1
|
Petkova-Kirova P, Anastassova N, Minchev B, Uzunova D, Grigorova V, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Yancheva D, Kalfin R, Tancheva L. Behavioral and Biochemical Effects of an Arylhydrazone Derivative of 5-Methoxyindole-2-Carboxylic Acid in a Scopolamine-Induced Model of Alzheimer's Type Dementia in Rats. Molecules 2024; 29:5711. [PMID: 39683869 DOI: 10.3390/molecules29235711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) has long proven to be a complex neurodegenerative disorder, with cholinergic dysfunction, oxidative stress, and neuroinflammation being just a few of its pathological features. The complexity of the disease requires a multitargeted treatment covering its many aspects. In the present investigation, an arylhydrazone derivative of 5-methoxyindole-2-carboxylic acid (5MeO), with in vitro strong antioxidant, neuroprotective and monoamine oxidase B-inhibiting effects, was studied in a scopolamine-induced Alzheimer-type dementia in rats. Using behavioral and biochemical methods, we evaluated the effects of 5MeO on learning and memory, and elucidated the mechanisms of these effects. Our experiments demonstrated that 5MeO had a beneficial effect on different types of memory as assessed by the step-through and the Barnes maze tasks. It efficiently restored the decreased by scopolamine brain-derived neurotrophic factor and acetylcholine levels and normalized the increased by scopolamine acetylcholine esterase activity in hippocampus. Most effective 5MeO was in counteracting the induced by scopolamine oxidative stress by decreasing the increased by scopolamine levels of lipid peroxidation and by increasing the reduced by scopolamine catalase activity. Blood biochemical analyses demonstrated a favorable safety profile of 5MeO, prompting further pharmacological studies suggesting 5MeO as a safe and efficient candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Neda Anastassova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Physiology and Biochemistry, National Sports Academy, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Building 9, 1113 Sofia, Bulgaria
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, Healthcare and Sport, South-West University, Ivan Mihailov 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 23, 1113 Sofia, Bulgaria
| |
Collapse
|
2
|
Tancheva L, Kalfin R, Minchev B, Uzunova D, Tasheva K, Tsvetanova E, Georgieva A, Alexandrova A, Stefanova M, Solak A, Lazarova M, Hodzhev Y, Grigorova V, Yarkov D, Petkova-Kirova P. Memory Recovery Effect of a New Bioactive Innovative Combination in Rats with Experimental Dementia. Antioxidants (Basel) 2023; 12:2050. [PMID: 38136170 PMCID: PMC10740861 DOI: 10.3390/antiox12122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Alzheimer's disease manifests as a complex pathological condition, with neuroinflammation, oxidative stress and cholinergic dysfunction being a few of the many pathological changes. Due to the complexity of the disease, current therapeutic strategies aim at a multitargeted approach, often relying on a combination of substances with versatile and complementary effects. In the present study, a unique combination of α-lipoic acid, citicoline, extracts of leaves from olive tree and green tea, vitamin D3, selenium and an immune-supporting complex was tested in scopolamine-induced dementia in rats. Using behavioral and biochemical methods, we assessed the effects of the combination on learning and memory, and elucidated the mechanisms of these effects. Our results showed that, compared to its components, the experimental combination was most efficient in improving short- and long-term memory as assessed by the step-through method as well as spatial memory as assessed by T-maze and Barnes maze underlined by decreases in AChE activity (p < 0.05) and LPO (p < 0.001), increases in SOD activity in the cortex (p < 0.05) and increases in catalase (p < 0.05) and GPx (p < 0.01) activities and BDNF (p < 0.001) and pCREB (p < 0.05) levels in the hippocampus. No significant histopathological changes or blood parameter changes were detected, making the experimental combination an effective and safe candidate in a multitargeted treatment of AD.
Collapse
Affiliation(s)
- Lyubka Tancheva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Reni Kalfin
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Borislav Minchev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Diamara Uzunova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Krasimira Tasheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 21, 1113 Sofia, Bulgaria;
| | - Elina Tsvetanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Almira Georgieva
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Albena Alexandrova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- National Sports Academy, Department of Physiology and Biochemistry, Acad. S. Mladenov Str. 21, 1700 Sofia, Bulgaria
| | - Miroslava Stefanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Ayten Solak
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd 53, 1407 Sofia, Bulgaria
| | - Maria Lazarova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Yordan Hodzhev
- National Center of Infectious and Parasitic Diseases, Yanko Sakazov Blvd 26, 1504 Sofia, Bulgaria;
| | - Valya Grigorova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| | - Dobri Yarkov
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Polina Petkova-Kirova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. 23, 1113 Sofia, Bulgaria; (L.T.); (B.M.); (D.U.); (E.T.); (A.G.); (A.A.); (M.S.); (A.S.); (M.L.)
| |
Collapse
|
3
|
Garzón M, Wang G, Chan J, Bourie F, Mackie K, Pickel VM. Adolescent administration of Δ 9-THC decreases the expression and function of muscarinic-1 receptors in prelimbic prefrontal cortical neurons of adult male mice. IBRO Neurosci Rep 2021; 11:144-155. [PMID: 34667972 PMCID: PMC8506972 DOI: 10.1016/j.ibneur.2021.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 01/12/2023] Open
Abstract
Long-term cannabis use during adolescence has deleterious effects in brain that are largely ascribed to the activation of cannabinoid-1 receptors (CB1Rs) by delta-9-tetrahydrocannabinol (∆9-THC), the primary psychoactive compound in marijuana. Systemic administration of ∆9-THC inhibits acetylcholine release in the prelimbic-prefrontal cortex (PL-PFC). In turn, PL-PFC acetylcholine plays a role in executive activities regulated by CB1R-targeting endocannabinoids, which are generated by cholinergic stimulation of muscarinic-1 receptors (M1Rs). However, the long-term effects of chronic administration of increasing doses of ∆9-THC in adolescent males on the distribution and function of M1 and/or CB1 receptors in the PL-PFC remains unresolved. We used C57BL\6J male mice pre-treated with vehicle or escalating daily doses of ∆9-THC to begin filling this gap. Electron microscopic immunolabeling showed M1R-immunogold particles on plasma membranes and in association with cytoplasmic membranes in varying sized dendrites and dendritic spines. These dendritic profiles received synaptic inputs from unlabeled, CB1R- and/or M1R-labeled axon terminals in the PL-PFC of both treatment groups. However, there was a size-dependent decrease in total (plasmalemmal and cytoplasmic) M1R gold particles in small dendrites within the PL-PFC of mice receiving ∆9-THC. Whole cell current-clamp recording in PL-PFC slice preparations further revealed that adolescent pretreatment with ∆9-THC attenuates the hyperpolarization and increases the firing rate produced by local muscarinic stimulation. Repeated administration of ∆9-THC during adolescence also reduced spontaneous alternations in a Y-maze paradigm designed for measures of PFC-dependent memory function in adult mice. Our results provide new information implicating M1Rs in cortical dysfunctions resulting from adolescent abuse of marijuana.
Collapse
Key Words
- 2-AG, 2-arachidonoyl-glycerol diacylglycerol
- ABC, avidin biotin complex
- ACSF, artificial cerebrospinal fluid
- Adolescence
- BSA, bovine serum albumin
- CB1Rs, cannabinoid-1 receptors
- Cannabinoid
- DAG, diacylglycerol
- EPSC, excitatory postsynaptic current
- ETOH, ethyl alcohol
- IP3, inositol 1,4,5-trisphosphate
- IPSC, inhibitory postsynaptic current
- ITI, intertrial interval
- LTD, long term depression
- M1Rs, muscarinic-1 receptors
- Marijuana
- Muscarinic-1 receptor
- NMDA, N- methyl-D-aspartate
- PBS, phosphate buffered saline
- PD, postnatal day
- PL-PFC, prelimbic-prefrontal cortex
- PLC, phospholipase C
- Prefrontal cortex
- Prelimbic
- RMP, resting membrane potential
- SA, spontaneous alternation
- TS, Tris-buffered saline
- ∆9-THC, delta-9-tetrahydrocannabinol
Collapse
Affiliation(s)
- Miguel Garzón
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina UAM, Madrid 28029, Spain
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - June Chan
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Faye Bourie
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Solari N, Hangya B. Cholinergic modulation of spatial learning, memory and navigation. Eur J Neurosci 2018; 48:2199-2230. [PMID: 30055067 PMCID: PMC6174978 DOI: 10.1111/ejn.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 07/23/2018] [Indexed: 01/02/2023]
Abstract
Spatial learning, including encoding and retrieval of spatial memories as well as holding spatial information in working memory generally serving navigation under a broad range of circumstances, relies on a network of structures. While central to this network are medial temporal lobe structures with a widely appreciated crucial function of the hippocampus, neocortical areas such as the posterior parietal cortex and the retrosplenial cortex also play essential roles. Since the hippocampus receives its main subcortical input from the medial septum of the basal forebrain (BF) cholinergic system, it is not surprising that the potential role of the septo-hippocampal pathway in spatial navigation has been investigated in many studies. Much less is known of the involvement in spatial cognition of the parallel projection system linking the posterior BF with neocortical areas. Here we review the current state of the art of the division of labour within this complex 'navigation system', with special focus on how subcortical cholinergic inputs may regulate various aspects of spatial learning, memory and navigation.
Collapse
Affiliation(s)
- Nicola Solari
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| | - Balázs Hangya
- Lendület Laboratory of Systems NeuroscienceDepartment of Cellular and Network NeurobiologyInstitute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
| |
Collapse
|
5
|
Svoboda J, Popelikova A, Stuchlik A. Drugs Interfering with Muscarinic Acetylcholine Receptors and Their Effects on Place Navigation. Front Psychiatry 2017; 8:215. [PMID: 29170645 PMCID: PMC5684124 DOI: 10.3389/fpsyt.2017.00215] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/16/2017] [Indexed: 12/25/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) have been found to regulate many diverse functions, ranging from motivation and feeding to spatial navigation, an important and widely studied type of cognitive behavior. Systemic administration of non-selective antagonists of mAChRs, such as scopolamine or atropine, have been found to have adverse effects on a vast majority of place navigation tasks. However, many of these results may be potentially confounded by disruptions of functions other than spatial learning and memory. Although studies with selective antimuscarinics point to mutually opposite effects of M1 and M2 receptors, their particular contribution to spatial cognition is still poorly understood, partly due to a lack of truly selective agents. Furthermore, constitutive knock-outs do not always support results from selective antagonists. For modeling impaired spatial cognition, the scopolamine-induced amnesia model still maintains some limited validity, but there is an apparent need for more targeted approaches such as local intracerebral administration of antagonists, as well as novel techniques such as optogenetics focused on cholinergic neurons and chemogenetics aimed at cells expressing metabotropic mAChRs.
Collapse
Affiliation(s)
- Jan Svoboda
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Popelikova
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| | - Ales Stuchlik
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Hornick A, Lieb A, Vo NP, Rollinger JM, Stuppner H, Prast H. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory. Neuroscience 2011; 197:280-92. [PMID: 21945033 PMCID: PMC3212650 DOI: 10.1016/j.neuroscience.2011.09.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 08/17/2011] [Accepted: 09/06/2011] [Indexed: 12/22/2022]
Abstract
In a previous study the simple, naturally derived coumarin scopoletin (SCT) was identified as an inhibitor of acetylcholinesterase (AChE), using a pharmacophore-based virtual screening approach. In this study the potential of SCT as procholinergic and cognition-enhancing therapeutic was investigated in a more detailed way, using different experimental approaches like measuring newly synthesized acetylcholine (ACh) in synaptosomes, long-term potentiation (LTP) experiments in hippocampal slices, and behavior studies. SCT enhanced the K+-stimulated release of ACh from rat frontal cortex synaptosomes, showing a bell-shaped dose effect curve (Emax: 4 μM). This effect was blocked by the nicotinic ACh receptor (nAChR) antagonists mecamylamine (MEC) and dihydro-β-erythroidine (DHE). The nAChR agonist (and AChE inhibitor) galantamine induced a similar increase in ACh release (Emax: 1 μM). SCT potentiated LTP in hippocampal slices of rat brain. The high-frequency stimulation (HFS)-induced, N-methyl-D-aspartate (NMDA) receptor dependent LTP of field excitatory postsynaptic potentials at CA3-CA1 synapses was greatly enhanced by pre-HFS application of SCT (4 μM for 4 min). This effect was mimicked by nicotine (2 μM) and abolished by MEC, suggesting an effect on nAChRs. SCT did not restore the total inhibition of LTP by NMDA receptor antagonist d, l-2-amino-5-phosphonopentanoic acid (AP-5). SCT (2 μg, i.c.v.) increased T-maze alternation and ameliorated novel object recognition of mice with scopolamine-induced cholinergic deficit. It also reduced age-associated deficits in object memory of 15–18-month-old mice (2 mg/kg sc). Our findings suggest that SCT possesses memory-improving properties, which are based on its direct nAChR agonistic activity. Therefore, SCT might be able to rescue impaired cholinergic functions by enhancing nAChR-mediated release of neurotransmitters and promoting neural plasticity in hippocampus.
Collapse
Affiliation(s)
- A Hornick
- Institute of Pharmacy/Pharmacology and Toxicology, University of Innsbruck, Peter-Mayr-Str.1, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
7
|
Klinkenberg I, Blokland A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies. Neurosci Biobehav Rev 2010; 34:1307-50. [DOI: 10.1016/j.neubiorev.2010.04.001] [Citation(s) in RCA: 413] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 04/01/2010] [Accepted: 04/08/2010] [Indexed: 01/06/2023]
|
8
|
Role of muscarinic receptors in the activity of N-desmethylclozapine: reversal of hyperactivity in the phospholipase C knockout mouse. Behav Pharmacol 2008; 19:543-7. [PMID: 18690108 DOI: 10.1097/fbp.0b013e32830c3669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Activity of the cholinergic muscarinic system is associated with modulation of locomotor activity, although the precise mechanism remains unclear. The phospholipase C-beta1 knockout mouse displays both M1 muscarinic receptor dysfunction and a hyperactive locomotor phenotype. This mouse serves as an ideal model for the analysis of muscarinic modulation of locomotor activity. The clozapine metabolite N-desmethylclozapine (NDMC) has shown some promise as an alternative or adjunct treatment for psychotic disorders. NDMC shows strong muscarinic acetylcholine receptor affinities, which may contribute to the clinical efficacy of clozapine and account for the correlation between NDMC/clozapine ratio and treatment response. Administration of NMDC reversed a striking hyperactive phenotype in the phospholipase C-beta1 knockout mouse, whereas no significant effects were observed in wild-type animals. This highlights the potential role of muscarinic activity in the behavioural response to NDMC. The M1 muscarinic antagonist pirenzepine, however, also reduced the hyperactive phenotype of these mice, emphasizing the importance of muscarinic function in the control of locomotor behaviour, but also calling into question the specific mechanism of action of NMDC at muscarinic receptors.
Collapse
|
9
|
Hornick A, Schwaiger S, Rollinger JM, Vo NP, Prast H, Stuppner H. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: brain ACh increasing and memory improving properties. Biochem Pharmacol 2008; 76:236-48. [PMID: 18541221 DOI: 10.1016/j.bcp.2008.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 11/28/2022]
Abstract
Leontopodium alpinum ('Edelweiss') was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push-pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits.
Collapse
Affiliation(s)
- Ariane Hornick
- Institute of Pharmacy, Pharmacology and Toxicology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|
10
|
Chang Q, Gold PE. Age-related changes in memory and in acetylcholine functions in the hippocampus in the Ts65Dn mouse, a model of Down syndrome. Neurobiol Learn Mem 2007; 89:167-77. [PMID: 17644430 PMCID: PMC2246382 DOI: 10.1016/j.nlm.2007.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 05/29/2007] [Accepted: 05/30/2007] [Indexed: 10/23/2022]
Abstract
Spatial working memory and the ability of a cholinesterase inhibitor to enhance memory were assessed at 4, 10, and 16 months of ages in control and Ts65Dn mice, a partial trisomy model of Down syndrome, with possibly significant relationships to Alzheimer's disease as well. In addition, ACh release during memory testing was measured in samples collected from the hippocampus using in vivo microdialysis at 4, 10, and 22-25 months of age. When tested on a four-arm spontaneous alternation task, the Ts65Dn mice exhibited impaired memory scores at both 4 and 10 months. At 16 months, control performance had declined toward that of the Ts65Dn mice and the difference in scores across genotypes was not significant. Physostigmine (50 microg/kg) fully reversed memory deficits in the Ts65Dn mice in the 4-month-old group but not in older mice. Ts65Dn and control mice exhibited comparable baseline levels of ACh release at all ages tested; these levels did not decline significantly across age in either genotype. ACh release increased significantly during alternation testing only in the young Ts65Dn and control mice. However, the increase in ACh release during alternation testing was significantly greater in control than Ts65Dn mice at this age. The controls exhibited a significant age-related decline in the testing-related increase in ACh release. With only a small increase during testing in young Ts65Dn mice, the age-related decline in responsiveness of ACh release to testing was not significant in these mice. Overall, these results suggest that diminished responsiveness of ACh release in the hippocampus to behavioral testing may contribute memory impairments in Ts65Dn mice.
Collapse
Affiliation(s)
- Qing Chang
- Department of Psychology, Neuroscience Program, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL 61820, USA
| | | |
Collapse
|
11
|
Srikumar BN, Raju TR, Shankaranarayana Rao BS. The involvement of cholinergic and noradrenergic systems in behavioral recovery following oxotremorine treatment to chronically stressed rats. Neuroscience 2006; 143:679-88. [PMID: 17008021 DOI: 10.1016/j.neuroscience.2006.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 08/19/2006] [Accepted: 08/21/2006] [Indexed: 11/30/2022]
Abstract
Chronic stress in rats has been shown to impair learning and memory, and precipitate several affective disorders like depression and anxiety. The mechanisms involved in these stress-induced disorders and the possible reversal are poorly understood, thus limiting the number of drugs available for their treatment. Our earlier studies suggest cholinergic dysfunction as the underlying cause in the behavioral deficits following stress. Muscarinic cholinergic agonist, oxotremorine is demonstrated to have a beneficial effect in reversing brain injury-induced behavioral dysfunction. In this study, we have evaluated the effect of oxotremorine treatment on chronic restraint stress-induced cognitive deficits. Rats were subjected to restraint stress (6 h/day) for 21 days followed by oxotremorine treatment for 10 days. Spatial learning and memory was assessed in a partially baited eight-arm radial maze task. Stressed rats exhibited impairment in performance, with decreased percentage of correct choices and an increase in the number of reference memory errors (RMEs). Oxotremorine treatment (0.1 or 0.2 mg/kg, i.p.) to stressed rats resulted in a significant increase in the percent correct choices and a decrease in the number of RMEs compared with stress as well as the stress+vehicle-treated groups. In the retention test, oxotremorine treated rats committed less RMEs compared with the stress group. Chronic restraint stress decreased acetylcholinesterase (AChE) activity in the hippocampus, frontal cortex and septum, which was reversed by both the doses of oxotremorine. Further, oxotremorine treatment also restored the norepinephrine levels in the hippocampus and frontal cortex. Thus, this study demonstrates the potential of cholinergic muscarinic agonists and the involvement of both cholinergic and noradrenergic systems in the reversal of stress-induced learning and memory deficits.
Collapse
Affiliation(s)
- B N Srikumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences, PB # 2900, Hosur Road, Bangalore 560 029, India
| | | | | |
Collapse
|
12
|
Hozumi S, Nakagawasai O, Tan-No K, Niijima F, Yamadera F, Murata A, Arai Y, Yasuhara H, Tadano T. Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy. Behav Brain Res 2003; 138:9-15. [PMID: 12493626 DOI: 10.1016/s0166-4328(02)00183-3] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Memory function after olfactory bulbectomy (OBX) was examined in two tasks, namely, step-through passive avoidance task and elevated plus-maze task. OBX mice showed a significant impairment of learning and memory-related behavior on the 7th and 14th day, as measured by passive avoidance task but not elevated plus maze task. The impairment of learning and memory-related behavior on the 14th day was improved by administration of the cholinesterase inhibitor physostigmine (0.1 mg/kg, i.p.), the non-selective muscarinic agonist oxotremorine (0.1 mg/kg, i.p.) or the selective muscarinic M(1) agonist McN-A-343 (10 microg/mouse, i.c.v.). In contrast, administration of the nicotinic agonist lobeline (5-9.8 mg/kg, i.p.) or the selective muscarinic M(2) antagonist methoctramine (2.25-18 microg/mouse, i.c.v.) has no effect on the impairment of learning and memory-related behavior induced by OBX. In addition, we have demonstrated that the intensity of choline acetyltransferase (ChAT) fluorescence is significantly decreased in the cortex, hippocampus and amygdala on the 14th day after OBX. These results suggest that the impairment of learning and memory-related behavior induced by OBX may be caused by degeneration of cholinergic neurons and muscarinic M(1) receptors play an important role in the improvement process.
Collapse
Affiliation(s)
- Soichi Hozumi
- Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ichikawa J, Chung YC, Li Z, Dai J, Meltzer HY. Cholinergic modulation of basal and amphetamine-induced dopamine release in rat medial prefrontal cortex and nucleus accumbens. Brain Res 2002; 958:176-84. [PMID: 12468043 DOI: 10.1016/s0006-8993(02)03692-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Behavioral evidence suggests that muscarinic/cholinergic inhibition of brain dopaminergic activity may be a useful principle for developing novel antipsychotic drugs (APDs). Thus, oxotremorine, a muscarinic agonist, attenuates amphetamine-induced locomotor activity in rodents, an effect also produced by a wide variety of proven APDs, whereas scopolamine, a muscarinic antagonist, has the opposite effect. Since atypical APDs such as clozapine, olanzapine, risperidone, ziprasidone and quetiapine, increase brain acetylcholine as well as dopamine (DA) release in a region-specific manner, their effects on cholinergic and dopaminergic neurotransmission may also contribute to various actions of these drugs. Oxotremorine (0.5-1.5 mg/kg) dose-dependently and preferentially increased DA release in rat medial prefrontal cortex (mPFC), compared to the nucleus accumbens (NAC). However, S-(-)-scopolamine (0.5-1.5 mg/kg) produced similar increases in DA release in the mPFC, but the effect was much less than that of oxotremorine. Whereas a dose of S-(-)-scopolamine of 0.5 mg/kg comparably increased DA release in the mPFC and NAC, 1.5 mg/kg had no effect on DA release in the NAC. Oxotremorine-M (0.5 mg/kg), a M(1/4)-preferring agonist, also increased DA release in the mPFC, but not the NAC, an effect completely abolished by telenzepine (3 mg/kg), a M(1/4)-preferring antagonist, which by itself had no effect on DA release in either region. Oxotremorine (0.5, but not 1.5, mg/kg) attenuated amphetamine (1 mg/kg)-induced DA release in the NAC, whereas S-(-)-scopolamine did not. Oxotremorine (1.5 mg/kg) and S-(-)-scopolamine (0.5 mg/kg) modestly but significantly potentiated amphetamine (1 mg/kg)-induced DA release in the mPFC. These results suggest that stimulation of muscarinic receptors, in particular M(1/4), as indicated by the effect of oxotremorine-M and telenzepine, may preferentially increase cortical DA release and inhibit amphetamine-induced DA release in the NAC.
Collapse
Affiliation(s)
- Junji Ichikawa
- Division of Psychopharmacology, Department of Psychiatry, Vanderbilt University School of Medicine, Nashville, TN 37212, USA.
| | | | | | | | | |
Collapse
|
14
|
Wienrich M, Ceci A, Ensinger HA, Gaida W, Mendla KD, Osugi T, Raschig A, Weiser T. Talsaclidine (WAL 2014 FU), a muscarinic M1 receptor agonist for the treatment of Alzheimer's disease. Drug Dev Res 2002. [DOI: 10.1002/ddr.10085] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Hsueh CM, Chen SF, Lin RJ, Chao HJ. Cholinergic and serotonergic activities are required in triggering conditioned NK cell response. J Neuroimmunol 2002; 123:102-11. [PMID: 11880155 DOI: 10.1016/s0165-5728(01)00488-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of the study was to examine the importance of the cholinergic system in triggering the conditioned NK cell response. The fact that serotonergic system can modulate cholinergic functions suggested that it might be involved in conditioned NK cell response. To evaluate the potential pathways, cholinergic and serotonergic antagonists were applied centrally at either the conditioned association or recall stage, to interfere with the conditioned NK cell response. The results showed that both the cholinergic and serotonergic systems were necessary for eliciting the conditioned enhancement of NK cell activity. Involvements of the two systems were found to be critical for establishing the conditioned association and recall of the conditioned response. The blocks are believed to be receptor mediated. The receptors identified to be involved in the regulation of the conditioned NK cell response were: M(1), M(2) and M(3) muscarinic; nicotinic; 5 HT(1) and 5 HT(2) receptors.
Collapse
Affiliation(s)
- Chi Mei Hsueh
- Department of Zoology, National Chung-Hsing University, 40227, Taichung, Taiwan.
| | | | | | | |
Collapse
|
16
|
Felder CC, Bymaster FP, Ward J, DeLapp N. Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 2000; 43:4333-53. [PMID: 11087557 DOI: 10.1021/jm990607u] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C C Felder
- Eli Lilly Research Laboratories, Indianapolis, Indiana 46285, USA.
| | | | | | | |
Collapse
|
17
|
Miller MM, Hyder SM, Assayag R, Panarella SR, Tousignant P, Franklin KB. Estrogen modulates spontaneous alternation and the cholinergic phenotype in the basal forebrain. Neuroscience 1999; 91:1143-53. [PMID: 10391490 DOI: 10.1016/s0306-4522(98)00690-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report that a small population of neurons expresses both choline acetyltransferase and classical estrogen receptor immunoreactivity and they are found primarily in the bed nucleus of the stria terminalis. In short-term ovariectomized ageing mice (24 months, n = 5) there were 41.0 +/- 4.1% fewer of these double-labeled cells than in young (five months, n = 5) short-term ovariectomized C57BL/6J mice. To study cholinergic neuron estrogen responsiveness, young mice (n = 8) were ovariectomized at puberty (five weeks). After three months half of the mice (n = 4) were given physiological levels of 17beta estradiol for 10 days. Bed nucleus double-labeled neurons increased by 32.9% (P < or = 0.003) in the young mice given estrogen. In a gel shift assay, double-stranded oligonucleotides with putative estrogen response elements from the choline acetyltransferase gene were used as competitors against estrogen receptor binding to consensus estrogen response elements. A sequence with 60% homology to the vitellogenin estrogen response element was found to compete at 500- and 1000-fold excess. Young mice (five months) with ovaries demonstrated significantly (P < or = 0.04) better performance in the spontaneous alternation T-maze test than did old (19 month) mice with ovaries (young = 66.3 +/- 3.3% correct choices; vs old = 55.0 +/- 4.0% in old mice with ovaries). Young mice (five months old), ovariectomized for one month and treated with estrogen, showed significantly more spontaneous alternation than ovariectomized controls (69.1 +/- 2.8% vs 58.3 +/- 3.9%; P < or = 0.04). Estrogen also increased spontaneous alternation in old, short-term ovariectomized mice (61.5 +/- 2.7% vs 48 +/- 3.3%; P < or = 0.005). In either young or old ovariectomized mice, estrogen increased spontaneous alternation to levels seen in young animals with ovaries. Estrogen increases the number of choline acetyltransferase-immunoreactive and choline acetyltransferase/estrogen receptor-immunoreactive cells in old or young mice lacking estrogen, and enhances working memory in old or young mice lacking estrogen. Our data suggest that estrogen may act at the level of the choline acetyltransferase gene, but in view of the limited distribution of cholinergic cells expressing the classical estrogen receptor, it is unlikely that these cells can account for a memory enhancing effect of estrogen replacement.
Collapse
Affiliation(s)
- M M Miller
- Department of Obstetrics and Gynecology, Centre for Studies on Aging, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Harries MH, Samson NA, Cilia J, Hunter AJ. The profile of sabcomeline (SB-202026), a functionally selective M1 receptor partial agonist, in the marmoset. Br J Pharmacol 1998; 124:409-15. [PMID: 9641560 PMCID: PMC1565397 DOI: 10.1038/sj.bjp.0701844] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Sabcomeline (SB-202026, 0.03 mg kg(-1), p.o.), a potent and functionally selective M1 receptor partial agonist, caused a statistically significant improvement in the performance of a visual object discrimination task by marmosets. No such improvement was seen after RS86 (0.1 mg kg(-1), p.o.). 2. Initial learning, which only required an association of object with reward and an appropriate response to be made, was not significantly affected. Reversal learning, which required both the extinction of the previously learned response and the acquisition of a new response strategy, was significantly improved after administration of sabcomeline (0.03 mg kg(-1), p.o.). 3. Sabcomeline (0.03 and 0.1 mg kg(-1), p.o.) had no significant effect on mean blood pressure measured for 2 h after administration in the conscious marmoset. 4. Sabcomeline (0.03 mg kg(-1), p.o.) caused none of the overt effects such as emesis or behaviours often seen after the administration of muscarinic agonists, e.g. face rubbing and licking. 5. This is the first study to demonstrate cognitive enhancement by a functionally selective M1 receptor partial agonist in a normal (i.e. non-cognitively impaired) non-human primate and this effect was seen at a dose which did not cause side effects. 6. Perseverative behaviour and deficient acquisition of new information are seen in patients with Alzheimer's disease (AD). Therefore the data suggest that sabcomeline might be of therapeutic benefit in the treatment of AD.
Collapse
Affiliation(s)
- M H Harries
- Neurosciences Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park, Harlow, Essex
| | | | | | | |
Collapse
|
19
|
Ukai M, Shinkai N, Kameyama T. kappa-Opioid receptor agonists improve pirenzepine-induced disturbance of spontaneous alternation performance in the mouse. Eur J Pharmacol 1995; 281:173-8. [PMID: 7589204 DOI: 10.1016/0014-2999(95)00239-h] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the effects of kappa-opioid receptor agonists such as dynorphin A-(1-13) and U-50,488H on the muscarinic M1-selective receptor antagonist pirenzepine (3 micrograms, i.c.v.)-induced impairment of spontaneous alternation performance in the mouse. Although dynorphin A-(1-13)(1-5.6 micrograms, i.c.v.) or U-50,488H ((+/-)trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]- benzeneacetamide, methanesulfonate hydrate) (0.1-1 mg/kg, i.p.) alone did not influence either spontaneous alternation performance or total arm entries, pirenzepine (3 micrograms, i.c.v.) impaired spontaneous alternation performance without producing any significant change in total arm entries. In contrast, dynorphin A-(1-13) (3 and 5.6 micrograms, i.c.v.) and U-50,488H (0.3 and 1 mg/kg, i.p.) ameliorated the pirenzepine (3 micrograms, i.c.v.)-induced impairment of spontaneous alternation performance. The ameliorating effects of dynorphin A-(1-13)(3 micrograms, i.c.v.) and U-50,488H (0.3 mg/kg, i.p.) were almost completely reversed by pretreatment with nor-binaltorphimine (4 micrograms, i.c.v.), a kappa-opioid receptor antagonist. These results suggest that the stimulation of kappa-opioid receptors improves memory dysfunctions resulting from the blockade of muscarinic M1 receptors.
Collapse
Affiliation(s)
- M Ukai
- Department of Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Meijo University, Nagoya, Japan
| | | | | |
Collapse
|