laboratory for Applications of Synchrotron Radiation (LAS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | | | | |
Collapse
|
21
|
Cao X, Xie W, Feng M, Chen J, Zhang J, Luo J, Wang Y. Nanoplastic Exposure Mediates Neurodevelopmental Toxicity by Activating the Oxidative Stress Response in Zebrafish ( Danio rerio). ACS OMEGA 2024; 9:16508-16518. [PMID: 38617687 PMCID: PMC11007712 DOI: 10.1021/acsomega.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The global accumulation and adverse effects of nanoplastics (NPs) are a growing concern for the environment and human health. In recent years, more and more studies have begun to focus on the toxicity of plastic particles for early animal development. Different particle sizes of plastic particles have different toxicities to biological development. Nevertheless, the potential toxicological effects of 20 nm NPs, especially on neurodevelopment, have not been well investigated. In this paper, we used fluorescence microscopy to determine neurotoxicity in zebrafish at different concentrations of NPs. Moreover, the behavioral analysis demonstrated that NPs induced abnormal behavior of zebrafish. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations (0, 0.3, 3, and 9 mg/L) of NPs. The morphological deformities, including abnormal body length and the rates of heart, survival, and hatching, were induced after NP exposure in zebrafish embryos. In addition, the development of primary motor neurons was observed the inhibitory effects of NPs on the length, occurrence, and development of primary motor neurons in Tg(hb9:GFP). Quantitative polymerase chain reaction analysis suggested that exposure to NPs significantly affects the expression of the genes involved in the occurrence and differentiation of primary motor neurons in zebrafish. Furthermore, the indicators associated with oxidative stress and apoptosis were found to be modified in zebrafish embryos at 24 and 48 h following exposure to NPs. Our findings demonstrated that NPs could cause toxicity in primary motor neurons by activating the oxidative stress response and inducing apoptosis, consequently impairing motor performance.
Collapse
Affiliation(s)
- Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wenjie Xie
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juntao Chen
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juanjuan Luo
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yajun Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
22
|
Schmidt AR, Placer HJ, Muhammad IM, Shephard R, Patrick RL, Saurborn T, Horstick EJ, Bergeron SA. Transcriptional control of visual neural circuit development by GS homeobox 1. PLoS Genet 2024; 20:e1011139. [PMID: 38669217 PMCID: PMC11051655 DOI: 10.1371/journal.pgen.1011139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 01/16/2024] [Indexed: 04/28/2024] Open
Abstract
As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.
Collapse
Affiliation(s)
- Alexandra R. Schmidt
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Haiden J. Placer
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Ishmael M. Muhammad
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Rebekah Shephard
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Regina L. Patrick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Taylor Saurborn
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| | - Sadie A. Bergeron
- Department of Biology, West Virginia University, Morgantown, West Virgina, United States of America
- Department of Neuroscience, West Virginia University, Morgantown, West Virgina, United States of America
| |
Collapse
|
23
|
Prakash V, Chauhan SS, Ansari MI, Jagdale P, Ayanur A, Parthasarathi R, Anbumani S. 4-Methylbenzylidene camphor induced neurobehavioral toxicity in zebrafish (Danio rerio) embryos. ENVIRONMENTAL RESEARCH 2024; 242:117746. [PMID: 38008201 DOI: 10.1016/j.envres.2023.117746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/05/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
4-Methylbenzylidene camphor (4-MBC) is a widely used organic UV filter in personal care products. Extensive use of 4-MBC and its frequent detection in aquatic ecosystems defile the biota with muscular and neuronal impairments. This study investigates the neurobehavioral toxicity of 4-MBC using Danio rerio as a model organism. Embryos were exposed semi-statically to 4-MBC at 5, 50, and 500 μg/L concentrations for 10-day post fertilization (dpf). Embryos exhibited a significant thigmotaxis and decreased startle touch response with altered expression of nervous system mRNA transcripts on 5 & 10 dpf. Compared to the sham-exposed group, 4-MBC treated larvae exhibited changes in the expression of shha, ngn1, mbp, elavl3, α1-tubulin, syn2a, and gap43 genes. Since ngn1 induction is mediated by shh signaling during sensory neuron specification, the elevated protein expression of NGN1 indicates 4-MBC interference in the sonic hedgehog signaling pathway. This leads to sensory neuron impairment and function such as 'sense' as evident from reduced touch response. In addition, larval brain histology with a reduced number of cells in the Purkinje layer emblazing the defunct motor coordination. Predictive toxicity study also showed a higher affinity of 4-MBC to modeled Shh protein. Thus, the findings of the present work highlighted that 4-MBC is potential to induce developmental neurotoxicity at both behavioral and molecular functional perspectives, and developing D. rerio larvae could be considered as a suitable alternate animal model to assess the neurological dysfunction of organic UV filters.
Collapse
Affiliation(s)
- Ved Prakash
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shweta Singh Chauhan
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohammad Imran Ansari
- Food Drug and Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj Jagdale
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Anjaneya Ayanur
- Pathology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramakrishnan Parthasarathi
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sadasivam Anbumani
- Ecotoxicology Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research, "Vishvigyan Bhawan", 31, Mahatma Gandhi Marg, P.O. Box No.80, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
24
|
He W, Ding J, Gao N, Zhu L, Zhu L, Feng J. Elucidating the toxicity mechanisms of organophosphate esters by adverse outcome pathway network. Arch Toxicol 2024; 98:233-250. [PMID: 37864630 DOI: 10.1007/s00204-023-03624-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
With the widespread use of organophosphate esters (OPEs), the accumulation and toxicity effect of OPEs in biota are attracting more and more concern. In order to clarify the mechanism of toxicity of OPEs to organisms, this study reviewed the OPEs toxicity and systematically identified the mechanism of OPEs toxicity under the framework of adverse outcome pathway (AOP). OPEs were divided into three groups (alkyl-OPEs, aryl-OPEs, and halogenated-OPEs) and biota was divided into aquatic organism and mammals. The results showed that tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPHP) mainly caused neurotoxicity, reproductive, and hepatotoxicity in different mechanisms. According to the constructed AOP network, the toxicity mechanism of OPEs on aquatic organisms and mammals is different, which is mainly attributed to the different biological metabolic systems of aquatic organisms and mammals. Interestingly, our results indicate that the toxicity effect of the three kinds of OPEs on aquatic organisms is different, while there was no obvious difference in the mechanism of toxicity of OPEs on mammals. This study provides a theoretical basis for OPEs risk assessment in the future.
Collapse
Affiliation(s)
- Wanyu He
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jiaqi Ding
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Ning Gao
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
25
|
Sanni O, Fasemore T, Nkomozepi P. Non-Genetic-Induced Zebrafish Model for Type 2 Diabetes with Emphasis on Tools in Model Validation. Int J Mol Sci 2023; 25:240. [PMID: 38203409 PMCID: PMC10778736 DOI: 10.3390/ijms25010240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The unrelenting increase in the incidence of type 2 diabetes (T2D) necessitates the urgent need for effective animal models to mimic its pathophysiology. Zebrafish possess human-like metabolic traits and share significant genetic similarities, making them valuable candidates for studying metabolic disorders, including T2D. This review emphasizes the critical role of animal models in diabetes research, especially focusing on zebrafish as an alternative model organism. Different approaches to a non-genetic model of T2D in zebrafish, such as the glucose solution, diet-induced, chemical-induced, and combined diet-induced and glucose solution methods, with an emphasis on model validation using indicators of T2D, were highlighted. However, a significant drawback lies in the validation of these models. Some of these models have not extensively demonstrated persistent hyperglycemia or response to insulin resistance and glucose tolerance tests, depicted the morphology of the pancreatic β-cell, or showed their response to antidiabetic drugs. These tools are crucial in T2D pathology. Future research on non-genetic models of T2D in zebrafish must extensively focus on validating the metabolic deficits existing in the model with the same metabolic defects in humans and improve on the existing models for a better understanding of the molecular mechanisms underlying T2D and exploring potential therapeutic interventions.
Collapse
Affiliation(s)
- Olakunle Sanni
- Department of Human Anatomy and Physiology, University of Johannesburg, Doornfontein 2028, South Africa; (T.F.); (P.N.)
| | | | | |
Collapse
|
26
|
Lalonde RL, Wells HH, Kemmler CL, Nieuwenhuize S, Lerma R, Burger A, Mosimann C. pIGLET: Safe harbor landing sites for reproducible and efficient transgenesis in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.08.570868. [PMID: 38106217 PMCID: PMC10723424 DOI: 10.1101/2023.12.08.570868] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Standard methods for transgenesis in zebrafish depend on random transgene integration into the genome followed by resource-intensive screening and validation. Targeted vector integration into validated genomic loci using phiC31 integrase-based attP/attB recombination has transformed mouse and Drosophila transgenesis. However, while the phiC31 system functions in zebrafish, validated loci carrying attP-based landing or safe harbor sites suitable for universal transgenesis applications in zebrafish have not been established. Here, using CRISPR-Cas9, we converted two well-validated single insertion Tol2-based zebrafish transgenes with long-standing genetic stability into two attP landing sites, called phiC31 Integrase Genomic Loci Engineered for Transgenesis (pIGLET). Generating fluorescent reporters, loxP-based Switch lines, CreERT2 drivers, and gene-regulatory variant reporters in the pIGLET14a and pIGLET24b landing site alleles, we document their suitability for transgenesis applications across cell types and developmental stages. For both landing sites, we routinely achieve 25-50% germline transmission of targeted transgene integrations, drastically reducing the number of required animals and necessary resources to generate individual transgenic lines. We document that phiC31 integrase-based transgenesis into pIGLET14a and pIGLET24b reproducibly results in representative reporter expression patterns in injected F0 zebrafish embryos suitable for enhancer discovery and qualitative and quantitative comparison of gene-regulatory element variants. Taken together, our new phiC31 integrase-based transgene landing sites establish reproducible, targeted zebrafish transgenesis for numerous applications while greatly reducing the workload of generating new transgenic zebrafish lines.
Collapse
Affiliation(s)
- Robert L. Lalonde
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Harrison H. Wells
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Cassie L. Kemmler
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Susan Nieuwenhuize
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Raymundo Lerma
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado, School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, 12801 E 17th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
27
|
Yang Q, Liu J, Ding J, Liu J. Neurodevelopmental toxicity of bisphenol AF in zebrafish larvae and the protective effects of curcumin. J Appl Toxicol 2023; 43:1806-1818. [PMID: 37423901 DOI: 10.1002/jat.4514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/11/2023]
Abstract
Bisphenol AF (BPAF) is one of the most commonly used alternatives of bisphenol A in the plastics industry. The effects of BPAF on nervous development are unclear. Curcumin (CUR) has been determined to be an anti-inflammatory and antioxidant agent. In this study, the effects of BPAF on neurotoxicity of zebrafish embryos/larvae and whether CUR could reverse effects induced by BPAF were investigated. The results showed that BPAF treatment induced deficits in locomotor behavior, altered the larval brain development, caused aberrant expression of neurogenesis related genes (elavl3, zn5, α-tubulin, syn2a, and gap43), decreased acetylcholinesterase (AChE) activity, and induced oxidative stress, cell apoptosis, and neuroinflammation in zebrafish larvae. CUR addition could block the adverse effects of BPAF on nervous development by attenuated oxidative stress and cell apoptosis induced by BPAF in zebrafish, enhanced the activity of AChE, and increased the expression of genes involved in the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α, and IL-8). The results of this study indicate that BPAF could induce aberrant development on nervous system. However, CUR exerts neuroprotective effects on BPAF-induced neurotoxicity in zebrafish larvae.
Collapse
Affiliation(s)
- Qian Yang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing, China
| | - Jianmei Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jie Ding
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai, China
| |
Collapse
|
28
|
Liang M, Deng J, Gu J, Yang J, Ge F, Huang C, Wu W. TMBPF-induced neurotoxicity and oxidative stress in zebrafish larvae: impacts on central nervous system development and dopamine neurons. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115710. [PMID: 38000302 DOI: 10.1016/j.ecoenv.2023.115710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Bisphenol A (BPA), a common bisphenol molecule, is well known in the environment as an endocrine disruptor. Furthermore, BPs (BPA, BPS, BPF, and BPAF) have been shown in recent years to be neurotoxic to zebrafish. Tetramethyl bisphenol F (TMBPF) has recently been introduced as a substitute for bisphenol A (BPA) in various industries, including plastics and food contact coatings. However, a growing number of studies have demonstrated that the toxicity of some BPA substitutes is similar to or even stronger than BPA, posing potential harm to human health and the environment. In this study, we used zebrafish larvae as a model to investigate the neurodevelopmental effects of TMBPF at different concentrations (0, 0.25, 0.5, 1, 2, 4 and 8 mg/L). Our results showed that exposure to TMBPF at concentrations higher than 4 mg/L for 72 h post-fertilization (hpf) resulted in zebrafish mortality, whereas exposure to 2 mg/L for 144 hpf caused deformities. Furthermore, TMBPF exposure inhibited the development of the central nervous system, motor nerves, and dopamine neurons in zebrafish. Real-time polymerase chain reaction (PCR) analysis revealed that TMBPF exposure significantly down-regulated the expression of oxidative stress-related genes (Cu/Zn-SOD, Mn-SOD, and CAT) and neurodevelopmental genes (mbp, gafp, and syn2a), while up-regulated the expression of dopamine-related genes (th1, th2, and dat). Notably, treatment with the antioxidant N-acetylcysteine (NAC) alleviated TMBPF-induced toxicity. NAC can regulate the expression of genes related to oxidative stress, neurodevelopment and dopamine development, and make the nerve development of zebrafish normal. Overall, our research suggested that TMBPF may disrupt the development of the early central nervous system and dopamine neurons, leading to abnormal motor behavior in zebrafish larvae. These results highlight the potential risks associated with the use of TMBPF in various industries and the importance to evaluate its potential risks to human health and the environment.
Collapse
Affiliation(s)
- Mengyuan Liang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Junping Deng
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Jinlai Yang
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, China National Bamboo Research Center, Hangzhou 310012, Zhejiang, China
| | - Feng Ge
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Wenzhu Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Jiangwangmiao Street 8, Nanjing 210042, China.
| |
Collapse
|
29
|
Zhao L, Deng H, Yang Q, Tang Y, Zhao J, Li P, Zhang S, Yong X, Li T, Billadeau DD, Jia D. FAM91A1-TBC1D23 complex structure reveals human genetic variations susceptible for PCH. Proc Natl Acad Sci U S A 2023; 120:e2309910120. [PMID: 37903274 PMCID: PMC10636324 DOI: 10.1073/pnas.2309910120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023] Open
Abstract
Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.
Collapse
Affiliation(s)
- Lin Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Huaqing Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Qing Yang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Yingying Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Jia Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Ping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Sitao Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Xin Yong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Tianxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research and Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN55905
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu610041, China
| |
Collapse
|
30
|
Eghan K, Lee S, Yoo D, Kim CH, Kim WK. Adverse effects of bifenthrin exposure on neurobehavior and neurodevelopment in a zebrafish embryo/larvae model. CHEMOSPHERE 2023; 341:140099. [PMID: 37690556 DOI: 10.1016/j.chemosphere.2023.140099] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Bifenthrin, a third-generation synthetic pyrethroid, is widely used as an agricultural insecticide. However, it can flow into surface and groundwater, leading to adverse consequences such as immunotoxicity, hepatotoxicity, hormone dysregulation, or neurotoxicity. Nevertheless, the entire range of its neurotoxic consequences, particularly in aquatic organisms, remains unclear. In this study, we conducted an extensive examination of how exposure to bifenthrin affects the behavior and nervous system function of aquatic vertebrates, using a zebrafish model and multiple-layered assays. We exposed wild-type and transgenic lines [tg(elavl3:eGFP) and tg(mbp:mGFP)] to bifenthrin from <3 h post-fertilization (hpf) to 120 hpf. Our findings indicate that bifenthrin exposure concentrations of 103.9 and 362.1 μg/L significantly affects the tail-coiling response at 24 hpf and the touch-evoked responses at 72 hpf. Moreover, it has a significant effect on various aspects of behavior such as body contact, distance between subjects, distance moved, and turn angle. We attribute these effects to changes in acetylcholinesterase and dopamine levels, which decrease in a concentration-dependent manner. Furthermore, neuroimaging revealed neurogenesis defects, e.g., shortened brain and axon widths, and demyelination of oligodendrocytes and Schwann cells. Additionally, the transcription of genes related to neurodevelopment (e.g., gap43, manf, gfap, nestin, sox2) were significantly upregulated and neurotransmitters (e.g., nlgn1, drd1, slc6a4a, ache) was significantly downregulated. In summary, our data shows that bifenthrin exposure has detrimental effects on neurodevelopmental and neurotransmission systems in the zebrafish embryo/larvae model.
Collapse
Affiliation(s)
- Kojo Eghan
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Sangwoo Lee
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Donggon Yoo
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| | - Woo-Keun Kim
- Human and Environmental Toxicology, University of Science and Technology, Daejeon, 34113, South Korea; Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, South Korea.
| |
Collapse
|
31
|
Cui J, Tian S, Gu Y, Wu X, Wang L, Wang J, Chen X, Meng Z. Toxicity effects of pesticides based on zebrafish (Danio rerio) models: Advances and perspectives. CHEMOSPHERE 2023; 340:139825. [PMID: 37586498 DOI: 10.1016/j.chemosphere.2023.139825] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
Pesticides inevitably enter aquatic environments, posing potential risks to organisms. The common aquatic model organism, zebrafish (Danio rerio), are widely used to evaluate the toxicity of pesticides. In this review, we searched the Web of Science database for articles published between 2012 and 2022, using the keywords "pesticide", "zebrafish", and "toxicity", retrieving 618 publications. Furthermore, we described the main pathways by which pesticides enter aquatic environments and the fate of their residues in these environments. We systematically reviewed the toxicity effects of pesticides on zebrafish, including developmental toxicity, endocrine-disrupting effects, reproductive toxicity, neurotoxicity, immunotoxicity, and genotoxicity. Importantly, we summarized the latest research progress on the toxicity mechanism of pesticides to zebrafish based on omics technologies, including transcriptomics, metabolomics, and microbiomics. Finally, we discussed future research prospects, focusing on the combined exposure of multiple pollutants including pesticides, the risk of multigenerational exposure to pesticides, and the chronic toxicity of aquatic nanopesticides. This review provides essential data support for ecological risk assessments of pesticides in aquatic environments, and has implications for water management in the context of pesticide pollution.
Collapse
Affiliation(s)
- Jiajia Cui
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Sinuo Tian
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yuntong Gu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xinyi Wu
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Lei Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Jianjun Wang
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China
| | - Xiaojun Chen
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| | - Zhiyuan Meng
- Department of Pesticide Science, College of Plant Protection, Yangzhou University, Jiangsu Yangzhou, 225009, China.
| |
Collapse
|
32
|
de Oliveira AÁS, Vieira LC, Dreossi SC, Dorta DJ, Gravato C, da Silva Ferreira ME, Oliveira DPD. Integrating morphological, biochemical, behavioural, and molecular approaches to investigate developmental toxicity triggered by tebuthiuron in zebrafish (Danio rerio). CHEMOSPHERE 2023; 340:139894. [PMID: 37607599 DOI: 10.1016/j.chemosphere.2023.139894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023]
Abstract
Tebuthiuron (TBU), a phenylurea herbicide, is widely applied in agricultural and non-agricultural soils. Because TBU resists degradation, it can contaminate water and reach the biota once it is released into the environment. However, the potential toxic effects of TBU on aquatic developing organisms have been poorly studied. By taking advantage of the early-life stages of zebrafish (Danio rerio), we have combined morphological, biochemical, behavioural, and molecular approaches to investigate the developmental toxicity triggered by environmentally relevant concentrations (from 0.1 to 1000 μg/L) of TBU. Exposure to TBU did not elicit morphological abnormalities but it significantly delayed hatching. In addition, TBU altered the frequency of tail coils in one-day post-fertilization (dpf) old embryos. Moreover, TBU exposure during four days significantly inhibited the whole body AChE activity of larvae. At the molecular level, TBU did not significantly affect the mRNA levels of four genes (elavl3, gfap, gap43, and shha) that play key roles during the neurodevelopment of zebrafish. By assessing the motor responses to repeated light-dark stimuli, 6 dpf larvae exposed to TBU displayed hyperactivity, showing greater travelling distance during the dark periods. Our categorization of swimming speed revealed an interesting finding - after the light was turned off, the exposed larvae abandoned the freezing mode (<2 mm/s) and travelled mainly at cruising speed (2-20 mm/s), showing that the larval hyperactivity did not translate into higher swimming velocity. Overall, our results offer new insights into the TBU toxicity to developing organisms, namely effects in AChE activity and hyperactivity, providing support data for future studies considering environmental risk assessment of this herbicide.
Collapse
Affiliation(s)
| | - Luiz Carlos Vieira
- Ribeirão Preto Medical School, University of São Paulo, 14049-900, Ribeirão Preto, Brazil
| | - Sônia Carvalho Dreossi
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, Brazil
| | - Daniel Junqueira Dorta
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14800-060, Araraquara, Brazil
| | - Carlos Gravato
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016, Lisbon, Portugal
| | | | - Danielle Palma de Oliveira
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, 14040-903, Ribeirão Preto, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), 14800-060, Araraquara, Brazil
| |
Collapse
|
33
|
Pose-Méndez S, Schramm P, Valishetti K, Köster RW. Development, circuitry, and function of the zebrafish cerebellum. Cell Mol Life Sci 2023; 80:227. [PMID: 37490159 PMCID: PMC10368569 DOI: 10.1007/s00018-023-04879-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
The cerebellum represents a brain compartment that first appeared in gnathostomes (jawed vertebrates). Besides the addition of cell numbers, its development, cytoarchitecture, circuitry, physiology, and function have been highly conserved throughout avian and mammalian species. While cerebellar research in avian and mammals is extensive, systematic investigations on this brain compartment in zebrafish as a teleostian model organism started only about two decades ago, but has provided considerable insight into cerebellar development, physiology, and function since then. Zebrafish are genetically tractable with nearly transparent small-sized embryos, in which cerebellar development occurs within a few days. Therefore, genetic investigations accompanied with non-invasive high-resolution in vivo time-lapse imaging represents a powerful combination for interrogating the behavior and function of cerebellar cells in their complex native environment.
Collapse
Affiliation(s)
- Sol Pose-Méndez
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| | - Paul Schramm
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Komali Valishetti
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany
| | - Reinhard W Köster
- Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
34
|
He XN, Wu P, Jiang WD, Liu Y, Kuang SY, Tang L, Ren HM, Li H, Feng L, Zhou XQ. Aflatoxin B1 exposure induced developmental toxicity and inhibited muscle development in zebrafish embryos and larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163170. [PMID: 37003331 DOI: 10.1016/j.scitotenv.2023.163170] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/02/2023] [Accepted: 03/26/2023] [Indexed: 05/13/2023]
Abstract
The prevalence of aflatoxin B1 (AFB1), one of the most toxic mycotoxins that contaminates feedstock and food is increasing worldwide. AFB1 can cause various health problems in humans and animals, as well as direct embryotoxicity. However, the direct toxicity of AFB1 on embryonic development, especially foetal foetus muscle development, has not been studied in depth. In the present study, we used zebrafish embryos as a model to study the mechanism of the direct toxicity of AFB1 to the foetus, including muscle development and developmental toxicity. Our results showed that AFB1 caused motor dysfunction in zebrafish embryos. In addition, AFB1 induces abnormalities in muscle tissue architecture, which in turn causes abnormal muscle development in larvae. Further studies found that AFB1 destroyed the antioxidant capacity and tight junction complexes (TJs), causing apoptosis in zebrafish larvae. In summary, AFB1 may induce developmental toxicity and inhibit muscle development through oxidative damage, apoptosis and disruption of TJs in zebrafish larvae. Our results revealed the direct toxicity effects of AFB1 on the development of embryos and larvae, including inhibition of muscle development and triggering neurotoxicity, induction of oxidative damage, apoptosis and disruption of TJs, and fills the gap in the toxicity mechanism of AFB1 on foetal development.
Collapse
Affiliation(s)
- Xiang-Ning He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Hong-Mei Ren
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Provence, Sichuan 611130, China.
| |
Collapse
|
35
|
Huang Z, Gao J, Chen Y, Huan Z, Liu Y, Zhou T, Dong Z. Toxic effects of bisphenol AF on the embryonic development of marine medaka (Oryzias melastigma). ENVIRONMENTAL TOXICOLOGY 2023; 38:1445-1454. [PMID: 36929865 DOI: 10.1002/tox.23779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 05/18/2023]
Abstract
Bisphenol AF (BPAF), an emerging environmental endocrine disruptor, has been detected in surface waters worldwide and has adverse effects on aquatic organisms. The accumulation of BPAF in oceans and its potential toxic effect on marine organisms are important concerns. In this study, the effects of BPAF (10, 100, 1, and 5 mg/L) on marine medaka (Oryzias melastigma) were evaluated, including effects on the survival rate, heart rate, hatchability, morphology, and gene expression in embryos. The survival rate of marine medaka embryos was significantly lower after treatment with 5 mg/L BPAF than in the solvent control group. Exposure to 1 mg/L and 5 mg/L BPAF significantly reduced hatchability. Low-dose BPAF (10 μg/L) significantly accelerated the heart rate of embryos, while high-dose BPAF (5 mg/L) significantly decreased the heart rate. BPAF exposure also resulted in notochord curvature, pericardial edema, yolk sac cysts, cardiovascular bleeding, and caudal curvature in marine medaka. At the molecular level, BPAF exposure affected the transcript levels of genes involved in the thyroid system (dio1, dio3a, trhr2, tg, and thra), cardiovascular system (gata4, atp2a1, and cacna1da), nervous system (elavl3 and gap43), and antioxidant and inflammatory systems (sod, pparβ, and il-8) in embryos. These results indicate that BPAF exposure can alter the expression of functional genes, induce abnormal development, and reduce the hatching and survival rates in marine medaka embryos. Overall, BPAF can adversely affect the survival and development of marine medaka embryos, and BPAF may not be an ideal substitute for BPA.
Collapse
Affiliation(s)
- Zeyin Huang
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Jiahao Gao
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yuebi Chen
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhang Huan
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Yue Liu
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Tianyang Zhou
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| | - Zhongdian Dong
- Key Laboratory of Aquaculture in the South China Sea for Aquatic Economic Animal of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Zhanjiang, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, College of Fishery, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
36
|
Zhou R, Zhou D, Yang S, Shi Z, Pan H, Jin Q, Ding Z. Neurotoxicity of polystyrene nanoplastics with different particle sizes at environment-related concentrations on early zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162096. [PMID: 36791853 DOI: 10.1016/j.scitotenv.2023.162096] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Nanoplastics (NPs) have received global attention due to their wide application and detection in various environmental or biological media. NPs can penetrate physical barriers and accumulate in organisms after being ingested, producing a variety of toxic effects and possessing particle size-dependent effects, distinguishing them from traditional contaminants. This paper explored the neurotoxicity of polystyrene (PS)-NPs of different particle sizes on zebrafish (Danio rerio) embryos at environmental concentrations at the tissue and molecular levels using visualized transgenic zebrafish. Results showed that all particle sizes of PS-NPs produced developmental toxicity in zebrafish embryos and induced neuronal loss, axonal deletion/shortening/hybridization, and developmental and apoptotic-related genetic alterations, ultimately leading to behavioral abnormalities. PS-NPs with smaller sizes may have more severe neurotoxicity due to their entry into the embryo and brain through the chorionic pore before hatching. In addition, PS-NPs at 100 nm and 1000 nm can specifically interfere with GABAergic, cholinergic or serotonergic system and affect neuronal signaling. Our results reveal the neurotoxic risk of NPs, and smaller particle-size NPs may have a greater ecological risk. We anticipate that our study can provide a basis for exploring the toxicity mechanisms of NPs and the environmental risk assessment of NPs.
Collapse
Affiliation(s)
- Ranran Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Dao Zhou
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Shixin Yang
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhiqiao Shi
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Hui Pan
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Qijie Jin
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China
| | - Zhuhong Ding
- School of Environmental Science & Engineering, Nanjing Tech University, 30 Puzhu Southern Road, Nanjing 211816, China.
| |
Collapse
|
37
|
Yang Q, Deng P, Xing D, Liu H, Shi F, Hu L, Zou X, Nie H, Zuo J, Zhuang Z, Pan M, Chen J, Li G. Developmental Neurotoxicity of Difenoconazole in Zebrafish Embryos. TOXICS 2023; 11:353. [PMID: 37112580 PMCID: PMC10142703 DOI: 10.3390/toxics11040353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Difenoconazole is a type of triazole fungicide that is widely used in the treatment of plant diseases. Triazole fungicides have been shown in several studies to impair the development of the nervous system in zebrafish embryos. There is still little known about difenoconazole-induced neurotoxicity in fish. In this study, zebrafish embryos were exposed to 0.25, 0.5, and 1 mg/L of difenoconazole solution until 120 h post-fertilization (hpf). The difenoconazole-exposed groups showed concentration-dependent inhibitory tendencies in heart rate and body length. Malformation rate and spontaneous movement of zebrafish embryos increased, and the locomotor activity decreased in the highest exposure group. The content of dopamine and acetylcholine was reduced significantly in difenoconazole treatment groups. The activity of acetylcholinesterase (AChE) was also increased after treatment with difenoconazole. Furthermore, the expression of genes involved in neurodevelopment was remarkably altered, which corresponded with the alterations of neurotransmitter content and AChE activity. These results indicated that difenoconazole might affect the development of the nervous system through influencing neurotransmitter levels, enzyme activity, and the expression of neural-related genes, ultimately leading to abnormal locomotor activity in the early stages of zebrafish.
Collapse
Affiliation(s)
- Qing Yang
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Ping Deng
- Wuhan Academy of Agricultural Sciences, Wuhan 430072, China
| | - Dan Xing
- Dadu River Hydropower Development Co., Ltd., Chengdu 610016, China
| | - Haoling Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Shi
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Lian Hu
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Xi Zou
- Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan 430079, China
| | - Hongyan Nie
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Zuo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zimeng Zhuang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiqi Pan
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
- Changsha Xinjia Bio-Engineering Co., Ltd., Changsha 410000, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
38
|
Jia X, Feng Y, Ma W, Zhao W, Liu Y, Jing G, Tian J, Yang T, Zhang C. A fluidic platform for mobility evaluation of zebrafish with gene deficiency. Front Mol Neurosci 2023; 16:1114928. [PMID: 37089692 PMCID: PMC10117665 DOI: 10.3389/fnmol.2023.1114928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionZebrafish is a suitable animal model for molecular genetic tests and drug discovery due to its characteristics including optical transparency, genetic manipulability, genetic similarity to humans, and cost-effectiveness. Mobility of the zebrafish reflects pathological conditions leading to brain disorders, disrupted motor functions, and sensitivity to environmental challenges. However, it remains technologically challenging to quantitively assess zebrafish's mobility in a flowing environment and simultaneously monitor cellular behavior in vivo.MethodsWe herein developed a facile fluidic device using mechanical vibration to controllably generate various flow patterns in a droplet housing single zebrafish, which mimics its dynamically flowing habitats.ResultsWe observe that in the four recirculating flow patterns, there are two equilibrium stagnation positions for zebrafish constrained in the droplet, i.e., the “source” with the outward flow and the “sink” with the inward flow. Wild-type zebrafish, whose mobility remains intact, tend to swim against the flow and fight to stay at the source point. A slight deviation from streamline leads to an increased torque pushing the zebrafish further away, whereas zebrafish with motor neuron dysfunction caused by lipin-1 deficiency are forced to stay in the “sink,” where both their head and tail align with the flow direction. Deviation angle from the source point can, therefore, be used to quantify the mobility of zebrafish under flowing environmental conditions. Moreover, in a droplet of comparable size, single zebrafish can be effectively restrained for high-resolution imaging.ConclusionUsing the proposed methodology, zebrafish mobility reflecting pathological symptoms can be quantitively investigated and directly linked to cellular behavior in vivo.
Collapse
Affiliation(s)
- Xiaoyu Jia
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Shaanxi, Xi'an, China
| | - Yibo Feng
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
| | - Wenju Ma
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
| | - Wei Zhao
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
| | - Yanan Liu
- School of Physics, Northwest University, Shaanxi, Xi'an, China
| | - Guangyin Jing
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- *Correspondence: Guangyin Jing
| | - Jing Tian
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, China
- Jing Tian
| | - Tao Yang
- Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Shaanxi, Xi'an, China
- Tao Yang
| | - Ce Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, Institute of Photonics and Photon-Technology, Northwest University, Shaanxi, Xi'an, China
- School of Physics, Northwest University, Shaanxi, Xi'an, China
- Ce Zhang
| |
Collapse
|
39
|
Improving the protective ability of lignin against vascular and neurological development in BPAF-induced zebrafish by high-pressure homogenization technology. Int J Biol Macromol 2023; 231:123356. [PMID: 36682655 DOI: 10.1016/j.ijbiomac.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The lack of a sufficient amount of functional groups in the lignin structure limits its bioapplication. In this work, high-pressure homogenization was performed on original kraft lignin (L-ORI) to prepare lignin nanoparticles (L-NANO), which aimed to improve its functional group contents for further vascular and neurological applications. The results showed that the prepared L-NANO possessed spherical structures with diameters of 40.3-160.4 nm and increased amount of hydroxyl groups. Compared to L-ORI, L-NANO possessed better in vivo and in vitro antioxidant capacity, which could endow it with enhanced protective effects for the vascular and neural development of bisphenol AF (BPAF)-induced zebrafish. In addition, L-NANO reduced the neurotoxicity and cardiovascular toxicity of BPAF in zebrafish by upregulating the expression levels of oxidative stress-related genes (Cu/Zn-Sod and cat), which could further significantly upregulate the expression levels of neurogenesis genes (elavl3, gap43, mbp, and syn2a) and protect the contraction of the cardinal vein (CCV) and early central nervous system development by upregulating the expression levels of vascular genes (flk1 and flt4). The excellent cardiovascular and neurodevelopmental protective ability of L-NANO indicated that high-pressure homogenization is a promising technology for improving the bioactivity of lignin.
Collapse
|
40
|
Yang G, Yang L, Liu Q, Zhu Z, Yang Q, Liu J, Beta T. Protective effects of cyanidin-3-O-glucoside on BPA-induced neurodevelopmental toxicity in zebrafish embryo model. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109525. [PMID: 36410639 DOI: 10.1016/j.cbpc.2022.109525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Bisphenol A (BPA) is ubiquitous in the environment and poses a threat to wildlife and human health. It has been reported that BPA may cause the neurotoxicity during gestational and neonatal periods. Cyanidin-3-O-glucoside (C3G) is one of the most abundant anthocyanins that has shown multiple bio-functions. In this study, the protective effects and possible mechanism of C3G against BPA-induced neurodevelopment toxicity in zebrafish embryos/larvae were studied. The results showed that co-exposure of C3G (25 μg/mL) significantly attenuated BPA-induced deficit in locomotor behavior and restored the BPA-induced aberrant changes in brain morphology of zebrafish larvae. Further studies showed that the defects of central nervous development and the downregulated neurogenesis relative genes induced by BPA were significantly counteracted by co-exposure with 5 μg/mL of C3G. In addition, C3G (25 μg/mL) mitigated the decline of glutathione (GSH) content and enzymatic activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT), attenuated oxidative stress and cell apoptosis induced by BPA in zebrafish. The enhancements of the expression of genes involved in the Nrf2-ARE pathway (Nrf2, HO-1, NQO1, GCLC, and GCLM) were also observed by co-exposure of C3G. The results indicate that C3G exerts protective effects on BPA-induced neurodevelopmental toxicity through improving transcription of neurogenesis related genes, enhancing antioxidative defense system and reducing cell apoptosis by regulation of apoptotic genes in zebrafish larvae. The results suggest that anthocyanins may play important role against the exogenous toxicity for vertebrates.
Collapse
Affiliation(s)
- Guangchao Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Lipin Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qin Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhenzhu Zhu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Qian Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jining Liu
- Research and Development Center for Watershed Environmental Eco-Engineering, Beijing Normal University, Zhuhai 519087, China.
| | - Trust Beta
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
41
|
SCGN deficiency is a risk factor for autism spectrum disorder. Signal Transduct Target Ther 2023; 8:3. [PMID: 36588101 PMCID: PMC9806109 DOI: 10.1038/s41392-022-01225-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/15/2022] [Accepted: 09/30/2022] [Indexed: 01/03/2023] Open
Abstract
Autism spectrum disorder (ASD) affects 1-2% of all children and poses a great social and economic challenge for the globe. As a highly heterogeneous neurodevelopmental disorder, the development of its treatment is extremely challenging. Multiple pathways have been linked to the pathogenesis of ASD, including signaling involved in synaptic function, oxytocinergic activities, immune homeostasis, chromatin modifications, and mitochondrial functions. Here, we identify secretagogin (SCGN), a regulator of synaptic transmission, as a new risk gene for ASD. Two heterozygous loss-of-function mutations in SCGN are presented in ASD probands. Deletion of Scgn in zebrafish or mice leads to autism-like behaviors and impairs brain development. Mechanistically, Scgn deficiency disrupts the oxytocin signaling and abnormally activates inflammation in both animal models. Both ASD probands carrying Scgn mutations also show reduced oxytocin levels. Importantly, we demonstrate that the administration of oxytocin and anti-inflammatory drugs can attenuate ASD-associated defects caused by SCGN deficiency. Altogether, we identify a convergence between a potential autism genetic risk factor SCGN, and the pathological deregulation in oxytocinergic signaling and immune responses, providing potential treatment for ASD patients suffering from SCGN deficiency. Our study also indicates that it is critical to identify and stratify ASD patient populations based on their disease mechanisms, which could greatly enhance therapeutic success.
Collapse
|
42
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
43
|
Shin C, Ryu H, Cho ES, Han S, Lee KH, Kim CH, Yoon YG. Three-dimensional fluorescence microscopy through virtual refocusing using a recursive light propagation network. Med Image Anal 2022; 82:102600. [PMID: 36116298 DOI: 10.1016/j.media.2022.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022]
Abstract
Three-dimensional fluorescence microscopy has an intrinsic performance limit set by the number of photons that can be collected from the sample in a given time interval. Here, we extend our earlier work - a recursive light propagation network (RLP-Net) - which is a computational microscopy technique that overcomes such limitations through virtual refocusing that enables volume reconstruction from two adjacent 2-D wide-field fluorescence images. RLP-Net employs a recursive inference scheme in which the network progressively predicts the subsequent planes along the axial direction. This recursive inference scheme reflects that the law of physics for the light propagation remains spatially invariant and therefore a fixed function (i.e., a neural network) for a short distance light propagation can be recursively applied for a longer distance light propagation. In addition, we employ a self-supervised denoising method to enable accurate virtual light propagation over a long distance. We demonstrate the capability of our method through high-speed volumetric imaging of neuronal activity of a live zebrafish brain. The source code used in the paper is available at https://github.com/NICALab/rlpnet.
Collapse
Affiliation(s)
- Changyeop Shin
- School of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Ryu
- School of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Eun-Seo Cho
- School of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seungjae Han
- School of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Kang-Han Lee
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Gyu Yoon
- School of Electrical Engineering, KAIST, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, 291, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
44
|
Xi J, Zhang Z, Wang Z, Wu Q, He Y, Xu Y, Ding Z, Zhao H, Da H, Zhang F, Zhao H, Fang J. Hinokitiol functions as a ferroptosis inhibitor to confer neuroprotection. Free Radic Biol Med 2022; 190:202-215. [PMID: 35985562 DOI: 10.1016/j.freeradbiomed.2022.08.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The intrinsic link of ferroptosis to neurodegeneration, such as Parkinson's disease and Alzheimer's disease, has set promises to apply ferroptosis inhibitors for treatment of neurodegenerative disorders. Herein, we report that the natural small molecule hinokitiol (Hino) functions as a potent ferroptosis inhibitor to rescue neuronal damages in vitro and in vivo. The action mechanisms of Hino involve chelating irons and activating cytoprotective transcription factor Nrf2 to upregulate the antioxidant genes including solute carrier family 7 member 11, glutathione peroxidase 4 and Heme oxygenase-1. In vivo studies demonstrate that Hino rescues the deficits of locomotor activity and neurodevelopment in zebrafishes. In addition, Hino shows the efficient blood-brain barrier permeability in mice, supporting the application of Hino for brain disorders. Paclitaxel is one of the most widely used broad-spectrum antineoplastic agents. However, its neurotoxic side effect is a severe concern. We demonstrate that the neurotoxicity of paclitaxel is ferroptosis-related and Hino also alleviates the paclitaxel-induced neurotoxicity without compromising its cytotoxicity to cancer cells. Hino also salvages the neurobehavioral impairment by paclitaxel in zebrafishes. Collectively, the discovery of Hino as a novel ferroptosis inhibitor and disclosure of its action mechanisms establish a foundation for the further development of Hino as a neuroprotective agent.
Collapse
Affiliation(s)
- Junmin Xi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Zhijun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, China
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ying He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China
| | - Zhenjiang Ding
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Honghong Da
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, China.
| |
Collapse
|
45
|
Wang S, Han X, Yu T, Liu Y, Zhang H, Mao H, Hu C, Xu X. Isoprocarb causes neurotoxicity of zebrafish embryos through oxidative stress-induced apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113870. [PMID: 35816841 DOI: 10.1016/j.ecoenv.2022.113870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Isoprocarb is a widely used carbamate insecticide in agriculture and aquaculture. Overuse of isoprocarb always leaves toxic residues in soil and water, however, the potential ecotoxicity of isoprocarb to organisms is still confusing. In this study, zebrafish embryo was used as a model to evaluate the toxicity of isoprocarb. Zebrafish embryos (96 hpf) were separately exposed at different concentrations of isoprocarb. The mortality rate, hatchability rate, average heart beat of the zebrafish embryo were separately calculated. Our results suggested that exposure to isoprocarb induced developmental toxicity in zebrafish embryos. HE staining showed that exposure to isoprocarb caused developmental defect in the hindbrain of zebrafish embryos. As expected, the behavioral analysis also showed that the motor ability of zebrafish embryos were significantly inhibited following exposure to isoprocarb. In terms of mechanism, The expressions of genes involved in neurodevelopment signaling pathways, such as foxo3a, gfap, syn2a, elavl3 and sox19b, were inhibited in zebrafish embryos after exposure to isoprocarb. The acetylcholinesterase (AChE) activity was also reduced in isoprocarb-treated zebrafish embryos. Moreover, oxidative stress was induced by increasing the reactive oxygen species (ROS) level and decreasing the activity of antioxidant enzyme (SOD) after exposure to isoprocarb. Expectedly, acridine orange (AO) staining and the detection of some apoptosis-related genes revealed that oxidative stress resulted in apoptosis. In short, the expressions of genes associated with the neurodevelopmental signaling pathway are inhibited, and oxidative stress is also induced in zebrafish embryos after exposure to isoprocarb, which may be the molecular basics of isoprocarb-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Shanghong Wang
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Tingting Yu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang 330031, Jiangxi, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China; Jiangxi Provincial Key Laboratory of Interdisciplinary Science, Nanchang University, Nanchang 330031, Jiangxi, China.
| |
Collapse
|
46
|
Xu Y, Zhao H, Wang Z, Gao H, Liu J, Li K, Song Z, Yuan C, Lan X, Pan C, Zhang S. Developmental exposure to environmental levels of cadmium induces neurotoxicity and activates microglia in zebrafish larvae: From the perspectives of neurobehavior and neuroimaging. CHEMOSPHERE 2022; 291:132802. [PMID: 34752834 DOI: 10.1016/j.chemosphere.2021.132802] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a worldwide environmental pollutant that postures serious threats to humans and ecosystems. Over the years, its adverse effects on the central nervous system (CNS) have been concerned, whereas the underlying cellular/molecular mechanisms remain unclear. In this study, taking advantages of zebrafish model in high-throughput imaging and behavioral tests, we have explored the potential developmental neurotoxicity of Cd at environmentally relevant levels, from the perspectives of neurobehavior and neuroimaging. Briefly, Cd2+ exposure resulted in a general impairment of zebrafish early development. Zebrafish neurobehavioral patterns including locomotion and reactivity to environmental signals were significantly perturbed upon Cd2+ exposure. Importantly, a combination of in vivo two-photon neuroimaging, flow cytometry and gene expression analyses revealed notable neurodevelopmental disorders as well as neuroimmune responses induced by Cd2+ exposure. Both cell-cycle arrest and apoptosis contributed jointly to a significant decrease of neuronal density in zebrafish larvae exposed to Cd2+. The dramatic morphological alterations of microglia from multi-branched to amoeboid, the microgliosis, as well as the modulation of gene expression profiles demonstrated a strong activation of microglia and neuroinflammation triggered by environmental levels of Cd2+. Together, our study points to the developmental toxicity of Cd in inducing CNS impairment and neuroinflammation thereby providing visualized etiological evidence of this heavy metal induced neurodevelopmental disorders. It's tempting to speculate that this research model might represent a promising tool not only for understanding the molecular mechanisms of Cd-induced neurotoxicity, but also for developing pharmacotherapies to mitigate the neurological damage resulting from exposure to Cd, and other neurotoxicants.
Collapse
Affiliation(s)
- Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| | - Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Hao Gao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Junru Liu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Cong Yuan
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
47
|
Sonawane PM, Lee W, Kim Y, Roychaudhury A, Bhosale VK, Kim D, Park HS, Kim CH, Churchill DG. Phosphinate-benzoindocyanin fluorescent probe for endogenous mitochondrial peroxynitrite detection in living cells and gallbladder access in inflammatory zebrafish animal models. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120568. [PMID: 34774434 DOI: 10.1016/j.saa.2021.120568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Potent oxidants such as peroxynitrite (ONOO-) play important roles in the regulation of different physiopathological processes; their overproduction is thought to potentially cause several diseases in living organisms. Hence, the precise and selective monitoring of ONOO- is imperative for elucidating its interplay and roles in pathological and physiological processes. Herein, we present a novel diphenyl phosphinate-masked benzoindocyanin "turn-on" fluorogenic probe to help detect mitochondrial ONOO- in living cells and zebrafish models. A pale yellow color solution of BICBzDP turns rose-red upon the addition of ONOO-, selectively, contrary to that of other competitive bioactive molecules. BICBzDP displays an ultra-sensitivity detection limit (47.8 nM) with outstanding selectivity and sensitivity towards mitochondrial ONOO- and possesses a notable 68-fold fluorescence enhancement involving a large redshift of 91 nm. Importantly, further biological experimental investigations with BICBzDP indicate specific sensitivity and reliability of the probe to track the ONOO- level, not only in live cells, but also demonstrates dynamic fluctuations in the inflammatory zebrafish animal models. Thus, BICBzDP could be employed as a future potential biological tool for exploiting the role of ONOO- in a variety of different physiological systems.
Collapse
Affiliation(s)
- Prasad M Sonawane
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Woohyun Lee
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yunsu Kim
- Department of Chemistry, Molecular Synthetic Biology Laboratory, Basic Science Building, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | | | - Vikas K Bhosale
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Donghyeon Kim
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Molecular Synthetic Biology Laboratory, Basic Science Building, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - David G Churchill
- Department of Chemistry, Molecular Logic Gate Laboratory, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering Section), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
48
|
Trengove M, Wyett R, Liongue C, Ward AC. Functional Analysis of Zebrafish socs4a: Impacts on the Notochord and Sensory Function. Brain Sci 2022; 12:brainsci12020241. [PMID: 35204004 PMCID: PMC8869963 DOI: 10.3390/brainsci12020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
The suppressor of cytokine signaling (SOCS) proteins play important roles in cytokine and growth factor signaling, where they act principally as negative feedback regulators, particularly of the downstream signal transducer and activator of transcription (STAT) transcription factors. This critical mode of regulation impacts on both development and homeostasis. However, understanding of the function of SOCS4 remains limited. To address this, we investigated one of the zebrafish SOCS4 paralogues, socs4a, analyzing its expression and the consequences of its ablation. The socs4a gene had a dynamic expression profile during zebrafish embryogenesis, with initial ubiquitous expression becoming restricted to sensory ganglion within the developing nervous system. The knockdown of zebrafish socs4a revealed novel roles in notochord development, as well as the formation of a functional sensory system.
Collapse
Affiliation(s)
- Monique Trengove
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
| | - Ruby Wyett
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia; (M.T.); (R.W.); (C.L.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence:
| |
Collapse
|
49
|
Gu J, Guo M, Yin X, Huang C, Qian L, Zhou L, Wang Z, Wang L, Shi L, Ji G. A systematic comparison of neurotoxicity of bisphenol A and its derivatives in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150210. [PMID: 34534871 DOI: 10.1016/j.scitotenv.2021.150210] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
As more and more countries have prohibited the manufacture and sale of plastic products with bisphenol A (BPA), a number of bisphenol analogues (BPs), including BPS, BPF and BPAF, have gradually been used as its primary substitutes. Ideally, substitutes used to replace chemicals with environmental risks should be inert, so it makes sense that the risk of the similar chemical substitutes (BPS, BPF, and BPAF) should be assessed before they used. Therefore, in the present study, the neurotoxicity of four BPs at environmentally relevant concentration (200 μg/L) were systematically compared using zebrafish as a model. Our results showed that the four BPs (BPA, BPS, BPF and BPAF) exhibited no obvious effect on the hatchability, survival rate and body length of zebrafish larvae, noteworthily a significant inhibitory effect on spontaneous movement at 24 hpf was observed in the BPA, BPF and BPAF treatment groups. Behavioral tests showed that BPAF, BPF and BPA exposure significantly reduced the locomotor activity of the larvae. Additionally, BPAF treatment adversely affected motor neuron axon length in transgenic lines hb9-GFP zebrafish and decreased central nervous system (CNS) neurogenesis in transgenic lines HuC-GFP zebrafish. Intriguingly, BPAF displayed the strongest effects on the levels and metabolism of neurotransmitters, followed by BPF and BPA, while BPS showed the weakest effects on neurotransmitters. In conclusion, our study deciphered that environmentally relevant concentrations of BPs exposure exhibited differential degrees of neurotoxicity, which ranked as below: BPAF > BPF ≈ BPA > BPS. The possible mechanisms can be partially ascribed to the dramatical changes of multiple neurotransmitters and the inhibitory effects on neuronal development. These results suggest that BPAF and BPF should be carefully considered as alternatives to BPA.
Collapse
Affiliation(s)
- Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Min Guo
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiaogang Yin
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Lingling Qian
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China
| | - Linjun Zhou
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhen Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lei Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Lili Shi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| |
Collapse
|
50
|
Wang Z, Zhao H, Xu Y, Zhao J, Song Z, Bi Y, Li Y, Lan X, Pan C, Foulkes NS, Zhang S. Early-life lead exposure induces long-term toxicity in the central nervous system: From zebrafish larvae to juveniles and adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150185. [PMID: 34509844 DOI: 10.1016/j.scitotenv.2021.150185] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Lead induced neurotoxicity has been extensively investigated. However, the potential connections between early-life lead exposure and the frequently observed aberrant neurobehavior in juveniles and adults remain unclear. In this study, zebrafish model was used to explore the immediate and long-term effects of early-life exposure to environmental levels of lead on the central nervous system, and the cellular and molecular mechanisms underlying the consequent abnormal neurobehavior. Lead exposed zebrafish larvae exhibited neurologic damage and defective neurobehavior. Consistent with clinical studies, despite being raised in lead-free conditions, the juvenile and adult fish experienced lead exposure earlier, presented ADHD-like symptoms, and the adult fish exhibited remarkably affected vitality and shoaling behavior. Their anxiety levels were elevated, whereas their social interaction, as well as learning and memory were strongly depressed. The expression profiles of key genes involved in neurodevelopment and neurotransmitter systems were significantly modulated, in similar patterns as in the larval stage. Notably, the density of neurons was decreased and varicosities in neuronal axons were frequently observed in the lead-exposed groups. It's tempting to speculate that the disruption of early neurodevelopment as well as the prolonged modulation of neuromorphic and neurotransmitter systems contribute to the lead-induced neurobehavioral disorders observed in juveniles and adulthood.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Jianing Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yi Bi
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Yang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| |
Collapse
|