1
|
Structural characterization of the intra-membrane histidine kinase YbdK from Bacillus subtilis in DPC micelles. Biochem Biophys Res Commun 2010; 391:1506-11. [DOI: 10.1016/j.bbrc.2009.12.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/17/2009] [Indexed: 11/20/2022]
|
2
|
Zhang Q, Crosland E, Fabris D. Nested Arg-specific bifunctional crosslinkers for MS-based structural analysis of proteins and protein assemblies. Anal Chim Acta 2008; 627:117-28. [PMID: 18790135 PMCID: PMC2677909 DOI: 10.1016/j.aca.2008.05.074] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/28/2008] [Accepted: 05/28/2008] [Indexed: 01/14/2023]
Abstract
The combination of chemical probing and high-resolution mass spectrometry constitutes a powerful alternative for the structural elucidation of biomolecules possessing unfavorable size, solubility, and flexibility. We have developed nested Arg-specific bifunctional crosslinkers to obtain complementary information to typical Cys- and Lys-specific reagents available on the market. The structures of 1,4-phenyl-diglyoxal (PDG) and 4,4'-biphenyl-diglyoxal (BDG) include two identical 1,2-dicarbonyl functions capable of reacting with the guanido group of Arg residues in proteins, as well as the base-pairing face of guanine in nucleic acids. The reactive functions are separated by modular spacers consisting of one or two benzene rings, which confer greater rigidity to the crosslinker structure than it is afforded by typical aliphatic spacers. Analysis by electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry has shown that the probes provide both mono- and bifunctional products with model protein substrates, which are stabilized by the formation of diester derivatives in the presence of borate buffer. The identification of crosslinked sites was accomplished by employing complementary proteolytic procedures and peptide mapping by ESI-FTICR. The results showed excellent correlation with the solvent accessibility and structural context of susceptible residues, and highlighted the significance of possible dynamic effects in determining the outcome of crosslinking reactions. The application of nested reagents with different spacing has provided a new tool for experimentally recognizing flexible regions that may be involved in prominent dynamics in solution. The development of new bifunctional crosslinkers with diverse target specificity and different bridging spans is expected to facilitate the structure elucidation of progressively larger biomolecular assemblies by increasing the number and diversity of spatial constraints available for triangulating the position of crosslinked structures in the three dimensions.
Collapse
Affiliation(s)
- Qingrong Zhang
- University of Maryland Baltimore County, Baltimore, MD 21228, United States
| | | | | |
Collapse
|
3
|
Lohan J, Culligan K, Ohlendieck K. Deficiency in Cardiac Dystrophin Affects the Abundance of the $\alpha$ -/ $\beta$ -Dystroglycan Complex. J Biomed Biotechnol 2005; 2005:28-36. [PMID: 15689636 PMCID: PMC1138265 DOI: 10.1155/jbb.2005.28] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the $\alpha$ -/ $\beta$ -dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in $\alpha$ -dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in $x$ -linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex.
Collapse
Affiliation(s)
- James Lohan
- Department of Biology, Faculty of Science, National University of Ireland, Maynooth, County
Kildare, Ireland
| | - Kevin Culligan
- Department of Biology, Faculty of Science, National University of Ireland, Maynooth, County
Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Faculty of Science, National University of Ireland, Maynooth, County
Kildare, Ireland
- *Kay Ohlendieck:
| |
Collapse
|
4
|
Abstract
This report summarizes our efforts towards depth-dependent analysis of membranes by design of suitable fluorescent and photoactivable lipid probes, which can be incorporated into membranes. The objective of depth-dependent analysis has been two fold, one to obtain information on lipid domains and other on transmembrane domains of membrane-bound proteins. In view of increasing importance of lipid rafts and other localized domain and limited success in case of structure determination of membrane-bound proteins vis-à-vis their soluble counterparts, it is tempting to rapidly attach fluorescent or photoactivable probes to lipids to get a probes where relatively little attention is paid to design of such probes. We have shown here how careful design of such probes is required to immobilize such probes in membranes for effective depth-dependent analysis of membranes. An effective design has become important when identification of putative transmembrane domains predicted primarily from the genome data based on hydropathy plots, often needs confirmation by contemporary methodology.
Collapse
Affiliation(s)
- Anil K Lala
- Biomembrane Lab, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
5
|
Trakselis MA, Mayer MU, Ishmael FT, Roccasecca RM, Benkovic SJ. Dynamic protein interactions in the bacteriophage T4 replisome. Trends Biochem Sci 2001; 26:566-72. [PMID: 11551794 DOI: 10.1016/s0968-0004(01)01929-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The bacteriophage T4 DNA replisome is a complex dynamic system employing a variety of proteins to orchestrate the synthesis of DNA on both the leading and lagging strands. Assembly of the protein complexes responsible for DNA synthesis and priming requires the coordination of transient biomolecular interactions. This interplay of proteins has been dissected through the use of small molecules including fluorescent probes and crosslinkers, enabling the development of a complex dynamic structural and kinetic model for DNA polymerase holoenzyme assembly and primosome formation.
Collapse
Affiliation(s)
- M A Trakselis
- Dept of Chemistry, 414 Wartik Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
6
|
Nagy JK, Lau FW, Bowie JU, Sanders CR. Mapping the oligomeric interface of diacylglycerol kinase by engineered thiol cross-linking: homologous sites in the transmembrane domain. Biochemistry 2000; 39:4154-64. [PMID: 10747807 DOI: 10.1021/bi991781n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work represents the first stage of thiol-based cross-linking studies to map the oligomeric interface of the homotrimeric membrane protein diacylglycerol kinase (DAGK). A total of 53 single-cysteine mutants spanning DAGK's three transmembrane segments and the first part of a cytoplasmic domain were purified and subjected to catalytic oxidation in mixed micelles. Four mutants (A52C, I53C, A74C, and I75C) were observed to undergo intratrimer disulfide bond formation between homologous sites on adjacent subunits. To establish whether the homologous sites are proximal in the ground-state conformation of DAGK or whether the disulfide bonds formed as a result of motions that brought normally distal sites into transient proximity, additional cross-linking experiments were carried out in three different milieus of varying fluidity [mixed micelles, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) vesicles, and Escherichia coli membranes]. Cross-linking experiments included disulfide bond formation under three different catalytic conditions [Cu(II)-phenanthroline oxidation, I(2) oxidation, and thionitrobenzoate-based thiol exchange] and reactions with a set of bifunctional thiol-reactive chemical cross-linkers presenting two different reactive chemistries and several spacer lengths. On the basis of these studies, residues 53 and 75 are judged to be in stable proximity within the DAGK homotrimer, while position 52 appears to be more distal and forms disulfide bonds only as a result of protein motions. Results for position 74 were ambiguous. In lipid vesicles and mixed micelles DAGK appears to execute motions that are not present in native membranes, with mobility also being higher for DAGK in mixed micelles than in POPC vesicles.
Collapse
Affiliation(s)
- J K Nagy
- Department of Physiology, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | |
Collapse
|
7
|
Newell JG, Davies M, Bateson AN. The use of site-directed mutagenesis, transient transfection, and radioligand binding. A method for the characterization of receptor-ligand interactions. Mol Biotechnol 2000; 14:25-45. [PMID: 10911613 DOI: 10.1385/mb:14:1:25] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Receptor-ligand interactions have traditionally been evaluated using a number of biochemical techniques including radioligand binding, photoaffinity labeling, crosslinking, and chemical modification. In modern biochemistry, these approaches have largely been superseded by site-directed mutagenesis in the study of protein function, owing in part to a better understanding of the chemical properties of oligonucleotides and to the ease with which mutant clones can now be generated. The Altered Sites II in vitro Mutagenesis System from the Promega Corporation employs oligonucleotides containing two mismatches to introduce specific nucleotide substitutions in the nucleic acid sequence of a target DNA. One of these mismatches will alter the primary sequence of a given protein, whereas the second will give rise to a silent restriction site that is used to screen for mutants. Transient transfection of tsA201 cells with mutant cDNA constructs using calcium phosphate as a carrier for plasmid DNA permits expression of recombinant receptors that can be characterized using radioligand binding assays. In this article, we focus on site-directed mutagenesis, heterologous expression in eukaryotic cells, and radioligand binding as a methodology to enable the characterization of receptor-ligand interactions.
Collapse
Affiliation(s)
- J G Newell
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
8
|
Affiliation(s)
- F Knoll
- Kekulé-Institut für Organische Chemie und Biochemie, Universität Bonn, Germany
| | | | | |
Collapse
|
9
|
Fancy DA, Kodadek T. Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proc Natl Acad Sci U S A 1999; 96:6020-4. [PMID: 10339534 PMCID: PMC26828 DOI: 10.1073/pnas.96.11.6020] [Citation(s) in RCA: 413] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical cross-linking is a potentially useful technique for probing the architecture of multiprotein complexes. However, analyses using typical bifunctional cross-linkers often suffer from poor yields, and large-scale modification of nucleophilic side chains can result in artifactual results attributable to structural destabilization. We report here the de novo design and development of a type of protein cross-linking reaction that uses a photogenerated oxidant to mediate rapid and efficient cross-linking of associated proteins. The process involves brief photolysis of tris-bipyridylruthenium(II) dication with visible light in the presence of the electron acceptor ammonium persulfate and the proteins of interest. Very high yields of cross-linked products can be obtained with irradiation times of <1 second. This chemistry obviates many of the problems associated with standard cross-linking reagents.
Collapse
Affiliation(s)
- D A Fancy
- Departments of Internal Medicine and Biochemistry, Center for Biomedical Inventions, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-8573, USA
| | | |
Collapse
|
10
|
Corey S, Krapivinsky G, Krapivinsky L, Clapham DE. Number and stoichiometry of subunits in the native atrial G-protein-gated K+ channel, IKACh. J Biol Chem 1998; 273:5271-8. [PMID: 9478984 DOI: 10.1074/jbc.273.9.5271] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The G-protein-regulated, inwardly rectifying K+ (GIRK) channels are critical for functions as diverse as heart rate modulation and neuronal post-synaptic inhibition. GIRK channels are distributed predominantly throughout the heart, brain, and pancreas. In recent years, GIRK channels have received a great deal of attention for their direct G-protein betagamma (Gbetagamma) regulation. Native cardiac IKACh is composed of GIRK1 and GIRK4 subunits (Krapivinsky, G., Gordon, E. A., Wickman, K. A., Velimirovic, B., Krapivinsky, L., and Clapham, D. E. (1995) Nature 374, 135-141). Here, we examine the quaternary structure of IKACh using a variety of complementary approaches. Complete cross-linking of purified atrial IKACh protein formed a single adduct with a total molecular weight that was most consistent with a tetramer. In addition, partial cross-linking of purified IKACh produced subsets of molecular weights consistent with monomers, dimers, trimers, and tetramers. Within the presumed protein dimers, GIRK1-GIRK1 and GIRK4-GIRK4 adducts were formed, indicating that the tetramer was composed of two GIRK1 and two GIRK4 subunits. This 1:1 GIRK1 to GIRK4 stoichiometry was confirmed by two independent means, including densitometry of both silver-stained and Western-blotted native atrial IKACh. Similar experimental results could potentially be obtained if GIRK1 and GIRK4 subunits assembled randomly as 2:2 and equally sized populations of 3:1 and 1:3 tetramers. We also show that GIRK subunits may form homotetramers in expression systems, although the evidence to date suggests that GIRK1 homotetramers are not functional. We conclude that the inwardly rectifying atrial K+ channel, IKACh, a prototypical GIRK channel, is a heterotetramer and is most likely composed of two GIRK1 subunits and two GIRK4 subunits.
Collapse
Affiliation(s)
- S Corey
- Neuroscience Program, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
11
|
Hunt JF, McCrea PD, Zaccaï G, Engelman DM. Assessment of the aggregation state of integral membrane proteins in reconstituted phospholipid vesicles using small angle neutron scattering. J Mol Biol 1997; 273:1004-19. [PMID: 9367787 DOI: 10.1006/jmbi.1997.1330] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The assessment of the physical size of integral membrane protein complexes has generally been limited to samples solubilized in non-ionic detergent, a process which may introduce artifacts of unknown scope and severity. A system has been developed that allows observation of the small angle scattering profile of an integral membrane protein while incorporated in small unilamellar phospholipid vesicles. Contrast matching of isotopically substituted phospholipid eliminates the contribution of the bilayer to the observed scattering, resulting in a profile dependent only on the structure of the individual membrane protein complexes and their spatial arrangement in the vesicle. After appropriate compensation for their spatial arrangement, information about the molecular mass and radius of gyration of the individual complexes can be obtained. The validity of the approach has been established using monomeric bacteriorhodopsin as a model system.
Collapse
Affiliation(s)
- J F Hunt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | | | | | | |
Collapse
|
12
|
Vinogradova O, Badola P, Czerski L, Sönnichsen FD, Sanders CR. Escherichia coli diacylglycerol kinase: a case study in the application of solution NMR methods to an integral membrane protein. Biophys J 1997; 72:2688-701. [PMID: 9168044 PMCID: PMC1184466 DOI: 10.1016/s0006-3495(97)78912-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Diacylglycerol kinase (DAGK) is a 13-kDa integral membrane protein that spans the lipid bilayer three times and which is active in some micellar systems. In this work DAGK was purified using metal ion chelate chromatography, and its structural properties in micelles and organic solvent mixtures studies were examined, primarily to address the question of whether the structure of DAGK can be determined using solution NMR methods. Cross-linking studies established that DAGK is homotrimeric in decyl maltoside (DM) micelles and mixed micelles. The aggregate detergent-protein molecular mass of DAGK in both octyl glucoside and DM micelles was determined to be in the range of 100-110 kDa-much larger than the sum of the molecular weights of the DAGK trimers and the protein-free micelles. In acidic organic solvent mixtures, DAGK-DM complexes were highly soluble and yielded relatively well-resolved NMR spectra. NMR and circular dichroism studies indicated that in these mixtures the enzyme adopts a kinetically trapped monomeric structure in which it irreversibly binds several detergent molecules and is primarily alpha-helical, but in which its tertiary structure is largely disordered. Although these results provide new information regarding the native oligomeric state of DAGK and the structural properties of complex membrane proteins in micelles and organic solvent mixtures, the results discourage the notion that the structure of DAGK can be readily determined at high resolution with solution NMR methods.
Collapse
Affiliation(s)
- O Vinogradova
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
Homologous proteins (NBAT) which mediate sodium-independent transport of neutral as well as basic amino acids and cystine when expressed in Xenopus oocytes were recently cloned from mammalian kidneys. Mutations in human NBAT have been implicated in cystinuria. Here, we show that rat kidney and jejunal brush border membrane NBAT (85 kDa) is found in association with a 50 kDa protein. The association involves one or more interprotein disulfide bonds. Rabbit kidney brush border membranes and membranes of NBAT cRNA-injected Xenopus oocytes also contain such heterodimers. Our data suggest that the heterodimer is the minimal functional unit of NBAT-mediated amino acid transport and that the NBAT-associated 50 kDa protein could play a role in cystinuria.
Collapse
Affiliation(s)
- Y Wang
- Department of Biochemistry, Cornell University Medical College, New York, NY 10021, USA
| | | |
Collapse
|
14
|
Chia CP, Shariff A, Savage SA, Luna EJ. The integral membrane protein, ponticulin, acts as a monomer in nucleating actin assembly. J Biophys Biochem Cytol 1993; 120:909-22. [PMID: 8432731 PMCID: PMC2200087 DOI: 10.1083/jcb.120.4.909] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ponticulin, an F-actin binding transmembrane glycoprotein in Dictyostelium plasma membranes, was isolated by detergent extraction from cytoskeletons and purified to homogeneity. Ponticulin is an abundant membrane protein, averaging approximately 10(6) copies/cell, with an estimated surface density of approximately 300 per microns2. Ponticulin solubilized in octylglucoside exhibited hydrodynamic properties consistent with a ponticulin monomer in a spherical or slightly ellipsoidal detergent micelle with a total molecular mass of 56 +/- 6 kD. Purified ponticulin nucleated actin polymerization when reconstituted into Dictyostelium lipid vesicles, but not when a number of commercially available lipids and lipid mixtures were substituted for the endogenous lipid. The specific activity was consistent with that expected for a protein comprising 0.7 +/- 0.4%, by mass, of the plasma membrane protein. Ponticulin in octylglucoside micelles bound F-actin but did not nucleate actin assembly. Thus, ponticulin-mediated nucleation activity was sensitive to the lipid environment, a result frequently observed with transmembrane proteins. At most concentrations of Dictyostelium lipid, nucleation activity increased linearly with increasing amounts of ponticulin, suggesting that the nucleating species is a ponticulin monomer. Consistent with previous observations of lateral interactions between actin filaments and Dictyostelium plasma membranes, both ends of ponticulin-nucleated actin filaments appeared to be free for monomer assembly and disassembly. Our results indicate that ponticulin is a major membrane protein in Dictyostelium and that, in the proper lipid matrix, it is sufficient for lateral nucleation of actin assembly. To date, ponticulin is the only integral membrane protein known to directly nucleate actin polymerization.
Collapse
Affiliation(s)
- C P Chia
- Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545
| | | | | | | |
Collapse
|
15
|
Abstract
The technique of chemical crosslinking has been used to enhance the stability of proteins and enzymes. In this procedure, the molecule is braced with chemical crosslinks either intramolecularly or intermolecularly to another species to reinforce its active structure. Various chemicals have been used for this purpose. The bifunctional reagents are the most prominent. These compounds are derived from group-specific reagents and may be classified into homobifunctional, heterobifunctional, and zero-length crosslinkers. Different physical and chemical characteristics have been incorporated into these chemicals. Their versatility holds great potential in preparing chemically, thermally, and mechanically stable proteins and enzymes for industrial applications.
Collapse
Affiliation(s)
- S S Wong
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston 77030
| | | |
Collapse
|
16
|
Martin D, Sachs J. Cross-linking of the erythrocyte (Na+,K+)-ATPase. Chemical cross-linkers induce alpha-subunit-band 3 heterodimers and do not induce alpha-subunit homodimers. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Pakula AA, Simon MI. Random cysteine disulfide crosslinking in the analysis of protein structure. Methods 1991. [DOI: 10.1016/s1046-2023(05)80170-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Abstract
Using homobifunctional chemical cross-linkers with various span distances, we have determined the near-neighbor associations and planar organization of the E1 and E2 envelope glycoproteins which compose the icosahedral surface of Sindbis virus. We have found that E1-E2 heterodimers, which form the virus protomeric units, exist in two conformationally distinct forms, reflecting their nonequivalent positions in the icosahedron. Three of these heterodimers form the trimeric morphologic units (capsomeres) which are held together by central E1-E1 interactions. In addition, we present data which suggest that E2-E2 interactions organize the capsomeres into pentameric and hexameric geometric units and that E1-E1 interactions between capsomeres maintain the icosahedral lattice in mature virions.
Collapse
Affiliation(s)
- R P Anthony
- Cell Research Institute, University of Texas, Austin 78713-7640
| | | |
Collapse
|
19
|
Dolder M, Michel H, Sigrist H. 3-(Trifluoromethyl)-3-(m-isothiocyanophenyl)diazirine: synthesis and chemical characterization of a heterobifunctional carbene-generating crosslinking reagent. JOURNAL OF PROTEIN CHEMISTRY 1990; 9:407-15. [PMID: 2275751 DOI: 10.1007/bf01024616] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A new hydrophobic heterobifunctional photocrosslinking reagent 3-(trifluoromethyl)-3-(m-isothiocyanophenyl)diazirine (TRIMID), a carbene precursor, and its radioiodinated analogue [125I]TRIMID, have been synthesized and chemically characterized. The reagents were applied for membrane protein modification in human erythrocyte membranes and purple membranes from Halobacterium halobium. Covalent labeling of the anion transport protein (band 3) via the isothiocyanate function was confirmed. Radiolabeled TRIMID was detected in at least two thermolysin-generated transmembrane fragments of the anion transport protein, and half-maximal inhibition of the erythrocyte anion transport activity was attained with 2.2 mM reagent. In bacteriorhodopsin (BR), a common binding site for the monofunctional phenylisothiocyanate and the bifunctional crosslinking reagent was identified: preincubation of purple membranes with TRIMID suppressed phenylisothio-[14C]-cyanate binding to BR. [125I]TRIMID was recovered in V-1, the N-terminal segment of BR, which includes the phenylisothiocyanate binding site Lys-41. Light-induced intramolecular crosslinking of band 3-derived thermolytic fragments was not observed, although the carbene was generated in situ and photocrosslinking of the protease V8 fragments of BR was not detected. Chemical and physicochemical characteristics of the new reagent are discussed with regard to limitations imposed for photoinduced site-directed crosslink formation.
Collapse
Affiliation(s)
- M Dolder
- Institute of Biochemistry, University of Berne, Switzerland
| | | | | |
Collapse
|
20
|
Font B, Aubert-Foucher E. Detection by chemical cross-linking of bovine brain synapsin I self-association. Biochem J 1989; 264:893-9. [PMID: 2515853 PMCID: PMC1133669 DOI: 10.1042/bj2640893] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Synapsin I is believed to play an important role in the regulation of neurotransmitter release, since it is able to bind to synaptic vesicles, to the cytoskeleton and to membrane proteins; in addition, it bundles F-actin and microtubules. These properties, which are controlled by phosphorylation, could be explained if synapsin has different and multiple binding sites or if synapsin I is able to form polymers by self-association. In this study we present experimental evidence that synapsin I at low concentration forms self-associated dimers, as revealed after mild treatments with cross-linking agents. We have especially studied here the effects of copper/o-phenanthroline, a zero-length cross-linking agent which forms covalent links by oxidative formation of S-S bridges between adjacent cysteines. The time course and concentration-dependence of synapsin-dimer formation are studied; interestingly, these experiments could suggest a different behaviour of the two polypeptides. Limited proteolysis of phosphorylated synapsin I by V8 protease, alpha-chymotrypsin or collagenase, performed on the isolated dimer and monomer, allows us to localize tentatively in the central hydrophobic core of the molecule the cysteine residues the oxidation of which by copper/o-phenanthroline gives rise to synapsin dimers.
Collapse
Affiliation(s)
- B Font
- LBTM-CNRS, Université Claude Bernard Lyon I, Villeurbanne, France
| | | |
Collapse
|
21
|
|
22
|
Wilcock C, Chahwala SB, Hickman JA. Selective inhibition by bis(2-chloroethyl)methylamine (nitrogen mustard) of the Na+/K+/Cl- cotransporter of murine L1210 leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 946:368-78. [PMID: 3207752 DOI: 10.1016/0005-2736(88)90412-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Incubation of L1210 murine leukemia cells in vitro with 10 microM of the bifunctional alkylating agent bis(2-chloroethyl)methylamine (nitrogen mustard, HN2) for 10 min brought about a fall of more than 99.9% in their ability to form colonies when the cells were suspended in 0.5% nutrient agar. Incubation with HN2 also inhibited the influx of the potassium congener 86Rb+ to exponentially proliferating L1210 cells in a concentration-dependent manner. This inhibition was specific and was accounted for by a reduction of a diuretic-sensitive component of 86Rb+ influx, identified in the preceding paper (Wilcock, C. and Hickman, J.A. (1988) Biochim. Biophys. Acta 946, 359-367) as being mediated by a Na+/K+/Cl- cotransporter. Inhibition by 10 microM HN2 was complete after a 3-h incubation. There was no inhibition at this time of the ouabain-sensitive component of 86Rb+ influx, mediated by Na+/K+-ATPase. After 3 h of incubation with 10 microM HN2 there was also no change in the membrane potential of the treated cells as measured by the distribution of the [3H]TPMP+, no decrease in cellular ATP concentration and no change in intracellular pH, and the ability of the cells to exclude the vital dye Trypan blue was not significantly different from control values. These effects of HN2, therefore, appeared to follow lethal damage, but precede cell death. In the stationary phase of L1210 cell growth, the component of HN2 and diuretic-sensitive K+ influx to L1210 cells was reduced, whilst the component constituting the HN2-insensitive ouabain-sensitive sodium pump was increased. The monofunctional alkylating agent MeHN1 (2-chloroethyldimethylamine) which cannot cross-link cellular targets and has no antitumor activity, did not inhibit 86Rb+ influx to L1210 cells when incubated at equimolar or equitoxic concentrations to HN2. Intracellular potassium concentration was maintained close to control values of 138 +/- 10 mM in HN2-treated cells because of an approx. 35% fall in cell volume. The results suggest that the Na+/K+/Cl- cotransporter is a selectively inhibitable target for HN2, and the lesion is discussed with reference to the cytotoxic effects of this agent.
Collapse
Affiliation(s)
- C Wilcock
- Cancer Research Campaign Experimental Chemotherapy Group, Aston University, Birmingham, U.K
| | | | | |
Collapse
|
23
|
Langosch D, Thomas L, Betz H. Conserved quaternary structure of ligand-gated ion channels: the postsynaptic glycine receptor is a pentamer. Proc Natl Acad Sci U S A 1988; 85:7394-8. [PMID: 2459705 PMCID: PMC282193 DOI: 10.1073/pnas.85.19.7394] [Citation(s) in RCA: 268] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The postsynaptic glycine receptor of rat spinal cord is a glycosylated membrane protein that, after affinity purification, contains membrane-spanning subunits of Mr 48,000 and 58,000 and an associated peripheral polypeptide of Mr 93,000. Here, the quaternary structure of the transmembrane core of the receptor was investigated by chemically crosslinking its subunits. Upon treatment with crosslinking reagents of different side-chain specificities and lengths, a consistent set of adducts up to Mr 260,000 was detected after separation by NaDodSO4/PAGE. The observed pattern of adducts was similar irrespective of whether purified receptor protein or synaptosomal membranes were crosslinked. Compositional analysis revealed that the crosslinked adducts contained the Mr 48,000 and 58,000 subunits in varying ratios but not the peripheral Mr 93,000 polypeptide. Thus adducts of intermediate molecular weight represent dimers, trimers, and tetramers of the transmembrane subunits, whereas the major adduct of Mr 260,000 corresponds to a pentameric assembly of subunits forming the ion channel of the glycine receptor. This subunit arrangement is similar to that reported for the nicotinic acetylcholine receptor of fish electric organ and skeletal muscle. Hence, we suggest that the different ligand-gated ion channels of excitable membranes share a similar quaternary structure.
Collapse
Affiliation(s)
- D Langosch
- Center for Molecular Biology, University of Heidelberg, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Mogre RM, Batliwala HF, Anjaneyulu PS, Lala AK. A new carbene based heterobifunctional reagent. Photochemical crosslinking of aldolase. FEBS Lett 1987; 221:408-14. [PMID: 3622779 DOI: 10.1016/0014-5793(87)80965-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The synthesis of a new photoactivatable heterobifunctional crosslinking reagent, the N-oxysuccinimide ester of 2-carboxy-9-diazofluorene, is described. The ability of the parent chromophore 2-carbomethoxy-9-diazofluorene to insert into cyclohexane and methanol has been established. The reagent has been linked to aldolase and the stoichiometry determined. Photolysis of the probe-linked aldolase indicated that photolysis was very rapid and that the photolysed product was constituted of crosslinked dimer, trimer and tetramer. Increase in concentration of probe linked to aldolase followed by photolysis gave rise to largely tetramer and higher oligomers of aldolase. The use of this carbene-based reagent vis a vis arylazide-based reagent for studying protein crosslinking is discussed.
Collapse
|
25
|
Pradhan D, Lala AK. Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2-[3H]diazofluorene. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47555-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Bukrinskaya AG, Molotkovsky JG, Vodovozova EL, Manevich YM, Bergelson LD. The molecular organization of the influenza virus surface. Studies using photoreactive and fluorescent labeled phospholipid probes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 897:285-92. [PMID: 3814590 DOI: 10.1016/0005-2736(87)90424-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The membrane structures of remantadin-sensitive and remantadin-resistant influenza virus strains were studied using a photoreactive fatty acid as well as analogues of phosphatidylcholine, phosphatidylethanolamine and sphingomyelin, carrying a fluorescent or photoreactive reporter group at the end of one of the aliphatic chains. The results obtained demonstrated for the first time that the phospholipids of the viral membrane form lateral domains differing by the fluidity of their hydrocarbon chains and, probably, by the head-group composition of the lipids. The hemagglutinin small subunit (HA2) was shown to protrude into the apolar region of the phospholipid bilayer, whereas the M1 protein makes contact only with the inner surface. In the remantadin-sensitive virions the heavy hemagglutinin chain (HA1) appears not to be in contact with the lipid bilayer, whereas in the remantadin-resistant strain HA1 has a hydrophobic segment that proved to be inserted into the bilayer.
Collapse
|