1
|
García-Valdivia M, Quiñones-Vico MI, Ortega-Llamas L, Fernández-González A, Ubago-Rodríguez A, Sanabria-de la Torre R, Arias-Santiago S. Cytotoxicity, Epidermal Barrier Function and Cytokine Evaluation after Antiseptic Treatment in Bioengineered Autologous Skin Substitute. Biomedicines 2022; 10:biomedicines10061453. [PMID: 35740473 PMCID: PMC9220084 DOI: 10.3390/biomedicines10061453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/14/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Bioengineered autologous skin substitutes (BASS) technology is an emerging field for skin burn therapy. However, further studies on BASS characterization, viability against standard procedures for wound healing, and protocol optimization are necessary for the improvement of BASS technology for clinical use. The aim of this study is to evaluate the effect of common antiseptics for clinical use in BASS, focusing on cell viability, inflammatory cytokine pattern, and epithelium and skin barrier integrity, in order to establish the most adequate treatment for wound care after BASS grafting. Human keratinocytes (hKT) and dermal fibroblasts (hDF) were isolated from foreskin samples and integrated into hyaluronic acid-based BASS. The following antiseptics were applied every 48 h: ethanol (70%), chlorhexidine digluconate (1%), sodium hypochlorite (0.02%), povidone iodine (100 mg/mL), and polyhexanide (0.1%), during a follow-up of 16 days. Sodium hypochlorite was the only treatment that showed a high cell viability percentage throughout the evaluation time compared to other antiseptic treatments, as well as a similar cytokine secretion pattern as control BASS. No significant differences were found regarding epidermal barrier function. These findings point towards sodium hypochlorite being the least aggressive antiseptic treatment for BASS post-transplantation wound care.
Collapse
Affiliation(s)
- Marta García-Valdivia
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
| | - Laura Ortega-Llamas
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Correspondence:
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
| | - Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.G.-V.); (M.I.Q.-V.); (L.O.-L.); (A.U.-R.); (R.S.-d.l.T.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18014 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
2
|
Sanabria-de la Torre R, Fernández-González A, Quiñones-Vico MI, Montero-Vilchez T, Arias-Santiago S. Bioengineered Skin Intended as In Vitro Model for Pharmacosmetics, Skin Disease Study and Environmental Skin Impact Analysis. Biomedicines 2020; 8:E464. [PMID: 33142704 PMCID: PMC7694072 DOI: 10.3390/biomedicines8110464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023] Open
Abstract
This review aims to be an update of Bioengineered Artificial Skin Substitutes (BASS) applications. At the first moment, they were created as an attempt to replace native skin grafts transplantation. Nowadays, these in vitro models have been increasing and widening their application areas, becoming important tools for research. This study is focus on the ability to design in vitro BASS which have been demonstrated to be appropriate to develop new products in the cosmetic and pharmacology industry. Allowing to go deeper into the skin disease research, and to analyze the effects provoked by environmental stressful agents. The importance of BASS to replace animal experimentation is also highlighted. Furthermore, the BASS validation parameters approved by the OECD (Organisation for Economic Co-operation and Development) are also analyzed. This report presents an overview of the skin models applicable to skin research along with their design methods. Finally, the potential and limitations of the currently available BASS to supply the demands for disease modeling and pharmaceutical screening are discussed.
Collapse
Affiliation(s)
- Raquel Sanabria-de la Torre
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
| | - Trinidad Montero-Vilchez
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (R.S.-d.l.T.); (M.I.Q.-V.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain;
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Sevilla, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
- Dermatology Department, School of Medicine, Granada University, 18016 Granada, Spain
| |
Collapse
|
3
|
Kong S, Shen C, Luo Y, Meng Q. Synthesis and Characterization of Fluorescent Surfactants for Studying the Penetration of Cosmetic Surfactants on the Skin. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuai Kong
- College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Chong Shen
- College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Yulu Luo
- College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
| | - Qin Meng
- College of Chemical and Biological EngineeringZhejiang University Hangzhou People's Republic of China
- Key Laboratory of Biomass Chemical EngineeringZhejiang University Hangzhou People's Republic of China
| |
Collapse
|
4
|
Tjin MS, Chua AWC, Tryggvason K. Chemically defined and xenogeneic-free culture method for human epidermal keratinocytes on laminin-based matrices. Nat Protoc 2020; 15:694-711. [DOI: 10.1038/s41596-019-0270-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
|
5
|
Moriyama M, Sahara S, Zaiki K, Ueno A, Nakaoji K, Hamada K, Ozawa T, Tsuruta D, Hayakawa T, Moriyama H. Adipose-derived stromal/stem cells improve epidermal homeostasis. Sci Rep 2019; 9:18371. [PMID: 31797970 PMCID: PMC6892794 DOI: 10.1038/s41598-019-54797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Wound healing is regulated by complex interactions between the keratinocytes and other cell types including fibroblasts. Recently, adipose-derived mesenchymal stromal/stem cells (ASCs) have been reported to influence wound healing positively via paracrine involvement. However, their roles in keratinocytes are still obscure. Therefore, investigation of the precise effects of ASCs on keratinocytes in an in vitro culture system is required. Our recent data indicate that the epidermal equivalents became thicker on a collagen vitrigel membrane co-cultured with human ASCs (hASCs). Co-culturing the human primary epidermal keratinocytes (HPEK) with hASCs on a collagen vitrigel membrane enhanced their abilities for cell proliferation and adhesion to the membrane but suppressed their differentiation suggesting that hASCs could maintain the undifferentiated status of HPEK. Contrarily, the effects of co-culture using polyethylene terephthalate or polycarbonate membranes for HPEK were completely opposite. These differences may depend on the protein permeability and/or structure of the membrane. Taken together, our data demonstrate that hASCs could be used as a substitute for fibroblasts in skin wound repair, aesthetic medicine, or tissue engineering. It is also important to note that a co-culture system using the collagen vitrigel membrane allows better understanding of the interactions between the keratinocytes and ASCs.
Collapse
Affiliation(s)
- Mariko Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shunya Sahara
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Kaori Zaiki
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Ayumi Ueno
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Koichi Nakaoji
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Kazuhiko Hamada
- Research and Development Division, PIAS Corporation, Kobe, Hyogo, 651-2241, Japan
| | - Toshiyuki Ozawa
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Abeno-Ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Abeno-Ku, Osaka, 545-8585, Japan
| | - Takao Hayakawa
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hiroyuki Moriyama
- Pharmaceutical Research and Technology Institute, Kindai University, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
6
|
Meng Q, Li Y, Shen C. Antibacterial Coatings of Biomedical Surfaces by Polydextran Aldehyde/Polyethylenimine Nanofibers. ACS APPLIED BIO MATERIALS 2018; 2:562-569. [DOI: 10.1021/acsabm.8b00708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Qin Meng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310027, P.R. China
| | - Yingjun Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310027, P.R. China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou Zhejiang 310027, P.R. China
| |
Collapse
|
7
|
Meng Q, Shen C. Construction of low contracted 3D skin equivalents by genipin cross-linking. Exp Dermatol 2018; 27:1098-1103. [PMID: 29957867 DOI: 10.1111/exd.13725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/14/2018] [Accepted: 06/26/2018] [Indexed: 02/06/2023]
Abstract
Continuous contraction of 3D skin equivalents in construction and use restricts their applications in clinical and pharmaceutical practices. So far, no effective method has been developed to inhibit such contraction. Hence, low cytotoxic cross-linkers, 1-ethyl-3-3-dimethylaminopropylcarbodiimide hydrochloride (EDC) and genipin, are investigated to reduce the contraction in this study. As found, both genipin and EDC at 0.2 and 0.4 mmol/L are nontoxic to collagen-entrapped fibroblasts and upregulate the extracellular matrix expression of fibroblasts in cross-linked collagen. Particularly, collagen cross-linking by intermediate concentrations of genipin, specifically 0.4 mmol/L, greatly reduces the contraction of 3D skin equivalents from 87% to 28% (n = 9, P < 0.05), while the collagen after EDC cross-linking at 0.4 mmol/L still presented severe contraction of 64% over a 21-day follow-up period. The inhibited contraction might relate to the increased gel stiffness and slowed collagen degradation. Moreover, the genipin cross-linking does not impair the formation of epidermal layers and improves the epidermal-dermal junction of skin equivalents as well. In this regard, genipin cross-linking might facilitate the applications of 3D skin equivalents in clinical practices and pharmacology testing.
Collapse
Affiliation(s)
- Qin Meng
- Key Laboratory of Biomass Chemical Engineering, Zhejiang University, Hangzhou, China.,College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chong Shen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Lange J, Weil F, Riegler C, Groeber F, Rebhan S, Kurdyn S, Alb M, Kneitz H, Gelbrich G, Walles H, Mielke S. Interactions of donor sources and media influence the histo-morphological quality of full-thickness skin models. Biotechnol J 2016; 11:1352-1361. [PMID: 27599760 DOI: 10.1002/biot.201600360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/25/2022]
Abstract
Human artificial skin models are increasingly employed as non-animal test platforms for research and medical purposes. However, the overall histopathological quality of such models may vary significantly. Therefore, the effects of manufacturing protocols and donor sources on the quality of skin models built-up from fibroblasts and keratinocytes derived from juvenile foreskins is studied. Histo-morphological parameters such as epidermal thickness, number of epidermal cell layers, dermal thickness, dermo-epidermal adhesion and absence of cellular nuclei in the corneal layer are obtained and scored accordingly. In total, 144 full-thickness skin models derived from 16 different donors, built-up in triplicates using three different culture conditions were successfully generated. In univariate analysis both media and donor age affected the quality of skin models significantly. Both parameters remained statistically significant in multivariate analyses. Performing general linear model analyses we could show that individual medium-donor-interactions influence the quality. These observations suggest that the optimal choice of media may differ from donor to donor and coincides with findings where significant inter-individual variations of growth rates in keratinocytes and fibroblasts have been described. Thus, the consideration of individual medium-donor-interactions may improve the overall quality of human organ models thereby forming a reproducible test platform for sophisticated clinical research.
Collapse
Affiliation(s)
- Julia Lange
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Frederik Weil
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Christoph Riegler
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Florian Groeber
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Silke Rebhan
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Szymon Kurdyn
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Miriam Alb
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany
| | - Hermann Kneitz
- Department of Dermatology, Section for Histopathology, Würzburg University Medical Center, Würzburg, Germany
| | - Götz Gelbrich
- Institute of Clinical Epidemiology and Biometry, University of Würzburg, Würzburg, Germany
| | - Heike Walles
- Department of Tissue Engineering and Regenerative Medicine, Würzburg University Medical Center, Würzburg, Germany; Translational Center Würzburg, Regenerative Therapies in Oncology and Musculoskeletal Disease, Würzburg Branch of the Fraunhofer-Institute Interfacial Engineering and Biotechnology, IGB, Würzburg, Germany
| | - Stephan Mielke
- Department of Internal Medicine II, Center for Allogeneic Stem Cell Transplantation, Würzburg University Medical Center, Würzburg, Germany.
| |
Collapse
|
9
|
Dickhuth J, Koerdt S, Kriegebaum U, Linz C, Müller-Richter UD, Ristow O, Kübler AC, Reuther T. In vitro study on proliferation kinetics of oral mucosal keratinocytes. Oral Surg Oral Med Oral Pathol Oral Radiol 2015. [PMID: 26210170 DOI: 10.1016/j.oooo.2015.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The limited availability of autogenous oral mucosa in oral and maxillofacial surgery for intraoral grafting after trauma or tumor resection can be balanced by the use of tissue-engineered oral mucosa. However, the use of tissue engineering in autologous grafts is still subject to further research. The aim of this study was to evaluate conditions that lead to a rapid proliferation of vital and highly proliferative oral keratinocytes, which can be used in tissue engineering and consequently help improve surgical management of intraoral mucosal defects. MATERIAL AND METHODS Human oral keratinocytes were obtained from oral mucosal specimens and cultivated. According to their affinity to β1-integrin, epidermal stem cell populations were isolated by using collagen type IV and laminin-coated dishes. Cell proliferation and cell viability were measured by using the CASY cell counter, WST-1 assays, and real-time cell analysis (xCELLigence). RESULTS Measurements on cell proliferation (CASY cell counter) and cell viability (WST-1 assay) showed the characteristic proliferation stages of in vitro-cultivated cells. No statistically significant differences could be monitored (P > .05). Real-time cell analysis, as a more direct and precise technique, revealed a steeper growth curve of adherent cells and therefore generally higher proliferation kinetics compared with cells derived from the supernate. CONCLUSION Data from real-time cell analysis showed an increased proliferation of adherent cells compared with those derived from the supernate. These results demonstrate the increase of the proliferation capacity by cultivation of keratinocytes derived by adhesion to extracellular matrix proteins.
Collapse
Affiliation(s)
- Janike Dickhuth
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Steffen Koerdt
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany; Department of Oral and Maxillofacial Surgery, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany.
| | - Ulrike Kriegebaum
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Christian Linz
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Urs D Müller-Richter
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Oliver Ristow
- Department of Oral and Maxillofacial Surgery, University of Heidelberg, Im Neuenheimer Feld 400, D-69120 Heidelberg, Germany
| | - Alexander C Kübler
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Tobias Reuther
- Department of Oral and Maxillofacial Plastic Surgery, University of Wuerzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| |
Collapse
|
10
|
Chan CC, Fan SMY, Wang WH, Mu YF, Lin SJ. A Two-Stepped Culture Method for Efficient Production of Trichogenic Keratinocytes. Tissue Eng Part C Methods 2015; 21:1070-9. [PMID: 25951188 DOI: 10.1089/ten.tec.2015.0033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Successful hair follicle (HF) neogenesis in adult life depends on the existence of both capable dermal cells and competent epidermal keratinocytes that recapitulate embryonic organogenesis through epithelial-mesenchymal interaction. In tissue engineering, the maintenance of trichogenic potential of adult epidermal cells, while expanding them remains a challenging issue. We found that although HF outer root sheath keratinocytes could be expanded for more than 100 passages as clonogenic cells without losing the proliferative potential with a 3T3J2 fibroblast feeder layer, these keratinocytes were unable to form new HFs when combined with inductive HF dermal papilla (DP) cells. However, when these high-passage keratinocytes were cocultured with HF DP cells for 4 days in vitro, they regained the trichogenic ability to form new HFs after transplantation. We found that the short-term coculture with DP cells enhanced both Wnt/β-catenin signaling, a signaling cascade key to HF development, and upregulated the expression of HF-specific genes, including K6, K16, K17, and K75, in keratinocytes, indicating that these cells were poised toward a HF fate. Hence, efficient production of trichogenic keratinocytes can be obtained by a two-stepped procedure with initial cell expansion with a 3T3J2 fibroblast feeder followed by short-term coculture with DP cells.
Collapse
Affiliation(s)
- Chih-Chieh Chan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Wei-Hung Wang
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan
| | - Yi-Fen Mu
- 2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| | - Sung-Jan Lin
- 1 Institute of Biomedical Engineering, National Taiwan University , Taipei, Taiwan .,2 Department of Dermatology, National Taiwan University Hospital and College of Medicine , Taipei, Taiwan
| |
Collapse
|
11
|
Strudwick XL, Lang DL, Smith LE, Cowin AJ. Combination of low calcium with Y-27632 rock inhibitor increases the proliferative capacity, expansion potential and lifespan of primary human keratinocytes while retaining their capacity to differentiate into stratified epidermis in a 3D skin model. PLoS One 2015; 10:e0123651. [PMID: 25874771 PMCID: PMC4395222 DOI: 10.1371/journal.pone.0123651] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Human keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn) were cultured in low calcium, (0.07mM) media, +/-10μM Y-27632 ROCK inhibitor (HEKn-CaY). mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14), Keratin 10 (K10) and Involucrin (Inv) assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE) model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10μM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07mM Calcium and 10μM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to differentiate and form a stratified epithelium.
Collapse
Affiliation(s)
- Xanthe L. Strudwick
- Regenerative Medicine, Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Debbie L. Lang
- Regenerative Medicine, Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Louise E. Smith
- Regenerative Medicine, Mawson Institute, University of South Australia, Mawson Lakes, Australia
| | - Allison J. Cowin
- Regenerative Medicine, Mawson Institute, University of South Australia, Mawson Lakes, Australia
- * E-mail:
| |
Collapse
|
12
|
EXP CLIN TRANSPLANTExp Clin Transplant 2015; 13. [DOI: 10.6002/ect.mesot2014.p216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
13
|
Zare S, Zarei MA, Ghadimi T, Fathi F, Jalili A, Hakhamaneshi MS. Isolation, cultivation and transfection of human keratinocytes. Cell Biol Int 2014; 38:444-51. [DOI: 10.1002/cbin.10218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 11/08/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Sona Zare
- Department of Biological Sciences and Biotechnology; Faculty of Science, University of Kurdistan; Sanandaj Iran
| | - Mohammad Ali Zarei
- Department of Biological Sciences and Biotechnology; Faculty of Science, University of Kurdistan; Sanandaj Iran
| | - Tayyeb Ghadimi
- Department of Surgery, Faculty of Medicine; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Fardin Fathi
- Cellular and Molecular Research Center; Kurdistan University of Medical Sciences; Sanandaj Iran
| | - Ali Jalili
- Cellular and Molecular Research Center; Kurdistan University of Medical Sciences; Sanandaj Iran
| | | |
Collapse
|
14
|
Compound screening and transcriptional profiling in human primary keratinocytes: a brief guideline. Methods Mol Biol 2013. [PMID: 24281872 DOI: 10.1007/7651_2013_50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cultured human primary keratinocytes constitute suitable targets for in-depth evaluation of the proliferative or differentiative potential of compounds. There is, however, a double-edged and intrinsically inseparable transition from biological activity to cytotoxicity for any agent under investigation. For that reason, we here first of all present an established protocol for the isolation, cultivation, and analysis of primary foreskin-derived keratinocytes. Taking calcitriol as example, we then reveal how a straightforward photometric cell culture assay can be exploited to assess overall cell viability in response to increasing compound doses. With predetermined cellular cytotoxicity at hand, physiologically meaningful (sub-toxic) compound concentrations for subsequent stimulation of cells can be readily selected, and, in doing so, differentially expressed genes with biological significance can be reliably identified.
Collapse
|
15
|
Silvers CR, Williams K, Salamone L, Huang J, Jordan CT, Zhou H, Palapattu GS. A novel in vitro assay of tumor-initiating cells in xenograft prostate tumors. Prostate 2010; 70:1379-87. [PMID: 20687210 PMCID: PMC3808877 DOI: 10.1002/pros.21171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND The field of prostate cancer has been stymied by the difficulty of cultivating patient-derived samples in the laboratory. In order to help circumvent this challenge, we sought to develop an in vitro assay of human prostate cancer initiation employing a prostate-associated mesenchymal feeder layer. METHODS Rat seminal vesicle mesenchyme (rSVM) harvested from male neonatal rats was plated in 12-well plates and then irradiated with 30 Gy after approximately 75% confluence. Single-cell suspensions of two human non-adherent prostate cancer xenograft lines (TRPC and LAPC9) were then plated on irradiated rSVM. At 3-4 weeks, three-dimensional solid structures, termed glandoids, were harvested and analyzed or transplanted singly into the renal capsule of immunodeficient mice. Animals were assessed for tumor formation 8-12 weeks after engraftment. Finally, clonality assays were performed to determine whether glandoids usually arise from a single cell and are therefore clonal in origin. RESULTS Glandoids form with reliable frequency (1/ approximately 300 plated cells), are constituted by relevant cell types (CK8+, CK5-, PSA+) and after implantation into immunocompromised mice, give rise to tumors that recapitulate original xenograft histology and cell composition; defining a glandoid as a tumor-initiating unit. In addition, assessment of red fluorescent protein (RFP)-labeled glandoids revealed either all red or non-red structures, with few areas of fusion, suggesting glandoids are clonal in origin. CONCLUSIONS The above assay describes an adjunct technique to readily cultivate cells from prostate cancer xenografts in vitro and as such provides a platform on which tumor-initiating cell studies and high-throughput drug discovery may be performed.
Collapse
Affiliation(s)
| | - Karin Williams
- Department of Urology, University of Rochester School of Medicine, Rochester, New York
| | - Linda Salamone
- Department of Urology, University of Rochester School of Medicine, Rochester, New York
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Craig T. Jordan
- Department of Medicine, University of Rochester School of Medicine, Rochester, New York
| | - Haijun Zhou
- Department of Urology, The Methodist Hospital Research Institute, Houston, Texas
| | - Ganesh S. Palapattu
- Department of Urology, University of Rochester School of Medicine, Rochester, New York
- Correspondence to: Dr. Ganesh S. Palapattu, MD, Chief of Urologic Oncology, Department of Urology, The Methodist Hospital Research Institute, 6560 Fannin, Suite 2100, Houston, TX 77030.
| |
Collapse
|
16
|
Xiong X, Jia J, He S, Zhao Y. Cryopreserved lip mucosa tissue derived keratinocytes can fabricate tissue engineered palatal mucosa equivalent. J Biomed Mater Res B Appl Biomater 2010; 94:165-70. [PMID: 20524191 DOI: 10.1002/jbm.b.31637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clinical application of tissue engineered palatal mucosa is hampered by unavailability of suitable oral keratinocytes as seeding cells. The aim of this study is to fabricate a tissue engineered palatal mucosa equivalent from the oral keratinocytes which cultured from cryopreserved lip mucosa tissues. Abundant lip mucosa tissues during cheilorrhaphy were firstly cryopreserved in liquid nitrogen for four to six months, and then recovered to culture oral keratinocytes for the fabrication of oral mucosa equivalent. In the control groups, oral keratinocytes cultured from fresh lip mucosa, fresh palate mucosa, and cryopreserved palate mucosa were used to fabricate oral mucosa equivalents. Attachment rate of the oral keratinocytes derived from cryopreserved lip mucosa was lower than that of the keratinocytes from fresh lip mucosa samples, however, the cell cycle distribution of oral keratinocytes cultured from all four groups of mucosa samples were similar. Histologically, the fabricated mucosa equivalents from these four groups had four- to six epithelial layers, the basal cells were cubic and the outmost cells were flatten with narrow nuclei which paralleled to the surface of the dermal matrix. Additionally, Ki-67 positive stained cells were mainly located in the basal layer of the epithelium of these equivalents. These characteristics disclosed that the oral mucosa equivalent cultured from the cryopreserved lip mucosa tissue was not different with the equivalents from other groups and similar to the native palate mucosa tissue. It suggested that the cryopreserved lip mucosa tissues could be used for the construction of palatal mucosal equivalent for clinical application.
Collapse
Affiliation(s)
- Xuepeng Xiong
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, People's Republic of China
| | | | | | | |
Collapse
|
17
|
Isolation and cultivation of human keratinocytes from skin or plucked hair for the generation of induced pluripotent stem cells. Nat Protoc 2010; 5:371-82. [PMID: 20134422 DOI: 10.1038/nprot.2009.241] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The ease of generating induced pluripotent stem (iPS) cells, and possibly their properties after reprogramming, depends on the origin of the somatic cell starting population. Reprogramming of keratinocytes is both faster and more efficient compared with fibroblasts, although more care is required when isolating, culturing and infecting these cells. In this study, we describe detailed protocols using both feeder-dependent and defined serum- and feeder-free conditions for culturing human keratinocytes from foreskin samples and punch biopsies, as well as how to isolate keratinocytes from plucked hair. We further describe culture techniques and approaches to efficiently infect and reprogram these cells for the purpose of generating iPS cells. The procedure of deriving keratinocytes takes 10-14 d, whereas reprogramming and the appearance of iPS cell colonies that can be isolated and established requires another 3-4 weeks.
Collapse
|
18
|
Ito A, Jitsunobu H, Kawabe Y, Ijima H, Kamihira M. Magnetic Separation of Cells in Coculture Systems Using Magnetite Cationic Liposomes. Tissue Eng Part C Methods 2009; 15:413-23. [DOI: 10.1089/ten.tec.2008.0496] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Akira Ito
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Hideaki Jitsunobu
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Yoshinori Kawabe
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
19
|
Controlling α-SMA expression in adult human pancreatic stem cells by soluble factors. Ann Anat 2009; 191:116-25. [DOI: 10.1016/j.aanat.2008.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 07/11/2008] [Accepted: 07/18/2008] [Indexed: 01/21/2023]
|
20
|
LITTLE M, GAWKRODGER D, NEIL SMAC. Differentiation of human keratinocytes is associated with a progressive loss of interferon γ-induced intercellular adhesion molecule-1 expression. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1996.d01-927.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Acker JP. Biopreservation of cells and engineered tissues. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2005; 103:157-87. [PMID: 17195463 DOI: 10.1007/b137204] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The development of effective preservation and long-term storage techniques is a critical requirement for the successful clinical and commercial application of emerging cell-based technologies. Biopreservation is the process of preserving the integrity and functionality of cells, tissues and organs held outside the native environment for extended storage times. Biopreservation can be categorized into four different areas on the basis of the techniques used to achieve biological stability and to ensure a viable state following long-term storage. These include in vitro culture, hypothermic storage, cryopreservation and desiccation. In this chapter, an overview of these four techniques is presented with an emphasis on the recent developments that have been made using these technologies for the biopreservation of cells and engineered tissues.
Collapse
Affiliation(s)
- Jason P Acker
- Department of Laboratory Medicine and Pathology, University of Alberta, 8249-114 Street, Edmonton, AB T6G 2R8, Canada.
| |
Collapse
|
22
|
Watson A, Baker C, Bailey J, Fray T, Markwell P. A high yield method for growing primary canine keratinocytes. Vet J 2004; 168:81-6. [PMID: 15158212 DOI: 10.1016/s1090-0233(03)00117-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2003] [Indexed: 10/27/2022]
Abstract
From a small amount of starting material, a large quantity of canine keratinocytes can be generated for experimental purposes using a refined method of explant culture to initiate the growth of basal cells with a high proliferative potential. The dividing capacity of cultures was promoted by a system selecting clonogenic cells onto an i3T3 feeder layer in combination with carefully monitoring cell morphology and passaging to select out excessive numbers of differentiated keratinocytes. Levels of contaminating dermal fibroblasts, which if left unchecked will overgrow keratinocytes, were kept to a minimum by a combination of careful explant micro-dissection to remove dermis, eliminating explants with signs of fibroblast growth as well as using cholera toxin, EGF and i3T3 feeder layers. The advantage of the method described is that it does not rely on the provision of large quantities of starting material thereby reducing the need for repeated tissue sampling, and passage numbers of five or six can be routinely achieved. This technique can therefore be useful to experimenters who require a regular and reliable source of cells for their studies.
Collapse
Affiliation(s)
- Adrian Watson
- Waltham Centre for Pet Nutrition, Freeby Lane, Waltham-on-the-Wolds, Leicestershire LE14 4RT, UK.
| | | | | | | | | |
Collapse
|
23
|
Akan M, Yildirim S, Misirlioğlu A, Ulusoy G, Aköz T, Avci G. An alternative method to minimize pain in the split-thickness skin graft donor site. Plast Reconstr Surg 2003; 111:2243-9. [PMID: 12794466 DOI: 10.1097/01.prs.0000060087.93322.2f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the art of plastic surgery, the reconstruction of tissue defects to obtain cosmetic and functional recovery is the major concern. Skin grafting is the most frequently used procedure for reconstructing defects of various size and anatomical localizations. On the other hand, donor-site problems associated with this invaluable procedure are inevitable. Various methods are used in the postoperative management of the partial-thickness donor site created during the harvest of a split-thickness skin graft. Each technique has the potential for complications of fluid loss, excessive pain, prolonged period of healing and immobilization, hypertrophic scarring, and undesirable pigmentation. Donor-site pain is probably the most disturbing complication in the early postoperative period. The aim of this article is to point out the significance of donor-site pain, which has not been emphasized thoroughly in the literature, and to introduce flap skin as a potential graft donor site for patients in whom reduction of donor-site morbidity is of primary concern. The principal goal of the technique described in this article is to eliminate donor-site pain by harvesting the graft from the flap that is insensate after the elevation. In 15 patients, the overlying skin of the flap that had been used for reconstructive purposes was used as the donor site (group I). In the remaining 23 patients, the posterolateral thigh was used as the donor site (group II). Donor-site discomfort was recorded during the first 8 days postoperatively using a visual analogue scale. To analyze the data, we used the Friedman test, Dunn's multiple comparison test, and Mann-Whitney U test. It was observed that the visual analogue scale of both of the groups showed a significant decrease within days (group I, p < 0.0001; group II, p < 0.0001). The mean pain scores were significantly lower in group I than in group II (p < 0.0001). When donor-site pain is of primary concern, this procedure provides uneventful and comfortable healing while avoiding postoperative pain in the donor site. For that reason, this technique might be used in appropriate cases to minimize donor-site pain.
Collapse
Affiliation(s)
- Mithat Akan
- Department of Plastic and Reconstructive Surgery, Dr. Lüfti Kirdar Kartal Education and Research Hospital, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
24
|
Crameri FM, Varvayanis M, Cromie BR, Rekers WL, Suter MM. Serum-free conditions for the long term growth and differentiation of neoplastic canine keratinocytes. Exp Dermatol 1997; 6:147-55. [PMID: 9226138 DOI: 10.1111/j.1600-0625.1997.tb00162.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long term cultures of canine keratinocytes have been established but culture conditions currently used require supplementation with fetal bovine serum (FBS). Unfortunately, FBS contains many non-defined components which may interfere with in vitro studies. This study describes the development of defined serum-free culture conditions for neoplastic canine keratinocytes grown submerged and at the air-liquid interface. Two commercially available serum-free media established for human epidermal cells failed to support canine keratinocyte growth. In contrast, a defined serum-free medium developed in our laboratory successfully supported proliferation of neoplastic canine keratinocytes for at least 40 passages. Cells showed a slower growth rate, but reached similar final densities and were morphologically identical to those cultured in FBS. Grown at the air-liquid interface, the cells reached the same degree of differentiation as in vivo stratified squamous epithelium and cultures grown in FBS. These results demonstrate that canine keratinocytes require different serum-free growth conditions than human cells. Neoplastic canine keratinocyte cultures, grown under serum-free culture conditions, provide an ideal in vitro system for comparative studies of keratinocyte biology and pathogenesis of various dermatoses.
Collapse
Affiliation(s)
- F M Crameri
- Department of Pathology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
25
|
Paddle-Ledinek JE, Cruickshank DG, Masterton JP. Skin replacement by cultured keratinocyte grafts: an Australian experience. Burns 1997; 23:204-11. [PMID: 9232279 DOI: 10.1016/s0305-4179(96)00123-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have prepared and supplied cultured epithelial autografts (CEA) to treat 37 burn patients around Australia. The method is a modification of the original methods of Green et al. The confluent 75 cm2 secondary cultures, obtained after less than 3 weeks, are 8-10 cell layers thick after detachment and have a shrinkage of only 7-14 per cent. The patients had full-thickness skin loss to 55-95 per cent of their total body surface area (TBSA) or deep partial-thickness burns to 3-50 per cent TBSA owing to scald injuries. In the case of full-thickness burns the CEA take in the 17 surviving patients for which data was available averaged 53 per cent (range 10-100 per cent). The take for seven patients with partial-thickness burns averaged 73 per cent (range 25-100 per cent). The variability and early graft failure is attributed largely to the presence of infection. The durability and percentage take of CEA grafts is discussed together with future developments in the replacement of both dermis and epidermis in burns injury.
Collapse
Affiliation(s)
- J E Paddle-Ledinek
- Department of Surgery, Monash University Medical School, Melbourne, Australia
| | | | | |
Collapse
|
26
|
LITTLE M, GAWKRODGER D, NEIL SMAC. Differentiation of human keratinocytes is associated with a progressive loss of interferon γ-induced intercellular adhesion molecule-1 expression. Br J Dermatol 1996. [DOI: 10.1111/j.1365-2133.1996.tb03602.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Rouabhia M. Permanent skin replacement using chimeric epithelial cultured sheets comprising xenogeneic and syngeneic keratinocytes. Transplantation 1996; 61:1290-300. [PMID: 8629286 DOI: 10.1097/00007890-199605150-00002] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study was undertaken to evaluate the possibility of permanent skin replacement using chimeric xenogeneic-syngeneic graftable sheets previously obtained in vitro. Newborn (<3 days old) BALB/c and human keratinocytes were isolated and cocultured in different ratios as follows: 50% BALB/c to 50% human and 25% BALB/c to 75% human keratinocytes. Four to 5 days after culture and prior to their grafting, all chimeric sheets contained both cell types in ratios similar to those used to seed the initial chimeric cultures. Fourteen and 30 days after chimeric sheet grafting onto BALB/c mice dorsum, the newly generated cutaneous tissue showed a histologically well-organized epidermis presenting basal and suprabasal cell layers. Cutaneous cells in these structures secreted laminin and type IV collagen in blood vessels, and at ground level of the dermoepidermal junction there were signs of physiologically active skin. Cell phenotyping revealed the presence of only syngeneic keratinocytes, whereas xenogeneic cells were passively eliminated without a total rejection of the chimeric implant. This selective and passive elimination of xenogeneic keratinocytes went through cellular and humoral immunity activation. Data suggest that this chimeric culture method can be used for cutaneous therapies such as large congenital nevi, skin ulcers, and extensively burned skin. Indeed, for large third-degree wounded skin treatment, this culture method may shorten the time (4-5 weeks) needed for cell growth and graftable sheet production. Moreover, since the ultimate aim in allogeneic and xenogeneic transplantation is to achieve an immunological acceptance and tolerance to these foreign tissues, the chimeric culture approach may provide ways to lighten tolerance phenomena on cutaneous tissue.
Collapse
Affiliation(s)
- M Rouabhia
- Laboratoire de Recherche des Grands Brûlés/LOEX, Hôpital du Saint-Sacrement, Chemin Sainte-Foy, Québec, Canada
| |
Collapse
|
28
|
Affiliation(s)
- T J Phillips
- Department of Dermatology, Boston University School of Medicine, MA 02118
| |
Collapse
|
29
|
Germain L, Rouabhia M, Guignard R, Carrier L, Bouvard V, Auger FA. Improvement of human keratinocyte isolation and culture using thermolysin. Burns 1993; 19:99-104. [PMID: 8471157 DOI: 10.1016/0305-4179(93)90028-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We propose a modification of the conventional keratinocyte isolation method which has shown a significant improvement in the purity, colony forming efficiency (c.f.e.) and growth capacity of the isolated epidermal cell population. This method utilized thermolysin since it selectively digests the dermo-epidermal junction. Following separation from the dermis, the epidermis was digested with trypsin to obtain a single cell suspension. Compared with the conventional procedure, this isolation method was shorter and resulted in (i) cells displaying a higher colony forming efficiency, (ii) cells reaching confluence 1-3 days earlier, (iii) cells not contaminated by fibroblasts, (iv) a cell population containing all the basal layer keratinocytes. These cells were suitable for the establishment of primary cultures and could be subcultured. Such cell populations should be advantageous in studies of epithelial-mesenchymal interactions in which keratinocyte populations, free of fibroblasts, are desirable. In the treatment of extensively burned patients using cultured epidermal sheets, the main problem remains the time required for their production. Thus, the absence of fibroblast overgrowth of the keratinocyte cultures and the significantly reduced time to obtain confluent cultures and epidermal sheets with our method have very important implications for the treatment of large burn wounds.
Collapse
Affiliation(s)
- L Germain
- Département de chirurgie, Université Laval, Sainte-Foy, Québec, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Nanchahal J, Ward CM. New grafts for old? A review of alternatives to autologous skin. BRITISH JOURNAL OF PLASTIC SURGERY 1992; 45:354-63. [PMID: 1638287 DOI: 10.1016/0007-1226(92)90004-h] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immediate resurfacing of skin defects is a challenging prospect, especially in patients with extensive full-thickness burns. Currently, split-thickness autografts offer the best form of wound coverage, but limited donor sites and their associated morbidity have prompted the search for alternatives. The application of allogeneic skin is restricted by availability and the risk of transmission of infection, whilst synthetic skin substitutes are simply expensive dressings. The problems of limited expansion may be overcome by culturing keratinocytes in vitro. Unlike autologous cells, allogeneic keratinocytes are available immediately, although they survive for less than a week when applied to full-thickness skin defects. Moreover, the absence of a dermal component in these grafts predisposes to instability and contracture. A cross-linked collagen and glycosaminoglycan dermal substitute, covered with thin split-skin grafts or cultured autologous keratinocytes, shows promise in burns patients. An alternative is a collagen matrix populated by allogeneic fibroblasts and overlaid with cultured autologous or allogeneic keratinocytes. The clinical application of cultured grafts remains imperfect but offers the prospect of immediate coverage and massive expansion.
Collapse
Affiliation(s)
- J Nanchahal
- Department of Plastic and Reconstructive Surgery, Charing Cross Hospital, London
| | | |
Collapse
|