1
|
Erskine D, Thomas AJ, Taylor JP, Savage MA, Attems J, McKeith IG, Morris CM, Khundakar AA. Neuronal Loss and Α-Synuclein Pathology in the Superior Colliculus and Its Relationship to Visual Hallucinations in Dementia with Lewy Bodies. Am J Geriatr Psychiatry 2017; 25:595-604. [PMID: 28190674 DOI: 10.1016/j.jagp.2017.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/16/2023]
Abstract
OBJECTIVE Patients with dementia with Lewy bodies (DLB) often experience visual hallucinations, which are related to decreased quality of life for patients and increased caregiver distress. The pathologic changes that contribute to visual hallucinations are not known, but several hypotheses implicate deficient attentional processing. The superior colliculus has a role in visual attention and planning eye movements and has been directly implicated in several models of visual hallucinations. Therefore, the present study sought to identify neurodegenerative changes that may contribute to hallucinations in DLB. METHODS Postmortem superior colliculus tissue from 13 comparison, 10 DLB, and 10 Alzheimer disease (AD) cases was evaluated using quantitative neuropathologic methods. RESULTS α-Synuclein and tau deposition were more severe in deeper layers of the superior colliculus. DLB cases had neuronal density reductions in the stratum griseum intermedium, an important structure in directing attention toward visual targets. In contrast, neuronal density was reduced in all laminae of the superior colliculus in AD. CONCLUSION These findings suggest that regions involved in directing attention toward visual targets are subject to neurodegenerative changes in DLB. Considering several hypotheses of visual hallucinations implicating dysfunctional attention toward external stimuli, these findings may provide evidence of pathologic changes that contribute to the manifestation of visual hallucinations in DLB.
Collapse
Affiliation(s)
- Daniel Erskine
- Ageing Research Laboratories, Newcastle University, Newcastle upon Tyne, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alan J Thomas
- Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - John-Paul Taylor
- Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael A Savage
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Johannes Attems
- Ageing Research Laboratories, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G McKeith
- Biomedical Research Building, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Christopher M Morris
- Ageing Research Laboratories, Newcastle University, Newcastle upon Tyne, United Kingdom; Medical Toxicology Centre, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ahmad A Khundakar
- Ageing Research Laboratories, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
2
|
Rapacioli M, Palma V, Flores V. Morphogenetic and Histogenetic Roles of the Temporal-Spatial Organization of Cell Proliferation in the Vertebrate Corticogenesis as Revealed by Inter-specific Analyses of the Optic Tectum Cortex Development. Front Cell Neurosci 2016; 10:67. [PMID: 27013978 PMCID: PMC4794495 DOI: 10.3389/fncel.2016.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/01/2016] [Indexed: 12/11/2022] Open
Abstract
The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is also included. This section considers how the differential operation of cell proliferation could explain differences among species.
Collapse
Affiliation(s)
- Melina Rapacioli
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| | - Verónica Palma
- Laboratory of Stem Cell and Developmental Biology, Faculty of Science, University of ChileSantiago, Chile
| | - Vladimir Flores
- Interdisciplinary Group in Theoretical Biology, Department of Biostructural Sciences, Favaloro UniversityBuenos Aires, Argentina
| |
Collapse
|
3
|
Chudinova TV, Kenigfest NB, Belekhova MG. Components of the pigeon tectothalamic visual pathway, revealed with aid of study of cytochrome oxidase activity and immunoreactivity to calcium-binding proteins. J EVOL BIOCHEM PHYS+ 2011. [DOI: 10.1134/s0022093010060113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Abstract
AbstractThe superior colliculus exerts its most direct influence over orienting movements, and saccades in particular, via its descending projections to the brain stem and spinal cord. However, while there is detailed physiological data concerning the generation of saccade-related activity in the primate superior colliculus, there is relatively little data on the detailed connectivity of this structure in primates. Consequently, retrograde transport techniques were utilized to determine the locations of the cells of origin of these descending pathways in macaque monkeys. Tectal cells that projected to the ipsilateral pontine reticular formation were mainly found in the deep gray layer and occasionally in the intermediate gray layer. Tectal cells that projected to the contralateral pontine reticular formation were predominantly located in the intermediate gray layer. The contralaterally projecting population could be subdivided into two groups. The cells in upper sublamina of the intermediate gray layer project primarily to the saccade-related regions of the paramedian reticular formation. Cells in the lower sublamina project primarily to more lateral regions of the pontine reticular formation and to the spinal cord. We conclude that the primate colliculus is provided with at least three descending output channels, which are likely to differ in their connections and functions. Specifically, it seems likely that the lower portion of the intermediate gray layer may be specialized to subserve combined head and eye orienting movements, while the upper sublamina subserves saccades.
Collapse
Affiliation(s)
- P J May
- Department of Anatomy, University of Mississippi Medical Center, Jackson 39216-4505
| | | |
Collapse
|
5
|
Belekhova MG, Chudinova TV, Kenigfest NB, Krasnoshchekova EI. Level of metabolic activity (cytochrome oxidase) as an index of functional significance of tectofugal and thalamofugal channels of the reptilian visual system. J EVOL BIOCHEM PHYS+ 2007. [DOI: 10.1134/s0022093007010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Qu J, Zhou X, Zhu H, Cheng G, Ashwell KWS, Lu F. Development of the human superior colliculus and the retinocollicular projection. Exp Eye Res 2006; 82:300-10. [PMID: 16125175 DOI: 10.1016/j.exer.2005.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 06/29/2005] [Accepted: 07/04/2005] [Indexed: 11/15/2022]
Abstract
We have used carbocyanine dye tracing from the brachium of the superior colliculus in conjunction with Nissl staining and immunohistochemistry to GAP-43 and calretinin to study the development of retinal projections to the superior colliculus in 17 human embryos and fetuses aged from 8 to 28 weeks. Lamination of the superior colliculus begins to emerge by 11 weeks, and by 16 weeks all seven layers of the mature superior colliculus are visible. Fibres immunoreactive to GAP-43 were seen at 13 weeks in the most superficial layers. By 19 weeks, GAP-43 immunoreactivity was present in the stratum opticum as well as the deeper fibres layers, indicating the development of fibre pathways following those laminae. Carbocyanine dye tracing of retinocollicular projections showed extensive rostrocaudally running unbranched fibres in the superficial superior colliculus at 12 weeks. Shortly after this (13 weeks), retinocollicular fibres penetrate the deeper collicular layers and branching becomes apparent. We also saw occasional retrogradely labelled somata following DiI insertion into the superior brachium. Our findings indicate that development of the human superior colliculus and its connections is largely complete by 20 weeks. This would suggest that functional capacity of the human superior colliculus should also be mature by the middle of gestation.
Collapse
Affiliation(s)
- Jia Qu
- School of Ophthalmology and Optometry, Wenzhou Medical College, 82 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | | | | | | | | | | |
Collapse
|
7
|
Schneider KA, Kastner S. Visual responses of the human superior colliculus: a high-resolution functional magnetic resonance imaging study. J Neurophysiol 2005; 94:2491-503. [PMID: 15944234 DOI: 10.1152/jn.00288.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superior colliculus (SC) is a multimodal laminar structure located on the roof of the brain stem. The SC is a key structure in a distributed network of areas that mediate saccadic eye movements and shifts of attention across the visual field and has been extensively studied in nonhuman primates. In humans, it has proven difficult to study the SC with functional MRI (fMRI) because of its small size, deep location, and proximity to pulsating vascular structures. Here, we performed a series of high-resolution fMRI studies at 3 T to investigate basic visual response properties of the SC. The retinotopic organization of the SC was determined using the traveling wave method with flickering checkerboard stimuli presented at different polar angles and eccentricities. SC activations were confined to stimulation of the contralateral hemifield. Although a detailed retinotopic map was not observed, across subjects, the upper and lower visual fields were represented medially and laterally, respectively. Responses were dominantly evoked by stimuli presented along the horizontal meridian of the visual field. We also measured the sensitivity of the SC to luminance contrast, which has not been previously reported in primates. SC responses were nearly saturated by low contrast stimuli and showed only small response modulation with higher contrast stimuli, indicating high sensitivity to stimulus contrast. Responsiveness to stimulus motion in the SC was shown by robust activations evoked by moving versus static dot stimuli that could not be attributed to eye movements. The responses to contrast and motion stimuli were compared with those in the human lateral geniculate nucleus. Our results provide first insights into basic visual responses of the human SC and show the feasibility of studying subcortical structures using high-resolution fMRI.
Collapse
|
8
|
Chernock ML, Larue DT, Winer JA. A periodic network of neurochemical modules in the inferior colliculus. Hear Res 2005; 188:12-20. [PMID: 14759566 DOI: 10.1016/s0378-5955(03)00340-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 09/24/2003] [Indexed: 10/26/2022]
Abstract
A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections.
Collapse
Affiliation(s)
- Michelle L Chernock
- Division of Neurobiology, Department of Molecular and Cell Biology, 285 LSA Mail Code 3200, University of California at Berkeley, Berkeley, CA 94720-3200, USA.
| | | | | |
Collapse
|
9
|
Soares JGM, Mendez-Otero R, Gattass R. Distribution of NADPH-diaphorase in the superior colliculus of Cebus monkeys, and co-localization with calcium-binding proteins. Neurosci Res 2003; 46:475-83. [PMID: 12871769 DOI: 10.1016/s0168-0102(03)00125-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We examined the distribution of the enzyme dihydronicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the superior colliculus (SC) of the New World monkey Cebus apella, and the co-localization of this enzyme with the calcium-binding proteins (CaBPs) calbindin-D28K, parvalbumin and calretinin. Despite the intensely labeled neuropil, rare NADPH-d-positive cells were observed in the stratum griseum superficiale (SGS). Most of the labeled cells in the SC were found in the intermediate layers, with a great number also in the deeper layers. This pattern is very similar to that described in the opossum (Didelphis marsupialis) and in the cat, and different from the pattern found in the rat, which shows labeled cells mainly in the SGS. Cells doubly stained for NADPH-d and CaBPs were observed throughout the SC, although in a small number. Of the NADPH-d-positive cells, 20.3% were doubly labeled for NADPH-d and parvalbumin, 10.2% revealed co-localization with calretinin, and 5.6% with calbindin. The low number of double-stained cells for NADPH-d and the CaBPs indicates that these molecules must participate in different functional circuits within the SC.
Collapse
Affiliation(s)
- J G M Soares
- Programa de Neurobiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Bloco G, CCS, Ilha do Fundão, Rio de Janeiro, RJ 21949-900, Brazil
| | | | | |
Collapse
|
10
|
Bourne JA, Rosa MGP. Laminar expression of neurofilament protein in the superior colliculus of the marmoset monkey (Callithrix jacchus). Brain Res 2003; 973:142-5. [PMID: 12729963 DOI: 10.1016/s0006-8993(03)02527-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The expression profile of the monoclonal antibody SMI-32 was examined in the superior colliculus of adult marmosets. This antibody recognises subunits of the non- and dephosphorylated neurofilament protein, labelling predominantly neuronal perikarya and dendrites. The densest cellular label was observed in the intermediate layers (primarily, the stratum griseum intermediale), consisting of large multi- or bipolar neurones which were preferentially located within cytochrome oxidase-rich regions. The morphological characteristics of neurones showing heavy staining resemble those of extrinsic projection cells, suggesting a correlation between neurofilament content and axonal length.
Collapse
Affiliation(s)
- James A Bourne
- Department of Physiology, School of Biomedical Sciences, P.O. Box 13F, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
11
|
Behan M, Steinhacker K, Jeffrey-Borger S, Meredith MA. Chemoarchitecture of GABAergic neurons in the ferret superior colliculus. J Comp Neurol 2002; 452:334-59. [PMID: 12355417 DOI: 10.1002/cne.10378] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)ergic neurons are thought to play a key role both in visual processing and in the complex sensory-motor transformations that take place in the mammalian superior colliculus. To understand the organization of GABAergic neurons in the ferret superior colliculus, we applied antisera to several markers of GABAergic function, including GABA, two isoforms of its synthetic enzyme glutamic acid decarboxylase (GAD-65 and GAD-67), and the GABA transporter, GAT-1. We also applied antisera to several calcium binding proteins (calbindin [CB], calretinin [CR], and parvalbumin [PV]) and neuronal nitric oxide synthase (NOS), chemical markers that colocalize with GABA in some areas of the central nervous system. The distribution of GABAergic neurons in the ferret is similar to that of other mammalian species. GABAergic neurons in the ferret superior colliculus were small, morphologically diverse, and widely distributed throughout all layers of the colliculus. As has been shown in other mammalian species, neurons expressing PV, CB, CR, and NOS were differentially distributed in layers and patches throughout the ferret colliculus. None of these markers, however, showed a distribution that mirrored that of GABAergic neurons. Furthermore, few GABAergic neurons colocalized these neurochemical markers. Only 14% of GABAergic neurons in the superficial layers and 18% of neurons in the deeper layers colocalized PV, 14% of GABAergic neurons in the superficial layers and 10% in the deeper layers colocalized CB, and only 1% of GABAergic neurons in both the superficial and deep layers colocalized nitric oxide synthase. Thus, the arrangement of GABAergic neurons in the ferret superior colliculus is broadly distributed and is distinct from other recognized organizational patterns in the superior colliculus.
Collapse
Affiliation(s)
- Mary Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison, Wisconsin 53706-1102, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
The superior colliculus of higher mammals is a laminated structure of the midbrain that receives visual input in superficial layers, and visual, auditory and somatosensory input in deep layers. The superior colliculi on either side are interconnected via the intercollicular commissure, which has been proposed to play a role in visual transfer and gaze orienting. Intercollicular connections have been anatomically demonstrated in various species including macaque monkeys but not in man. Here we describe the organization of commissural connections of the superior colliculus in man. A single injection of the carbocyanine tracer 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate was made into the superior colliculus in five post-mortem brains. Contralateral to the injection, labelled axons formed a dense bundle in the deep collicular layers and isolated axons were present in the superficial layers. Synaptic-like boutons were found in all collicular layers. Injections placed at different rostro-caudal levels revealed a roughly topographical organization; the bulk of the labelled axons were found opposite to the injection, with a progressive decrease in labelling at more rostral and caudal levels. Our results demonstrate that superficial and, to a larger extent, deep layers participate in intercollicular connections, and suggest that visual information crosses at the collicular level.
Collapse
Affiliation(s)
- E Tardif
- Division de Neuropsychologie, CHUV, 1011 Lausanne, Switzerland
| | | |
Collapse
|
13
|
Mana S, Chevalier G. Honeycomb-like structure of the intermediate layers of the rat superior colliculus: afferent and efferent connections. Neuroscience 2001; 103:673-93. [PMID: 11274787 DOI: 10.1016/s0306-4522(01)00026-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is increasing evidence that acetylcholinesterase is organised in a lattice-like fashion in the intermediate layers of the mammalian superior colliculus. In a recent study, we described this organisation in rat by showing that it comprises a well formed honeycomb-like lattice with about 100 cylindrical compartments or modules occupying both the intermediate collicular layers. Considering this enzyme domain as a reference marker for comparing the organisation of collicular input-output systems, the present study investigates whether the principal sensori-motor systems in intermediate layers also have honeycomb-like arrangements. In 33 animals, the distributions of afferents (visual from extrastriate cortex; somatic from the primary somatosensory cortex, the trigeminal nucleus and the cervical spinal cord) and efferents (cells of origin of the crossed descending bulbospinal tract and uncrossed pathway to the pontine gray, the ascending system to the medial dorsal thalamus) were examined in a tangential plane following applications of horseradish peroxidase-wheatgerm agglutinin conjugate (used as an anterograde and retrograde tracer). In 22 of the 33 rats, axonal tracing was made within single tangential sections also stained for cholinesterasic activity in order to compare the neuron profiles with the cholinesterasic lattice.The results show that these afferent and efferent systems are also organised in honeycomb-like networks. Moreover, those related to the cortical, trigeminal and some of the spinal afferents are aligned with the cholinesterasic lattice. Likewise most of colliculo-pontine, colliculo-bulbospinal and half of colliculo-diencephalic projecting cells also tend to be in spatial register with the enzyme lattice. This indicates that the honeycomb-like arrangement is a basic architectural plan in the superior colliculus for the organisation of both acetylcholinesterase and major sensori-motor systems for orientation.
Collapse
Affiliation(s)
- S Mana
- Université Pierre et Marie Curie, Département de Neurochimie-Anatomie, Institut des Neurosciences, 9 quai Saint Bernard, 75230 Paris Cedex 05, France
| | | |
Collapse
|
14
|
Scheiner C, Arceneaux R, Guido W, Kratz K, Mize R. Nitric oxide synthase distribution in the cat superior colliculus and co-localization with choline acetyltransferase. J Chem Neuroanat 2000; 18:147-59. [PMID: 10781733 DOI: 10.1016/s0891-0618(00)00037-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide and acetylcholine are important neuromodulators implicated in brain plasticity and disease. We have examined the cellular and fiber localization of nitric oxide in the cat superior colliculus (SC) and its degree of co-localization with ACh using nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry and an antibody to neuronal nitric oxide synthase. ACh was localized using an antibody against choline acetyltransferase. We also made injections of biocytin into the region of the parabrachial brainstem to confirm that this region is a source of nitric oxide containing fibers in SC. NADPHd labeled neurons within the superficial layers of the superior colliculus included pyriform, vertical fusiform, and horizontal morphologies. Labeled neurons in the intermediate gray layer were small to medium in size, and mostly of stellate morphology. Neurons in the deepest layers had mostly vertical or stellate morphologies. NADPHd labeled fibers formed dense patches of terminal boutons within the intermediate gray layer and streams of fibers within the deepest layers of SC. Choline acetyltransferase antibody labeling in adjacent sections indicated that many fibers must contain both labels. Over 94% of neurons in the pedunculopontine tegmental and lateral dorsal tegmental nuclei were also labeled by both NADPHd and choline acetyltransferase. In addition, biocytin labeled fibers from this region were localized in the NADPHd labeled patches. We conclude that nitric oxide is contained in a variety of cell types in SC and that both nitric oxide and ACh likely serve as co-modulators in this midbrain structure.
Collapse
Affiliation(s)
- C Scheiner
- Department of Cell Biology and Anatomy and the Neuroscience Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112-1393, USA
| | | | | | | | | |
Collapse
|
15
|
Mize RR. Neurochemical microcircuitry underlying visual and oculomotor function in the cat superior colliculus. PROGRESS IN BRAIN RESEARCH 1996; 112:35-55. [PMID: 8979819 DOI: 10.1016/s0079-6123(08)63319-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cat superior colliculus (SC) plays an important role in visual and oculomotor functions, including the initiation of saccadic eye movements. We have studied the organization of neurochemical specific circuits in SC that underly these functions. In this chapter we have reviewed three microcircuits that can be identified by cell type, chemical content, and synaptic input from specific afferents. The first is located within the upper sgl and is related to the W retinal pathway to this region of SC. This circuit includes relay and interneurons that contain the calcium binding protein calbindin (CB), GABA containing presynaptic dendrites, and retinal terminals that have a distribution and size typical of W retinal terminals in the cat SC. This circuit is a typical synaptic triad that mediates feedforward inhibition, possibly to regulate outflow of the W pathway to the lateral geniculate nucleus. CB neurons in SC and other structures may be uniquely related to low threshold calcium currents in these neurons. The second microcircuit consists of neurons that contain parvalbumin (PV), another calcium binding protein. These neurons are located in a dense tier with the deep sgl and upper ol and they receive input from retinal terminals that are likely from 'Y' retinal ganglion cells. Some of these neurons also project to the lateral posterior nucleus and some colocalize glutamate. We speculate that these neurons also receive cortical 'Y' input although we have yet to prove this experimentally. The role of PV in these cells is unknown, but PV has been shown to be contained in fast spiking, non-accomodating neurons in visual cortex which have very rapid spike discharges that are also characteristic of SC neurons innervated by 'Y' input. The third microcircuit consists of a group of clustered neurons within the igl of the cat SC that overlaps the patch-like innervation of afferents to this region that come from the pedunculopontine tegmental and lateral dorsal tegmental nuclie, the substantia nigra, and the cortical frontal eye fields. These clustered neurons project through the tectopontobulbar pathway and terminate within the cuneiform region (CFR) of the midbrain tegmentum. They transiently express NOS during development. Ongoing studies in our laboratory suggest that these cells receive synaptic inputs directly from the PPTN and SN and may represent functional modules involved in the initiation of saccadic eye movements.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA.
| |
Collapse
|
16
|
Jeon CJ, Mize RR. Choline acetyltransferase-immunoreactive patches overlap specific efferent cell groups in the cat superior colliculus. J Comp Neurol 1993; 337:127-50. [PMID: 8276989 DOI: 10.1002/cne.903370109] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fibers containing acetylcholine (ACh) form distinct patches in the dorsal intermediate gray layer (IGL) of the cat superior colliculus (SC). Although these patches are known to overlap several afferent projections to SC, it is not known whether they are associated with specific postsynaptic cell groups. We have examined the relationship of these ACh fiber patches to specific efferent cell groups by combining retrograde transport of horseradish peroxidase (HRP) with choline acetyltransferase (ChAT) immunocytochemistry. Successful HRP injections were made into the predorsal bundle (PB), the tecto-pontine-bulbar pathway (TPB) and the cuneiform region (CFR), the inferior olive (IO), the dorsolateral pontine gray nucleus (PGD), and the pedunculopontine tegmental nucleus (PPTN). The distribution of HRP-labeled neurons which project to these targets was mapped by a computer-based microscope plotter. Distinct clusters of HRP-labeled neurons in the IGL were seen after three injections into the mesencephalic reticular formation that involved the caudal TPB and cuneiform region (CFR), and after one injection into the medial accessory nucleus of IO. As many as seven clusters of labeled neurons were found in some sections through the caudal one-half of SC after the TPB/CFR injections. Each cluster consisted of 3-20 cells, all of which were small to medium in size. In sections also tested for ChAT, the cell clusters in the TPB/CFR cases were found to overlap precisely the ACh patches in the IGL. In addition, SC neurons projecting to the IO formed clusters above the ChAT patches and in the intermediate white layer (IWL) of SC. None of the other HRP injections produced any obvious cell clusters in the deep layers of SC. These results are the first to show that specific cell groups, distinguished by size and projection site, form clusters that match the patch-like innervation of cholinergic afferents to SC. This modular organization may correspond to saccade-related cells that have also been reported to be organized into clusters in the cat SC.
Collapse
Affiliation(s)
- C J Jeon
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis 38163
| | | |
Collapse
|
17
|
Jeon CJ, Spencer RF, Mize RR. Organization and synaptic connections of cholinergic fibers in the cat superior colliculus. J Comp Neurol 1993; 333:360-74. [PMID: 8349848 DOI: 10.1002/cne.903330305] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The cat superior colliculus (SC) receives a dense cholinergic input from three brainstem nuclei, the pedunculopontine tegmental nucleus, the lateral dorsal tegmental nucleus, and the parabigeminal nucleus (PBG). The tegmental inputs project densely to the intermediate gray layer (IGL) and sparsely to the superficial layers. The PBG input probably projects only to the superficial layers. In the present study, the morphology of choline acetyltransferase (ChAT)-immunoreactive axons and synaptic endings in the superficial and deep layers of the SC was examined by light and electron microscopy to determine whether these cholinergic afferents form different types of synapses in the superficial and deep layers. Two types of fibers were found within the zonal (ZL) and upper superficial gray layers (SGL): small diameter fibers with few varicosities and larger diameter fibers with numerous varicosities. Quantitative analysis demonstrated a bimodal distribution of axon diameters, with one peak at approximately 0.3-0.5 micron and the other at 0.9-1.0 micron. On the other hand, ChAT-immunoreactive fibers in the IGL were almost all small and formed discrete patches within the IGL. Two types of ChAT-immunoreactive synaptic profiles were observed within the ZL and upper SGL using the electron microscope. The first type consisted of small terminals containing predominantly round synaptic vesicles and forming asymmetric synaptic contacts, mostly on dendrites. The second type was comprised of varicose profiles that also contained round synaptic vesicles. Their synaptic contacts were always symmetric in profile. ChAT-immunoreactive terminals in the IGL patches contained round or pleomorphic synaptic vesicles, and the postsynaptic densities varied from symmetric to asymmetric, including intermediate forms. However, no large varicose profiles were observed. This study suggests that cholinergic fibers include at least two different synaptic morphologies: small terminals with asymmetric thickenings and large varicose profiles with symmetric terminals. The large varicose profile in the superficial layers is absent in the IGL. This result suggests that the cholinergic inputs that innervate the superficial layers and the patches in the IGL of the cat SC differ in their synaptic organization and possibly also in their physiological actions.
Collapse
Affiliation(s)
- C J Jeon
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis 38163
| | | | | |
Collapse
|
18
|
|
19
|
McHaffie JG, Beninato M, Stein BE, Spencer RF. Postnatal development of acetylcholinesterase in, and cholinergic projections to, the cat superior colliculus. J Comp Neurol 1991; 313:113-31. [PMID: 1761749 DOI: 10.1002/cne.903130109] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The postnatal development of cholinergic afferents to the superior colliculus in neonatal cats was studied by using acetylcholinesterase (AChE) histochemistry, choline acetyltransferase (ChAT) immunohistochemistry, and retrograde transport of horseradish peroxidase (HRP). In the adult cat, the pattern of AChE staining was laminar specific. AChE was distributed continuously in the stratum griseum superficiale (SGS) but was organized as patches in the stratum griseum intermediate (SGI). Diffuse AChE staining also was present in the stratum griseum profundum (SGP) and the dorsolateral periaqueductal gray (PAG). At birth, however, AChE staining was barely detectable in the SGS and, aside from a few isolated labeled neurons, was absent from the SGI, SGP, and PAG. By 7 days postnatal (dpn), staining in the SGS was more apparent but did not change appreciably in the deeper laminae. A substantial increase in AChE staining occurred in the SGS at 14 dpn (several days after eye opening), at which time patches in the SGI first became apparent. By 28 dpn, the complete laminar-specific adult AChE staining pattern was present, though the staining intensity did not reach the adult level until 56 dpn. A protracted maturation of both AChE staining and ChAT immunoreactivity also was observed in the sources of cholinergic afferents to the superior colliculus, which include the parabigeminal nucleus, and the pedunculopontine (PPN) and lateral dorsal tegmental (LDTN) nuclei. AChE and ChAT-immunoreactive staining in each nucleus was weak at birth but increased during the ensuing 2 weeks. At 21 dpn, however, ChAT immunoreactivity virtually disappeared in the parabigeminal nucleus and significantly decreased in PPN and LDTN. The ChAT immunoreactivity in these nuclei then gradually increased reaching maximum levels by 28 dpn. At 35 dpn, AChE staining showed a significant, though temporary (4 weeks), decrease in the parabigeminal nucleus, but not in the PPN and LDTN, that subsequently increased to the adult level of staining at 70 dpn. The absence of AChE in the SGI in neonatal animals was correlated, at least in part, with a paucity of neurons in the brainstem cholinergic cell groups labeled by retrograde transport of HRP from the superior colliculus. Injections of HRP into the superior colliculus retrogradely labeled many neurons in the parabigeminal nucleus, but few, if any, neurons in the PPN or LDTN at 1 dpn. Retrogradely labeled neurons also were observed in the substantia nigra pars reticulata, albeit fewer in neonates than in adults.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J G McHaffie
- Department of Physiology, Medical College of Virginia, Richmond 23298
| | | | | | | |
Collapse
|
20
|
Ma TP, Graybiel AM, Wurtz RH. Location of saccade-related neurons in the macaque superior colliculus. Exp Brain Res 1991; 85:21-35. [PMID: 1715825 DOI: 10.1007/bf00229983] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The locations of saccade-related neurons were studied in the superior colliculi of two adult rhesus monkeys (Macaca mulatta) by placing marking lesions at the sites of physiologically characterized cells and comparing these histologically identified sites with the collicular laminae and acetylcholinesterase (AChE)-rich patches. Three major conclusions were drawn on the basis of 39 histologically identified sites at which saccade-related neurons were recorded. First, saccade-related neurons were distributed from the ventral half of the optic layer through the deep gray layer, and were most concentrated in the intermediate gray and white layers. Second, there was a clear relationship between the discharge characteristics of these saccade-related neurons and the depths at which they were found. Neurons having presaccadic bursts, defined as clipped and partially-clipped, tended to be encountered more dorsally, and neurons that did not have bursts (unclipped) were encountered more ventrally. Although cells having different discharge characteristics seemed to be organized along a dorsoventral axis, there was no compelling evidence that these properties were specified by their laminar locations. Third, there was no clear correlation between the locations of saccade-related neurons and the distribution of individual AChE-rich patches. Saccade-related cells were found both in the caudal superior colliculus where patches were located and in the rostral superior colliculus where patches were not found; both within and between the two tiers of AChE-rich patches in the caudal superior colliculus; and both within and between individual AChE-rich patches. However, the depth-level at which saccade-related neurons occurred generally matched the region bounded by the two tiers of AChE-rich patches in the intermediate and deep layers, and the dorsal and ventral extent of saccade-related neurons was the same as that of the AChE-rich patches.
Collapse
Affiliation(s)
- T P Ma
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
21
|
Ma TP, Cheng HW, Czech JA, Rafols JA. Intermediate and deep layers of the macaque superior colliculus: a Golgi study. J Comp Neurol 1990; 295:92-110. [PMID: 1692855 DOI: 10.1002/cne.902950109] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We studied the intermediate and deep layers of the macaque superior colliculus by means of the Golgi technique in an attempt to better understand the structural features of this important oculomotor center. For this study, we examined the optic (stratum opticum, SO), intermediate gray (stratum griseum intermedium, SGI), intermediate white (stratum album intermedium, SAI), and deep gray (stratum griseum profundum, SGP) layers. These are the four layers in which neurons having saccade-related activity are localized. We identified eight neuronal types on the basis of differences in somatic and dendritic morphologies: large multipolar neurons (Type I); large pyramidal neurons (Type II); large fusiform neurons (Type III); medium fusiform neurons with spiny, radially oriented dendrites (Type IV); medium round neurons with fan-shaped dendritic trees (Type V); medium stellate neurons with varicose dendrites (Type VI); medium multipolar neurons with robust, spiny dendrites (Type VII); and local interneurons (Type VIII). Most neuronal types possessed features that are homologous to presynaptic dendritic features in other brain centers. With the exception of the medium stellate neurons (Type VI), which are aspinous, and the local interneurons (Type VIII), which are sparsely spinous, all other types had a moderate number of spines on their dendrites. Dendrites that terminated in the optic layer had specializations not observed elsewhere, suggesting that these tips may sample a tectal afferent that is not present in the more ventral layers. These eight types comprise all the neuronal morphologies observed in a large number of Golgi-impregnated macaque brains (n = 50). We suggest that they represent the full range of neuron types in the saccade-related layers of the macaque tectum.
Collapse
Affiliation(s)
- T P Ma
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
22
|
Wallace MN, Fredens K. Origin of high acetylcholinesterase activity in the mouse superior colliculus. Exp Brain Res 1988; 72:335-46. [PMID: 2465171 DOI: 10.1007/bf00250255] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The acetylcholinesterase activity in the colliculus mainly occurs in two layers and is arranged as a lattice in the intermediate grey layer and as a continuous sheet in the superficial grey layer. Undercutting lesions abolish the lattice in the intermediate grey layer but leave the superficial sheet of activity intact. By contrast the injection of kainic acid into the colliculus leaves the intermediate layer lattice intact while causing a local reduction in the superficial layer. Injections of the retrograde tracer Fluoro-Gold into the colliculus labels cells in the pedunculopontine and laterodorsal tegmental nuclei that contains acetylcholinesterase. Cells in the parabigeminal nucleus are also labelled but these cells contain low levels of cholinesterase. Thus, it is concluded that the lattice in the intermediate layers is mainly dependent on afferents from the laterodorsal tegmental and pedunculopontine nuclei while the sheet in the superficial layers is mainly dependent on intrinsic cells.
Collapse
Affiliation(s)
- M N Wallace
- Institute of Anatomy B, University of Aarhus, Denmark
| | | |
Collapse
|