1
|
Zamarripa CA, Pareek T, Schrock HM, Prisinzano TE, Blough BE, Sufka KJ, Freeman KB. The kappa-opioid receptor agonist, triazole 1.1, reduces oxycodone self-administration and enhances oxycodone-induced thermal antinociception in male rats. Psychopharmacology (Berl) 2021; 238:3463-3476. [PMID: 34430992 PMCID: PMC8629928 DOI: 10.1007/s00213-021-05965-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
RATIONALE Triazole 1.1 is a novel kappa-opioid receptor (KOR) agonist reported to produce antinociception without KOR-typical adverse effects. When combined with the mu-opioid receptor (MOR) agonist, oxycodone, triazole 1.1 blocks oxycodone-induced pruritis without producing sedation-like effects in nonhuman primates. However, it is unknown if triazole 1.1 can reduce the abuse-related effects or enhance the antinociceptive effects of oxycodone similarly to other KOR agonists. OBJECTIVES The aim of the present study was to quantitatively compare the behavioral effects of triazole 1.1 to the KOR agonists, U50,488h and nalfurafine, on oxycodone self-administration and oxycodone-induced thermal antinociception when administered as mixtures with oxycodone. METHODS In the self-administration study, male Sprague-Dawley (SD) rats (n = 6) self-administered intravenous (i.v.) oxycodone alone (0.056 mg/kg/inj) or combined with U50,488 h (0.032-0.32 mg/kg/inj), nalfurafine (0.00032-0.0032 mg/kg/inj), or triazole 1.1 (0.32-1.8 mg/kg/inj) under a progressive-ratio schedule of reinforcement. In a hot plate assay, male SD rats (n = 6) received i.v. injections of oxycodone (1.0-5.6 mg/kg), U50,488h (1.0-18.0 mg/kg), nalfurafine (0.01-1.0 mg/kg), or triazole 1.1 (3.2-32.0 mg/kg) alone or in combinations of fixed proportion with oxycodone based on the relative potencies of the single drugs. Each study concluded with administration of the KOR antagonist nor-BNI and some degree of retesting of the previous conditions to verify that the behavioral effects were mediated by KOR activation. RESULTS All KOR agonists reduced oxycodone self-administration in a dose-dependent manner. Moreover, all single drugs and drug combinations produced dose-dependent, fully efficacious thermal antinociception. All KOR agonist:oxycodone combinations produced either additive or super-additive thermal antinociception. Finally, each KOR agonist was blocked in effect by nor-BNI in both behavioral measures. CONCLUSION This study demonstrates that triazole 1.1 reduces oxycodone's reinforcing effects and enhances oxycodone-induced antinociception to degrees that are comparable to typical KOR agonists. Given triazole 1.1's mild adverse-effect profile, developing MOR-KOR agonist combinations from the triazole 1.1 series may render new pain therapeutics with reduced abuse liability.
Collapse
Affiliation(s)
- C Austin Zamarripa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Tanya Pareek
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Hayley M Schrock
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | | | | | - Kenneth J Sufka
- Department of Psychology, University of Mississippi, Oxford, MS, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| |
Collapse
|
2
|
Uhelski ML, Bruce D, Speltz R, Wilcox GL, Simone DA. Topical Application of Loperamide/Oxymorphindole, Mu and Delta Opioid Receptor Agonists, Reduces Sensitization of C-fiber Nociceptors that Possess Na V1.8. Neuroscience 2020; 446:102-112. [PMID: 32858141 DOI: 10.1016/j.neuroscience.2020.08.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/27/2020] [Accepted: 08/17/2020] [Indexed: 01/09/2023]
Abstract
It was recently shown that local injection, systemic administration or topical application of the peripherally-restricted mu-opioid receptor (MOR) agonist loperamide (Lo) and the delta-opioid receptor (DOR) agonist oxymorphindole (OMI) synergized to produce highly potent anti-hyperalgesia that was dependent on both MOR and DOR located in the periphery. We assessed peripheral mechanisms by which this Lo/OMI combination produces analgesia in mice expressing the light-sensitive protein channelrhodopsin2 (ChR2) in neurons that express NaV1.8 voltage-gated sodium channels. These mice (NaV1.8-ChR2+) enabled us to selectively target and record electrophysiological activity from these neurons (the majority of which are nociceptive) using blue light stimulation of the hind paw. We assessed the effect of Lo/OMI on nociceptor activity in both naïve mice and mice treated with complete Freund's adjuvant (CFA) to induce chronic inflammation of the hind paw. Teased fiber recording of tibial nerve fibers innervating the plantar hind paw revealed that the Lo/OMI combination reduced responses to light stimulation in naïve mice and attenuated spontaneous activity (SA) as well as responses to light and mechanical stimuli in CFA-treated mice. These results show that Lo/OMI reduces activity of C-fiber nociceptors that express NaV1.8 and corroborate recent behavioral studies demonstrating the potent analgesic effects of this drug combination. Because of its peripheral site of action, Lo/OMI might produce effective analgesia without the side effects associated with activation of opioid receptors in the central nervous system.
Collapse
Affiliation(s)
- Megan L Uhelski
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel Bruce
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rebecca Speltz
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - George L Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA; Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Donald A Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Kaski SW, White AN, Gross JD, Trexler KR, Wix K, Harland AA, Prisinzano TE, Aubé J, Kinsey SG, Kenakin T, Siderovski DP, Setola V. Preclinical Testing of Nalfurafine as an Opioid-sparing Adjuvant that Potentiates Analgesia by the Mu Opioid Receptor-targeting Agonist Morphine. J Pharmacol Exp Ther 2019; 371:487-499. [PMID: 31492823 PMCID: PMC6863463 DOI: 10.1124/jpet.118.255661] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 07/16/2019] [Indexed: 01/11/2023] Open
Abstract
Mu opioid receptor (MOR)-targeting analgesics are efficacious pain treatments, but notorious for their abuse potential. In preclinical animal models, coadministration of traditional kappa opioid receptor (KOR)-targeting agonists with MOR-targeting analgesics can decrease reward and potentiate analgesia. However, traditional KOR-targeting agonists are well known for inducing antitherapeutic side effects (psychotomimesis, depression, anxiety, dysphoria). Recent data suggest that some functionally selective, or biased, KOR-targeting agonists might retain the therapeutic effects of KOR activation without inducing undesirable side effects. Nalfurafine, used safely in Japan since 2009 for uremic pruritus, is one such functionally selective KOR-targeting agonist. Here, we quantify the bias of nalfurafine and several other KOR agonists relative to an unbiased reference standard (U50,488) and show that nalfurafine and EOM-salvinorin-B demonstrate marked G protein-signaling bias. While nalfurafine (0.015 mg/kg) and EOM-salvinorin-B (1 mg/kg) produced spinal antinociception equivalent to 5 mg/kg U50,488, only nalfurafine significantly enhanced the supraspinal analgesic effect of 5 mg/kg morphine. In addition, 0.015 mg/kg nalfurafine did not produce significant conditioned place aversion, yet retained the ability to reduce morphine-induced conditioned place preference in C57BL/6J mice. Nalfurafine and EOM-salvinorin-B each produced robust inhibition of both spontaneous and morphine-stimulated locomotor behavior, suggesting a persistence of sedative effects when coadministered with morphine. Taken together, these findings suggest that nalfurafine produces analgesic augmentation, while also reducing opioid-induced reward with less risk of dysphoria. Thus, adjuvant administration of G protein-biased KOR agonists like nalfurafine may be beneficial in enhancing the therapeutic potential of MOR-targeting analgesics, such as morphine.
Collapse
Affiliation(s)
- Shane W Kaski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Allison N White
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Joshua D Gross
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kristen R Trexler
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Kim Wix
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Aubrie A Harland
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Thomas E Prisinzano
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Jeffrey Aubé
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Steven G Kinsey
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Terry Kenakin
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - David P Siderovski
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| | - Vincent Setola
- Departments of Physiology and Pharmacology (S.W.K., A.N.W., J.D.G., K.W., D.P.S., V.S.), Neuroscience, and Behavioral Medicine and Psychiatry (V.S.), West Virginia University School of Medicine, Morgantown, West Virginia; Department of Psychology, West Virginia University Eberly College of Arts and Sciences, Morgantown, West Virginia (K.R.T., S.G.K.); Department of Medicinal Chemistry, The University of Kansas School of Pharmacy, Lawrence, Kansas (T.E.P.); Division of Chemical Biology and Medicinal Chemistry, The University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina (A.A.H., J.A.); and Department of Pharmacology, The University of North Carolina School of Medicine, Chapel Hill, North Carolina (T.K.)
| |
Collapse
|
4
|
Zhang Z, Slater RC, Ferroni MC, Kadow BT, Lyon TD, Shen B, Xiao Z, Wang J, Kang A, Roppolo JR, de Groat WC, Tai C. Role of µ, κ, and δ opioid receptors in tibial inhibition of bladder overactivity in cats. J Pharmacol Exp Ther 2015; 355:228-34. [PMID: 26354994 PMCID: PMC4613954 DOI: 10.1124/jpet.115.226845] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/18/2015] [Indexed: 02/03/2023] Open
Abstract
In α-chloralose anesthetized cats, we examined the role of opioid receptor (OR) subtypes (µ, κ, and δ) in tibial nerve stimulation (TNS)-induced inhibition of bladder overactivity elicited by intravesical infusion of 0.25% acetic acid (AA). The sensitivity of TNS inhibition to cumulative i.v. doses of selective OR antagonists (cyprodime for µ, nor-binaltorphimine for κ, or naltrindole for δ ORs) was tested. Naloxone (1 mg/kg, i.v., an antagonist for µ, κ, and δ ORs) was administered at the end of each experiment. AA caused bladder overactivity and significantly (P < 0.01) reduced bladder capacity to 21.1% ± 2.6% of the saline control. TNS at 2 or 4 times threshold (T) intensity for inducing toe movement significantly (P < 0.01) restored bladder capacity to 52.9% ± 3.6% or 57.4% ± 4.6% of control, respectively. Cyprodime (0.3-1.0 mg/kg) completely removed TNS inhibition without changing AA control capacity. Nor-binaltorphimine (3-10 mg/kg) also completely reversed TNS inhibition and significantly (P < 0.05) increased AA control capacity. Naltrindole (1-10 mg/kg) reduced (P < 0.05) TNS inhibition but significantly (P < 0.05) increased AA control capacity. Naloxone (1 mg/kg) had no effect in cyprodime pretreated cats, but it reversed the nor-binaltorphimine-induced increase in bladder capacity and eliminated the TNS inhibition remaining in naltrindole pretreated cats. These results indicate a major role of µ and κ ORs in TNS inhibition, whereas δ ORs play a minor role. Meanwhile, κ and δ ORs also have an excitatory role in irritation-induced bladder overactivity.
Collapse
MESH Headings
- Acetic Acid
- Animals
- Cats
- Female
- Male
- Morphinans/pharmacology
- Morphinans/therapeutic use
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Naltrexone/therapeutic use
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
- Tibial Nerve
- Transcutaneous Electric Nerve Stimulation
- Urinary Bladder, Overactive/chemically induced
- Urinary Bladder, Overactive/metabolism
- Urinary Bladder, Overactive/physiopathology
- Urinary Bladder, Overactive/therapy
Collapse
Affiliation(s)
- Zhaocun Zhang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Richard C Slater
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Matthew C Ferroni
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Brian T Kadow
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Timothy D Lyon
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Bing Shen
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Zhiying Xiao
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Jicheng Wang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Audry Kang
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - James R Roppolo
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - William C de Groat
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| | - Changfeng Tai
- Department of Urology, Qilu Hospital, Shandong University, Jinan, P.R. China (Z.Z.); Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania (Z.Z., R.C.S., M.C.F., B.K., T.D.L., B.S., Z.X., J.W., A.K., C.T.); Department of Urology, The Second Hospital, Shandong University, Jinan, P.R. China (Z.X.); and the Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.R.R., W.C.D., C.T.)
| |
Collapse
|
5
|
Chen X, Qian K, Chen Q. Comparison between loureirin A and cochinchinenin C on the interaction with human serum albumin. Eur J Med Chem 2015; 93:492-500. [PMID: 25734332 DOI: 10.1016/j.ejmech.2015.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 02/16/2015] [Accepted: 02/17/2015] [Indexed: 01/04/2023]
Abstract
The interactions of loureirin A (LA) and cochinchinenin C (CC) with human serum albumin (HSA) under simulated physiological conditions (pH = 7.4) have been studied with fluorescence, UV-vis absorption spectroscopic method and molecular docking technique. The results indicated that there was a synergistic interaction between LA and CC, and the fluorescence quenching of HSA by LA (or CC) was a combined quenching procedure (dynamic and static quenching). At low compound concentrations, the quenching constants KSV of CC was larger than that of LA, which meant the CC efficacy may be better than that of LA. The negative △H and △S values suggested hydrogen bonds and van der Waals forces played the major role in the binding of LA (or CC) to HSA. The efficiency of energy transfer and distance between the compounds and HSA was calculated. Moreover, the results of synchronous and three-dimensional fluorescence demonstrated that the HSA microenvironment was changed in the presence of LA (or CC). Finally, the binding of LA (or CC) to HSA was modeled by molecular docking, which is in good accordance with the experimental studies.
Collapse
Affiliation(s)
- Xu Chen
- Experimental Center for Life Scinence, Shanghai University, Shanghai, PR China
| | - Kai Qian
- Shanghai Key Lab Bioenergy Crops, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Qin Chen
- Shanghai Key Lab Bioenergy Crops, School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
6
|
Schuster DJ, Metcalf MD, Kitto KF, Messing RO, Fairbanks CA, Wilcox GL. Ligand requirements for involvement of PKCε in synergistic analgesic interactions between spinal μ and δ opioid receptors. Br J Pharmacol 2014; 172:642-53. [PMID: 24827408 DOI: 10.1111/bph.12774] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE We recently found that PKCε was required for spinal analgesic synergy between two GPCRs, δ opioid receptors and α2 A adrenoceptors, co-located in the same cellular subpopulation. We sought to determine if co-delivery of μ and δ opioid receptor agonists would similarly result in synergy requiring PKCε. EXPERIMENTAL APPROACH Combinations of μ and δ opioid receptor agonists were co-administered intrathecally by direct lumbar puncture to PKCε-wild-type (PKCε-WT) and -knockout (PKCε-KO) mice. Antinociception was assessed using the hot-water tail-flick assay. Drug interactions were evaluated by isobolographic analysis. KEY RESULTS All agonists produced comparable antinociception in both PKCε-WT and PKCε-KO mice. Of 19 agonist combinations that produced analgesic synergy, only 3 required PKCε for a synergistic interaction. In these three combinations, one of the agonists was morphine, although not all combinations involving morphine required PKCε. Morphine + deltorphin II and morphine + deltorphin I required PKCε for synergy, whereas a similar combination, morphine + deltorphin, did not. Additionally, morphine + oxymorphindole required PKCε for synergy, whereas a similar combination, morphine + oxycodindole, did not. CONCLUSIONS AND IMPLICATIONS We discovered biased agonism for a specific signalling pathway at the level of spinally co-delivered opioid agonists. As the bias is only revealed by an appropriate ligand combination and cannot be accounted for by a single drug, it is likely that the receptors these agonists act on are interacting with each other. Our results support the existence of μ and δ opioid receptor heteromers at the spinal level in vivo. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- D J Schuster
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | |
Collapse
|
7
|
Miranda HF, Noriega V, Zepeda RJ, Sierralta F, Prieto JC. Systemic synergism between codeine and morphine in three pain models in mice. Pharmacol Rep 2013; 65:80-8. [DOI: 10.1016/s1734-1140(13)70966-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 09/04/2012] [Indexed: 01/08/2023]
|
8
|
Effects of combined opioids on pain and mood in mammals. PAIN RESEARCH AND TREATMENT 2012; 2012:145965. [PMID: 22550575 PMCID: PMC3324919 DOI: 10.1155/2012/145965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 01/02/2012] [Indexed: 11/22/2022]
Abstract
The authors review the opioid literature for evidence of increased analgesia and reduced adverse side effects by combining mu-opioid-receptor (MOR) agonists, kappa-opioid-receptor (KOR) agonists, and nonselective low-dose-opioid antagonists (LD-Ant). We tested fentanyl (MOR agonist) and spiradoline (KOR agonist), singly and combined, against somatic and visceral pain models. Combined agonists induced additive analgesia in somatic pain and synergistic analgesia in visceral pain. Other investigators report similar effects and reduced tolerance and dependence with combined MOR agonist and KOR agonist. LD-Ant added to either a MOR agonist or KOR agonist markedly enhanced analgesia of either agonist. In accordance with other place-conditioning (PC) studies, our PC investigations showed fentanyl-induced place preference (CPP) and spiradoline-induced place aversion (CPA). We reduced fentanyl CPP with a low dose of spiradoline and reduced spiradoline CPA with a low dose of fentanyl. We propose combined MOR agonist, KOR agonist, and LD-Ant to produce superior analgesia with reduced adverse side effects, particularly for visceral pain.
Collapse
|
9
|
Abstract
BACKGROUND Synergy between drugs manifests with increased potency and/or efficacy of the combination relative to either agonist given alone. Synergy is typically observed between drugs of different classes, as is the case with the alpha-adrenergic-opioid receptor synergy often observed in preclinical studies. However, rare studies report synergy between agonists of the same class. The current study examined the analgesic interaction between two intrathecally injected alpha2-adrenergic receptor (AR) agonists previously thought to act at the same receptor subtype when given spinally. METHODS Mice were given clonidine, dexmedetomidine, or the combination spinally to evaluate the interaction between these two agonists. The ED50 values were calculated, and the interactions were tested by isobolographic analysis. The rotarod test was performed in the same mice after the completion of analgesic assessment to assess motor or sedative effects. These experiments were performed in outbred mice as well as in mice with mutant alpha2A ARs, alpha2C AR knockout mice, or wild-type controls. Finally, analgesic cross-tolerance between clonidine and dexmedetomidine was evaluated. RESULTS Clonidine and dexmedetomidine interacted synergistically in all lines except the alpha2C AR knockout line, implicating alpha2C ARs in the interaction. In addition, clonidine and dexmedetomidine did not show analgesic cross-tolerance in the outbred strain, suggesting that the two drugs have distinct mechanisms of action. CONCLUSIONS The current study introduces a new synergistic agonist pair, clonidine-dexmedetomidine. These two drugs seem to require the alpha2A AR for spinal analgesia when given separately; when delivered as a combination, the resultant synergistic interaction requires the alpha2C AR as well.
Collapse
|
10
|
Xie H, Woods JH, Traynor JR, Ko MC. The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies. Anesth Analg 2008; 106:1873-81. [PMID: 18499626 DOI: 10.1213/ane.0b013e31817300be] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for mu-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a highly effective peptidic mu-opioid receptor agonist. METHODS Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [(35)S]GTP gamma S binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord. RESULTS After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration-response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [(35)S]GTP gamma S binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%-60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by mu-opioid receptor selective dose of naltrexone (P < 0.05), but not by delta- and kappa-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05). CONCLUSIONS Endomorphins are partial agonists for G protein activation at spinal and thalamic mu-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins' antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus.
Collapse
Affiliation(s)
- Hong Xie
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109-0632, USA
| | | | | | | |
Collapse
|
11
|
Dürsteler C, Mases A, Fernandez V, Pol O, Puig MM. Interaction between tramadol and two anti-emetics on nociception and gastrointestinal transit in mice. Eur J Pain 2005; 10:629-38. [PMID: 16300977 DOI: 10.1016/j.ejpain.2005.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 09/26/2005] [Accepted: 10/05/2005] [Indexed: 11/25/2022]
Abstract
BACKGROUND Clinical studies suggest that tramadol-induced analgesia is partially antagonized by ondansetron. AIMS To investigate the type of interaction between tramadol and two anti-emetics on antinociception and gastrointestinal transit in mice. METHODS We assessed the antinociceptive (acetic acid writhing test, plantar test) and antitransit (charcoal meal) effects of tramadol individually, and combined with ondansetron or droperidol in female Swiss CD-1 mice. Isobolograms and analysis of variance were used to determine the type of interaction. RESULTS In the writhing test, tramadol, ondansetron and droperidol, each induced dose-related inhibition of nociception. The ED(50)'s were: tramadol 4.2+/-0.33 mg kg(-1); ondansetron 1.03+/-0.05 mg kg(-1), and droperidol 1.00+/-0.14 mg kg(-1). Dose-response curves were also obtained with tramadol combined with ondansetron or droperidol at 1:1 fixed ratios. The isobolographic analysis demonstrated antagonism for both combinations. In the plantar test, the ED(50) for tramadol was 51.4+/-2.3 mg kg(-1), but no dose-response curves could be obtained with ondansetron or droperidol individually. The interaction was assessed from dose-response curves to tramadol in the presence of a fixed dose of ondansetron (0.1 mg kg(-1)) or droperidol (0.05 mg kg(-1)). The results show antagonism between tramadol-ondansetron (p<0.05) and no interaction for the tramadol-droperidol combination. Both anti-emetics antagonized the antitransit effects of tramadol. CONCLUSIONS The interaction of tramadol with ondansetron or droperidol on antinociception can be antagonistic or additive, depending on the type of stimuli. Both anti-emetics antagonize the anti-transit effects of tramadol. The results demonstrate antagonism between tramadol and the two anti-emetics for analgesia and inhibition of gastrointestinal transit, supporting previous clinical studies.
Collapse
Affiliation(s)
- Christian Dürsteler
- Department of Anaesthesiology, Hospital Universitario del Mar, Universidad Autónoma de Barcelona, Paseo Marítimo 25, 08003 Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Poveda R, Planas E, Pol O, Romero A, Sánchez S, Puig MM. Interaction between metamizol and tramadol in a model of acute visceral pain in rats. Eur J Pain 2003; 7:439-48. [PMID: 12935796 DOI: 10.1016/s1090-3801(03)00003-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Tramadol (TRM) and metamizol (MTZ) are drugs with complex mechanisms of action, extensively used in combination in pain management. In the present investigation we have evaluated the interaction between MTZ:TRM in the ethacrinic acid writhing test in rats. Dose-response curves (s.c.) were obtained for each drug individually, combined in fixed potency ratios (1:0.3, 1:1, 1:3), and for MTZ in presence of a fixed-dose of TRM (3.5 mg/kg). Interactions were analysed using isobolograms, interaction indexes (INT-I) and ANOVA. We used naloxone (1 mg/kg s.c.) to determine the opioid-component of the effects (ED80). Isobolograms demonstrated antagonism at the ED20, for 1:0.3 and 1:3 mixtures (p<0.01), whereas 1:1 was additive. At the ED50 and ED80 all combinations showed synergy. Fixed-dose experiments demonstrated that treatment (p<0.0001), dose (p<0.0001), and their interaction (p<0.0001) were statistically significant. Naloxone partially antagonized TRM (67%), but not MTZ; the percentage reversal of the combinations was directly related to the dose of TRM in the combination. The results show that the MTZ:TRM interaction on antinociception is synergistic or antagonistic depending on the level of effect. Synergy is demonstrated at 50% or higher levels, thus supporting the results obtained in humans by our group. Below the ED50 antagonism or additivity is present depending on the ratio of the combination. The mechanisms of the interaction remain unknown.
Collapse
Affiliation(s)
- Raquel Poveda
- Department of Pharmacology, School of Odontology, University of Barcelona, Barcelona 08807, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Systemic administration of analgesics can lead to serious adverse side effects compromising therapeutic benefit in some patients. Information coding pain transmits along an afferent neuronal network, the first synapses of which reside principally in the spinal cord. Delivery of compounds to spinal cord, the intended site of action for some analgesics, is potentially a more efficient and precise method for inhibiting the pain signal. Activation of specific proteins that reside in spinal neuronal membranes can result in hyperpolarization of secondary neurons, which can prevent transmission of the pain signal. This is one of the mechanisms by which opioids induce analgesia. The spinal cord is enriched in such molecular targets, the activation of which inhibit the transmission of the pain signal early in the afferent neuronal network. This review describes the pre-clinical models that enable new target discovery and development of novel analgesics for site-directed pain management.
Collapse
|
14
|
Cichewicz DL, McCarthy EA. Antinociceptive synergy between delta(9)-tetrahydrocannabinol and opioids after oral administration. J Pharmacol Exp Ther 2003; 304:1010-5. [PMID: 12604676 DOI: 10.1124/jpet.102.045575] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The analgesic effects of opioids, such as morphine and codeine, in mice are enhanced by oral administration of the cannabinoid delta(9)-tetrahydrocannabinol (delta(9)-THC). However, isobolographic analysis has never been done to confirm a synergy between delta(9)-THC and morphine or codeine via oral routes of administration. To determine the nature of the interaction between these drugs for pain relief and extend previous experimental results, we performed an isobolographic analysis to evaluate for additivity or synergy in the tail-flick test. Fixed-ratio combinations of delta(9)-THC with either morphine or codeine were tested for antinociceptive effects. The experimentally derived ED(50) for each combination was compared with the theoretical additive ED(50), using an isobolographic analysis. All of the fixed-ratio combinations tested produced greater antinociception (synergy) than predicted from simple additivity. These findings suggest that the use of a low-dose combination of analgesics is a valid and effective approach for the treatment of pain and necessitates further study.
Collapse
Affiliation(s)
- Diana L Cichewicz
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA.
| | | |
Collapse
|
15
|
Sluka KA, Rohlwing JJ, Bussey RA, Eikenberry SA, Wilken JM. Chronic muscle pain induced by repeated acid Injection is reversed by spinally administered mu- and delta-, but not kappa-, opioid receptor agonists. J Pharmacol Exp Ther 2002; 302:1146-50. [PMID: 12183674 DOI: 10.1124/jpet.102.033167] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are commonly used for pain relief clinically and reduce hyperalgesia in most animal models. Two injections of acidic saline into one gastrocnemius muscle 5 days apart produce a long-lasting bilateral hyperalgesia without associated tissue damage. The current study was undertaken to assess the effects of opioid agonists on mechanical hyperalgesia induced by repeated intramuscular injections of acid. Morphine (mu-agonist), [D-Ala(2),N-Me-Phe(4),Gly-ol(5)]-enkephalin (mu-agonist; DAMGO), 4-[((alpha)R)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide (delta-agonist; SNC80), or (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cylcohexyl]-benzeneacetamide hydrochloride (kappa-agonist; U50,488) were administered intrathecally to activate opioid receptors once hyperalgesia was developed. Mechanical hyperalgesia was assessed by measuring the withdrawal thresholds to mechanical stimuli (von Frey filaments) before the first and second intramuscular injection, 24 h after the second intramuscular injection, and for 1 h after administration of the opioid agonist or vehicle. Morphine, DAMGO, and SNC80 dose dependently increased the mechanical withdrawal threshold back toward baseline responses. The reduction in hyperalgesia produced by morphine and DAMGO was prevented by H-D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2) (CTAP) and that of SNC80 was prevented by naltrindole. U50,488 had no effect on the decreased mechanical withdrawal thresholds. Thus, activation of mu- and delta-, but not kappa-, opioid receptors in the spinal cord reduces mechanical hyperalgesia following repeated intramuscular injection of acid, thus validating the use of this new model of chronic muscle pain.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Benzamides/pharmacology
- Chronic Disease
- Dose-Response Relationship, Drug
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Hydrochloric Acid
- Hydrogen-Ion Concentration
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
- Injections, Spinal
- Morphine/pharmacology
- Muscular Diseases/chemically induced
- Muscular Diseases/drug therapy
- Pain Threshold/drug effects
- Physical Stimulation
- Piperazines/pharmacology
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, mu/agonists
Collapse
Affiliation(s)
- Kathleen A Sluka
- Physical Therapy and Rehabilitation Science Graduate Program, Neuroscience Graduate Program, Pain Research Program, University of Iowa, 2600 Steindler Building, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
As was the case in the era before us, in the new millennium we will continue to see an abundance of patients experiencing cancer-related pain for different reasons. Although much needless pain and suffering still affects many of those with cancer, we are presented with a medical dichotomy. With the analgesic drugs available today, and the relatively simple and effective guidelines to treat cancer pain published and disseminated by the World Health Organization, why do people with cancer continue to experience pain? As we search for the answer, the horizon may hold promising new drugs, 'old drugs' with new interest and applications, and new strategies for the field of pain therapy. Possibilities include the isolation and development of analgesics or analgesic combinations that may minimise the adverse effects which are often associated with the current therapeutic class of opioid analgesics. In addition, current research points to promising results identifying the N-methyl D-aspartate non-opioid receptor as a likely component of neuropathic pain. Drugs such as gabapentin, the mechanism of action of which is not well known, have found favour within the clinical community for their analgesic properties and good tolerability. Methadone, in a phase of resurgence, has garnered the attention of the clinical community because of its unique receptor activity and pharmacoeconomic benefits. A number of clinical studies have demonstrated that methadone has a valuable role in treating cancer pain. Perhaps, an unbalanced focus on the risks of inappropriate use, rather than the benefits, should not compromise or distract from the use of methadone as an alternative to morphine. Studies are on going to assess the potential role of methadone in treating neuropathic pain. Drugs such as cannabinoids, although currently applicable for patients with anorexia, nausea and/or vomiting, may offer benefits to patients experiencing pain. Other opportunities exist with such compounds as alpha2-adrenergic agonists, nicotine, lidocaine and ketamine. New strategies such as the switching opioids and/or their route of administration may offer improved analgesia with fewer adverse effects, thus providing therapeutic alternatives for the clinical community. In addition, there is interest in the co-administration of opioids that act on different receptors. For instance, oxycodone appears to be a kappa opioid receptor agonist and may offer enhanced analgesia when combined with morphine.
Collapse
Affiliation(s)
- C Ripamonti
- Rehabilitation and Palliative Care Division, National Cancer Institute of Milan, Italy.
| | | |
Collapse
|
17
|
Chen ZW, Yang K, Wang Y, Han JS. The metabolic evidence of synergistic effect between ohmefentanyl and [D-Pen2, D-Pen5] enkephalin on differentiated SH-SY5Y cells in humans. Neurosci Lett 2001; 298:199-202. [PMID: 11165441 DOI: 10.1016/s0304-3940(00)01760-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Interactions between selective opioid agonists acting at mu- and delta-opioid receptors were evaluated by co-administering a low-effective dose of the selective mu-opioid receptor agonist ohmefentanyl (OMF) with sequentially increasing doses of the selective delta-opioid receptor agonist [D-Pen(2), D-Pen(5)] enkephalin (DPDPE). Microphysiometer was used to measure the extracellular acidification rate (ECAR) of living cells in real-time, which reflected the functional activity after agonist-receptor binding. The synergy (i.e. a more than additive effect) was observed with combinations of these two opioid agonists on differentiated SH-SY5Y cells functionally expressing both mu- and delta-opioid receptors. The demonstration of the synergy suggests that the agonists of the subtypes of opioid receptors can interact at cellular level.
Collapse
Affiliation(s)
- Z W Chen
- Neuroscience Research Institute, Health Center, Peking University, Xue-Yuan Road 38, 100083, PR, Beijing, China
| | | | | | | |
Collapse
|
18
|
Cui CL, Wu LZ, Han JS. Spinal kappa-opioid system plays an important role in suppressing morphine withdrawal syndrome in the rat. Neurosci Lett 2000; 295:45-8. [PMID: 11078933 DOI: 10.1016/s0304-3940(00)01593-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To explore the possible involvement of spinal kappa-opioid receptor in modulating morphine withdrawal syndrome, rats were made dependent on morphine by multiple injections of morphine HCl for 5 days. They were then given intrathecal administration (i.t.) of a kappa-opioid receptor agonist trans-3, 4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzenacetamide hydrochloride (U-50,488H, 2.5-10 microg) or its antagonist nor-binaltorphimine (nor-BNI, 1.25-5 microg), followed by intraperitoneal administration (i.p.) of naloxone (0.5 mg/kg), and the withdrawal syndrome was scored for 60 min. U-50,488H produced a dose-dependent suppression, whereas nor-BNI a dose-dependent potentiation in withdrawal syndrome. The latter result implies that an endogenous kappa receptor agonist, most probably dynorphin, exerts a tonic suppressive effect on morphine syndrome at spinal level.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/therapeutic use
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Analgesics, Opioid/adverse effects
- Animals
- Male
- Morphine/adverse effects
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Rats
- Rats, Wistar
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/physiology
- Substance Withdrawal Syndrome/drug therapy
Collapse
Affiliation(s)
- C L Cui
- Neuroscience Research Institute, Peking University, 38 Xue-Yuan Road, 100083, PR, Beijng, China
| | | | | |
Collapse
|
19
|
Han NL, Luo F, Bian ZP, Han JS. Synergistic effect of cholecystokinin octapeptide and angiotensin II in reversal of morphine induced analgesia in rats. Pain 2000; 85:465-469. [PMID: 10781920 DOI: 10.1016/s0304-3959(99)00294-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The aim of this paper is to study the synergistic anti-analgesic effect of angiotensin II (Ang II) plus cholecystokinin octapeptide (CCK-8). Our previous studies have shown that both CCK-8 and Ang II are potent anti-opioid substances. Intracerebroventricular (i.c.v.) injection of CCK-8 or Ang II dose-dependently antagonizes morphine-induced analgesia (MIA). In the present study, we observed the combined effect of CCK-8 and Ang II in antagonizing MIA. CCK-8 and Ang II were injected intracerebroventricularly to rats in various proportions and doses. The results were analyzed with isobolographic analysis. Combined injection of CCK-8 and Ang II in a ratio of 1 ng: 2.5 microg or 1 ng: 5 microg produced significantly greater effect in antagonizing MIA. The ED(50) of the two ratios are only 18.5% and 27.5%, respectively, of the theoretical dose of simple addition. We conclude that CCK-8 and Ang II used in such dose ratios may antagonize MIA synergistically.
Collapse
Affiliation(s)
- Nian-Lin Han
- Neuroscience Research Institute, Beijing Medical University, Beijing 100083, PR China Department of Physiology, Yian-Bei Nursing School, Datong, Shanxi, PR China
| | | | | | | |
Collapse
|
20
|
Ross FB, Wallis SC, Smith MT. Co-administration of sub-antinociceptive doses of oxycodone and morphine produces marked antinociceptive synergy with reduced CNS side-effects in rats. Pain 2000; 84:421-8. [PMID: 10666549 DOI: 10.1016/s0304-3959(99)00230-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxycodone and morphine are structurally related, strong opioid analgesics, commonly used to treat moderate to severe pain in humans. Although it is well-established that morphine is a mu-opioid agonist, this is not the case for oxycodone. Instead, our recent studies have shown that oxycodone appears to be a kappa-opioid agonist (Ross and Smith, 1997). In the current study, we now show that co-administration of sub-antinociceptive doses of oxycodone (putative kappa-opioid agonist) with morphine (mu-opioid agonist) to rats by both the intracerebroventricular and by systemic routes (intraperitoneal and subcutaneous), results in markedly increased (synergistic) levels of antinociception. Behaviourally, rats co-administered sub-antinociceptive doses of oxycodone and morphine were similar to control rats dosed with saline, whereas rats that received equi-potent doses of either opioid alone, were markedly sedated. These results suggest that co-administration of sub-analgesic doses of oxycodone and morphine to patients may provide excellent pain relief with a reduction in opioid-related CNS side-effects. Controlled clinical trials in appropriate patient populations are required to evaluate this possibility.(1)
Collapse
Affiliation(s)
- F B Ross
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Australia
| | | | | |
Collapse
|
21
|
Muller A, Koch B, René F, Boutillier AL, See V, Loeffler JP. [Mechanisms of opioid tolerance and opioid dependence]. ANNALES FRANCAISES D'ANESTHESIE ET DE REANIMATION 1999; 18:866-95. [PMID: 10575502 DOI: 10.1016/s0750-7658(00)88194-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Prescription of opiates to non cancer chronic pain patients is controversial, partly because of the risk of tolerance and dependence development. The two objectives of that review were: a) to identify the factors which may explain the variability of tolerance and dependence in clinical practice; b) to analyse the cellular mechanisms of occurrence of those phenomenons. DATA SOURCES AND EXTRACTION To our own file, we added articles retrieved in the Medline database, using, alone or in combination, following key-words (opiate, tolerance, dependence, opiate receptor, pain treatment, cAMP, cGMP, NO, NMDA, protein kinase, gene). Out of nearly 450 articles, we selected less than 200. DATA SYNTHESIS Tolerance, defined as loss of opioid efficacy with time, is extremely variable and depends on pain mechanisms, intrinsic efficacy and administration modality of the opioid, as well as co-administration of other agents. Physical dependence is a consequence of the intrinsic and extrinsic adaptations concerning structures as locus coeruleus, paragigantocellular nucleus, spinal cord. Acute and chronic application of opiates and withdrawal give rise to cellular adaptations which depend on the nature and efficacy of the opiate, the type of receptor and second messengers, as well as the type of cell line under study. These cellular mechanisms have consequences on neuronal excitability and gene expression. They constitute a model of cellular tolerance and dependence, but cannot explain the subtelties encountered in clinical practice.
Collapse
Affiliation(s)
- A Muller
- Clinique de la douleur, hôpital civil, hôpitaux universitaires de Strasbourg, France
| | | | | | | | | | | |
Collapse
|
22
|
|
23
|
Cahill CM, White TD, Sawynok J. Synergy between mu/delta-opioid receptors mediates adenosine release from spinal cord synaptosomes. Eur J Pharmacol 1996; 298:45-9. [PMID: 8867918 DOI: 10.1016/0014-2999(95)00775-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Morphine releases adenosine from the spinal cord and this contributes to spinal antinociception. The present study examined possible interactions between mu- and subclasses of delta-opioid receptors in the release of adenosine. Nanomolar (10(-8), 10(-9) M) concentrations of morphine release adenosine from spinal cord synaptosomes under conditions of partial depolarization with elevated K+, and this component of release is mediated by activation of mu-opioid receptors. Subnanomolar (10(-10), 10(-11) M) concentrations of the mu-opioid receptor agonists morphine, [N-MePhe3,D-Pro4]morphiceptin, and [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAMGO) have minimal effects on the release of adenosine from the spinal cord. However, [D-Pen2,D-Pen5]enkephalin (DPDPE), a delta 1-opioid receptor agonist, and [D-Ala2,Cys4]deltorphin, a delta 2-opioid receptor agonist, at doses which exhibit no intrinsic effects (10(-8) and 10(-7) M), shifted the dose-response curve for mu-opioid receptor-evoked adenosine release to the left in a dose-dependent manner. DPDPE was more potent than [D-Ala2,Cys4]deltorphin when combined with the highly selective mu-opioid receptor agonist [N-MePhe3,D-Pro4]morphiceptin, but these agents showed similar activity with the less selective agonists DAMGO and morphine. Simultaneous activation of mu- and delta-opioid receptors generates a synergistic release of adenosine from spinal cord synaptosomes. Although agonists for both delta 1- and delta 2-opioid receptor subtypes produce this response, the delta 1-opioid receptor agonist is more potent at eliciting this effect when the most selective mu-opioid receptor ligand is used.
Collapse
Affiliation(s)
- C M Cahill
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
24
|
Opioids and the Control of Pain. Neurotherapeutics 1996. [DOI: 10.1007/978-1-59259-466-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
25
|
Meert TF. Pharmacotherapy of opioids: present and future developments. PHARMACY WORLD & SCIENCE : PWS 1996; 18:1-15. [PMID: 8861825 DOI: 10.1007/bf00449683] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The clinically available opioids have different physicochemical properties, resulting in differences in clinical profile with regard to potency, onset, and duration of activity. However, they all have comparable side-effects after acute systemic application. Several approaches can be used to overcome these side-effects. The following approaches, with special emphasis on the perioperative use of the opioids, are discussed: (1) the use of alternative routes of administration, such as via the spine (epidurally and intrathecally); (2) optimization of opioid delivery by means of slow-release preparations, chronic infusions with indwelling catheters, and transdermal delivery systems; (3) use of additional agents to potentiate the analgesic properties of the opioids so that the dose of opioid can be reduced; and (4) searching for new analgesics on the basis of knowledge of the pain-transmission system and the different opioid receptors with their functional interactions.
Collapse
Affiliation(s)
- T F Meert
- Department of Neuropsychopharmacology, Janssen Research Foundation, Beerse, Belgium
| |
Collapse
|
26
|
MULTIPLE MEANINGS OF PAIN AND COMPLEXITIES OF PAIN MANAGEMENT. Nurs Clin North Am 1995. [DOI: 10.1016/s0029-6465(22)00107-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Abstract
The numerous endogenous opioid peptides (beta-endorphin, enkephalins, dynorphins ... ) and the exogenous opioids (such as morphine) exert their effects through the activation of receptors belonging to four main types, mu, delta, kappa and epsilon. Opioidergic neurones and opioid receptors are largely distributed centrally and peripherally. It is thus not surprising that opioids have numerous pharmacological effects and that endogenous opioids are thought to be involved in the physiological control of various functions, among which nociception is particularly emphasized. Some opioid targets may be components of homeostatic systems tending to reduce the effects of opioids. "Anti-opioid" properties have been attributed to various peptides, especially cholecystokinin (CCK), neuropeptide FF (NPFF) and melanocyte inhibiting factor (MIF)-related peptides. In addition, a particular place should be attributed, paradoxically, to opioid peptides themselves among the anti-opioid peptides. These peptides can oppose some of the acute effects of opioids, and a hyperactivation of anti-opioid peptidergic neurones due to the chronic administration of opioids may be involved in the development of opioid tolerance and/or dependence. In fact, CCK, NPFF and the MIF family of peptides have complex properties and can act as opioid-like as well as anti-opioid peptides. Thus, "opioid modulating peptides" would be a better term to designate these peptides, which probably participate, together with the opioid systems, in multiple feed-back loops for the maintenance of homeostasis. "Opioid modulating peptides" have generally been shown to act through the activation of their own receptors. For example, CCK appears to exert its anti-opioid actions mainly through the activation of CCK-B receptors, whereas its opioid-like effects seem to result from the stimulation of CCK-A receptors. However, the partial agonistic properties at opioid receptors of some MIF-related peptides very likely contribute to their ability to modulate the effects of opioids. CCK- and NPFF-related drugs have potential therapeutic interest as adjuncts to opioids for alleviating pain and/or for the treatment of opioid abuse.
Collapse
|
28
|
Benoliel JJ, Collin E, Mauborgne A, Bourgoin S, Legrand JC, Hamon M, Cesselin F. Mu and delta opioid receptors mediate opposite modulations by morphine of the spinal release of cholecystokinin-like material. Brain Res 1994; 653:81-91. [PMID: 7982079 DOI: 10.1016/0006-8993(94)90375-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The possible modulations by morphine and various opioids of the spinal release of cholecystokinin-like material (CCKLM) evoked by 30 mM K+ was studied in vitro, using slices of the dorsal part of the rat lumbar enlargement superfused with an artificial cerebrospinal fluid. Addition of the mu agonist, DAGO (0.1-10 microM), to the perfusing fluid produced a concentration-dependent decrease in the peptide release, which could be prevented by the preferential mu antagonist, naloxone. Complex modulations were induced by the delta agonist, DTLET, as this drug inhibited CCKLM release when added at 10 nM-3 microM to the perfusing fluid, but enhanced it at 10 microM. Both effects were preventable by the delta antagonists naltrindole and ICI 154129, suggesting that delta receptors, possibly of different subtypes, mediated the inhibition and stimulation by DTLET. Morphine also exerted a biphasic effect, as the alkaloid decreased CCKLM release at 0.01-0.1 microM and enhanced it at 10 microM. Morphine-induced inhibition was preventable by naloxone, whereas its stimulatory effect could be blocked by naltrindole and ICI 154129. Although inactive on its own on CCKLM release, the selective kappa 1 agonist U 50488H (1 microM) prevented the inhibitory effects of both DAGO (10 microM) and morphine (0.1 microM), suggesting the existence of interactions between kappa 1 and mu receptors within the dorsal zone of the rat spinal cord. These data indicate that low concentrations of morphine exert an inhibitory influence on spinal CCKergic neurons that depends on the stimulation of mu opioid receptors. The excitatory influence of 10 microM morphine likely results from the simultaneous stimulation of mu, delta and kappa receptors, as the inhibitory effect of mu receptor stimulation can be masked by that of kappa 1 receptors, allowing only the expression of a delta-dependent excitatory effect similar to that induced by 10 microM DTLET.
Collapse
Affiliation(s)
- J J Benoliel
- INSERM U 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Bourgoin S, Benoliel JJ, Collin E, Mauborgne A, Pohl M, Hamon M, Cesselin F. Opioidergic control of the spinal release of neuropeptides. Possible significance for the analgesic effects of opioids. Fundam Clin Pharmacol 1994; 8:307-21. [PMID: 7851837 DOI: 10.1111/j.1472-8206.1994.tb00809.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Several neuropeptides play a key role in the transfer (substance P, calcitonin gene-related peptide, etc) and control (enkephalins, cholecystokinin, etc) of nociceptive messages from primary afferent fibres to spino-thalamic neurones in the dorsal horn of the spinal cord. This first relay in nociceptive pathways has been shown to be a major target for opioids such as analgesic drugs, and the effects of exogenous (mainly morphine) and endogenous opioids on the release of neuropeptides within the dorsal horn are reviewed here for a better understanding of the cellular mechanisms responsible for their antinociceptive action. Complex modulations of the in vitro (from tissue slices) and in vivo (in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid) release of substance P and calcitonin gene-related peptide by opioids have been reported, depending on the opioid receptor (mu, delta, kappa, and their subtypes) stimulated by these compounds. In particular, the inhibition by delta agonists of substance P release from primary afferent fibres, and that by the concomitant stimulation of mu and kappa receptors of the release of calcitonin gene-related peptide are very probably involved in the analgesic action of specific opioids and morphine at the level of the spinal cord. Furthermore, the negative modulation (through presynaptic opioid autoreceptors) by delta and mu agonists of the spinal release of met-enkephalin, and the complex inhibitory/excitatory influence of delta, mu and kappa receptor ligands on the release of cholecystokinin within the dorsal horn very likely also contribute to the antinociceptive action of these drugs and morphine. The reviewed data strongly support the existence of functional interactions between mu and kappa receptors within the spinal cord, and their key role in the analgesic action of non specific opiates (acting on mu, delta and kappa receptors) such as morphine.
Collapse
Affiliation(s)
- S Bourgoin
- INSERM U 288, Neurobiologie Cellulaire et Fonctionelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Drug combination studies often examine the possibility of synergy between drugs. Synergy is defined as an effect of a combination of drugs greater than that expected from the effects of the drugs given individually. One technique used by several investigators is the use of analysis of variance (ANOVA) to determine synergy. In this discussion, the argument is made that due to the pharmacology of drug combination studies the conditions necessary to support the use of ANOVA to detect synergy are typically not met. Therefore, the ANOVA technique is invalid for these drug combination studies.
Collapse
Affiliation(s)
- Robert M Caudle
- Neurobiology and Anesthesiology Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892 USA
| | | |
Collapse
|
31
|
Miaskowski C, Levine JD. Reply to the letter by J.L. Plummer. Pain 1993; 55:401. [PMID: 8121704 DOI: 10.1016/0304-3959(93)90019-l] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Christine Miaskowski
- Department of Physiological Nursing University of California San Francisco, CA 94913, USA Departments of Anatomy, Medicine, and Oral Surgery Graduate Group in Neuroscience University of California San Francisco, CA 94913, USA
| | | |
Collapse
|
32
|
Cattaneo I, Kayser V, Guilbaud G. Differential effects of specific delta and kappa opioid receptor antagonists on the bidirectional dose-dependent effect of systemic naloxone in arthritic rats, an experimental model of persistent pain. Brain Res 1993; 623:201-7. [PMID: 8221101 DOI: 10.1016/0006-8993(93)91428-u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In an attempt to determine the opioid receptor class(es) which underly the two opposing effects of naloxone in models of persistent pain, we tested the action of the selective delta antagonist naltrindole, and that of the kappa antagonist MR-2266 on the bidirectional effect of systemic naloxone in arthritic rats. As a nociceptive test, we used the measure of the vocalization thresholds to paw pressure. The antagonists were administered at a dose (1 mg/kg i.v. naltrindole, 0.2 mg/kg i.v. MR-2266), without action per se but which prevents the analgesic effect of the delta agonist DTLET (3 mg/kg, i.v.) or the kappa agonist U-69,593 (1.5 mg/kg, i.v.) respectively, and does not influence the effect of morphine (1 mg/kg i.v.) or the mu agonist DAMGO (2 mg/kg, i.v.) in these animals. In arthritic rats injected with the delta antagonist, the paradoxical antinociceptive effect produced by 3 micrograms/kg i.v. naloxone was not significantly modified (maximal vocalization thresholds (% of control) were 146 +/- 9% versus 161 +/- 7% in the control group). By contrast, the hyperalgesic effect produced by 1 mg/kg i.v. naloxone was significantly reduced (maximal vocalization thresholds were 87 +/- 4% versus 69 +/- 5% in the control group). In rats injected with the kappa antagonist, the antinociceptive effect of the low dose of naloxone was almost abolished (mean vocalization thresholds were 115 +/- 3% versus 169 +/- 7%) whereas the hyperalgesic effect of naloxone 1 mg/kg i.v. was not significantly modified (mean vocalization thresholds = 70 +/- 3% and 65 +/- 3%, respectively).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- I Cattaneo
- Unité de Recherches de Physiopharmacologie du Système Nerveux, INSERM, Paris, France
| | | | | |
Collapse
|
33
|
Affiliation(s)
- John L Plummer
- Pain Management Unit Department of Anaesthesia and Intensive Care Flinders Medical Centre Bedford Park S.A. 5042, Australia
| |
Collapse
|
34
|
Desmeules JA, Kayser V, Guilbaud G. Selective opioid receptor agonists modulate mechanical allodynia in an animal model of neuropathic pain. Pain 1993; 53:277-285. [PMID: 8394563 DOI: 10.1016/0304-3959(93)90224-d] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study evaluated the antinociceptive effects of systemically administered selective opioid agonists of mu (DAMGO), delta (BUBU) and kappa (U 69593) receptors on the vocalization threshold to paw pressure in a rat model of peripheral unilateral mononeuropathy produced by loose ligatures around the common sciatic nerve. DAMGO (0.5-2 mg/kg), BUBU (1.5-6 mg/kg) and U 69593 (0.75-3 mg/kg) injected intravenously (i.v.) produced a potent long-lasting antinociceptive effect on both hind paws. The effects on the lesioned paw were clearly and statistically more potent than for the non-lesioned paw. The selective antinociceptive effect of 2 mg/kg DAMGO, 3 mg/kg BUBU and 1.5 mg/kg U 69593 were completely prevented by prior administration of the appropriate antagonists: 0.1 mg/kg naloxone, 1 mg/kg naltrindole and 0.4 mg/kg MR 2266. The present data clearly show that an acute i.v. injection of these selective opioid agonists induces potent antinociceptive effects in a rat model of peripheral neuropathy. These data are discussed with regard to the classical view that there is opioid resistance in neuropathic pain.
Collapse
MESH Headings
- Analgesics/therapeutic use
- Animals
- Benzeneacetamides
- Benzomorphans/pharmacology
- Disease Models, Animal
- Drug Interactions
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/therapeutic use
- Male
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/therapeutic use
- Pain/drug therapy
- Pain Measurement/drug effects
- Pain Threshold/drug effects
- Pyrrolidines/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/drug effects
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, mu/drug effects
- Vocalization, Animal/drug effects
Collapse
Affiliation(s)
- J A Desmeules
- INSERM (U161), Unité de Recherches de Physiopharmacologie du Système Nerveux, 75014 ParisFrance Division de Pharmacologie Clinique, et Consultation Commune de la Douleur, Hôpital Cantonal Universitaire de Genève, 1211 Geneva 4 Switzerland
| | | | | |
Collapse
|
35
|
Collin E, Frechilla D, Pohl M, Bourgoin S, Le Bars D, Hamon M, Cesselin F. Opioid control of the release of calcitonin gene-related peptide-like material from the rat spinal cord in vivo. Brain Res 1993; 609:211-22. [PMID: 8389648 DOI: 10.1016/0006-8993(93)90875-n] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The possible control by opioids of the spinal release of calcitonin gene-related peptide-like material (CGRPLM) was investigated in halothane-anaesthetized rats whose intrathecal space was perfused with an artificial cerebrospinal fluid. Morphine (20 mg/kg i.v.; or at 10-100 microM added to the perfusing fluid), the mu selective agonist DAGO (10 microM) and the kappa selective agonist U 50488 H (10 microM) did not affect the spontaneous outflow of the CGRPLM. In contrast, the selective delta agonist DTLET (10 microM) significantly increased CGRPLM release. The latter effect could be prevented by the selective delta antagonist naltrindole (10 microM) as expected from the involvement of this class of opioid receptors. However, the addition of naltrindole alone to the perfusing fluid did not modify CGRPLM outflow, indicating that endogenous opioids do not exert a tonic control of CGRP-containing fibers through the stimulation of delta receptors. In contrast, intrathecal perfusion with naloxone (10 microM) or nor-binaltorphimine (10 microM), a selective antagonist of kappa receptors, produced a marked increase in spinal CGRPLM release, suggesting that endogenous opioids acting at mu and kappa receptors, respectively, exert a tonic inhibitory control of CGRP-containing fibers. Indeed, a significant decrease in the spinal release of CGRPLM release could be evoked by the combined addition of U 50488 H (10 microM) plus DAGO (10 microM) to the perfusing medium, indicating that the simultaneous stimulation of both kappa and mu receptors is required for this negative control to occur. This could notably be achieved with morphine (10 microM) in the presence of naltrindole (10 microM) which also produced a significant reduction in the spinal release of CGRPLM. In conclusion, morphine per se did not change CGRPLM release because this drug triggers opposite positive (through the stimulation of delta receptors) and negative (through the concomitant stimulation of both kappa and mu receptors) control mechanisms within the rat spinal cord.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer
- Analgesics/pharmacology
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/pharmacology
- Injections, Spinal
- Iodine Radioisotopes
- Male
- Morphine/pharmacology
- Naloxone/pharmacology
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Oligopeptides/pharmacology
- Pyrrolidines/pharmacology
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Opioid/physiology
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/metabolism
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- E Collin
- INSERM U, 288, Neurobiologie Cellulaire et Fonctionnelle, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Miaskowski C, Taiwo YO, Levine JD. Antinociception produced by receptor selective opioids. Modulation of supraspinal antinociceptive effects by spinal opioids. Brain Res 1993; 608:87-94. [PMID: 8388314 DOI: 10.1016/0006-8993(93)90777-k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This study evaluated the antinociceptive effects produced when different combinations of supraspinal mu- and delta-opioid agonists were co-administered with spinal mu-, delta-, and kappa-opioid agonists. Using the Randall-Selitto paw-withdrawal test, in the rat, changes in nociceptive thresholds were measured following co-administration of sequentially increasing i.c.v. doses of either DAMGO or DPDPE with a low-antinociceptive dose of intrathecal DAMGO, DPDPE, or U50,488H. Antinociceptive synergy (i.e. a more than additive antinociceptive effect) was demonstrated with all of the combinations tested except for supraspinal DPDPE co-administered with spinal DAMGO. The results of this study provide support for the suggestion that supraspinal and spinal antinociceptive mechanisms share, in part, common neural circuits. Marked differences in the overall magnitude of the antinociceptive effects produced by the various combinations of opioid agonists were demonstrated through a secondary analysis of the data. When sequentially increasing i.c.v. doses of DAMGO were administered, significantly larger increases in nociceptive thresholds were observed with co-administration of intrathecal injections of low antinociceptive doses of either DAMGO or U50,488H compared to DPDPE. In contrast, when DPDPE was administered supraspinally, the largest increases in nociceptive thresholds were demonstrated with co-administration of DPDPE at the spinal site. The results of the secondary analysis provide support for the hypothesis that descending antinociceptive control systems activated by supraspinal administration of selective mu- and delta-opioid agonists interact, differently, with spinal mu-, delta-, and kappa-opioidergic mechanisms.
Collapse
Affiliation(s)
- C Miaskowski
- School of Nursing, University of California, San Francisco 94143
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Gene Williams
- Neurobiology and Anesthesiology Branch National Institute of Dental Research National Institutes of Health Bethesda, MD 20892, USA
| |
Collapse
|
38
|
Affiliation(s)
- G F Gebhart
- University of Iowa School of Medicine Iowa City, IA 52242, USA
| |
Collapse
|
39
|
Miaskowski C, Levine JD. Comments on the evaluation of drug interactions using isobolographic analysis and analysis of variance. Pain 1992. [DOI: 10.1016/0304-3959(92)90228-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|