1
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Zhao ZD, Zhang L, Xiang X, Kim D, Li H, Cao P, Shen WL. Neurocircuitry of Predatory Hunting. Neurosci Bull 2023; 39:817-831. [PMID: 36705845 PMCID: PMC10170020 DOI: 10.1007/s12264-022-01018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/26/2022] [Indexed: 01/28/2023] Open
Abstract
Predatory hunting is an important type of innate behavior evolutionarily conserved across the animal kingdom. It is typically composed of a set of sequential actions, including prey search, pursuit, attack, and consumption. This behavior is subject to control by the nervous system. Early studies used toads as a model to probe the neuroethology of hunting, which led to the proposal of a sensory-triggered release mechanism for hunting actions. More recent studies have used genetically-trackable zebrafish and rodents and have made breakthrough discoveries in the neuroethology and neurocircuits underlying this behavior. Here, we review the sophisticated neurocircuitry involved in hunting and summarize the detailed mechanism for the circuitry to encode various aspects of hunting neuroethology, including sensory processing, sensorimotor transformation, motivation, and sequential encoding of hunting actions. We also discuss the overlapping brain circuits for hunting and feeding and point out the limitations of current studies. We propose that hunting is an ideal behavioral paradigm in which to study the neuroethology of motivated behaviors, which may shed new light on epidemic disorders, including binge-eating, obesity, and obsessive-compulsive disorders.
Collapse
Affiliation(s)
- Zheng-Dong Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Li Zhang
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- MoE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Daesoo Kim
- Department of Cognitive Brain Science, Korea Advanced Institute of Science & Technology, Daejeon, 34141, South Korea.
| | - Haohong Li
- MOE Frontier Research Center of Brain & Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
- Affiliated Mental Health Centre and Hangzhou Seventh People`s Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Peng Cao
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Wei L Shen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
3
|
Neural circuit control of innate behaviors. SCIENCE CHINA. LIFE SCIENCES 2022; 65:466-499. [PMID: 34985643 DOI: 10.1007/s11427-021-2043-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022]
Abstract
All animals possess a plethora of innate behaviors that do not require extensive learning and are fundamental for their survival and propagation. With the advent of newly-developed techniques such as viral tracing and optogenetic and chemogenetic tools, recent studies are gradually unraveling neural circuits underlying different innate behaviors. Here, we summarize current development in our understanding of the neural circuits controlling predation, feeding, male-typical mating, and urination, highlighting the role of genetically defined neurons and their connections in sensory triggering, sensory to motor/motivation transformation, motor/motivation encoding during these different behaviors. Along the way, we discuss possible mechanisms underlying binge-eating disorder and the pro-social effects of the neuropeptide oxytocin, elucidating the clinical relevance of studying neural circuits underlying essential innate functions. Finally, we discuss some exciting brain structures recurrently appearing in the regulation of different behaviors, which suggests both divergence and convergence in the neural encoding of specific innate behaviors. Going forward, we emphasize the importance of multi-angle and cross-species dissections in delineating neural circuits that control innate behaviors.
Collapse
|
4
|
Collicular circuits for flexible sensorimotor routing. Nat Neurosci 2021; 24:1110-1120. [PMID: 34083787 DOI: 10.1038/s41593-021-00865-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/04/2021] [Indexed: 02/05/2023]
Abstract
Context-based sensorimotor routing is a hallmark of executive control. Pharmacological inactivations in rats have implicated the midbrain superior colliculus (SC) in this process. But what specific role is this, and what circuit mechanisms support it? Here we report a subset of rat SC neurons that instantiate a specific link between the representations of context and motor choice. Moreover, these neurons encode animals' choice far earlier than other neurons in the SC or in the frontal cortex, suggesting that their neural dynamics lead choice computation. Optogenetic inactivations revealed that SC activity during context encoding is necessary for choice behavior, even while that choice behavior is robust to inactivations during choice formation. Searches for SC circuit models matching our experimental results identified key circuit predictions while revealing some a priori expected features as unnecessary. Our results reveal circuit mechanisms within the SC that implement response inhibition and context-based vector inversion during executive control.
Collapse
|
5
|
A Novel Three-Choice Touchscreen Task to Examine Spatial Attention and Orienting Responses in Rodents. eNeuro 2021; 8:ENEURO.0032-20.2021. [PMID: 33789926 PMCID: PMC8272401 DOI: 10.1523/eneuro.0032-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/21/2022] Open
Abstract
Mammalian orienting behavior consists of coordinated movements of the eyes, head, pinnae, vibrissae, or body to attend to an external stimulus. The present study aimed to develop a novel operant task using a touch-screen system to measure spatial attention. In this task, rats were trained to nose-poke a light stimulus presented in one of three locations. The stimulus was presented more frequently in the center location to develop spatial attention bias toward the center stimulus. Changes in orienting responses were detected by measuring the animals' response accuracy and latency to stimuli at the lateral locations, following reversible unilateral chemogenetic inactivation of the superior colliculus (SC). Additionally, spontaneous turning and rotation behavior was measured using an open-field test (OFT). Our results show that right SC inactivation significantly increased the whole body turn angle in the OFT, in line with previous literature that indicated an ipsiversive orientating bias and the presence of contralateral neglect following unilateral SC lesions. In the touch screen orienting task, unilateral SC inactivation significantly increased bias toward the ipsilateral side, as measured by response frequency in various experimental conditions, and a very large left-shift of a respective psychometric function. Our results demonstrate that this novel touchscreen task is able to detect changes in spatial attention and orienting responses because of e.g. experimental manipulations or injury with very high sensitivity, while taking advantage of the touch screen technology that allows for high transferability of the task between labs and for open-source data sharing through https://www.mousebytes.ca.
Collapse
|
6
|
Huda R, Sipe GO, Breton-Provencher V, Cruz KG, Pho GN, Adam E, Gunter LM, Sullins A, Wickersham IR, Sur M. Distinct prefrontal top-down circuits differentially modulate sensorimotor behavior. Nat Commun 2020; 11:6007. [PMID: 33243980 PMCID: PMC7691329 DOI: 10.1038/s41467-020-19772-z] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 10/26/2020] [Indexed: 02/04/2023] Open
Abstract
Sensorimotor behaviors require processing of behaviorally relevant sensory cues and the ability to select appropriate responses from a vast behavioral repertoire. Modulation by the prefrontal cortex (PFC) is thought to be key for both processes, but the precise role of specific circuits remains unclear. We examined the sensorimotor function of anatomically distinct outputs from a subdivision of the mouse PFC, the anterior cingulate cortex (ACC). Using a visually guided two-choice behavioral paradigm with multiple cue-response mappings, we dissociated the sensory and motor response components of sensorimotor control. Projection-specific two-photon calcium imaging and optogenetic manipulations show that ACC outputs to the superior colliculus, a key midbrain structure for response selection, principally coordinate specific motor responses. Importantly, ACC outputs exert control by reducing the innate response bias of the superior colliculus. In contrast, ACC outputs to the visual cortex facilitate sensory processing of visual cues. Our results ascribe motor and sensory roles to ACC projections to the superior colliculus and the visual cortex and demonstrate for the first time a circuit motif for PFC function wherein anatomically non-overlapping output pathways coordinate complementary but distinct aspects of visual sensorimotor behavior. The neural circuit mechanisms for sensorimotor control by the prefrontal cortex (PFC) are unclear. Here, the authors show that PFC outputs to the visual cortex and superior colliculus respectively facilitate sensory processing and action selection, allowing the PFC to independently control complementary but distinct behavioral functions.
Collapse
Affiliation(s)
- Rafiq Huda
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Grayson O Sipe
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Vincent Breton-Provencher
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - K Guadalupe Cruz
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Gerald N Pho
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Elie Adam
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Liadan M Gunter
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Austin Sullins
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian R Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
7
|
Yetnikoff L, Cheng AY, Lavezzi HN, Parsley KP, Zahm DS. Sources of input to the rostromedial tegmental nucleus, ventral tegmental area, and lateral habenula compared: A study in rat. J Comp Neurol 2015; 523:2426-56. [PMID: 25940654 PMCID: PMC4575621 DOI: 10.1002/cne.23797] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/19/2015] [Accepted: 04/20/2015] [Indexed: 01/23/2023]
Abstract
Profound inhibitory control exerted on midbrain dopaminergic neurons by the lateral habenula (LHb), which has mainly excitatory outputs, is mediated by the GABAergic rostromedial tegmental nucleus (RMTg), which strongly innervates dopaminergic neurons in the ventral midbrain. Early reports indicated that the afferent connections of the RMTg, excepting its very strong LHb inputs, do not differ appreciably from those of the ventral tegmental area (VTA). Presumably, however, the RMTg contributes more to behavioral synthesis than to simply invert the valence of the excitatory signal coming from the LHb. Therefore, the present study was done to directly compare the inputs to the RMTg and VTA and, in deference to its substantial involvement with this circuitry, the LHb was also included in the comparison. Data indicated that, while the afferents of the RMTg, VTA, and LHb do originate within the same large pool of central nervous system (CNS) structures, each is also related to structures that project more strongly to it than to the others. The VTA gets robust input from ventral striatopallidum and extended amygdala, whereas RMTg biased inputs arise in structures with a more direct impact on motor function, such as deep layers of the contralateral superior colliculus, deep cerebellar and several brainstem nuclei, and, via a relay in the LHb, the entopeduncular nucleus. Input from the ventral pallidal-lateral preoptic-lateral hypothalamus continuum is strong in the RMTg and VTA and dominant in the LHb. Axon collateralization was also investigated, providing additional insights into the organization of the circuitry of this important triad of structures.
Collapse
Affiliation(s)
- Leora Yetnikoff
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Anita Y Cheng
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Heather N Lavezzi
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Kenneth P Parsley
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Daniel S Zahm
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
8
|
Optogenetic investigation of the role of the superior colliculus in orienting movements. Behav Brain Res 2013; 255:55-63. [PMID: 23643689 DOI: 10.1016/j.bbr.2013.04.040] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 03/27/2013] [Accepted: 04/25/2013] [Indexed: 12/13/2022]
Abstract
In vivo studies have demonstrated that the superior colliculus (SC) integrates sensory information and plays a role in controlling orienting motor output. However, how the complex microcircuitry within the SC, as documented by slice studies, subserves these functions is unclear. Optogenetics affords the potential to examine, in behaving animals, the functional roles of specific neuron types that comprise heterogeneous nuclei. As a first step toward understanding how SC microcircuitry underlies motor output, we applied optogenetics to mice performing an odor discrimination task in which sensory decisions are reported by either a leftward or rightward SC-dependent orienting movement. We unilaterally expressed either channelrhodopsin-2 or halorhodopsin in the SC and delivered light in order to excite or inhibit motor-related SC activity as the movement was planned. We found that manipulating SC activity predictably affected the direction of the selected movement in a manner that depended on the difficulty of the odor discrimination. This study demonstrates that the SC plays a similar role in directional orienting movements in mice as it does in other species, and provides a framework for future investigations into how specific SC cell types contribute to motor control.
Collapse
|
9
|
Hirokawa J, Sadakane O, Sakata S, Bosch M, Sakurai Y, Yamamori T. Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats. PLoS One 2011; 6:e25283. [PMID: 21966481 PMCID: PMC3180293 DOI: 10.1371/journal.pone.0025283] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 08/31/2011] [Indexed: 11/18/2022] Open
Abstract
Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses.
Collapse
Affiliation(s)
- Junya Hirokawa
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Osamu Sadakane
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Shuzo Sakata
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Miquel Bosch
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Yoshio Sakurai
- Department of Psychology, Kyoto University, Kyoto, Japan
- Core Research for Evolution Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Tetsuo Yamamori
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Japan
| |
Collapse
|
10
|
Favaro PDN, Gouvêa TS, de Oliveira SR, Vautrelle N, Redgrave P, Comoli E. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience 2010; 176:318-27. [PMID: 21163336 DOI: 10.1016/j.neuroscience.2010.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/04/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats.
Collapse
Affiliation(s)
- P D N Favaro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Rawls SM, Patil T, Yuvasheva E, Raffa RB. First evidence that drugs of abuse produce behavioral sensitization and cross sensitization in planarians. Behav Pharmacol 2010; 21:301-13. [PMID: 20512030 DOI: 10.1097/fbp.0b013e32833b0098] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Behavioral sensitization in mammals, including humans, is sensitive to factors such as administration route, testing environment, and pharmacokinetic confounds, unrelated to the drugs themselves that are difficult to eliminate. Simpler animals less susceptible to these confounding influences may be advantageous substitutes for studying sensitization. We tested this hypothesis by determining whether planarians display sensitization and cross sensitization to cocaine and glutamate. Planarian hyperactivity was quantified as the number of C-like hyperkinesias during a 1-min drug exposure. Planarians exposed initially to cocaine (or glutamate) on day 1 were challenged with cocaine (or glutamate) after 2 or 6 days of abstinence. Acute cocaine or glutamate produced concentration-related hyperactivity. Cocaine or glutamate challenge after 2 and 6 days of abstinence enhanced the hyperactivity, indicating the substances produced planarian behavioral sensitization. Cross-sensitization experiments showed that cocaine produced greater hyperactivity in planarians earlier exposed to glutamate than in glutamate-naive planarians, and vice versa. Behavioral responses were pharmacologically selective because neither scopolamine nor caffeine produced planarian behavioral sensitization despite causing hyperactivity after initial administration, and acute gamma-aminobutyric acid did not cause hyperactivity. Demonstration of pharmacologically selective behavioral sensitization in planarians suggests that these flatworms represent a sensitive in-vivo model to study cocaine behavioral sensitization and to screen potential abuse-deterrent therapeutics.
Collapse
Affiliation(s)
- Scott M Rawls
- Department of Pharmaceutical Sciences, Center for Substance Abuse Research, Temple University Health Sciences Center, 3307 North Broad Street, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
12
|
Furigo I, de Oliveira W, de Oliveira A, Comoli E, Baldo M, Mota-Ortiz S, Canteras N. The role of the superior colliculus in predatory hunting. Neuroscience 2010; 165:1-15. [DOI: 10.1016/j.neuroscience.2009.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2009] [Indexed: 11/27/2022]
|
13
|
Neural substrates of sensory-guided locomotor decisions in the rat superior colliculus. Neuron 2008; 60:137-48. [PMID: 18940594 DOI: 10.1016/j.neuron.2008.09.019] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/01/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
Abstract
Deciding in which direction to move is a ubiquitous feature of animal behavior, but the neural substrates of locomotor choices are not well understood. The superior colliculus (SC) is a midbrain structure known to be important for controlling the direction of gaze, particularly when guided by visual or auditory cues, but which may play a more general role in behavior involving spatial orienting. To test this idea, we recorded and manipulated activity in the SC of freely moving rats performing an odor-guided spatial choice task. In this context, not only did a substantial majority of SC neurons encode choice direction during goal-directed locomotion, but many also predicted the upcoming choice and maintained selectivity for it after movement completion. Unilateral inactivation of SC activity profoundly altered spatial choices. These results indicate that the SC processes information necessary for spatial locomotion, suggesting a broad role for this structure in sensory-guided orienting and navigation.
Collapse
|
14
|
Bittencourt AS, Nakamura-Palacios EM, Mauad H, Tufik S, Schenberg LC. Organization of electrically and chemically evoked defensive behaviors within the deeper collicular layers as compared to the periaqueductal gray matter of the rat. Neuroscience 2005; 133:873-92. [PMID: 15916856 DOI: 10.1016/j.neuroscience.2005.03.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 03/04/2005] [Accepted: 03/11/2005] [Indexed: 10/25/2022]
Abstract
Stimulation of the periaqueductal gray matter (PAG) and the deeper layers of superior colliculus (SC) produces both freezing (tense immobility) and flight (trotting, galloping and jumping) behaviors along with exophthalmus (fully opened bulging eyes) and, less often, micturition and defecation. The topography of these behaviors within the distinct layers of SC remains unclear. Therefore, this study compared the defensive repertoire of intermediate (ILSC) and deep (DLSC) layers of SC to those of dorsolateral periaqueductal gray matter (DLPAG) and lateral periaqueductal gray matter (LPAG) [Neuroscience 125 (2004) 71]. Electrical stimulation was carried out through intensity- (0-70 microA) and frequency-varying (0-130 Hz) pulses. Chemical stimulation employed a slow microinfusion of N-methyl-d-aspartic acid (NMDA, 0-2.3 nmol, 0.5 nmol/min). Probability curves of intensity-, frequency- and NMDA-evoked behaviors, as well as the unbiased estimates of median stimuli, were obtained by threshold logistic analysis. Compared with the PAG, the most important differences were the lack of frequency-evoked jumping in both layers of SC and the lack of NMDA-evoked galloping in the ILSC. Moreover, although galloping and jumping were also elicited by NMDA stimulation of DLSC, effective doses were about three times higher than those of DLPAG, suggesting the spreading of the injectate to the latter structure. In contrast, exophthalmus, immobility and trotting were evoked throughout the tectum structures. However, whatever the response and kind of stimulus, the lowest thresholds were always found in the DLPAG and the highest ones in the ILSC. Besides, neither the appetitive, nor the offensive, muricide or male reproductive behaviors were produced by any kind of stimulus in the presence of appropriate targets. Accordingly, the present data suggest that the deeper layers of SC are most likely involved in the increased attentiveness (exophthalmus, immobility) or restlessness (trotting) behaviors that herald a full-blown flight reaction (galloping, jumping) mediated in the PAG.
Collapse
Affiliation(s)
- A S Bittencourt
- Departamento de Ciências Fisiológicas, Centro Biomédico, Edifício do Programa de Pós-Graduação em Ciências Fisiológicas, Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125 Vitória, ES, Brazil
| | | | | | | | | |
Collapse
|
15
|
Schenberg LC, Póvoa RMF, Costa ALP, Caldellas AV, Tufik S, Bittencourt AS. Functional specializations within the tectum defense systems of the rat. Neurosci Biobehav Rev 2005; 29:1279-98. [PMID: 16087233 DOI: 10.1016/j.neubiorev.2005.05.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 05/03/2005] [Accepted: 05/03/2005] [Indexed: 01/29/2023]
Abstract
Here we review the differential contribution of the periaqueductal gray matter (PAG) and superior colliculus (SC) to the generation of rat defensive behaviors. The results of studies involving sine-wave and rectangular pulse electrical stimulation and chemical (NMDA) stimulation are summarized. Stimulation of SC and PAG produced freezing and flight behaviors along with exophthalmus (fully opened bulged eyes), micturition and defecation. The columnar organization of the PAG was evident in the results obtained. Defecation was elicited primarily by lateral PAG stimulation, while the remaining defensive behaviors were similarly elicited by lateral and dorsolateral PAG stimulation, although with the lowest thresholds in the dorsolateral column. Conversely, the ventrolateral PAG did not appear to participate in unconditioned defensive behaviors, which were only elicited by high intensity stimulation likely to encroach on adjacent regions. In the SC, the most important differences relative to the PAG were the lack of stimulation-evoked jumping in both intermediate and deep layers, and of NMDA-evoked galloping in intermediate layers. Therefore, we conclude that the SC may be only involved in the increased attentiveness (exophthalmus, immobility) and restlessness (trotting) of prey species exposed to the cues of a nearby predator. These responses may be distinct from the full-blown flight reaction that is mediated by the dorsolateral and lateral PAG. However, other evidences suggest the possible influences of stimulation schedule, environment dimensions and rat strain in determining outcomes. Overall our results suggest a dynamically organized representation of defensive behaviors in the midbrain tectum.
Collapse
Affiliation(s)
- L C Schenberg
- Departamento de Ciências Fisiológicas--Centro Biomédico (Edifício do Programa de Pós-Graduação em Ciências Fisiológicas), Universidade Federal do Espírito Santo, Av. Marechal Campos 1468 (Maruípe), 29043-125, Vitória, ES, Brazil.
| | | | | | | | | | | |
Collapse
|
16
|
King SM, Dean P, Redgrave P. Bypassing the Saccadic Pulse Generator: Possible Control of Head Movement Trajectory by Rat Superior Colliculus. Eur J Neurosci 2002; 3:790-801. [PMID: 12106465 DOI: 10.1111/j.1460-9568.1991.tb01675.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Saccades produced by electrical stimulation of the superior colliculus in primates are influenced primarily by the location of the stimulating electrode, with the suprathreshold intensity or frequency of the stimulating pulse train having little effect. Any given collicular site produces a characteristic movement of relatively fixed amplitude and velocity. In accordance with this finding, in models of the saccadic eye movement system the superior colliculus specifies the change of eye position: the velocity of movement components are determined by 'pulse generators' located between the superior colliculus and the oculomotor neurons. Previous findings in rodents, however, have suggested that eye and head movements induced by stimulation at some collicular sites may be critically dependent on stimulation parameters, implying that in these animals the superior colliculus has access to a non-saccadic control system. To investigate this possibility, rats with electrodes implanted into the lateral intermediate layers were stimulated with pulse trains of varying frequency and duration, and the resultant head movements analysed from video tape. At seven of the nine sites studied, amplitude of the horizontal component of the head movement was linearly related to stimulating frequency for fixed-duration trains, in some cases over a ten-fold range. Subsequent variation of train duration showed that amplitude was affected not by frequency as such, but by the number of pulses in the train; frequency was related to the mean velocity of the movement. By appropriate setting of these parameters, independent control of head movement amplitude and velocity could be achieved. These results suggest that the rodent superior colliculus may be able to control head movement without recourse to a pulse generator, and thus influence the trajectory of the movement directly. If so, it may prove to be a useful preparation for testing theories of trajectory formation.
Collapse
Affiliation(s)
- Sheila M. King
- Department of Psychology, University of Sheffield, Sheffield S10 2UR, UK
| | | | | |
Collapse
|
17
|
Niemi-Junkola UJ, Westby GW. Cerebellar output exerts spatially organized influence on neural responses in the rat superior colliculus. Neuroscience 2000; 97:565-73. [PMID: 10828538 DOI: 10.1016/s0306-4522(00)00044-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The deep cerebellar nuclei project to largely segregated target regions in the contralateral superior colliculus. Single-unit recordings have previously shown that nuclear inactivation normally suppresses spontaneously active collicular target neurons. However, facilitation of activity has also been found in a proportion of collicular units. In the present study we tested the hypothesis that the type of effect is related to the cerebellotectal topography. We recorded simultaneously in the deep cerebellar nuclei and superior colliculus of 53 anaesthetized rats. GABA microinjections produced a complete, reversible, arrest of activity in the deep cerebellar nuclei. We investigated the effect of this inactivation on 292 sensory and non-sensory cells in the collicular intermediate and deep layers. Of these, 29% showed a reduced response to their preferred sensory stimulus or decreased their spontaneous firing rate in the case of non-sensory cells. However, 15% increased their sensory responsiveness and/or spontaneous firing rate following cerebellar inactivation. No effect was seen in the remaining 56% of cells. The distribution of these different effects was highly significantly related to the topography of the cerebellotectal terminal fields. Thus, 68% of the suppressive effects were obtained from cells lying in the terminal fields of the deep cerebellar nucleus inactivated. Conversely, 86% of the excitatory effects and 66% of the cells showing no effect were obtained from cells falling outside the terminal field. The results support the view that the superior colliculus is an important site for the functional integration of primary sensory information, not only with cortical and basal ganglia afferents, but also with cerebellar information. The contrasting physiological responses observed within the terminal cerebellotectal topography appear to map closely on to the known distribution of the cells of origin of the two major descending output pathways of the superior colliculus and are possibly mediated by intrinsic inhibitory connections within its intermediate and deep layers. These results provide evidence for a neural architecture in the superior colliculus whose function is the selection of appropriate actions in response to novel stimuli and the suppression of competing motor programmes.
Collapse
Affiliation(s)
- U J Niemi-Junkola
- Department of Psychology, Sheffield University, S10 2TP, Sheffield, UK
| | | |
Collapse
|
18
|
Abstract
Descending projections from the superior colliculus (SC) motor map to the saccadic omnipause neurons (OPNs) were examined in monkeys by using anterograde transport of tritiated leucine. The SC was divided into three zones: the rostral pole of the motor map, a small horizontal saccade zone in central SC, and a large horizontal saccade zone in caudal SC. Tracer injections into the intermediate layers of the three zones led to different patterns of silver grain deposits in and around nucleus raphe interpositus (RIP), which contains the OPNs: 1) From the rostral pole of the motor map, coarse axon branches of the crossed predorsal bundle spread medially into the RIP, branched, and terminated predominantly unilaterally over cells on the same side. 2) From the small horizontal saccade zone, the axon branches were of a finer caliber and terminated diffusely in the RIP, mainly on the same side. 3) From the large horizontal saccade zone, no terminal labeling was found within the RIP. 4) From the rostral pole of the motor map and small horizontal saccade zone, fiber branches from the ipsilateral descending pathway terminated diffusely over RIP. 5) In addition, terminal labeling in reticulospinal areas of the pons and medulla increased in parallel with the size of the saccade according to the SC motor map. The results suggest that there are multiple projections directly onto OPNs from the rostral SC but not from the caudal SC associated with large gaze shifts. The efferents from the rostral pole of the motor map may subserve the suppression of saccades during visual fixation, and those from the small horizontal saccade zone could inhibit anatagonist premotor circuits.
Collapse
Affiliation(s)
- J A Büttner-Ennever
- Institute of Anatomy, Ludwig-Maximilian University, D-80336 Munich, Germany.
| | | | | | | |
Collapse
|
19
|
Doron NN, Ledoux JE. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990927)412:3<383::aid-cne2>3.0.co;2-5] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Ciaramitaro VM, Todd WE, Rosenquist AC. Disinhibition of the superior colliculus restores orienting to visual stimuli in the hemianopic field of the cat. J Comp Neurol 1997; 387:568-87. [PMID: 9373014 DOI: 10.1002/(sici)1096-9861(19971103)387:4<568::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Following unilateral removal of all known visual cortical areas, a cat is rendered hemianopic in the contralateral visual field. Visual orientation can be restored to the blind hemifield by transection of the commissure of the superior colliculus or by destruction of the superior colliculus (SC) or the substantia nigra pars reticulata (SNpr) contralateral to the cortical lesion. It is hypothesized that a mechanism mediating recovery is disinhibition of the SC ipsilateral to the cortical lesion. The ipsilateral nigrotectal projection exerts a robust inhibitory tone onto cells in the SC. However, ibotenic acid destruction of SNpr neurons, which should decrease inhibition onto the SC, does not result in recovery. The failure of ipsilateral SNpr lesions to produce recovery puts into question the validity of SC disinhibition as a mechanism of recovery. We directly tested the disinhibition hypothesis by reversibly disinhibiting the SC ipsilateral to a visual cortical lesion with a gamma-aminobutyric acid (GABA)A antagonist, bicuculline methiodide. In accordance with the hypothesis, transient disinhibition of the SC restored visual orienting for several hours in three of eight animals. Recovery was not a volume or pH effect and was distinct from the release of irrepressible motor effects (i.e., approach and avoidance behaviors) seen within the first hour after injection. Thus, in the absence of all visual cortical areas unilaterally, disinhibition of the SC can transiently restore the ability of the cat to orient to visual stimuli in the previously "blind" hemifield.
Collapse
Affiliation(s)
- V M Ciaramitaro
- Department of Neuroscience, University of Pennsylvania, Philadelphia 19104, USA
| | | | | |
Collapse
|
21
|
Abstract
Hyperexcitable reflex blinks are a cardinal sign of Parkinson's disease. We investigated the neural circuit through which a loss of dopamine in the substantia nigra pars compacta (SNc) leads to increased reflex blink excitability. Through its inhibitory inputs to the thalamus, the basal ganglia could modulate the brainstem reflex blink circuits via descending cortical projections. Alternatively, with its inhibitory input to the superior colliculus, the basal ganglia could regulate brainstem reflex blink circuits via tecto-reticular projections. Our study demonstrated that the basal ganglia utilizes its GABAergic input to the superior colliculus to modulate reflex blinks. In rats with previous unilateral 6-hydroxydopamine (6-OHDA) lesions of the dopamine neurons of the SNc, we found that microinjections of bicuculline, a GABA antagonist, into the superior colliculus of both alert and anesthetized rats eliminated the reflex blink hyperexcitability associated with dopamine depletion. In normal, alert rats, decreasing the basal ganglia output to the superior colliculus by injecting muscimol, a GABA agonist, into the substantia nigra pars reticulata (SNr) markedly reduced blink amplitude. Finally, brief trains of microstimulation to the superior colliculus reduced blink amplitude. Histological analysis revealed that effective muscimol microinjection and microstimulation sites in the superior colliculus overlapped the nigrotectal projection from the basal ganglia. These data support models of Parkinsonian symtomatology that rely on changes in the inhibitory drive from basal ganglia output structures. Moreover, they support a model of Parkinsonian reflex blink hyper-excitability in which the SNr-SC target projection is critical.
Collapse
|
22
|
Abstract
Hyperexcitable reflex blinks are a cardinal sign of Parkinson's disease. The first step in the circuit linking the basal ganglia and brainstem reflex blink circuits is the inhibitory nigrostriatal pathway (Basso et al., 1996). The current study reports the circuits linking the superior colliculus (SC) to trigeminal reflex blink circuits. Microstimulation of the deep layers of the SC suppresses subsequent reflex blinks at a latency of 5.4 msec. This microstimulation does not activate periaqueductal gray antinociceptive circuits. The brainstem structure linking SC to reflex blink circuits must suppress reflex blinks at a shorter latency than the SC and produce the same effect on reflex blink circuits as SC stimulation, and removal of the structure must block SC modulation of reflex blinks. Only the nucleus raphe magnus (NRM) meets these requirements. NRM microstimulation suppresses reflex blinks with a latency of 4.4 msec. Like SC stimulation, NRM microstimulation reduces the responsiveness of the spinal trigeminal nucleus. Finally, blocking the receptors for the NRM transmitter serotonin eliminates SC modulation of reflex blinks, and muscimol inactivation of the NRM transiently prevents SC modulation of reflex blinks. Thus, the circuit through which the basal ganglia modulates reflex blinking is (1) the substantia nigra pars reticulata inhibits SC neurons, (2) the SC excites tonically active NRM neurons, and (3) NRM neurons inhibit spinal trigeminal neurons involved in reflex blink circuits.
Collapse
|
23
|
Redgrave P, McHaffie JG, Stein BE. Nociceptive neurones in rat superior colliculus. I. Antidromic activation from the contralateral predorsal bundle. Exp Brain Res 1996; 109:185-96. [PMID: 8738369 DOI: 10.1007/bf00231780] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Accumulating evidence suggests that the rodent superior colliculus (SC) plays as important a role in avoidance and defensive behaviours as it does in orientation and approach. These two complementary behaviours are associated with two anatomically segregated tectofugal output pathways, such that orientation and approach are mediated by the crossed descending projection, whereas avoidance and defence are subserved via the uncrossed projection. Because nociceptive neurones in the SC have been presumed to participate in withdrawal or defensive behaviours, it has been proposed that they have direct access only to the uncrossed efferent pathway. However, in certain behavioural situations, the most adaptive response to injury, or to a painful object in prolonged contact with the skin, is to orient towards the source of discomfort so that the skin can be licked and/or the offending object removed. Presumably then, nociceptive as well as low-threshold neurones would have access to the crossed descending pathway in order to initiate such behaviours. Determining whether or not this is the case was the objective of the present study. Both nociceptive-specific (82%) and wide-dynamic-range (18%) SC neurones were identified using long-duration (up to 6 s), frankly noxious mechanical and thermal stimuli in urethane-anaesthetised Long-Evans hooded rats. The majority (85.7%) of the nociceptive neurones encountered were located within the intermediate layers, which corresponds with the location of the cells-of-origin of the crossed descending projection. Nearly half (44.9%) were activated antidromically from electrical stimulation of the crossed descending pathway at a site in the brainstem below its decussation. The mean conduction velocity of these nociceptive output neurones was 9.02 m/s, which corresponds well to previous estimates of conduction velocity in the crossed tecto-reticulo-spinal tract. These data demonstrate that a significant proportion of nociceptive neurones in the rat SC have axons that project to the contralateral brainstem via the crossed descending projection. Nociceptive neurones could, therefore, effect orientation responses to noxious stimuli via similar output pathways that low-threshold neurones utilize to initiate orientation to innocuous stimuli.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, UK.
| | | | | |
Collapse
|
24
|
Clement CI, Keay KA, Owler BK, Bandler R. Common patterns of increased and decreased fos expression in midbrain and pons evoked by noxious deep somatic and noxious visceral manipulations in the rat. J Comp Neurol 1996; 366:495-515. [PMID: 8907361 DOI: 10.1002/(sici)1096-9861(19960311)366:3<495::aid-cne9>3.0.co;2-#] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunohistochemical detection of the protein product (Fos) of the c-fos immediate early gene was used to study neuronal activation in the rostral pons and midbrain of halothane-anesthetised rats following noxious deep somatic or noxious visceral stimulation. In animals exposed only to halothane anesthesia, Fos-like immunoreactive (IR) neurons were located in the midbrain periaqueductal gray matter, tectum, and parabrachial nucleus. Following noxious stimulation of hindlimb muscle, knee joint, vagal cardiopulmonary, or peritoneal nociceptors, there was, compared to halothane-only animals, a significant increase in the numbers of Fos-like (IR) cells in the caudal ventrolateral periaqueductal gray and the intermediate gray lamina of the superior colliculus. Given the general agreement that increased Fos expression is a consequence of increased neuronal activity, the finding that a range of noxious deep somatic and noxious visceral stimuli evoked increased neuronal activity in a discrete, caudal ventrolateral periaqueductal gray region is consistent with previous suggestions that this region is an integrator of deep noxious evoked reactions. The noxious deep somatic and noxious visceral manipulations also evoked, compared to halothane-only animals, reductions in the numbers of Fos-like IR cells in the stratum opticum of the superior colliculus and the unlaminated portion of the external subnucleus of the inferior colliculus. To our knowledge this is the first report of reductions in Fos-expression in the tectum evoked by noxious stimulation. In separate experiments, the effects of noxious deep somatic and noxious visceral manipulations on arterial pressure and heart rate were measured. The noxious visceral manipulations evoked substantial and sustained falls in arterial pressure (15-45 mmHg), and heart rate (75-100 bpm), whereas the depressor and bradycardiac effects of the noxious deep somatic manipulations were weaker, not as sustained, or entirely absent. As similar distributions and numbers of both increased and decreased Fos-like IR cells were observed after each of the deep noxious manipulations, it follows that the deep noxious evoked increases and decreases in Fos expression were not secondary to the evoked depressor or bradycardiac effects.
Collapse
Affiliation(s)
- C I Clement
- Department of Anatomy and Histology, University of Sydney, New South Wales, Australia
| | | | | | | |
Collapse
|
25
|
Behan M, Kime NM. Spatial distribution of tectotectal connections in the cat. PROGRESS IN BRAIN RESEARCH 1996; 112:131-42. [PMID: 8979825 DOI: 10.1016/s0079-6123(08)63325-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In mammals, the paired superior colliculi of the midbrain play a significant role in the generation and guidance of eye movements that enable an animal to orient to novel visual stimuli. In several species including monkey, cat and hamster, the paired colliculi are connected by a commissure. In the cat, many commissural axons arise from tectotectal neurons located in the deep layers in the rostral two-thirds of the colliculus. The role of these tectotectal neurons is unclear, but it is likely that they play some role in eye movement control. In this study, the neuroanatomical tracer Biocytin was used to make small, localized injections into the deep layers of the cat superior colliculus at a variety of different locations in nine animals. The distribution of tectotectal synaptic terminals in the opposite colliculus was then plotted. Regardless of which layers were included the injection site, labelled boutons were most dense in the deep layers in the contralateral colliculus. There was a striking point-to-point organization in the tectotectal projection such that terminals were concentrated at an almost mirror-symmetrical region to the injection site in the rostrocaudal plane. In the majority of cases, however, the focus of terminal boutons was shifted medially by 1-2 mm. These results suggest that tectotectal connections may influence select populations of neurons in the contralateral colliculus. By coupling specific groups of neurons in the two colliculi, their effectiveness in sensory motor processing could be enhanced. At this time it is not clear whether specific commissural terminals contain excitatory or inhibitory neurotransmitters, and our ongoing studies are addressing this question.
Collapse
Affiliation(s)
- M Behan
- Department of Comparative Biosciences, University of Wisconsin, Madison 53706, USA.
| | | |
Collapse
|
26
|
Shehab S, Simkins M, Dean P, Redgrave P. The dorsal midbrain anticonvulsant zone--I. Effects of locally administered excitatory amino acids or bicuculline on maximal electroshock seizures. Neuroscience 1995; 65:671-9. [PMID: 7609869 DOI: 10.1016/0306-4522(94)00515-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microinjections of bicuculline methiodide into the dorsal midbrain anticonvulsant zone, a region which includes the caudal deep layers of the superior colliculus, the adjacent mesencephalic reticular formation and the intercollicular nucleus, suppress tonic hindlimb extension induced by maximal electroshock. The purpose of the present experiments was to establish the most effective and convenient method for eliciting anticonvulsant properties from the dorsal midbrain using the electroshock model of epilepsy. A comparison of different injections of excitatory amino acids and bicuculline into the dorsal midbrain of the rat showed: (i) injections of kainate suppressed hindlimb extension but only at substantially larger doses (i.e. 200-400 pmol) than 50 pmol of bicuculline, which produced generally superior effects; (ii) quisqualate provided only weak protection against tonic seizures at doses that produced neurotoxic effects (2-40 nmol); (iii) N-methyl-D-aspartate was ineffective at doses which produced mild clonic seizure in their own right (2-4 nmol) and also produced some evidence of neurotoxicity; (iv) the suppression of hindlimb extension by bicuculline was dose related, and the lowest bilateral dose for producing reliable suppression was 50 pmol/400 nl per side; and (v) a unilateral injection of 100 pmol/400 nl also reliably suppressed hindlimb extension. The latter finding had important implications for the design and interpretation of the following lesion study. Injections of bicuculline into the dorsal midbrain also produced defence-like behavioural responses that included running and biting; the intensity of these responses correlated with the suppression of hindlimb extension.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Shehab
- Department of Anatomy, University of Glasgow, U.K
| | | | | | | |
Collapse
|
27
|
Kurimoto Y, Kawaguchi S, Murata M. Cerebellotectal projection in the rat: anterograde and retrograde WGA-HRP study of individual cerebellar nuclei. Neurosci Res 1995; 22:57-71. [PMID: 7540742 DOI: 10.1016/0168-0102(95)00874-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cerebellotectal projections were studied in the rat by the anterograde and retrograde tracing methods using wheat-germ-agglutinin-conjugated horseradish peroxidase. The pathway arises from all four cerebellar nuclei on the contralateral side; mainly from the posterior interpositus nucleus and lateral nucleus and to a lesser extent from the medial nucleus and anterior interpositus nucleus. The fibers arising from the medial nucleus and the posterior interpositus nucleus terminate mainly in the deeper zone of layer IV and in layer VI throughout the entire rostrocaudal extent of the contralateral superior colliculus. Those arising from the anterior interpositus nucleus and the lateral nucleus terminate mainly in the superficial zone of layer IV in the rostral three-fourths of the contralateral superior colliculus. In addition, the fibers from the lateral nucleus terminate densely in a zone extending from the deep part of layer III through layer VII in the lateral portion of the rostral half of the superior colliculus. In comparison with data on other species the present findings are discussed with respect to the evolutional changes from monocular to binocular vision.
Collapse
Affiliation(s)
- Y Kurimoto
- Department of Integrative Brain Science, Faculty of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
28
|
Redgrave P, Marrow L, Dean P. Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 1992; 50:571-95. [PMID: 1279464 DOI: 10.1016/0306-4522(92)90448-b] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent evidence suggests that projections from the superior colliculus to the brainstem in rat are organized into a series of anatomically segregated output channels. To understand how collicular function may be modified by the basal ganglia it is important to know whether particular output modules of the superior colliculus can be selectively influenced by input from substantia nigra. The purpose of the present study was, therefore, to examine in more detail topography within the nigrotectal system in the rat. Small injections (10-50 nl) of a 1% solution of wheatgerm agglutinin conjugated with horseradish peroxidase were made at different locations within substantia nigra and surrounding structures. A discontinuous puff-like pattern of anterogradely transported label was found in medial and caudal parts of the ipsilateral intermediate layers of the superior colliculus. In contrast, the rostrolateral enlargement of the intermediate layers contained a greater density of more evenly distributed terminal label. Injection sites associated with this dense pattern of laterally located label were concentrated in lateral pars reticulata, while the puff-like pattern was produced by injections into ventromedial pars reticulata. Retrograde tracing experiments with the fluorescent dyes True Blue and Fast Blue revealed that injections involving the rostrolateral intermediate layers were consistently associated with a restricted column of labelled cells in the dorsolateral part of ipsilateral pars reticulata. Comparable injections into medial and caudal regions of the superior colliculus produced retrograde labelling in ventral and medial parts of the rostral two-thirds of pars reticulata. Both anterograde and retrograde tracing data indicated that contralateral nigrotectal projections arise from cells located in ventral and medial pars reticulata. The present results suggest that the main ipsilateral projection from substantia nigra pars reticulata to the superior colliculus comprises two main components characterized by regionally segregated populations of output cells and spatially separated zones of termination. Of particular interest is the apparent close alignment between terminal zones of the nigrotectal channels and previously defined populations of crossed descending output cells in the superior colliculus. Thus, the rostrolateral intermediate layers contain a concentration of terminals specifically from dorsolateral pars reticulata and output cells which project to the contralateral caudal medulla and spinal cord. Conversely, the medial and caudal intermediate layers receive terminals from ventral and medial pars reticulata and contain cells which project specifically to contralateral regions of the paramedian pontine and medullary reticular formation.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
29
|
Cowie RJ, Holstege G. Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components. J Comp Neurol 1992; 319:536-59. [PMID: 1619044 DOI: 10.1002/cne.903190406] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vertebrate dorsal mesencephalon consists of the superior colliculus, the dorsal portion of the periaqueductal gray, and the mesencephalic trigeminal neurons in between. These structures, via their descending pathways, take part in various behavioral responses to environmental stimuli. This study was undertaken to compare the origins and trajectories of these pathways in the cat. Injections of horseradish peroxidase into the cervical spinal cord and upper medullary medial tegmentum retrogradely labeled cells mainly in the contralateral intermediate and deep superior colliculus, and in the ipsilateral dorsal and lateral periaqueductal gray and adjacent tegmentum. Only injections in the medullary lateral tegmental field labeled mesencephalic trigeminal neurons ipsilaterally. Autoradiographic tracing results, based on injections across the dorsal mesencephalon, revealed three efferent fiberstreams. A massive first fiberstream (limbic pathway), consisting of thin fibers, descended ipsilaterally from the dorsal and lateral periaqueductal gray and adjacent superior colliculus through the mesencephalic and pontine lateral tegmentum, terminating in these areas as well as in the ventral third of the caudal pontine and medullary medial tegmentum. A few fibers from the dorsal periaqueductal gray matter (PAG) were distributed bilaterally to the dorsal vagal, solitary, and retroambiguus nuclei. The second fiberstream (the predorsal bundle) descended contralaterally from the superior colliculus (SC) and consisted of both thick and thin labeled fibers. The thin fibers terminated bilaterally in the dorsomedial nucleus reticularis tegmenti pontis and the medial half of the caudal medial accessory inferior olive. The thick fibers targeted the contralateral dorsal two thirds of the caudal pontine and medullary medial tegmental fields, and the facial, abducens, lateral reticular, subtrigeminal, and prepositus hypoglossi nuclei. A few fibers recrossed the midline to terminate in the ipsilateral medial tegmentum. Caudal to the obex, fibers terminated laterally in the tegmentum and upper cervical intermediate zone. From the lateral SC, fibers terminated bilaterally in the lateral tegmental fields of the pons and medulla and lateral facial subnuclei. The third fiberstream (mesencephalic trigeminal or Probst tract) terminated in the supratrigeminal and motor trigeminal nuclei, and laterally in the tegmentum and upper cervical intermediate zone. In summary, neurons in the PAG and in the deep layers of the SC give rise to a massive ipsilateral descending pathway, in which a medial-to-lateral organization exists. A similar topographical pattern occurs in the crossed SC projections. The possibility that these completely different descending systems cooperate in producing specific defensive behaviors is discussed.
Collapse
Affiliation(s)
- R J Cowie
- Department of Anatomy, College of Medicine, Howard University, Washington, D.C. 20059
| | | |
Collapse
|
30
|
Redgrave P, Simkins M, overton P, Dean P. Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy--I. Mapping of dorsal midbrain with bicuculline. Neuroscience 1992; 46:379-90. [PMID: 1542413 DOI: 10.1016/0306-4522(92)90059-b] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous work has indicated that the anticonvulsant effect of nigral inactivation on the maximal electroshock model of generalized seizures is mediated by the projection from substantia nigra to superior colliculus. In accordance with this idea, and with the GABAergic nature of the nigrotectal pathway, microinjections of the GABAA antagonist bicuculline methiodide into the superior colliculus have been reported to block tonic hindlimb extension induced by maximal electroshock. To characterize the relevant circuitry more precisely, the present study sought to determine which region of the superior colliculus was important for the anticonvulsant effect of bicuculline by systematic mapping in the rat. Bilateral injections of bicuculline methiodide (50 pmol in 400 nl/side) were most effective in the caudal deep layers of the superior colliculus and adjoining midbrain reticular formation. These results suggest that the well-known projection from substantia nigra pars reticulata to the superior colliculus may not be involved in the anticonvulsant effect of nigral inactivation in the electroshock model, because this pathway terminates primarily in the intermediate layers of the superior colliculus throughout its rostrocaudal extent. Instead, some other pathway from ventral midbrain to a dorsal midbrain anticonvulsant zone appears to be part of the brain's anticonvulsant circuitry. The following paper [Redgrave et al. (1991) Neuroscience 46, 391-406] describes an anatomical study to characterize this pathway.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | | | |
Collapse
|
31
|
Abstract
Single units were recorded using extracellular glass microelectrodes in all laminae of the superior colliculus of the rat under halothane nitrous oxide anaesthesia. Fifty-one units were encountered which responded to a low intensity mechanical stimulus applied to a contralateral or bilateral field located in the oral sphere (intraoral 11, perioral 16), on the face (29) or on the rest of the body (21). Sixteen units responded to a jaw movement. Sixty-one cells were recorded which were preferentially (10) or only (51) activated (30) or inhibited (21) by noxious stimuli. Contralateral or bilateral mechanoreceptive fields located in intraoral (34) and perioral (35) areas were frequent. There is therefore a high incidence of the nociceptive representation of the mouth in the superior colliculus. The other functional properties of the nociceptive units were similar to those reported in other studies. From the subsequent histological localization of the recorded units, it appeared that the nociceptive projections from the intraoral and perioral regions to the superior colliculus reach the lateral part of the intermediate and deep layers of the superior colliculus.
Collapse
Affiliation(s)
- P Auroy
- Laboratoire de Physiologie Orofaciale, Faculté de Chirurgie Dentaire, Clermont Ferrand France
| | | | | |
Collapse
|
32
|
Dean P, Simkins M, Hetherington L, Mitchell IJ, Redgrave P. Tectal induction of cortical arousal: evidence implicating multiple output pathways. Brain Res Bull 1991; 26:1-10. [PMID: 2015507 DOI: 10.1016/0361-9230(91)90184-l] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The rodent superior colliculus mediates a wide range of physiological and behavioural responses to sudden stimuli, including desynchronisation of the cortical electroencephalogram (EEG). To investigate how this desynchronisation is produced, one of two powerful excitatory agents, sodium L-glutamate (200 nl, 10 nmol) or bicuculline methiodide (200 nl, 40 pmol), was injected into the dorsal midbrain of sleeping rats. Microinjections at sites widely distributed throughout all layers of the superior colliculus were able to desynchronise the cortical EEG. i) In the superficial layers, bicuculline was effective at more sites than glutamate, whereas the reverse was true for the deep layers. ii) At some sites EEG desynchronisation occurred together with the defensive or orienting movements that are obtained from collicular stimulation in awake animals. At other sites cortical arousal occurred without such movements. iii) Comparison with a previous study suggested that urethane selectively blocks cortical arousal to glutamate injections in the superficial and intermediate grey layers. This evidence suggests that multiple collicular output pathways can desynchronise the cortical EEG, perhaps reflecting multiple functions for EEG desynchronisation.
Collapse
Affiliation(s)
- P Dean
- Department of Psychology, University of Sheffield, England
| | | | | | | | | |
Collapse
|
33
|
N'Gouemo P, Rondouin G. Evidence that superior colliculi are involved in the control of amygdala-kindled seizures. Neurosci Lett 1990; 120:38-41. [PMID: 2293088 DOI: 10.1016/0304-3940(90)90162-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effects of bilateral high radiofrequency lesions of superior colliculus (SC) were studied on amygdala kindling. The results demonstrate that a selective destruction of the SC only slightly facilitated the development of kindling. However, the most remarkable effect was the increase of afterdischarge and motor seizure duration observed when SC-lesioned animals reached the generalized seizures. These data confirm that the superior colliculi participate in controlling the generalization of kindled seizures.
Collapse
Affiliation(s)
- P N'Gouemo
- Laboratoire de Médecine Expérimentale, INSERM U249, CNRS UPR41, Institut de Biologie, Montpellier, France
| | | |
Collapse
|
34
|
Keay K, Westby GW, Frankland P, Dean P, Redgrave P. Organization of the crossed tecto-reticulo-spinal projection in rat--II. Electrophysiological evidence for separate output channels to the periabducens area and caudal medulla. Neuroscience 1990; 37:585-601. [PMID: 2247216 DOI: 10.1016/0306-4522(90)90093-j] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The previous paper (Redgrave et al., Neuroscience 37, 571-584, 1990) presented anatomical evidence indicating there are at least two largely segregated components of the crossed tecto-reticulo-spinal pathway which project to the periabducens area and caudal medulla. An immediate question arising from this finding is whether tectal cells which project either to the periabducens area or to the caudal medulla have different electrophysiological response properties. An answer to this question would be relevant to the issue of whether different components of the tecto-reticulo-spinal system are specialized for the production of different classes of orienting movement. Accordingly, extracellularly recorded units in the superior colliculus of urethane anaesthetized rats were tested for antidromic activity following electrical stimulation of the periabducens area or the caudal medulla. When antidromic potentials were successfully recorded the sensory properties of the units were tested with a range of unimodal visual, somatosensory and auditory stimuli. The following results were obtained. (i) Tectal cells antidromically activated by stimulation of the caudal medulla were preferentially sensitive to somatosensory stimuli from the perioral region, while cells activated from the periabducens area were more frequently responsive to auditory stimuli. (ii) Tectal fibres activated by stimulation of the caudal medulla had significantly higher conduction velocities than the fibres activated by electrodes in the periabducens region. (iii) More than 90% of antidromically activated cells were located in stratum album intermediale or dorsal stratum profundum. These electrophysiological findings confirm and extend previous anatomical observations which indicate that components of the crossed descending projection of the colliculus may be functionally specialized for the production of different classes of orienting movements.
Collapse
Affiliation(s)
- K Keay
- Department of Psychology, University of Sheffield, U.K
| | | | | | | | | |
Collapse
|
35
|
Rhoades RW, Fish SE, Chiaia NL, Bennett-Clarke C, Mooney RD. Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris leucoagglutinin and intra-axonal injection. J Comp Neurol 1989; 289:641-56. [PMID: 2592602 DOI: 10.1002/cne.902890409] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Anterograde tracing with Phaseolus vulgaris leucoagglutinin (PHA-L) and intra-axonal recording and injection techniques were employed to describe the projection from the trigeminal (V) brainstem complex to the deep laminae of the superior colliculus (SC) in the hamster and the rat. The organization of these projections was the same in the two species. Deposits of PHA-L into V nucleus principalis (PrV) produced labelled axons and boutonlike swellings in the lower stratum griseum intermediale (SGI) and upper stratum album intermedium (SAI) in the SC bilaterally. Plots of boutonlike swellings indicated that the terminals of this projection were arrayed in clusters. Nucleus principalis also projected to the stratum griseum profundum (SGP) and stratum album profundum (SAP). This deeper projection did not terminate in clusters and it was most prominent in the lateral SC. The ipsilateral PrV-SC projection appeared to arise mainly from axons that recrossed the midline at the level of the SC commissure. Reconstruction of individual PHA-L labelled fibers demonstrated that single axons gave rise to terminals on both sides of the midline. Deposits of PHA-L into V subnucleus interpolaris (SpI) yielded results that were identical to those obtained with PrV injections with one exception: none of these deposits produced any labelled terminals in the ipsilateral SC. Deposits of PHA-L into V subnucleus caudalis (SpC) produced only sparse labelling in SC. Most labelled swellings were located in the SGP and SAP and they were visible only in the SC contralateral to the PHA-L injection site. Single axons arising from cells in SpI were recorded and injected with horseradish peroxidase (HRP) in the hamster's SC. These fibers all responded to stimulation of multiple mystacial vibrissae and gave rise to 2-5 clusters of bouton-like swellings in the lower SGI and upper SAI.
Collapse
Affiliation(s)
- R W Rhoades
- Department of Anatomy, Medical College of Ohio, Toledo 43699-0008
| | | | | | | | | |
Collapse
|
36
|
Beitz AJ. Possible origin of glutamatergic projections to the midbrain periaqueductal gray and deep layer of the superior colliculus of the rat. Brain Res Bull 1989; 23:25-35. [PMID: 2478264 DOI: 10.1016/0361-9230(89)90159-7] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The possible origin of glutamatergic input to the rodent periaqueductal gray (PAG) was analyzed utilizing a combined retrograde transport-immunocytochemical technique. Injections of wheat germ agglutinin-horseradish peroxidase were made into the PAG of 12 adult rats and into the deep layer of the superior colliculus in 2 rats. The brain tissue was first reacted histochemically to demonstrate the retrograde tracer and subsequently processed with immunohistochemical techniques using a recently developed monoclonal glutamate antibody. Following PAG injections, several brain areas were found to contain double-labeled neurons. The greatest number of double-labeled glutamate-like immunoreactive neurons were observed in the zona incerta, spinal trigeminal nucleus, cuneiform nucleus, cingulate cortex, cerebellar interpositus nucleus, deep mesencephalic nucleus and the PAG itself. Double-labeled neurons were also observed in several other nuclei including the pretectal nuclei, the frontal and occipital cortex, several reticular nuclei, the dorsomedial hypothalamic nucleus, and the substantia nigra. Many of the same nuclei contained double-labeled neurons following collicular injections, but in addition, double-stained cells were found in the primary visual cortex, lateral dorsal and lateral posterior thalamic nuclei, nucleus of the posterior commissure, ventral lateral geniculate nucleus, dorsal column nuclei and several additional pretectal nuclei. The results of this double-labeling study raise the possibility that these nuclei may provide glutamatergic inputs to the midbrain PAG and/or superior colliculus. These putative glutamatergic afferent projections may ultimately influence the PAG's role in several important functions including antinociception, defensive mechanisms or vocalization and may also play a role in the superior collicular involvement in defensive mechanisms, in visuo-motor integration in the orienting reflex and in facilitating shifts in gaze.
Collapse
Affiliation(s)
- A J Beitz
- Department of Veterinary Biology, University of Minnesota, St. Paul 55108
| |
Collapse
|
37
|
Dean P, Redgrave P, Westby GW. Event or emergency? Two response systems in the mammalian superior colliculus. Trends Neurosci 1989; 12:137-47. [PMID: 2470171 DOI: 10.1016/0166-2236(89)90052-0] [Citation(s) in RCA: 400] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent studies of the effects of stimulating the superior colliculus (SC) in rodents suggest that this structure mediates at least two classes of response to novel sensory stimuli. One class contains the familiar orienting response, together with movements resembling tracking or pursuit, and appears appropriate for undefined sensory 'events'. The second class contains defensive movements such as avoidance or flight, together with cardiovascular changes, that would be appropriate for a sudden emergency such as the appearance of a predator, or of an object on collision course. The two response systems appear to depend on separate output projections, and are probably subject to different sensory and forebrain influences. These findings (1) suggest an explanation for the complex anatomical organization of the SC, with multiple output pathways differentially accessed by a very wide variety of inputs, (2) emphasize the similarities between the SC and the optic tectum in non-mammalian species, and (3) suggest that the SC may be useful as a model for studying both the sensory control of defensive responses, and how intelligent decisions can be taken about relatively simple sensory inputs.
Collapse
|
38
|
Northmore DP, Levine ES, Schneider GE. Behavior evoked by electrical stimulation of the hamster superior colliculus. Exp Brain Res 1988; 73:595-605. [PMID: 3224669 DOI: 10.1007/bf00406619] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Syrian golden hamsters were implanted with fixed or moveable stimulating electrodes aimed at the superior colliculus (SC). Behavior was observed in response to trains of 0.1 ms pulses at 200 Hz while the animals were moving freely in an open arena or in their home cages. At threshold stimulating currents, the responses consisted almost entirely of freezing or contraversive turning, which occurred in two forms: fast turns, resembling orienting movements to sunflower seeds, and slow turns that were smooth and continuous. Other responses, including head raising and lowering, ipsiversive turning and backing movements were seen occasionally. Increasing the stimulating current usually gave a variety of responses, including circling movements, prolonged freezing, ipsilateral movements and running escape behavior. The sites in SC giving freezes at threshold tended to be located superficially (SO and above), or deep (SGP and below), while sites giving turns were in the intermediate layers. Most freeze sites occurred in the rostro-medial SC that represents the upper visual field, while turn sites occurred predominantly in caudo-lateral SC. Apart from the turns, most of the stimulated responses resembled natural defensive behavior, supporting the view that SC in rodents plays a role in organizing responses to predators, as well as in orienting behavior.
Collapse
Affiliation(s)
- D P Northmore
- Department of Psychology, University of Delaware, Newark 19716
| | | | | |
Collapse
|
39
|
Mitchell IJ, Redgrave P, Dean P. Plasticity of behavioural response to repeated injection of glutamate in cuneiform area of rat. Brain Res 1988; 460:394-7. [PMID: 3224269 DOI: 10.1016/0006-8993(88)90389-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Whereas a single microinjection of L-glutamate (10 nmol) into the cuneiform area of rats gives freezing, a second or third injection (delivered at 4-min intervals to the same site)can produce fast running. To examine whether this plasticity of response was caused by a simple increase in the amount of glutamate present, 30 nmol of glutamate were given in a single injection. In 93% of sites in the cuneiform area this procedure gave only freezing, although subsequent testing with repeated injections produced fast running in 53% of these sites. Thus, response potentiation to glutamate appears to require repeated stimulation, and may therefore be related to processes underlying the natural conditioning of defensive responses.
Collapse
Affiliation(s)
- I J Mitchell
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
40
|
Dean P, Mitchell IJ, Redgrave P. Responses resembling defensive behaviour produced by microinjection of glutamate into superior colliculus of rats. Neuroscience 1988; 24:501-10. [PMID: 2896313 DOI: 10.1016/0306-4522(88)90345-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electrical stimulation of the superior colliculus in rats elicits not only orienting movements, as it does in other mammals, but also behaviours resembling such natural defensive responses as prolonged freezing, cringing, shying, and fast running and jumping. To investigate the location of the cells mediating these behaviours, the superior colliculus was systematically mapped with microinjections of sodium L-glutamate (50 mM, 200 nl), and the resultant behavioural changes as assessed in an open field were analysed for defence-like responses. The main regions that gave defensive behaviour were (i) rostromedial superior colliculus (all layers), and (ii) both medial and lateral parts of the caudal deep layers. Cells in these areas project into the ipsilateral descending pathway. However, the cells of origin of this pathway are also found in collicular regions, such as rostral intermediate gray and parts of far caudal colliculus, that did not give defensive movements in response to glutamate stimulation. It is unclear whether this is because only parts of the ipsilateral pathway mediate defensive behaviours, or because glutamate is a relatively inefficient stimulating agent for these systems. An unexpected feature of the results was that at a number of collicular sites the nature of the defensive response changed with successive (up to three) injections of glutamate, often appearing to become more intense. Whether the mechanism underlying this potentiation is related to the conditioning of natural defensive behaviour is unknown.
Collapse
Affiliation(s)
- P Dean
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
41
|
Dean P, Redgrave P, Mitchell IJ. Organisation of efferent projections from superior colliculus to brainstem in rat: evidence for functional output channels. PROGRESS IN BRAIN RESEARCH 1988; 75:27-36. [PMID: 2847244 DOI: 10.1016/s0079-6123(08)60463-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|