1
|
Catalán A, García C, Sambra V, Cadena N, Rojas J, Arán-Sekul T, San Francisco J, Vásquez-Saez V, Muñoz C, Vásquez A, Araya JE. Predictive analysis of B-cell antigenic epitopes in phospholipase D toxins from Loxosceles spiders. Toxicon X 2025; 26:100222. [PMID: 40230574 PMCID: PMC11994341 DOI: 10.1016/j.toxcx.2025.100222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/03/2025] [Accepted: 03/15/2025] [Indexed: 04/16/2025] Open
Abstract
The Phospholipase D (PLD) toxin family, a major component of the Loxosceles spider venom, is a valuable biotechnological tool for developing antivenom treatment and diagnostic assays to overcome and prevent loxoscelism. However, there is limited knowledge about the antigenic structure of the PLD family or if sequence diversity correlates with antigenic variability. This study aimed to evaluate the possible antigenic diversity of PLDs sequences among different species of spiders of the Loxosceles genus through a predictive analysis of potential continuous and discontinuous antigenic epitopes of two phylogenetic interspecies clusters. Thus, L. laeta had higher amino acid sequence variation than other species, being classified into three phylogenetic clusters at the intra-specie level. Furthermore, multiple alignments of consensus PLD sequences from each Loxosceles species showed two different phylogenetic clusters at interspecies level depending on the amino acid conservation. For each cluster, at least nine continuous antigenic domains were identified, and depending on the phylogenetic cluster belonging to the Loxosceles species, the PLD continuous and discontinuous antigenic structure varies. Also, L. laeta PLDs vary significantly within the Loxosceles species and possess their own antigenic structure compared to other species with common continuous epitopes. Finally, the catalytic loop was identified as a common discontinuous epitope in the PLDs independently of the cluster or the class it belongs to. This antigenic diversity of PLD toxins could have implications for antibody recognition and should be considered in the design strategies for the development of serum treatments and diagnostic assays to detect Loxosceles venom.
Collapse
Affiliation(s)
- Alejandro Catalán
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Carolina García
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Valentina Sambra
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Nicole Cadena
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - José Rojas
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Tomás Arán-Sekul
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Juan San Francisco
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| | - Valeria Vásquez-Saez
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Christian Muñoz
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
- Centro de Investigación en Inmunología y Biotecnología Biomédica de Antofagasta, Universidad de Antofagasta, Chile
| | - Abel Vásquez
- Departamento Agencia Nacional de Dispositivos Médicos, Innovación y Desarrollo, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jorge E. Araya
- Laboratorio de Investigación en Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile
| |
Collapse
|
2
|
Gismene C, Ruggiero Bachega JF, Doherty DZ, Veiga SS, Arni RK, Hernández González JE. Structural and Energetic Evidence Supports the Non-Covalent Phosphate Cyclization by the Class II Phospholipase D from Loxosceles intermedia. Toxins (Basel) 2025; 17:111. [PMID: 40137884 PMCID: PMC11945750 DOI: 10.3390/toxins17030111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/20/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Phospholipase D (PLD) enzymes from Loxosceles spider venom mediate envenomation pathology by cleaving phospholipid headgroups. We revisited the crystal structure of Loxosceles intermedia PLD (PDB: 3RLH) to evaluate two alternative mechanisms-covalent and non-covalent-for headgroup cleavage. The covalent mechanism involves a nucleophilic attack on the substrate's P atom by catalytic histidine, forming a phosphohistidine intermediate. It was originally suggested that this intermediate hydrolyzes, leading to linear phosphates. The non-covalent mechanism relies on the substrate's hydroxyl group performing an intramolecular attack on the P atom, thereby generating a cyclic phosphate. Structural refinement of the crystal structure revealed a cyclic phosphate bound at the active site, replacing previously assigned PEG molecules. This cyclic product, stabilized by His12, His47, and Mg2+, provides structural evidence that supports phosphate cyclization. The results of computational analyses, including molecular dynamics and quantum mechanics/molecular mechanics simulations, further support the non-covalent mechanism as the energetically preferred pathway, with a significantly lower activation barrier. Our findings highlight the role of substrate orientation and of the catalytic His residues in transphosphatidylation, advancing our understanding of PLD enzymology and providing insights for the design of inhibitors against Loxosceles envenomation.
Collapse
Affiliation(s)
- Carolina Gismene
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - José Fernando Ruggiero Bachega
- Graduate Program in Molecular and Cellular Biology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre CEP 90050-170, RS, Brazil;
- Departament of Farmacosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Ale-gre, CEP 90050-170, RS, Brazil
| | - Daniel Z. Doherty
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba CEP 81531-980, PR, Brazil;
| | - Raghuvir K. Arni
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| | - Jorge Enrique Hernández González
- Biological Structures Group, Multiuser Center for Biomolecular Innovation (CMIB), São Paulo State University—UNESP, São José do Rio Preto CEP 15054-000, SP, Brazil; (C.G.); (D.Z.D.); (R.K.A.)
| |
Collapse
|
3
|
Wille ACM, Machado MI, Souza SH, da Justa HC, de Fraga-Ferreira ME, Mello EDS, Gremski LH, Veiga SS. Brown Spider Venom Phospholipases D: From Potent Molecules Involved in Pathogenesis of Brown Spider Bites to Molecular Tools for Studying Ectosomes, Ectocytosis, and Its Applications. Toxins (Basel) 2025; 17:70. [PMID: 39998087 PMCID: PMC11860474 DOI: 10.3390/toxins17020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Accidents caused by Loxosceles spiders, commonly known as brown spiders, are frequent in warm and temperate regions worldwide, with a higher prevalence in South America and the southern United States. In the venoms of species clinically associated with accidents, phospholipases D (PLDs) are the most expressed toxins. This classification is based on the toxins' ability to cleave various phospholipids, with a preference for sphingomyelin. Studies using purified PLDs have demonstrated that these enzymes cleave phospholipids from cells, producing derivatives that can activate leukocytes. A dysregulated inflammatory response is the primary effect following envenomation, leading to dermonecrosis, which is histopathologically characterized by aseptic coagulative necrosis-a key feature of envenomation. Although advances in understanding the structure-function relationship of enzymes have been achieved through molecular biology, heterologous expression, site-directed mutations, crystallography, and bioinformatic analyses-describing PLDs in the venoms of various species and highlighting the conservation of amino acid residues involved in catalysis, substrate binding, and magnesium stabilization-little is known about the cellular biology of these PLDs. Studies have shown that the treatment of various cells with recombinant PLDs stimulates the formation of ectosomes and ectocytosis, events that initiate a cascade of intracellular signaling in PLD-binding cells and lead to the release of extracellular microvesicles. These microvesicles may act as signalosomes for other target cells, thereby triggering an inflammatory response and dermonecrosis. In this review, we will discuss the biochemical properties of PLDs, the target cells that bind to them, and the ectocytosis-dependent pathophysiology of envenoming.
Collapse
Affiliation(s)
- Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil;
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Mariana Izabele Machado
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Samira Hajjar Souza
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Maria Eduarda de Fraga-Ferreira
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Eloise de Souza Mello
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81530-900, Brazil; (M.I.M.); (S.H.S.); (H.C.d.J.); (M.E.d.F.-F.); (E.d.S.M.); (L.H.G.)
| |
Collapse
|
4
|
Silva-Magalhães R, Gomes Dos Santos AM, Silva-Araújo AL, Peres-Damásio PL, Gonçalves de Alvarenga V, Souza de Oliveira L, Sanchez EF, Chávez-Olórtegui C, Varela LSDRN, Paiva ALB, Guerra-Duarte C. Venom from Loxosceles Spiders Collected in Southeastern and Northeastern Brazilian Regions Cause Hemotoxic Effects on Human Blood Components. Toxins (Basel) 2024; 16:532. [PMID: 39728790 DOI: 10.3390/toxins16120532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024] Open
Abstract
Spiders of the genus Loxosceles represent a public health problem in Brazil due to the severity of the cutaneous and systemic effects that may result from their bite. In the systemic form of loxoscelism, hemolytic anemia, thrombocytopenia, and disseminated intravascular coagulation can occur. Despite the seriousness of Loxosceles accidents, the venom of some species has not yet been properly characterized considering these hemotoxic effects, such as that of Loxosceles amazonica, Loxosceles aff. Variegata, and Loxosceles similis. To better understand their toxic potential, this study aimed to characterize the hematotoxic properties of these Loxosceles venoms. The crude venom was obtained from specimens of L. amazonica, L. aff. Variegata, and L. similis available from Funed's arachnidary. In washed platelets, L. aff. variegata inhibited platelet aggregation induced by collagen and convulxin, whereas L. amazonica and L. similis venoms were able to induce platelet aggregation. In the in vitro hemolysis assays, all venoms experimentally induced direct hemolysis of human erythrocytes in a concentration-dependent manner, with different intensities. Furthermore, evidence suggest that the ABO and Rh systems may influence hemolytic activity. Finally, the studied Loxosceles venoms degraded fibrinogen, suggesting possible alterations in the coagulation cascade. Based in the here-presented preliminary study, in vivo assays in model animals are needed to verify the real toxic potential of these species' venom, building up knowledge to elucidate the action of Loxosceles venoms in blood.
Collapse
Affiliation(s)
- Rafaela Silva-Magalhães
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Ayla Mel Gomes Dos Santos
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Ana Luiza Silva-Araújo
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Pamella Luize Peres-Damásio
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Valéria Gonçalves de Alvarenga
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Luciana Souza de Oliveira
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Eladio Flores Sanchez
- Animal Venoms Biochemistry Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Protein Imunochemistry Lab, Institute of Biological Sciences, Federal University of Minas Gerais-UFMG, Belo Horizonte 31270-901, MG, Brazil
| | | | - Ana Luiza Bittencourt Paiva
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| | - Clara Guerra-Duarte
- Molecular Toxinology Lab, Research and Development Department, Ezequiel Dias Foundation-FUNED, Belo Horizonte 30510-010, MG, Brazil
| |
Collapse
|
5
|
Cordes MHJ, Sundman AK, Fox HC, Binford GJ. Protein salvage and repurposing in evolution: Phospholipase D toxins are stabilized by a remodeled scrap of a membrane association domain. Protein Sci 2023; 32:e4701. [PMID: 37313620 PMCID: PMC10303701 DOI: 10.1002/pro.4701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (β/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands β7-β8 of a β-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a β-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.
Collapse
Affiliation(s)
| | | | - Holden C. Fox
- Department of Chemistry and BiochemistryUniversity of ArizonaTucsonArizonaUSA
| | | |
Collapse
|
6
|
Gremski LH, da Justa HC, Polli NLC, Schluga PHDC, Theodoro JL, Wille ACM, Senff-Ribeiro A, Veiga SS. Systemic Loxoscelism, Less Frequent but More Deadly: The Involvement of Phospholipases D in the Pathophysiology of Envenomation. Toxins (Basel) 2022; 15:17. [PMID: 36668837 PMCID: PMC9864854 DOI: 10.3390/toxins15010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/29/2022] Open
Abstract
Bites of Loxosceles spiders can lead to a set of clinical manifestations called loxoscelism, and are considered a public health problem in many regions. The signs and symptoms of loxoscelism are divided into cutaneous and systemic forms. The former is more frequent and includes signs of envenoming at the bite site or neighboring regions. Systemic loxoscelism, although much less frequent, is associated with complications, and can even lead to death. It may include intravascular hemolysis, acute renal failure, and thrombocytopenia. Loxosceles venoms are enriched with phospholipases D (PLDs), which are a family of isoforms found at intra-species and inter-species levels. Under experimental conditions, these enzymes reproduce the main clinical signs of loxoscelism, including an exacerbated inflammatory response at the bite site and dermonecrosis, as well as thrombocytopenia, intravascular hemolysis, and acute renal failure. The role of PLDs in cutaneous loxoscelism was described over forty years ago, when studies identified and purified toxins featured as sphingomyelinase D. More recently, the production of recombinant PLDs and discoveries about their structure and mechanism has enabled a deeper characterization of these enzymes. In this review, we describe these biochemical and functional features of Loxosceles PLDs that determine their involvement in systemic loxoscelism.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Hanna Câmara da Justa
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | | | | | - João Lucas Theodoro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Ana Carolina Martins Wille
- Department of Structural, Molecular Biology and Genetics, State University of Ponta Grossa (UEPG), Ponta Grossa 84030-900, Brazil
| | - Andrea Senff-Ribeiro
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| | - Silvio Sanches Veiga
- Department of Cell Biology, Federal University of Paraná (UFPR), Curitiba 81531-980, Brazil
| |
Collapse
|
7
|
A protective vaccine against the toxic activities following Brown spider accidents based on recombinant mutated phospholipases D as antigens. Int J Biol Macromol 2021; 192:757-770. [PMID: 34634338 DOI: 10.1016/j.ijbiomac.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/24/2022]
Abstract
Accidents involving Brown spiders are reported throughout the world. In the venom, the major toxins involved in the deleterious effects are phospholipases D (PLDs). In this work, recombinant mutated phospholipases D from three endemic species medically relevant in South America (Loxosceles intermedia, L. laeta and L. gaucho) were tested as antigens in a vaccination protocol. In such isoforms, key amino acid residues involved in catalysis, magnesium-ion coordination, and binding to substrates were replaced by Alanine (H12A-H47A, E32A-D34A and W230A). These mutations eliminated the phospholipase activity and reduced the generation of skin necrosis and edema to residual levels. Molecular modeling of mutated isoforms indicated that the three-dimensional structures, topologies, and surface charges did not undergo significant changes. Mutated isoforms were recognized by sera against the crude venoms. Vaccination protocols in rabbits using mutated isoforms generated a serum that recognized the native PLDs of crude venoms and neutralized dermonecrosis and edema induced by L. intermedia venom. Vaccination of mice prevented the lethal effects of L. intermedia crude venom. Furthermore, vaccination of rabbits prevented the cutaneous lesion triggered by the three venoms. These results indicate a great potential for mutated recombinant PLDs to be employed as antigens in developing protective vaccines for Loxoscelism.
Collapse
|
8
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Sphingomyelinase D Activity in Sicarius tropicus Venom: Toxic Potential and Clues to the Evolution of SMases D in the Sicariidae Family. Toxins (Basel) 2021; 13:256. [PMID: 33916208 PMCID: PMC8066738 DOI: 10.3390/toxins13040256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/23/2022] Open
Abstract
The spider family Sicariidae includes three genera, Hexophthalma, Sicarius and Loxosceles. The three genera share a common characteristic in their venoms: the presence of Sphingomyelinases D (SMase D). SMases D are considered the toxins that cause the main pathological effects of the Loxosceles venom, that is, those responsible for the development of loxoscelism. Some studies have shown that Sicarius spiders have less or undetectable SMase D activity in their venoms, when compared to Hexophthalma. In contrast, our group has shown that Sicarius ornatus, a Brazilian species, has active SMase D and toxic potential to envenomation. However, few species of Sicarius have been characterized for their toxic potential. In order to contribute to a better understanding about the toxicity of Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from Sicarius tropicus and compare them with that from Loxosceles laeta, one of the most toxic Loxosceles venoms. We show here that S. tropicus venom presents active SMases D. However, regarding hemolysis development, it seems that these toxins in this species present different molecular mechanisms of action than that described for Loxosceles venoms, whereas it is similar to those present in bacteria containing SMase D. Besides, our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms' composition may play a role in the toxic potential of venoms from Sicarius species.
Collapse
Affiliation(s)
- Priscila Hess Lopes
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
- Finnish Museum of Natural History, University of Helsinki, 00014 Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo 05503-900, Brazil; (C.S.F.); (R.B.)
| | - Denise V. Tambourgi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (P.H.L.); (R.S.)
| |
Collapse
|
9
|
Brown Spiders' Phospholipases-D with Potential Therapeutic Applications: Functional Assessment of Mutant Isoforms. Biomedicines 2021; 9:biomedicines9030320. [PMID: 33801128 PMCID: PMC8004160 DOI: 10.3390/biomedicines9030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022] Open
Abstract
Phospholipases-D (PLDs) found in Loxosceles spiders' venoms are responsible for the dermonecrosis triggered by envenomation. PLDs can also induce other local and systemic effects, such as massive inflammatory response, edema, and hemolysis. Recombinant PLDs reproduce all of the deleterious effects induced by Loxosceles whole venoms. Herein, wild type and mutant PLDs of two species involved in accidents-L. gaucho and L. laeta-were recombinantly expressed and characterized. The mutations are related to amino acid residues relevant for catalysis (H12-H47), magnesium ion coordination (E32-D34) and binding to phospholipid substrates (Y228 and Y228-Y229-W230). Circular dichroism and structural data demonstrated that the mutant isoforms did not undergo significant structural changes. Immunoassays showed that mutant PLDs exhibit conserved epitopes and kept their antigenic properties despite the mutations. Both in vitro (sphingomyelinase activity and hemolysis) and in vivo (capillary permeability, dermonecrotic activity, and histopathological analysis) assays showed that the PLDs with mutations H12-H47, E32-D34, and Y228-Y229-W230 displayed only residual activities. Results indicate that these mutant toxins are suitable for use as antigens to obtain neutralizing antisera with enhanced properties since they will be based on the most deleterious toxins in the venom and without causing severe harmful effects to the animals in which these sera are produced.
Collapse
|
10
|
Miranda ALSD, Guerra-Duarte C, Lima SDA, Chávez-Olórtegui C, Soto-Blanco B. History, challenges and perspectives on Loxosceles (brown spiders) antivenom production in Brazil. Toxicon 2021; 192:40-45. [PMID: 33465358 DOI: 10.1016/j.toxicon.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 10/22/2022]
Abstract
Antivenom is the only effective therapy for treating any envenomation. Despite its obvious public health importance, the laborious process of procuring, distributing and controlling the quality of such immunobiologicals is being neglected. Brazil is fully self-sufficient in the production of antivenoms. Since the 1950s, Loxoscelism, a syndrome with an onset after a spider bite from specimens of the Loxosceles genus occurs, is considered a public health issue. The Brazilian history in developing antivenom therapy, its production hindrances, and other challenges are discussed in this paper, as well as some promising novelties that can improve production and processing of Loxosceles antivenom.
Collapse
Affiliation(s)
- Ana Luísa Soares de Miranda
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Sabrina de Almeida Lima
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Benito Soto-Blanco
- Departamento de Clínica e Cirurgia Veterinárias, Escola de Veterinária, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Lopes PH, Fukushima CS, Shoji R, Bertani R, Tambourgi DV. Searching for the toxic potential of Loxosceles amazonica and Loxosceles willianilsoni spiders' venoms. Toxicon 2020; 191:1-8. [PMID: 33347860 DOI: 10.1016/j.toxicon.2020.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/25/2020] [Accepted: 12/13/2020] [Indexed: 11/16/2022]
Abstract
The Loxosceles genus belongs to the Sicariidae family and it comprises species whose venom can cause accidents with potentially fatal consequences. We have previously shown that SMase D is the enzyme responsible for the main pathological effects of Loxosceles venom. Despite the severity of accidents with Loxosceles, few species are considered to be of medical importance. Little is known about the venom of non-synanthropic species that live in natural environments. To contribute to a better understanding about the venom's toxicity of Loxosceles genus, the aim of this study was to (i) characterize the toxic properties of Loxosceles amazonica from two different localities and a recent described cave species Loxosceles willianilsoni and (ii) compare these venoms with that from Loxosceles laeta, which is among the most toxic ones. We show here that both L. amazonica venoms (from the two studied locations) and L. willianilsoni presented SMase D activity similar to that exhibited by L. laeta venom. Although L. amazonica and L. willianilsoni venoms were able to induce complement dependent human erythrocytes lysis, they were not able to induce cell death of human keratinocytes, as promoted by L. laeta venom, in the concentrations tested. These results indicate that other species of Loxosceles, in addition to those classified as medically important, have toxic potential to cause accidents in humans, despite interspecific variations that denote possible less toxicity.
Collapse
Affiliation(s)
| | - Caroline Sayuri Fukushima
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil; Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Rosana Shoji
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | |
Collapse
|
12
|
Arán-Sekul T, Perčić-Sarmiento I, Valencia V, Olivero N, Rojas JM, Araya JE, Taucare-Ríos A, Catalán A. Toxicological Characterization and Phospholipase D Activity of the Venom of the Spider Sicarius thomisoides. Toxins (Basel) 2020; 12:E702. [PMID: 33171968 PMCID: PMC7694614 DOI: 10.3390/toxins12110702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/16/2022] Open
Abstract
Envenomation by Loxosceles spiders (Sicariidae family) has been thoroughly documented. However, little is known about the potential toxicity of members from the Sicarius genus. Only the venom of the Brazilian Sicarius ornatus spider has been toxicologically characterized. In Chile, the Sicarius thomisoides species is widely distributed in desert and semidesert environments, and it is not considered a dangerous spider for humans. This study aimed to characterize the potential toxicity of the Chilean S. thomisoides spider. To do so, specimens of S. thomisoides were captured in the Atacama Desert, the venom was extracted, and the protein concentration was determined. Additionally, the venoms were analyzed by electrophoresis and Western blotting using anti-recombinant L. laeta PLD1 serum. Phospholipase D enzymatic activity was assessed, and the hemolytic and cytotoxic effects were evaluated and compared with those of the L. laeta venom. The S. thomisoides venom was able to hydrolyze sphingomyelin as well as induce complement-dependent hemolysis and the loss of viability of skin fibroblasts with a dermonecrotic effect of the venom in rabbits. The venom of S. thomisoides showed intraspecific variations, with a similar protein pattern as that of L. laeta venom at 32-35 kDa, recognized by serum anti-LlPLD1. In this context, we can conclude that the venom of Sicarius thomisoides is similar to Loxosceles laeta in many aspects, and the dermonecrotic toxin present in their venom could cause severe harm to humans; thus, precautions are necessary to avoid exposure to their bite.
Collapse
Affiliation(s)
- Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Ivanka Perčić-Sarmiento
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Verónica Valencia
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Nelly Olivero
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - José M. Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Jorge E. Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| | - Andrés Taucare-Ríos
- Facultad de Ciencias, Universidad Arturo Prat, Iquique 1110939, Chile;
- Centro de Investigación en Medio Ambiente (CENIMA), Universidad Arturo Prat, Iquique 1110939, Chile
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1270300, Chile; (T.A.-S.); (I.P.-S.); (V.V.); (N.O.); (J.M.R.); (J.E.A.)
| |
Collapse
|
13
|
Ben Yekhlef R, Felicori L, Santos LH, F. B. Oliveira C, Fadhloun R, Torabi E, Shahbazzadeh D, Pooshang Bagheri K, Salgado Ferreira R, Borchani L. Antigenic and Substrate Preference Differences between Scorpion and Spider Dermonecrotic Toxins, a Comparative Investigation. Toxins (Basel) 2020; 12:E631. [PMID: 33019554 PMCID: PMC7601583 DOI: 10.3390/toxins12100631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/16/2022] Open
Abstract
The Hemiscorpius lepturus scorpion and brown spider Loxosceles intermedia represent a public health problem in Asia and America, respectively. Although distinct, these organisms contain similar toxins responsible for the principal clinical signs of envenomation. To better understand the properties of these toxins, we designed a study to compare recombinant Heminecrolysin (rHNC) and rLiD1, the major phospholipase D toxins of scorpion and spider venom, respectively. Using a competitive ELISA and a hemolytic inhibition test, we come to spot a cross reaction between scorpion and spider venoms along with an epitopic similarity between rHNC and rLiD1 associated with neutralizing antibodies. Results show that the ability of the rHNC to hydrolyze lysophosphatidylcholine (LPC) is equivalent to that of rLiD1 to hydrolyze sphingomyelin and vice-versa. rHNC exclusively catalyze transphosphatidylation of LPC producing cyclic phosphatidic acid (cPA). The in-silico analysis of hydrogen bonds between LPC and toxins provides a possible explanation for the higher transphosphatidylase activity of rHNC. Interestingly, for the first time, we reveal that lysophosphatidic acid (LPA) can be a substrate for both enzymes using cellular and enzymatic assays. The finding of the usage of LPA as a substrate as well as the formation of cPA as an end product could shed more light on the molecular basis of Hemiscorpius lepturus envenomation as well as on loxoscelism.
Collapse
Affiliation(s)
- Ramla Ben Yekhlef
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| | - Liza Felicori
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Lucianna Helene Santos
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Camila F. B. Oliveira
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Raoudha Fadhloun
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| | - Elham Torabi
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Delavar Shahbazzadeh
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutic Molecules Lab., Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 13169-43551, Iran; (E.T.); (D.S.); (K.P.B.)
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Universida de Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (L.F.); (L.H.S.); (C.F.B.O.); (R.S.F.)
| | - Lamia Borchani
- Laboratoire des Venins et Biomolécules Thérapeutiques LR16IPT08, Université de Tunis El Manar, Institut Pasteur de Tunis, Tunis 1002, Tunisia; (R.B.Y.); (R.F.)
| |
Collapse
|
14
|
Gremski LH, da Justa HC, da Silva TP, Polli NLC, Antunes BC, Minozzo JC, Wille ACM, Senff-Ribeiro A, Arni RK, Veiga SS. Forty Years of the Description of Brown Spider Venom Phospholipases-D. Toxins (Basel) 2020; 12:toxins12030164. [PMID: 32155765 PMCID: PMC7150852 DOI: 10.3390/toxins12030164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/24/2023] Open
Abstract
Spiders of the genus Loxosceles, popularly known as Brown spiders, are considered a serious public health issue, especially in regions of hot or temperate climates, such as parts of North and South America. Although the venoms of these arachnids are complex in molecular composition, often containing proteins with distinct biochemical characteristics, the literature has primarily described a family of toxins, the Phospholipases-D (PLDs), which are highly conserved in all Loxosceles species. PLDs trigger most of the major clinical symptoms of loxoscelism i.e., dermonecrosis, thrombocytopenia, hemolysis, and acute renal failure. The key role played by PLDs in the symptomatology of loxoscelism was first described 40 years ago, when researches purified a hemolytic toxin that cleaved sphingomyelin and generated choline, and was referred to as a Sphingomyelinase-D, which was subsequently changed to Phospholipase-D when it was demonstrated that the enzyme also cleaved other cellular phospholipids. In this review, we present the information gleaned over the last 40 years about PLDs from Loxosceles venoms especially with regard to the production and characterization of recombinant isoforms. The history of obtaining these toxins is discussed, as well as their molecular organization and mechanisms of interaction with their substrates. We will address cellular biology aspects of these toxins and how they can be used in the development of drugs to address inflammatory processes and loxoscelism. Present and future aspects of loxoscelism diagnosis will be discussed, as well as their biotechnological applications and actions expected for the future in this field.
Collapse
Affiliation(s)
- Luiza Helena Gremski
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Hanna Câmara da Justa
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Thaís Pereira da Silva
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Nayanne Louise Costacurta Polli
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Bruno César Antunes
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - João Carlos Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos (CPPI), Piraquara 83302-200, PR, Brazil;
| | - Ana Carolina Martins Wille
- Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil;
| | - Andrea Senff-Ribeiro
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
| | - Raghuvir Krishnaswamy Arni
- Centro Multiusuário de Inovação Biomolecular, Departamento de Física, Universidade Estadual Paulista (UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Silvio Sanches Veiga
- Departamento de Biologia Celular, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, PR, Brazil; (L.H.G.); (H.C.d.J.); (T.P.d.S.); (N.L.C.P.); (B.C.A.); (A.S.-R.)
- Correspondence: ; Tel.: +55-(41)-3361-1776
| |
Collapse
|
15
|
From taxonomy to molecular characterization of brown spider venom: An overview focused on Loxosceles similis. Toxicon 2020; 173:5-19. [DOI: 10.1016/j.toxicon.2019.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/31/2019] [Accepted: 11/11/2019] [Indexed: 11/22/2022]
|
16
|
Siqueira RAGB, Calabria PAL, Caporrino MC, Tavora BCLF, Barbaro KC, Faquim-Mauro EL, Della-Casa MS, Magalhães GS. When spider and snake get along: Fusion of a snake disintegrin with a spider phospholipase D to explore their synergistic effects on a tumor cell. Toxicon 2019; 168:40-48. [PMID: 31251993 DOI: 10.1016/j.toxicon.2019.06.225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 01/24/2023]
Abstract
Venoms of spiders and snakes contain toxins extremely active and, thus, provide a natural source for the development of new biotechnological tools. Among the diversity of toxins present in the venom of spiders from genus Loxosceles, the phospholipases D (PLDs) show high hydrolytic activity upon lysophosphatidylcholine (LPC) and sphingomyelin (SM), generating bioactive phospholipids such as cyclic phosphatidic acid (cPA). Since this mediator has been shown to play a major role in complex signaling pathways, including inhibition of tumor cells, the PLDs may hold the key to learn how toxins could be used for therapeutic purposes. However, the strong platelet aggregation of PLDs and their lack of selectivity impose a major limitation. On the other hand, disintegrins present in the venoms of Viperidae snakes are a potent inhibitor of platelet aggregation and possess high affinity and specificity to molecules called integrins that are highly expressed in some tumor cells, such as murine melanoma B16F10. Therefore, disintegrins might be suitable molecules to carry the PLDs to the malignant cells, so both toxins may work synergistically to eliminate these cells. Thus, in this work, a recombinant PLD from Loxosceles gaucho spider was recombinantly fused to a disintegrin from Echis carinatus snake to form a hybrid toxin called Rechistatin. This recombinant toxin was successfully expressed in bacteria, showed binding activity in B16F10 murine melanoma cells and exerted a synergistic cytotoxicity effect on these cells. Therefore, the approach presented in this work may represent a new strategy to explore new potential applications for spider PLDs.
Collapse
Affiliation(s)
- Raquel A G B Siqueira
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Paula A L Calabria
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Maria C Caporrino
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Bianca C L F Tavora
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Katia C Barbaro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Maisa S Della-Casa
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| | - Geraldo S Magalhães
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
17
|
Design and Production of a Recombinant Hybrid Toxin to Raise Protective Antibodies Against Loxosceles Spider Venom. Toxins (Basel) 2019; 11:toxins11020108. [PMID: 30759862 PMCID: PMC6409891 DOI: 10.3390/toxins11020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Human accidents with spiders of the genus Loxosceles are an important health problem affecting thousands of people worldwide. Patients evolve to severe local injuries and, in many cases, to systemic disturbances as acute renal failure, in which cases antivenoms are considered to be the most effective treatment. However, for antivenom production, the extraction of the venom used in the immunization process is laborious and the yield is very low. Thus, many groups have been exploring the use of recombinant Loxosceles toxins, particularly phospholipases D (PLDs), to produce the antivenom. Nonetheless, some important venom activities are not neutralized by anti-PLD antibodies. Astacin-like metalloproteases (ALMPs) are the second most expressed toxin acting on the extracellular matrix, indicating the importance of its inclusion in the antigen’s formulation to provide a better antivenom. Here we show the construction of a hybrid recombinant immunogen, called LgRec1ALP1, composed of hydrophilic regions of the PLD and the ALMP toxins from Loxosceles gaucho. Although the LgRec1ALP1 was expressed as inclusion bodies, it resulted in good yields and it was effective to produce neutralizing antibodies in mice. The antiserum neutralized fibrinogenolytic, platelet aggregation and dermonecrotic activities elicited by L. gaucho, L. laeta, and L. intermedia venoms, indicating that the hybrid recombinant antigen may be a valuable source for the production of protective antibodies against Loxosceles ssp. venoms. In addition, the hybrid recombinant toxin approach may enrich and expand the alternative antigens for antisera production for other venoms.
Collapse
|
18
|
Evolutionary dynamics of origin and loss in the deep history of phospholipase D toxin genes. BMC Evol Biol 2018; 18:194. [PMID: 30563447 PMCID: PMC6299612 DOI: 10.1186/s12862-018-1302-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/20/2018] [Indexed: 11/10/2022] Open
Abstract
Background Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. Results Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened βα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. Conclusions The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer. Electronic supplementary material The online version of this article (10.1186/s12862-018-1302-2) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Lima SDA, Guerra-Duarte C, Costal-Oliveira F, Mendes TM, Figueiredo LFM, Oliveira D, Machado de Avila RA, Ferrer VP, Trevisan-Silva D, Veiga SS, Minozzo JC, Kalapothakis E, Chávez-Olórtegui C. Recombinant Protein Containing B-Cell Epitopes of Different Loxosceles Spider Toxins Generates Neutralizing Antibodies in Immunized Rabbits. Front Immunol 2018; 9:653. [PMID: 29666624 PMCID: PMC5891610 DOI: 10.3389/fimmu.2018.00653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/16/2018] [Indexed: 01/20/2023] Open
Abstract
Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.
Collapse
Affiliation(s)
- Sabrina de Almeida Lima
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Clara Guerra-Duarte
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Fernanda Costal-Oliveira
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thais Melo Mendes
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luís F M Figueiredo
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daysiane Oliveira
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | - Ricardo A Machado de Avila
- Programa de Pós-Graduação em Ciências da Saúde - PPGCS, Universidade do Extremo Sul Catarinense - UNESC, Criciúma, Brazil
| | | | | | | | - João C Minozzo
- Centro de Produção e Pesquisa de Imunobiológicos - CPPI, Piraquara, Brazil
| | - Evanguedes Kalapothakis
- Departamentos de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carlos Chávez-Olórtegui
- Departamentos de Bioquímica-Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
20
|
Fukuda DA, Caporrino MC, Barbaro KC, Della-Casa MS, Faquim-Mauro EL, Magalhaes GS. Recombinant Phospholipase D from Loxosceles gaucho Binds to Platelets and Promotes Phosphatidylserine Exposure. Toxins (Basel) 2017; 9:toxins9060191. [PMID: 28608817 PMCID: PMC5488041 DOI: 10.3390/toxins9060191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 01/22/2023] Open
Abstract
Spider envenomation, from the genus Loxosceles, is frequently reported as a cause of necrotic lesions in humans around the world. Among the many components found in the venom of Loxosceles genus, phospholipases D (PLDs) are the most investigated, since they can cause a massive inflammatory response, dermonecrosis, hemolysis and platelet aggregation, among other effects. Even though the PLDs induce strong platelet aggregation, there are no studies showing how the PLDs interact with platelets to promote this effect. Since many agonists must interact with specific receptors on the platelet membrane to induce aggregation, it is reasonable to expect that the PLDs may, in some way, also interact with platelets, to induce this activity. Therefore, to address this possibility, in this work, a recombinant PLD, called LgRec1, from L. gaucho was fused to enhanced green fluorescent protein (EGFP) and used as a probe to detect the interaction of LgRec1 to platelets, by fluorescence-activated cell sorter (FACS) and confocal microscopy. The preservation of biological activities of this chimera toxin was also analyzed. As a first, the results show that LgRec1 does not require plasma components to bind to platelets, although these components are necessary to LgRec1 to induce platelet aggregation. Also, the attachment of LgRec1 to human platelets’ cell membranes suggests that the exposure of phosphatidylserine (PS) may act as a scaffold for coagulation factors. Therefore, the results add new information about the binding of Loxosceles PLDs to platelets, which may help unravel how these toxins promote platelet aggregation.
Collapse
Affiliation(s)
- Daniel A Fukuda
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Maria C Caporrino
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Katia C Barbaro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Maisa S Della-Casa
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Eliana L Faquim-Mauro
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Geraldo S Magalhaes
- Laboratory of Immunopathology, Butantan Institute, Av. Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil.
| |
Collapse
|
21
|
Rojas JM, Arán-Sekul T, Cortés E, Jaldín R, Ordenes K, Orrego PR, González J, Araya JE, Catalán A. Phospholipase D from Loxosceles laeta Spider Venom Induces IL-6, IL-8, CXCL1/GRO-α, and CCL2/MCP-1 Production in Human Skin Fibroblasts and Stimulates Monocytes Migration. Toxins (Basel) 2017; 9:toxins9040125. [PMID: 28379166 PMCID: PMC5408199 DOI: 10.3390/toxins9040125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 03/28/2017] [Indexed: 11/24/2022] Open
Abstract
Cutaneous loxoscelism envenomation by Loxosceles spiders is characterized by the development of a dermonecrotic lesion, strong inflammatory response, the production of pro-inflammatory mediators, and leukocyte migration to the bite site. The role of phospholipase D (PLD) from Loxosceles in the recruitment and migration of monocytes to the envenomation site has not yet been described. This study reports on the expression and production profiles of cytokines and chemokines in human skin fibroblasts treated with catalytically active and inactive recombinant PLDs from Loxosceles laeta (rLlPLD) and lipid inflammatory mediators ceramide 1-phosphate (C1P) and lysophosphatidic acid (LPA), and the evaluation of their roles in monocyte migration. Recombinant rLlPLD1 (active) and rLlPLD2 (inactive) isoforms induce interleukin (IL)-6, IL-8, CXCL1/GRO-α, and CCL2/monocyte chemoattractant protein-1 (MCP-1) expression and secretion in fibroblasts. Meanwhile, C1P and LPA only exhibited a minor effect on the expression and secretion of these cytokines and chemokines. Moreover, neutralization of both enzymes with anti-rLlPLD1 antibodies completely inhibited the secretion of these cytokines and chemokines. Importantly, conditioned media from fibroblasts, treated with rLlPLDs, stimulated the transmigration of THP-1 monocytes. Our data demonstrate the direct role of PLDs in chemotactic mediator synthesis for monocytes in human skin fibroblasts and indicate that inflammatory processes play an important role during loxoscelism.
Collapse
Affiliation(s)
- José M Rojas
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Tomás Arán-Sekul
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Emmanuel Cortés
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Romina Jaldín
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Kely Ordenes
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Patricio R Orrego
- Departamento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Jorge González
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Jorge E Araya
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| | - Alejandro Catalán
- Laboratorio de Parasitología Molecular, Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, CP 1270300, Chile.
| |
Collapse
|
22
|
Tetracycline Reduces Kidney Damage Induced by Loxosceles Spider Venom. Toxins (Basel) 2017; 9:toxins9030090. [PMID: 28257106 PMCID: PMC5371845 DOI: 10.3390/toxins9030090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022] Open
Abstract
Envenomation by Loxosceles spider can result in two clinical manifestations: cutaneous and systemic loxoscelism, the latter of which includes renal failure. Although incidence of renal failure is low, it is the main cause of death, occurring mainly in children. The sphingomyelinase D (SMase D) is the main component in Loxosceles spider venom responsible for local and systemic manifestations. This study aimed to investigate the toxicity of L. intermedia venom and SMase D on kidney cells, using both In vitro and in vivo models, and the possible involvement of endogenous metalloproteinases (MMP). Results demonstrated that venom and SMase D are able to cause death of human kidney cells by apoptosis, concomitant with activation and secretion of extracellular matrix metalloproteases, MMP-2 and MMP-9. Furthermore, cell death and MMP synthesis and secretion can be prevented by tetracycline. In a mouse model of systemic loxoscelism, Loxosceles venom-induced kidney failure was observed, which was abrogated by administration of tetracycline. These results indicate that MMPs may play an important role in Loxosceles venom-induced kidney injury and that tetracycline administration may be useful in the treatment of human systemic loxoscelism.
Collapse
|
23
|
Dantas AE, Carmo AO, Horta CCR, Leal HG, Oliveira-Mendes BBR, Martins APV, Chávez-Olórtegui C, Kalapothakis E. Description of Loxtox protein family and identification of a new group of Phospholipases D from Loxosceles similis venom gland. Toxicon 2016; 120:97-106. [PMID: 27496061 DOI: 10.1016/j.toxicon.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 07/28/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
Envenoming resulting from Loxosceles spider bites (loxoscelism) is a recognized public health problem in Brazil. However, the pathophysiology of loxoscelism caused by L. similis bites, which is widespread in Brazil, remains poorly understood. In the present work, the RNA sequencing (RNA-Seq - Next Generation sequencing - NGS) of the L. similis venom gland was performed to identify and analyze the sequences of the key component phospholipase D. The sequences were aligned based on their classical domains, and a phylogenetic tree was constructed. In the bioinformatics analysis, 23 complete sequences of phospholipase D proteins were found and classified as Loxtox proteins, as they contained the characteristic domains of phospholipase D: the active site, the Mg(2+)-binding domain, and the catalytic loop. Three phospholipase D sequences with non-canonical domains were also found in this work. They were analyzed separately and named PLDs from L. similis (PLD-Ls). This study is the first to characterize phospholipase D sequences from Loxosceles spiders by RNA-Seq. These results contribute new knowledge about the composition of L. similis venom, revealing novel tools that could be used for pharmacological, immunological, and biotechnological applications.
Collapse
Affiliation(s)
- Arthur Estanislau Dantas
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - A O Carmo
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carolina Campolina Rebello Horta
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil; Mestrado Profissional em Biotecnologia e Gestão da Inovação, Centro Universitário de Sete Lagoas, Sete Lagoas, 35701-242, Minas Gerais, Brazil.
| | - Hortênsia Gomes Leal
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | | | - Ana Paula Vimieiro Martins
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Evanguedes Kalapothakis
- Departamento de Biologia Geral, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| |
Collapse
|
24
|
Corrêa MA, Okamoto CK, Gonçalves-de-Andrade RM, van den Berg CW, Tambourgi DV. Sphingomyelinase D from Loxosceles laeta Venom Induces the Expression of MMP7 in Human Keratinocytes: Contribution to Dermonecrosis. PLoS One 2016; 11:e0153090. [PMID: 27078876 PMCID: PMC4831769 DOI: 10.1371/journal.pone.0153090] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/23/2016] [Indexed: 11/19/2022] Open
Abstract
Envenomation by Loxosceles spider is characterized by the development of dermonecrosis. In previous studies, we have demonstrated that increased expression/secretion of matrix metalloproteinases 2 and 9, induced by Loxosceles intermedia venom Class 2 SMases D (the main toxin in the spider venom), contribute to the development of cutaneous loxoscelism. In the present study we show that the more potent venom containing the Class 1 SMase D from Loxosceles laeta, in addition to increasing the expression/secretion of MMP2 and MMP9, also stimulates the expression of MMP7 (Matrilysin-1), which was associated with keratinocyte cell death. Tetracycline, a matrix metalloproteinase inhibitor, prevented cell death and reduced MMPs expression. Considering that L. laeta venom is more potent at inducing dermonecrosis than L. intermedia venom, our results suggest that MMP7 may play an important role in the severity of dermonecrosis induced by L. laeta spider venom SMase D. In addition, the inhibition of MMPs by e.g. tetracyclines may be considered for the treatment of the cutaneous loxoscelism.
Collapse
Affiliation(s)
- Mara A. Corrêa
- Immunochemistry Laboratory, Butantan Institute, São Paulo, Brazil
| | | | | | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
25
|
Pedroso A, Matioli SR, Murakami MT, Pidde-Queiroz G, Tambourgi DV. Adaptive evolution in the toxicity of a spider's venom enzymes. BMC Evol Biol 2015; 15:290. [PMID: 26690570 PMCID: PMC4687385 DOI: 10.1186/s12862-015-0561-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 12/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Sphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms present in these venoms can be structurally classified in two groups. Class I Sphingomyelinase D contains a single disulphide bridge and variable loop. Class II Sphingomyelinase D presents an additional intrachain disulphide bridge that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper we address the distribution of the structural classes of SMase D within and among species of spiders and also their evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural selection in their evolution combined to structural modelling of the affected sites. Results The majority of the Class I enzymes belong to the same clade, which indicates a recent evolution from a single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional bridge were found in Class I enzymes. Conclusions The evolution of Sphingomyelinase D has been driven by natural selection toward an increase in noxiousness, and this might help explain the toxic variation between classes. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0561-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aurélio Pedroso
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| | - Sergio Russo Matioli
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, S.P., Brazil.
| | - Mario Tyago Murakami
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, S.P., Brazil.
| | | | - Denise V Tambourgi
- Laboratório de Imunoquímica, Instituto Butantan, São Paulo, S.P., Brazil.
| |
Collapse
|
26
|
Tavares FL, Peichoto ME, Marcelino JR, Barbaro KC, Cirillo MC, Santoro ML, Sano-Martins IS. Platelet participation in the pathogenesis of dermonecrosis induced by Loxosceles gaucho venom. Hum Exp Toxicol 2015; 35:666-76. [PMID: 26253591 DOI: 10.1177/0960327115597983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Loxosceles gaucho spider venom induces in vitro platelet activation and marked thrombocytopenia in rabbits. Herein, we investigated the involvement of platelets in the development of the dermonecrosis induced by L. gaucho venom, using thrombocytopenic rabbits as a model. L. gaucho venom evoked a drop in platelet and neutrophil counts 4 h after venom injection. Ecchymotic areas at the site of venom inoculation were noticed as soon as 4 h in thrombocytopenic animals but not in animals with initial normal platelet counts. After 5 days, areas of scars in thrombocytopenic animals were also larger, evidencing the marked development of lesions in the condition of thrombocytopenia. Histologically, local hemorrhage, collagen fiber disorganization, and edema were more severe in thrombocytopenic animals. Leukocyte infiltration, predominantly due to polymorphonuclears, was observed in the presence or not of thrombocytopenia. Thrombus formation was demonstrated by immunohistochemistry at the microvasculature, and it occurred even under marked thrombocytopenia. Taken together, platelets have an important role in minimizing not only the hemorrhagic phenomena but also the inflammatory and wound-healing processes, suggesting that cutaneous loxoscelism may be aggravated under thrombocytopenic conditions.
Collapse
Affiliation(s)
- F L Tavares
- Centro Universitário Dinâmica das Cataratas, Foz do Iguaçu, Paraná, Brazil Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| | - M E Peichoto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) e Instituto Nacional de Medicina Tropical (INMeT), Puerto Iguazú, Misiones, Argentina
| | - J R Marcelino
- Divisão de Desenvolvimento Tecnológico e Produção, Instituto Butantan, São Paulo, Brazil
| | - K C Barbaro
- Laboratório de Imunopatologia, Instituto Butantan, São Paulo, Brazil
| | - M C Cirillo
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| | - M L Santoro
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| | - I S Sano-Martins
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
27
|
|
28
|
Catalán A, Cortés W, Muñoz C, Araya JE. Tryptophan and aspartic acid residues present in the glycerophosphoryl diester phosphodiesterase (GDPD) domain of the Loxosceles laeta phospholipase D are essential for substrate recognition. Toxicon 2014; 81:43-7. [PMID: 24472346 DOI: 10.1016/j.toxicon.2014.01.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/07/2013] [Accepted: 01/16/2014] [Indexed: 10/25/2022]
Abstract
It is known that the family of phospholipases D (PLD) from spiders of the genus Loxosceles, hydrolyze the substrates sphingomyelin and lisophosphatidylcholine, by their catalytic acid-base action which involves two histidines. However, little is known about the amino acids that participate on substrate recognition. In this study we identified highly conserved amino acids of the glycerophosphoryl diester phosphodiesterase (GDPD) domain of recombinant LlPLD1, which interact with the substrate sphingomyelin. The mutation of W256 to serine and D259 to glycine decreased significantly the sphingomyelinase and hemolytic activity when compared to wild type LlPLD1. The interaction of LlPLD1 with sphingomyelin was also strongly reduced in both mutants LlPLD1-W256S and LlPLD1-D259G. The results show the importance of these residues in the interaction of the protein with its substrate sphingomyelin in cell membranes.
Collapse
Affiliation(s)
- Alejandro Catalán
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 170, Antofagasta, Chile.
| | - William Cortés
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 170, Antofagasta, Chile
| | - Christian Muñoz
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 170, Antofagasta, Chile
| | - Jorge E Araya
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 170, Antofagasta, Chile
| |
Collapse
|
29
|
Zobel-Thropp PA, Correa SM, Garb JE, Binford GJ. Spit and venom from scytodes spiders: a diverse and distinct cocktail. J Proteome Res 2013; 13:817-35. [PMID: 24303891 DOI: 10.1021/pr400875s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Spiders from the family Scytodidae have a unique prey capturing technique: they spit a zig-zagged silken glue to tether prey to a surface. Effectiveness of this sticky mixture is based on a combination of contraction and adhesion, trapping prey until the spider immobilizes it by envenomation and then feeds. We identify components expressed in Scytodes thoracica venom glands using combined transcriptomic and proteomic analyses. These include homologues of toxic proteins astacin metalloproteases and potentially toxic proteins including venom allergen, longistatin, and translationally controlled tumor protein (TCTP). We classify 19 distinct groups of candidate peptide toxins; 13 of these were detected in the venom, making up 35% of the proteome. Six have significant similarity to toxins from spider species spanning mygalomorph and nonhaplogyne araneomorph lineages, suggesting their expression in venom is phylogenetically widespread. Twelve peptide toxin groups have homologues in venom gland transcriptomes of other haplogynes. Of the transcripts, approximately 50% encode glycine-rich peptides that may contribute to sticky fibers in Scytodes spit. Fifty-one percent of the identified venom proteome is a family of proteins that is homologous to sequences from Drosophila sp. and Latrodectus hesperus with uncharacterized function. Characterization of these components holds promise for discovering new functional activity.
Collapse
Affiliation(s)
- Pamela A Zobel-Thropp
- Department of Biology, Lewis & Clark College , Portland, Oregon 97219, United States
| | | | | | | |
Collapse
|
30
|
Phospholipase D toxins of brown spider venom convert lysophosphatidylcholine and sphingomyelin to cyclic phosphates. PLoS One 2013; 8:e72372. [PMID: 24009677 PMCID: PMC3756997 DOI: 10.1371/journal.pone.0072372] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/15/2013] [Indexed: 11/19/2022] Open
Abstract
Venoms of brown spiders in the genus Loxosceles contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These toxins cleave the substrates sphingomyelin and lysophosphatidylcholine in mammalian tissues, releasing the choline head group. The other products of substrate cleavage have previously been reported to be monoester phospholipids, which would result from substrate hydrolysis. Using (31)P NMR and mass spectrometry we demonstrate that recombinant toxins, as well as whole venoms from diverse Loxosceles species, exclusively catalyze transphosphatidylation rather than hydrolysis, forming cyclic phosphate products from both major substrates. Cyclic phosphates have vastly different biological properties from their monoester counterparts, and they may be relevant to the pathology of brown spider envenomation.
Collapse
|
31
|
Lopes PH, Bertani R, Gonçalves-de-Andrade RM, Nagahama RH, van den Berg CW, Tambourgi DV. Venom of the Brazilian spider Sicarius ornatus (Araneae, Sicariidae) contains active sphingomyelinase D: potential for toxicity after envenomation. PLoS Negl Trop Dis 2013; 7:e2394. [PMID: 23991242 PMCID: PMC3749972 DOI: 10.1371/journal.pntd.0002394] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 07/17/2013] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The spider family Sicariidae includes two genera, Sicarius and Loxosceles. Bites by Sicarius are uncommon in humans and, in Brazil, a single report is known of a 17-year old man bitten by a Sicarius species that developed a necrotic lesion similar to that caused by Loxosceles. Envenomation by Loxosceles spiders can result in dermonecrosis and severe ulceration. Sicarius and Loxosceles spider venoms share a common characteristic, i.e., the presence of Sphingomyelinases D (SMase D). We have previously shown that Loxosceles SMase D is the enzyme responsible for the main pathological effects of the venom. Recently, it was demonstrated that Sicarius species from Africa, like Loxosceles spiders from the Americas, present high venom SMase D activity. However, despite the presence of SMase D like proteins in venoms of several New World Sicarius species, they had reduced or no detectable SMase D activity. In order to contribute to a better understanding about the toxicity of New World Sicarius venoms, the aim of this study was to characterize the toxic properties of male and female venoms from the Brazilian Sicarius ornatus spider and compare these with venoms from Loxosceles species of medical importance in Brazil. METHODOLOGY/PRINCIPAL FINDINGS SDS-PAGE analysis showed variations in the composition of Loxosceles spp. and Sicarius ornatus venoms. Differences in the electrophoretic profiles of male and female venoms were also observed, indicating a possible intraspecific variation in the composition of the venom of Sicarius spider. The major component in all tested venoms had a Mr of 32-35 kDa, which was recognized by antiserum raised against Loxosceles SMases D. Moreover, male and female Sicarius ornatus spiders' venoms were able to hydrolyze sphingomyelin, thus showing an enzymatic activity similar to that determined for Loxosceles venoms. Sicarius ornatus venoms, as well as Loxosceles venoms, were able to render erythrocytes susceptible to lysis by autologous serum and to induce a significant loss of human keratinocyte cell viability; the female Sicarius ornatus venom was more efficient than male. CONCLUSION We show here, for the first time, that the Brazilian Sicarius ornatus spider contains active Sphingomyelinase D and is able to cause haemolysis and keratinocyte cell death similar to the South American Loxosceles species, harmful effects that are associated with the presence of active SMases D. These results may suggest that envenomation by this Sicarius spider has the potential to cause similar pathological events as that caused by Loxosceles envenomation. Our results also suggest that, in addition to the interspecific differences, intraspecific variations in the venoms composition may play a role in the toxic potential of the New World Sicarius venoms species.
Collapse
Affiliation(s)
| | - Rogério Bertani
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | | | - Roberto H. Nagahama
- Special Laboratory of Ecology and Evolution, Butantan Institute, São Paulo, Brazil
| | - Carmen W. van den Berg
- Institute of Molecular and Experimental Medicine, School of Medicine, Cardiff, United Kingdom
| | | |
Collapse
|
32
|
Modulation of membrane phospholipids, the cytosolic calcium influx and cell proliferation following treatment of B16-F10 cells with recombinant phospholipase-D from Loxosceles intermedia (brown spider) venom. Toxicon 2013; 67:17-30. [DOI: 10.1016/j.toxicon.2013.01.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/24/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
|
33
|
The pathological effects of Heminecrolysin, a dermonecrotic toxin from Hemiscorpius lepturus scorpion venom are mediated through its lysophospholipase D activity. Toxicon 2013; 68:30-9. [DOI: 10.1016/j.toxicon.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/23/2012] [Accepted: 03/13/2013] [Indexed: 11/22/2022]
|
34
|
Sphingomyelinase D in sicariid spider venom is a potent insecticidal toxin. Toxicon 2012; 60:265-71. [PMID: 22561243 DOI: 10.1016/j.toxicon.2012.04.350] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 02/06/2023]
Abstract
Spider venoms have evolved over hundreds of millions of years with a primary role of immobilizing prey. Sphingomyelinase D (SMase D) and homologs in the SicTox gene family are the most abundantly expressed toxic protein in venoms of Loxosceles and Sicarius spiders (Sicariidae). While SMase D is well known to cause dermonecrotic lesions in mammals, little work has investigated the bioactivity of this enzyme in its presumed natural role of immobilizing insect prey. We expressed and purified recombinant SMase D from Loxosceles arizonica (Laz-SMase D) and compared its enzymatic and insecticidal activity to that of crude venom. SMase D enzymatic activities of purified protein and crude venom from the same species were indistinguishable. In addition, SMase D and crude venom have comparable and high potency in immobilization assays on crickets. These data indicate that SMase D is a potent insecticidal toxin, the role for which it presumably evolved.
Collapse
|
35
|
Stock RP, Brewer J, Wagner K, Ramos-Cerrillo B, Duelund L, Jernshøj KD, Olsen LF, Bagatolli LA. Sphingomyelinase D activity in model membranes: structural effects of in situ generation of ceramide-1-phosphate. PLoS One 2012; 7:e36003. [PMID: 22558302 PMCID: PMC3338491 DOI: 10.1371/journal.pone.0036003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 03/29/2012] [Indexed: 12/11/2022] Open
Abstract
The toxicity of Loxosceles spider venom has been attributed to a rare enzyme, sphingomyelinase D, which transforms sphingomyelin to ceramide-1-phosphate. The bases of its inflammatory and dermonecrotic activity, however, remain unclear. In this work the effects of ceramide-1-phosphate on model membranes were studied both by in situ generation of this lipid using a recombinant sphingomyelinase D from the spider Loxosceles laeta and by pre-mixing it with sphingomyelin and cholesterol. The systems of choice were large unilamellar vesicles for bulk studies (enzyme kinetics, fluorescence spectroscopy and dynamic light scattering) and giant unilamellar vesicles for fluorescence microscopy examination using a variety of fluorescent probes. The influence of membrane lateral structure on the kinetics of enzyme activity and the consequences of enzyme activity on the structure of target membranes containing sphingomyelin were examined. The findings indicate that: 1) ceramide-1-phosphate (particularly lauroyl ceramide-1-phosphate) can be incorporated into sphingomyelin bilayers in a concentration-dependent manner and generates coexistence of liquid disordered/solid ordered domains, 2) the activity of sphingomyelinase D is clearly influenced by the supramolecular organization of its substrate in membranes and, 3) in situ ceramide-1-phosphate generation by enzymatic activity profoundly alters the lateral structure and morphology of the target membranes.
Collapse
Affiliation(s)
- Roberto P. Stock
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Jonathan Brewer
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Kerstin Wagner
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Blanca Ramos-Cerrillo
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lars Duelund
- MEMPHYS, Department of Physics, Chemistry and Pharmacy, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Kit Drescher Jernshøj
- Cellular Complexity Group (CelCom), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lars Folke Olsen
- Cellular Complexity Group (CelCom), Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Luis A. Bagatolli
- Membrane Biophysics and Biophotonics Group/MEMPHYS, Department of Biochemistry and Molecular Biology, Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
36
|
Chaves-Moreira D, Souza FN, Fogaça RTH, Mangili OC, Gremski W, Senff-Ribeiro A, Chaim OM, Veiga SS. The relationship between calcium and the metabolism of plasma membrane phospholipids in hemolysis induced by brown spider venom phospholipase-D toxin. J Cell Biochem 2011; 112:2529-40. [PMID: 21590705 DOI: 10.1002/jcb.23177] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Brown spider venom phospholipase-D belongs to a family of toxins characterized as potent bioactive agents. These toxins have been involved in numerous aspects of cell pathophysiology including inflammatory response, platelet aggregation, endothelial cell hyperactivation, renal disorders, and hemolysis. The molecular mechanism by which these toxins cause hemolysis is under investigation; literature data have suggested that enzyme catalysis is necessary for the biological activities triggered by the toxin. However, the way by which phospholipase-D activity is directly related with human hemolysis has not been determined. To evaluate how brown spider venom phospholipase-D activity causes hemolysis, we examined the impact of recombinant phospholipase-D on human red blood cells. Using six different purified recombinant phospholipase-D molecules obtained from a cDNA venom gland library, we demonstrated that there is a correlation of hemolytic effect and phospholipase-D activity. Studying recombinant phospholipase-D, a potent hemolytic and phospholipase-D recombinant toxin (LiRecDT1), we determined that the toxin degrades synthetic sphingomyelin (SM), lysophosphatidylcholine (LPC), and lyso-platelet-activating factor. Additionally, we determined that the toxin degrades phospholipids in a detergent extract of human erythrocytes, as well as phospholipids from ghosts of human red blood cells. The products of the degradation of synthetic SM and LPC following recombinant phospholipase-D treatments caused hemolysis of human erythrocytes. This hemolysis, dependent on products of metabolism of phospholipids, is also dependent on calcium ion concentration because the percentage of hemolysis increased with an increase in the dose of calcium in the medium. Recombinant phospholipase-D treatment of human erythrocytes stimulated an influx of calcium into the cells that was detected by a calcium-sensitive fluorescent probe (Fluo-4). This calcium influx was shown to be channel-mediated rather than leak-promoted because the influx was inhibited by L-type calcium channel inhibitors but not by a T-type calcium channel blocker, sodium channel inhibitor or a specific inhibitor of calcium activated potassium channels. Finally, this inhibition of hemolysis following recombinant phospholipase-D treatment occurred in a concentration-dependent manner in the presence of L-type calcium channel blockers such as nifedipine and verapamil. The data provided herein, suggest that the brown spider venom phospholipase-D-induced hemolysis of human erythrocytes is dependent on the metabolism of membrane phospholipids, such as SM and LPC, generating bioactive products that stimulate a calcium influx into red blood cells mediated by the L-type channel.
Collapse
|
37
|
Protection against the toxic effects of Loxosceles intermedia spider venom elicited by mimotope peptides. Vaccine 2011; 29:7992-8001. [PMID: 21872636 DOI: 10.1016/j.vaccine.2011.08.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/10/2011] [Accepted: 08/12/2011] [Indexed: 11/22/2022]
Abstract
The venom of Loxosceles intermedia (Li) spiders is responsible for cutaneous lesions and other clinical manifestations. We previously reported that the monoclonal antibody LimAb7 can neutralize the dermonecrotic activity of crude Li venom. In this study, we observed that this antibody recognizes several proteins from the venom dermonecrotic fraction (DNF), including LiD1. Identifying the epitope of such a neutralizing antibody could help designing immunogens for producing therapeutic sera or vaccination approaches. To this aim, two sets of 25- and 15-mer overlapping peptides that cover the complete amino acid sequence of LiD1 were synthesized using the SPOT technique. None of them was recognized by LimAb7, suggesting that the epitope is discontinuous. Then, the screening of four peptide phage-display libraries yielded four possible epitope mimics that, however, did not show any obvious similarity with the LiD1 sequence. These mimotopes, together with a 3D model of LiD1, were used to predict with the MIMOP bioinformatic tool the putative epitope region (residues C197, Y224, W225, T226, D228, K229, R230, T232 and Y248 of LiD1) recognized by LimAb7. This analysis and the results of alanine-scanning experiments highlighted a few residues (such as W225 and D228) that are found in the active site of different SMases D and that may be important for LiD1 enzymatic activity. Finally, the only mimotope NCNKNDHLFACW that interacts with LimAb7 by SPOT and its analog NSNKNDHLFASW were used as immunogens in rabbits. The resulting antibodies could neutralize some of the biological effects induced by crude Li venom, demonstrating a mimotope-induced protection against L. intermedia venom.
Collapse
|
38
|
Catalán A, Cortes W, Sagua H, González J, Araya JE. Two new phospholipase D isoforms of Loxosceles laeta: cloning, heterologous expression, functional characterization, and potential biotechnological application. J Biochem Mol Toxicol 2011; 25:393-403. [PMID: 21692149 DOI: 10.1002/jbt.20399] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/30/2011] [Accepted: 05/19/2011] [Indexed: 11/08/2022]
Abstract
Toxin phospholipases-D present in the venom of Loxosceles spiders is the principal responsible for local and systemic effects observed in the loxoscelism. In this study, we describe the cloning, expression, functional evaluation, and potential biotechnological application of cDNAs, which code for two new phospholipase D isoforms, LIPLD1 and LIPLD2, of the spider Loxosceles laeta. The recombinant protein rLIPLD1 had hydrolytic activity on sphingomyelin and in vitro hemolytic activity on human red blood cells, whereas rLIPLD2 was inactive. The purified recombinant proteins and the venom are recognized by polyclonal anti-rLIPLD1 and rLIPLD2 sera produced in animals and conferred immunoprotection against the venom. These new isoforms reinforce the importance of the multigene family of phospholipases-D present in Loxosceles spiders. A highly immunogenic inactive isoform such as rLIPLD2 raises important expectation for its use as a potential immunogenic inducer of the immunoprotective response to the toxic action of the venom of Loxosceles laeta.
Collapse
Affiliation(s)
- A Catalán
- Laboratory of Molecular Parasitology, Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, P.O. Box 160, Antofagasta, Chile
| | | | | | | | | |
Collapse
|
39
|
de Giuseppe PO, Ullah A, Silva DT, Gremski LH, Wille ACM, Chaves Moreira D, Ribeiro AS, Chaim OM, Murakami MT, Veiga SS, Arni RK. Structure of a novel class II phospholipase D: catalytic cleft is modified by a disulphide bridge. Biochem Biophys Res Commun 2011; 409:622-7. [PMID: 21616057 DOI: 10.1016/j.bbrc.2011.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 05/10/2011] [Indexed: 11/18/2022]
Abstract
Phospholipases D (PLDs) are principally responsible for the local and systemic effects of Loxosceles envenomation including dermonecrosis and hemolysis. Despite their clinical relevance in loxoscelism, to date, only the SMase I from Loxosceles laeta, a class I member, has been structurally characterized. The crystal structure of a class II member from Loxosceles intermedia venom has been determined at 1.7Å resolution. Structural comparison to the class I member showed that the presence of an additional disulphide bridge which links the catalytic loop to the flexible loop significantly changes the volume and shape of the catalytic cleft. An examination of the crystal structures of PLD homologues in the presence of low molecular weight compounds at their active sites suggests the existence of a ligand-dependent rotamer conformation of the highly conserved residue Trp230 (equivalent to Trp192 in the glycerophosphodiester phosphodiesterase from Thermus thermophofilus, PDB code: 1VD6) indicating its role in substrate binding in both enzymes. Sequence and structural analyses suggest that the reduced sphingomyelinase activity observed in some class IIb PLDs is probably due to point mutations which lead to a different substrate preference.
Collapse
Affiliation(s)
- Priscila Oliveira de Giuseppe
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, 13083-970 SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Gaver-Wainwright MM, Zack RS, Foradori MJ, Lavine LC. Misdiagnosis of spider bites: bacterial associates, mechanical pathogen transfer, and hemolytic potential of venom from the hobo spider, Tegenaria agrestis (Araneae: Agelenidae). JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:382-388. [PMID: 21485377 DOI: 10.1603/me09224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The European spider Tegenaria agrestis (Walckenaer) (hobo spider) has been implicated as a spider of medical importance in the Pacific Northwest since its introduction in the late 1980s. Studies have indicated that the hobo spider causes necrotic tissue lesions through hemolytic venom or through the transfer of pathogenic bacteria introduced by its bite. Bacterial infections are often diagnosed as spider bites, in particular the pathogenic bacteria methicillin-resistant Staphylococcus aureus (MRSA). This study examines three aspects of the potential medical importance of hobo spiders in part of its introduced range, Washington State. First, the bacterial diversity of the spider was surveyed using a polymerase chain reaction-based assay to determine whether the spider carries any pathogenic bacteria. Second, an experiment was conducted to determine the ability of the spiders to transfer MRSA. Third, the venom was evaluated to assess the hemolytic activity. We found 10 genera of ubiquitous bacteria on the exterior surface of the spiders. In addition, none of the spiders exposed to MRSA transferred this pathogen. Finally, the hemolytic venom assay corroborates previous studies that found hobo spider venom was not deleterious to vertebrate red blood cells.
Collapse
|
41
|
Phospholipase-D activity and inflammatory response induced by brown spider dermonecrotic toxin: Endothelial cell membrane phospholipids as targets for toxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:84-96. [DOI: 10.1016/j.bbalip.2010.11.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 11/17/2022]
|
42
|
Tavares FL, Peichoto ME, Rangel DDM, Barbaro KC, Cirillo MC, Santoro ML, Sano-Martins IS. Loxosceles gaucho spider venom and its sphingomyelinase fraction trigger the main functions of human and rabbit platelets. Hum Exp Toxicol 2011; 30:1567-74. [PMID: 21247992 DOI: 10.1177/0960327110393761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Loxosceles venoms can promote severe local and systemic damages. We have previously reported that Loxosceles gaucho spider venom causes a severe early thrombocytopenia in rabbits. Herein, we investigated the in vitro effects of this venom and its sphingomyelinase fraction on the main functions of platelets. Whole venom and its fraction induced aggregation of both human and rabbit platelets. Aggregation was dependent of plasma component(s) but independent of venom-induced lysophosphatidic acid generation. There was no increase in the levels of lactate dehydrogenase during platelet aggregation, ruling out the possibility of platelet lysis. The increased expression of ligand-induced binding site 1 (LIBS1) induced by L. gaucho venom and its sphingomyelinase fraction, as well as of P-selectin by the whole venom, evidenced the activation state of both human and rabbit platelets. Adhesion assays showed an irregular response when platelets were exposed to the whole venom, whereas the sphingomyelinase fraction induced a dose-dependent increase in the platelet adhesion to collagen. These findings evidence that L. gaucho venom and its sphingomyelinase fraction trigger adhesion, activation, and aggregation of both human and rabbit platelets. Thus, this work justifies the use of rabbits to investigate Loxosceles venom-induced platelet disturbances, and it also supports research on the role of platelets in the pathogenesis of loxoscelism.
Collapse
Affiliation(s)
- Flávio L Tavares
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo-SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
43
|
Tambourgi DV, Gonçalves-de-Andrade RM, van den Berg CW. Loxoscelism: From basic research to the proposal of new therapies. Toxicon 2010; 56:1113-9. [DOI: 10.1016/j.toxicon.2010.01.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/26/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
44
|
|
45
|
Zobel-Thropp PA, Bodner MR, Binford GJ. Comparative analyses of venoms from American and African Sicarius spiders that differ in sphingomyelinase D activity. Toxicon 2010; 55:1274-82. [DOI: 10.1016/j.toxicon.2010.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 01/14/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
|
46
|
Vassilevski AA, Kozlov SA, Grishin EV. Molecular diversity of spider venom. BIOCHEMISTRY (MOSCOW) 2010; 74:1505-34. [PMID: 20210706 DOI: 10.1134/s0006297909130069] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spider venom, a factor that has played a decisive role in the evolution of one of the most successful groups of living organisms, is reviewed. Unique molecular diversity of venom components including substances of variable structure (from simple low molecular weight compounds to large multidomain proteins) with different functions is considered. Special attention is given to the structure, properties, and biosynthesis of toxins of polypeptide nature.
Collapse
Affiliation(s)
- A A Vassilevski
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
47
|
Chaves-Moreira D, Chaim OM, Sade YB, Paludo KS, Gremski LH, Donatti L, de Moura J, Mangili OC, Gremski W, da Silveira RB, Senff-Ribeiro A, Veiga SS. Identification of a direct hemolytic effect dependent on the catalytic activity induced by phospholipase-D (dermonecrotic toxin) from brown spider venom. J Cell Biochem 2009; 107:655-66. [DOI: 10.1002/jcb.22148] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
de Santi Ferrara GI, Fernandes-Pedrosa MDF, Junqueira-de-Azevedo IDLM, Gonçalves-de-Andrade RM, Portaro FCV, Manzoni-de-Almeida D, Murakami MT, Arni RK, van den Berg CW, Ho PL, Tambourgi DV. SMase II, a new sphingomyelinase D from Loxosceles laeta venom gland: molecular cloning, expression, function and structural analysis. Toxicon 2009; 53:743-53. [PMID: 19249326 DOI: 10.1016/j.toxicon.2009.02.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/07/2009] [Accepted: 02/11/2009] [Indexed: 11/25/2022]
Abstract
Sphingomyelinase D (SMase D) present in the venoms of Loxosceles spiders is the principal component responsible for local and systemic effects observed in the loxoscelism. By using "expressed sequencing tag", it was possible to identify, in a L. laeta venom gland library, clones containing inserts coding for proteins with similarity to SMase D. One of these clones was expressed and the recombinant protein compared with the previously characterized SMase I from L. laeta, in terms of their biological, biochemical and structural properties. The new recombinant protein, SMase II, possesses all the biological properties ascribed to the whole venom and SMase I. SMase II shares 40% and 77% sequence similarity with SMase I and Lb3, respectively; the latter, a SMase D isoform from L. boneti, catalytically inactive. Molecular modeling and molecular dynamics simulations were employed to understand the structural basis, especially the presence of an additional disulfide bridge, in an attempt to account for the observed differences in SMases D activity.
Collapse
|
49
|
Binford GJ, Bodner MR, Cordes MHJ, Baldwin KL, Rynerson MR, Burns SN, Zobel-Thropp PA. Molecular evolution, functional variation, and proposed nomenclature of the gene family that includes sphingomyelinase D in sicariid spider venoms. Mol Biol Evol 2008; 26:547-66. [PMID: 19042943 DOI: 10.1093/molbev/msn274] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The venom enzyme sphingomyelinase D (SMase D) in the spider family Sicariidae (brown or fiddleback spiders [Loxosceles] and six-eyed sand spiders [Sicarius]) causes dermonecrosis in mammals. SMase D is in a gene family with multiple venom-expressed members that vary in functional specificity. We analyze molecular evolution of this family and variation in SMase D activity among crude venoms using a data set that represents the phylogenetic breadth of Loxosceles and Sicarius. We isolated a total of 190 nonredundant nucleotide sequences encoding 168 nonredundant amino acid sequences of SMase D homologs from 21 species. Bayesian phylogenies support two major clades that we name alpha and beta, within which we define seven and three subclades, respectively. Sequences in the alpha clade are exclusively from New World Loxosceles and Loxosceles rufescens and include published genes for which expression products have SMase D and dermonecrotic activity. The beta clade includes paralogs from New World Loxosceles that have no, or reduced, SMase D and no dermonecrotic activity and also paralogs from Sicarius and African Loxosceles of unknown activity. Gene duplications are frequent, consistent with a birth-and-death model, and there is evidence of purifying selection with episodic positive directional selection. Despite having venom-expressed SMase D homologs, venoms from New World Sicarius have reduced, or no, detectable SMase D activity, and Loxosceles in the Southern African spinulosa group have low SMase D activity. Sequence conservation mapping shows >98% conservation of proposed catalytic residues of the active site and around a plug motif at the opposite end of the TIM barrel, but alpha and beta clades differ in conservation of key residues surrounding the apparent substrate binding pocket. Based on these combined results, we propose an inclusive nomenclature for the gene family, renaming it SicTox, and discuss emerging patterns of functional diversification.
Collapse
Affiliation(s)
- Greta J Binford
- Department of Biology, Lewis and Clark College, Portland, OR, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Abdulkader RC, Barbaro KC, Barros EJG, Burdmann EA. Nephrotoxicity of Insect and Spider Venoms in Latin America. Semin Nephrol 2008; 28:373-382. [DOI: 10.1016/j.semnephrol.2008.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|