1
|
Wang C, Inselman A, Liu S, Liu F. Potential mechanisms for phencyclidine/ketamine-induced brain structural alterations and behavioral consequences. Neurotoxicology 2019; 76:213-219. [PMID: 31812709 DOI: 10.1016/j.neuro.2019.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/24/2019] [Accepted: 12/04/2019] [Indexed: 01/30/2023]
Abstract
Evidence of structural abnormalities in the nervous system of recreational drug [e.g., phencyclidine (PCP) or ketamine] users and/or preclinical animal research models suggests interference with the activity of multiple neurotransmitters, particularly glutamate neurotransmission. The damage to the central nervous system (CNS) may include neuronal loss, synaptic changes, disturbed neural network formation and reduced projections to subcortical fields. Notably, the reduced projections may considerably compromise the establishment of the subcortical areas, such as the nucleus accumbens located in the basal forebrain. With its abundant dopaminergic innervation, the nucleus accumbens is believed to be directly associated with addictive behaviors and mental disorders. This review seeks to delineate the relationship between PCP/ketamine-induced loss of cortical neurons and the reduced level of polysialic acid neural cell adhesion molecule (PSA-NCAM) in the striatum, and the likely changes in striatal synaptogenesis during development. The basic mechanism of how PSA-NCAM cell surface expression may be regulated will also be discussed, as well as the hypothesis that PSA-NCAM activity is critical to the regulation of synaptic protein expression. Overall, the present review will address the general hypothesis that damage/interruption of cortico-striatal communication and subcortical synaptogenesis could underlie the erratic/sensitization or addictive states produced by chronic or prolonged PCP/ketamine usage.
Collapse
Affiliation(s)
- Cheng Wang
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food & Drug Administration, Jefferson, AR, United States.
| | - Amy Inselman
- Division of Systems Biology, National Center for Toxicological Research/U.S. Food & Drug Administration, Jefferson, AR, United States
| | - Shuliang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food & Drug Administration, Jefferson, AR, United States
| | - Fang Liu
- Division of Neurotoxicology, National Center for Toxicological Research/U.S. Food & Drug Administration, Jefferson, AR, United States.
| |
Collapse
|
2
|
Von Bartheld CS, Altick AL. Multivesicular bodies in neurons: distribution, protein content, and trafficking functions. Prog Neurobiol 2011; 93:313-40. [PMID: 21216273 DOI: 10.1016/j.pneurobio.2011.01.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 12/22/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of "geometrically simpler" cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer's, Huntington's, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons.
Collapse
Affiliation(s)
- Christopher S Von Bartheld
- Department of Physiology and Cell Biology, Mailstop 352, University of Nevada School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
3
|
Santos MS, Li H, Voglmaier SM. Synaptic vesicle protein trafficking at the glutamate synapse. Neuroscience 2008; 158:189-203. [PMID: 18472224 DOI: 10.1016/j.neuroscience.2008.03.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/25/2008] [Accepted: 03/08/2008] [Indexed: 11/27/2022]
Abstract
Expression of the integral and associated proteins of synaptic vesicles is subject to regulation over time, by region, and in response to activity. The process by which changes in protein levels and isoforms result in different properties of neurotransmitter release involves protein trafficking to the synaptic vesicle. How newly synthesized proteins are incorporated into synaptic vesicles at the presynaptic bouton is poorly understood. During synaptogenesis, synaptic vesicle proteins sort through the secretory pathway and are transported down the axon in precursor vesicles that undergo maturation to form synaptic vesicles. Changes in protein content of synaptic vesicles could involve the formation of new vesicles that either mix with the previous complement of vesicles or replace them, presumably by their degradation or inactivation. Alternatively, new proteins could individually incorporate into existing synaptic vesicles, changing their functional properties. Glutamatergic vesicles likely express many of the same integral membrane proteins and share certain common mechanisms of biogenesis, recycling, and degradation with other synaptic vesicles. However, glutamatergic vesicles are defined by their ability to package glutamate for release, a property conferred by the expression of a vesicular glutamate transporter (VGLUT). VGLUTs are subject to regional, developmental, and activity-dependent changes in expression. In addition, VGLUT isoforms differ in their trafficking, which may target them to different pathways during biogenesis or after recycling, which may in turn sort them to different vesicle pools. Emerging data indicate that differences in the association of VGLUTs and other synaptic vesicle proteins with endocytic adaptors may influence their trafficking. These observations indicate that independent regulation of synaptic vesicle protein trafficking has the potential to influence synaptic vesicle protein composition, the maintenance of synaptic vesicle pools, and the release of glutamate in response to changing physiological requirements.
Collapse
Affiliation(s)
- M S Santos
- Department of Psychiatry, University of California School of Medicine, 401 Parnassus Avenue, LPPI-A101, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
4
|
Van der Kloot W. Loading and recycling of synaptic vesicles in the Torpedo electric organ and the vertebrate neuromuscular junction. Prog Neurobiol 2003; 71:269-303. [PMID: 14698765 DOI: 10.1016/j.pneurobio.2003.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In vertebrate motor nerve terminals and in the electromotor nerve terminals of Torpedo there are two major pools of synaptic vesicles: readily releasable and reserve. The electromotor terminals differ in that the reserve vesicles are twice the diameter of the readily releasable vesicles. The vesicles contain high concentrations of ACh and ATP. Part of the ACh is brought into the vesicle by the vesicular ACh transporter, VAChT, which exchanges two protons for each ACh, but a fraction of the ACh seems to be accumulated by different, unexplored mechanisms. Most of the vesicles in the terminals do not exchange ACh or ATP with the axoplasm, although ACh and ATP are free in the vesicle interior. The VAChT is controlled by a multifaceted regulatory complex, which includes the proteoglycans that characterize the cholinergic vesicles. The drug (-)-vesamicol binds to a site on the complex and blocks ACh exchange. Only 10-20% of the vesicles are in the readily releasable pool, which therefore is turned over fairly rapidly by spontaneous quantal release. The turnover can be followed by the incorporation of false transmitters into the recycling vesicles, and by the rate of uptake of FM dyes, which have some selectivity for the two recycling pathways. The amount of ACh loaded into recycling vesicles in the readily releasable pool decreases during stimulation. The ACh content of the vesicles can be varied over eight-fold range without changing vesicle size.
Collapse
Affiliation(s)
- William Van der Kloot
- Department of Physiology and Biophysics, SUNY at Stony Brook, 8661 SUNT, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
5
|
Hou XE, Dahlström A. Synaptic vesicle proteins and neuronal plasticity in adrenergic neurons. Neurochem Res 2000; 25:1275-300. [PMID: 11059802 DOI: 10.1023/a:1007600313865] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The neurons in the superior cervical ganglion are active in plasticity and re-modelling in order to adapt to requirements. However, so far, only a few studies dealing with synaptic vesicle related proteins during adaptive processes have been published. In the present paper, changes in content and expression of the synaptic vesicle related proteins in the neurons after decentralization (cutting the cervical sympathetic trunk) or axotomy (cutting the internal and external carotid nerves) were studied. Immunofluorescence studies were carried out using antibodies and antisera against integral membrane proteins, vesicle associated proteins, NPY, and the enzymes TH and PNMT. For colocalization studies, the sections were simultaneously double labelled. Confocal laser scanning microscopy was used for colocalization studies as well as for semi-quantification analysis, using the computer software. Westen blot analysis, in situ 3'-end DNA labelling, and in situ hybridization were also employed. After decentralization of the ganglia several of the synaptic vesicle proteins (synaptotagmin I, synaptophysin, SNAP-25, CLC and GAP-43) were increased in the iris nerve terminal network, but with different time patterns, while TH-immunoreactivity had clearly decreased. In the ganglia, these proteins had decreased at 1 day after decentralization, probably due to degeneration of the pre-ganglionic nerve fibres and terminals. At later intervals, these proteins, except SNAP-25, had increased in the nerve fibre bundles and re-appeared in nerve fibres outlining the principal neurons.
Collapse
Affiliation(s)
- X E Hou
- Inst. of Anatomy and Cell Biology, Göteborg University, Sweden
| | | |
Collapse
|
6
|
Ahmari SE, Buchanan J, Smith SJ. Assembly of presynaptic active zones from cytoplasmic transport packets. Nat Neurosci 2000; 3:445-51. [PMID: 10769383 DOI: 10.1038/74814] [Citation(s) in RCA: 434] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Little is known about presynaptic assembly during central nervous system synaptogenesis. Here we used time-lapse fluorescence imaging, immunocytochemistry and electron microscopy to study hippocampal neuronal cultures transfected with a fusion construct of the presynaptic vesicle protein VAMP and green fluorescent protein. Our results suggest that major cytoplasmic and membrane-associated protein precursors of the presynaptic active zone are transported along developing axons together as discrete packets. Retrospective electron microscopy demonstrated varied vesicular and tubulovesicular membrane structures. Packets containing these heterogeneous structures were stabilized specifically at new sites of dendrite- and axon-initiated cell-cell contact; within less than one hour, evoked vesicle recycling was observed at these putative nascent synapses. These observations suggest that substantial membrane remodeling may be necessary to produce the uniform vesicles typical of the mature active zone, and that many presynaptic proteins may be united early in their biogenesis and sorting pathways.
Collapse
Affiliation(s)
- S E Ahmari
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | | | | |
Collapse
|
7
|
Li JY, Volknandt W, Dahlstrom A, Herrmann C, Blasi J, Das B, Zimmermann H. Axonal transport of ribonucleoprotein particles (vaults). Neuroscience 1999; 91:1055-65. [PMID: 10391483 DOI: 10.1016/s0306-4522(98)00622-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
RNA was previously shown to be transported into both dendritic and axonal compartments of nerve cells, presumably involving a ribonucleoprotein particle. In order to reveal potential mechanisms of transport we investigated the axonal transport of the major vault protein of the electric ray Torpedo marmorata. This protein is the major protein component of a ribonucleoprotein particle (vault) carrying a non-translatable RNA and has a wide distribution in the animal kingdom. It is highly enriched in the cholinergic electromotor neurons and similar in size to synaptic vesicles. The axonal transport of vaults was investigated by immunofluorescence, using the anti-vault protein antibody as marker, and cytofluorimetric scanning, and was compared to that of the synaptic vesicle membrane protein SV2 and of the beta-subunit of the F1-ATPase as a marker for mitochondria. Following a crush significant axonal accumulation of SV2 proximal to the crush could first be observed after 1 h, that of mitochondria after 3 h and that of vaults after 6 h, although weekly fluorescent traces of accumulations of vault protein were observed in the confocal microscope as early as 3 h. Within the time-period investigated (up to 72 h) the accumulation of all markers increased continuously. Retrograde accumulations also occurred, and the immunofluorescence for the retrograde component, indicating recycling, was weaker than that for the anterograde component, suggesting that more than half of the vaults are degraded within the nerve terminal. High resolution immunofluorescence revealed a granular structure-in accordance with the biochemical characteristics of vaults. Of interest was the observation that the increase of vault immunoreactivity proximal to the crush accelerated with time after crushing, while that of SV2-containing particles appeared to decelerate, indicating that the crush procedure with time may have induced perikaryal alterations in the production and subsequent export to the axon of synaptic vesicles and vault protein. Our data show that ribonucleoprotein-immunoreactive particles can be actively transported within axons in situ from the soma to the nerve terminal and back. The results suggest that the transport of vaults is driven by fast axonal transport motors like the SV2-containing vesicles and mitochondria. Vaults exhibit an anterograde and a retrograde transport component, similar to that observed for the vesicular organelles carrying SV2 and for mitochondria. Although the function of vaults is still unknown studies of the axonal transport of this organelle may reveal insights into the mechanisms of cellular transport of ribonucleoprotein particles in general.
Collapse
Affiliation(s)
- J Y Li
- Department of Anatomy and Cell Biology, Goteborg University, Sweden
| | | | | | | | | | | | | |
Collapse
|
8
|
Winkler H. Membrane composition of adrenergic large and small dense cored vesicles and of synaptic vesicles: consequences for their biogenesis. Neurochem Res 1997; 22:921-32. [PMID: 9239747 DOI: 10.1023/a:1022410506476] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The membrane proteins of adrenergic large dense cored vesicles, in particular those of chromaffin granules, have been characterized in detail. With the exception of the nucleotide carrier all major peptides have been cloned. There has been a controversy whether these vesicles contain antigens like synaptophysin, synaptotagmin and VAMP or synaptobrevin found in high concentration in synaptic vesicles. One can now conclude that large dense core vesicles also contain these peptides although in lower concentrations. The biosynthesis of large dense core vesicles is analogous to that of other peptide secreting vesicles of the regulated pathway. One cannot yet definitely define the biosynthesis of small dense core vesicles which apparently have a very similar membrane composition to that of large dense core vesicles. They may form directly from large dense core vesicles when their membranes have been retrieved after exocytosis. These membranes may become sorted in an endosomal compartment where peptides may be deleted or added. Such an addition could be derived from synaptophysin-rich vesicles present in adrenergic axons. However small dense core vesicle peptides may also be transported axonally independent of large dense core vesicles. For proving one of these possibilities some crucial experiments have been suggested.
Collapse
Affiliation(s)
- H Winkler
- Department of Pharmacology, University of Innsbruck, Austria
| |
Collapse
|
9
|
Marxen M, Maienschein V, Volknandt W, Zimmermann H. Immunocytochemical localization of synaptic proteins at vesicular organelles in PC12 cells. Neurochem Res 1997; 22:941-50. [PMID: 9239749 DOI: 10.1023/a:1022414607385] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The distribution of the three synaptic vesicle proteins SV2, synaptophysin and synaptotagmin, and of SNAP-25, a component of the docking and fusion complex, was investigated in PC12 cells by immunocytochemistry. Colloidal gold particle-bound secondary antibodies and a preembedding protocol were applied. Granules were labeled for SV2 and synaptotagmin but not for synaptophysin. Electron-lucent vesicles were labeled most intensively for synaptophysin but also for SV2 and to a lesser extent for synaptotagmin. The t-SNARE SNAP-25 was found at the plasma membrane but also at the surface of granules. Labeling of Golgi vesicles was observed for all antigens investigated. Also components of the endosomal pathway such as multivesicular bodies and multilamellar bodies were occasionally marked. The results suggest that the three membrane-integral synaptic vesicle proteins can have a differential distribution between electron-lucent vesicles (of which PC12 cells may possess more than one type) and granules. The membrane compartment of granules appears not to be an immediate precursor of that of electron-lucent vesicles.
Collapse
Affiliation(s)
- M Marxen
- Biozentrum der J. W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
10
|
Herreros J, Aguado F, Canals JM, Marsal J, Blasi J. Characterization of presynaptic proteins involved in synaptic vesicle exocytosis in the nervous system of Torpedo marmorata. Neuroscience 1997; 79:285-94. [PMID: 9178884 DOI: 10.1016/s0306-4522(96)00682-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Synaptobrevin, SNAP-25 and syntaxin (SNAP receptor proteins) are molecular components that play a key role in the exocytotic machinery of synaptic vesicles. Their presence, distribution and interactions are reported in central and peripheral nervous systems of the electric fish Torpedo marmorata. These three proteins form a protein complex in all the nervous system regions tested, including the electric lobe and the electric organ which is innervated by pure cholinergic nerve terminals. Immunoblot analysis revealed a double protein pattern of SNAP-25 in the anterior brain and cerebellum, although a single protein band corresponding to SNAP-25 was observed in the electromotor system. Moreover, SNAP-25 showed a differential distribution in the electromotor system. It was present along nerve fibres and terminals that innervated the electric organ but it was not detected in nerve terminals at the electric lobe. Immunoisolation experiments using anti-synaptobrevin antibodies showed a tissue-specific co-existence of SNAP-25 and syntaxin with synaptobrevin in the immunoisolated organelles. In conclusion, the molecular components of the exocytotic machinery are shown to be conserved in Torpedo, although some differences mainly on SNAP-25, suggest a potential diversity in the regulation of neurosecretion.
Collapse
Affiliation(s)
- J Herreros
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Hospital Princeps d'Espanya, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Hou XE, Dahlström A. Synaptic vesicle proteins in cells of the sympathoadrenal lineage. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1996; 61:301-12. [PMID: 8988489 DOI: 10.1016/s0165-1838(96)00100-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cells of sympathoadrenal lineage display different characteristics after differentiation, although they stem from the same neural crest precursor during embryonic development. In the present study we compared the distribution patterns of several synaptic vesicle proteins in the superior cervical ganglion (SCG) and the adrenal medulla. Using indirect immunofluorescence combined with confocal laser scanning microscopy, it was observed that antisera against integral synaptic vesicle membrane proteins (SV2, synaptotagmin I, synaptobrevin II and synaptophysin) induced strong immunoreactivities in these cells, but anti-synaptobrevin I caused only a faint fluorescence. Immunoreactivities of the synaptic vesicle-associated proteins Rab3a and SNAP25 were also observed in the cells. Synapsin-Ia-reactive material appeared absent from chromaffin cells but present in small amounts in sympathetic neurons in the SCG and iris terminals. On the other hand, synapsin IIa immunoreactive material was strong in most SCG neurons and in adrenergic iris terminals. The neural specific clatrin light chain was detected in the SCG cells and in ganglion cells of the adrenal, but only weak traces could be observed in chromaffin cells. One of the vesicular monoamine transmitter transporters, VMAT2, which is expressed in catecholamine neurons in the brain stem, was observed in most cells in the SCG and also in groups of cells in the adrenal medulla, where the VMAT2-positive small chromaffin cells were PNMT-negative. SIF cells in the SCG contained most of the synaptic vesicle proteins investigated. The results show that after differentiation, sympathetic neurons, SIF cells and adrenal chromaffin cells still share many vesicle proteins even though their physiology is different.
Collapse
Affiliation(s)
- X E Hou
- Department of Anatomy and Cell Biology, Göteborg University, Sweden.
| | | |
Collapse
|
13
|
Kretzschmar S, Volknandt W, Zimmermann H. Colocalization on the same synaptic vesicles of syntaxin and SNAP-25 with synaptic vesicle proteins: a re-evaluation of functional models required? Neurosci Res 1996; 26:141-8. [PMID: 8953576 DOI: 10.1016/s0168-0102(96)01086-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Synaptic vesicle docking and calcium dependent exocytosis are thought to require the specific interaction of proteins of the synaptic vesicle membrane (such as VAMP/synaptobrevin and synaptotagmin) and their plasma membrane-located counterparts (such as syntaxin and SNAP-25). When isolating synaptic vesicles by glycerol velocity gradient centrifugation we found cosedimentation of the presumptive presynaptic plasma membrane proteins syntaxin and SNAP-25 with synaptic vesicle membrane proteins. In order to further identify the antibody binding organelles we performed an immunoelectron microscopical analysis of synaptosomal profiles. Syntaxin and SNAP-25 were not only associated with the plasma membrane but to a large extent also with synaptic vesicle profiles. In order to answer the question whether the syntaxin and SNAP-25 containing vesicular compartment would also carry classical synaptic vesicle membrane markers we performed double labeling experiments using poly- and monoclonal antibodies. We found colocalization on the same vesicle not only of SNAP-25 and syntaxin but also of SNAP-25 with the synaptic vesicle membrane proteins SV2 and synaptotagmin and of syntaxin with the vesicular membrane protein synaptophysin. Our results demonstrate that syntaxin and SNAP-25 are colocalized with classical vesicle membrane proteins on the same vesicle and suggest that the functional models for the interaction of presynaptic proteins need to be re-evaluated.
Collapse
Affiliation(s)
- S Kretzschmar
- AK Neurochemie, Zoologisches Institut der J.W. Goethe-Universität, Biozentrum der J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
14
|
Quatacker J, De Potter W. Ultrastructural evidence for a separate, small synaptic vesicle (SSV) pathway in ligated bovine splenic nerves, incubated in vitro. Brain Res 1996; 731:101-7. [PMID: 8883859 DOI: 10.1016/0006-8993(96)00470-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In sympathetic nerves the tubules of the axonal reticulum make up the immature elements of the neurosecretory apparatus. The formation of the mature large dense granules occurs via a less dense tubular intermediate, representing the maturing part. At a terminal small synaptophysin-positive vesicles are found intermingled with the dense granules. The biogenesis of these clear, small synaptic vesicles and their relationship with dense granules remains to be determined. In search for the small synaptic vesicles we undertook a careful ultrastructural examination of the axons proximal to a ligation in bovine splenic nerve incubated in vitro for 3 h. The distended axons were crowded with tubules, granulo-tubular elements and dense granules. Occasionally homogeneous clusters of small, uniform vesicles were detected. They were shown to be positive for synaptophysin and were negative for dopamine-beta-hydroxylase, a marker for the granular pathway. The clusters of small vesicles could be found in close spatial relationship with the maturing and mature elements of granular secretion. Our findings argue for the presence of two separate neurosecretory pathways in sympathetic nerves and favour the idea that both small synaptic vesicles and dense granules are a differentiation product of the axonal reticulum. This configuration can explain the biogenesis of small synaptic vesicles and dense granules both in the cell body and at the nerve terminal.
Collapse
Affiliation(s)
- J Quatacker
- N. Goormaghtigh Institute of Pathology, University Hospital, Ghent, Belgium
| | | |
Collapse
|
15
|
Abstract
Lysosomes play an important role for the maintenance of a normal internal milieu in the cell. In neurons lysosomes are abundant in the perikaryon and dendrites, but have been observed to a much lesser degree in the axon. A general opinion has therefore formed among biologists interested in the nervous system that axonal material destined for degradation has to be transported to the neuronal perikaryon. The lysosomal occurrence and distribution at the level of the axon have, however, not been investigated systematically. This review summarizes recent morphological data based on light, fluorescence, and electron microscopic observations in peripheral nerve fibres of cats and rats providing evidence that node-paranode regions mainly along the peripheral parts of alpha motor axons, where the axon cross-section area decreases to 10-25% of internodal values, can control the passage and participate in a lysosome-mediated degradation of axonally transported materials directed towards the neuronal perikaryon. An important role is played by the paranodal axon-Schwann cell networks, which are lysosome-rich entities whereby the Schwann cells can sequester material from the axoplasm of large myelinated peripheral nerve fibres. The networks also seem to serve as depots for axonal waste products. The degradative ability of node-paranode regions in alpha-motor axons could be of some significance for the protection of the motor neuron perikarya from being flooded with and perhaps injured by indigestible materials as well as potentially deleterious, exogenous substances imbibed by the axon terminals in the muscle. A similar degradative capacity may not be needed in nerve fibres with synaptic terminals in the CNS where the local environment is regulated by the blood-brain barrier.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy and Cell Biology, University of Göteborg, Sweden
| |
Collapse
|
16
|
Abstract
Nodes of Ranvier of peripheral nerve fibres represent repetitive physiological axon constrictions. The nodal attenuation of the axon cylinder is expected to facilitate eliciting axon potentials. But as revealed by immunocytochemical analysis of synaptic vesicle proteins such as SV2 and synaptophysin, nodes are also sites of accumulation of the synaptic vesicle membrane compartment. Results from our studies and other laboratories suggest that the local nodal retardation of the axonally transported synaptic vesicle membrane compartment serves membrane processing and/or turnover. Nodes of Ranvier as well as incisures of Schmidt-Lanterman are rich in filamentous actin and can easily be depicted by fluoresceinated phalloidin. At the node and paranode phalloidin fluorescence appears to be mainly associated with the Schwann cell compartment. Immunofluorescence demonstrates that this compartment also contains myosin and spectrin. The nodal contents in actin and myosin may be effective in actively constricting the axon cylinder at both the node of Ranvier and the Schmidt-Lanterman incisures. This hypothesis is discussed in the light of the nodal cytoskeletal specializations of the axon cylinder and the ensheathing Schwann cell.
Collapse
Affiliation(s)
- H Zimmermann
- Biozentrum der J.W. Goethe-Universität, Zoologisches Institut, Frankfurt am Main, Germany
| |
Collapse
|
17
|
Abstract
The ultrastructure of developing nodes of Ranvier and adjacent paranodes of future large myelinated fibers in feline lumbar spinal roots is described. The development starts before birth concurrent with myelination and is finished at the end of the first postnatal month when the nodal regions of future large fibers, now 4-5 microns of diameter, for the first time appear like miniatures of those of their 4 times thicker and fully mature counterparts. At this stage the fibers also begin to show mature functional properties. The latent maturation process is denoted "nodalization" and includes two major events: (1) the formation of a narrow node gap bordered by compact myelin segments and filled with Schwann cell microvilli that interconnect an undercoated nodal axolemma with rapidly increasing accumulations of mitochondria lodging in the longitudinal cords of Schwann cell cytoplasm that is distributed outside a more and more crenated paranodal myelin sheath; (2) the setting of a fixed number of nodes along the axons; an event that includes segmental axonal and myelin sheath degeneration and is concluded by the elimination of supernumerary Schwann cells.
Collapse
Affiliation(s)
- C H Berthold
- Department of Anatomy, Göteborgs University, Sweden
| |
Collapse
|
18
|
Herrmann C, Volknandt W, Wittich B, Kellner R, Zimmermann H. The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ. J Biol Chem 1996; 271:13908-15. [PMID: 8662815 DOI: 10.1074/jbc.271.23.13908] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A protein of Mr 100,000 (MVP100) is highly enriched in the electromotor system of electric rays. Biochemical analysis indicates that MVP100 is contained in the cholinergic nerve terminals of Torpedo electric organ as part of a large cytosolic complex. On sucrose density gradient centrifugation MVP100 comigrates with synaptic vesicles or synaptosomes. It can be partially separated from synaptic vesicles by gel filtration or glycerol velocity gradient centrifugation. Within the complex MVP100 behaves like a hydrophobic protein and is protected against proteolytic attack. MVP100 can be immunodetected by an antibody against phosphotyrosine, and it becomes phosphorylated on incubation with [gamma-32P]ATP. By screening an electric ray electric lobe cDNA library the primary structure of MVP100 was analyzed. MVP100 is highly homologous to the major vault proteins of slime mold and rat and to the human lung resistance-related protein. Compared with non-neural tissues the expression of MVP100 is highest in brain and enriched in the electric lobe that contains the somata of the electromotor neurons. Immunoelectron microscopic analysis reveals a close association of MVP100 and synaptic vesicles in the nerve terminals of the electric organ.
Collapse
Affiliation(s)
- C Herrmann
- AK Neurochemie, Biozentrum, Zoologisches Institut der Universität Frankfurt, D-60439 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
19
|
Zimmermann H, Volknandt W, Hausinger A, Herrmann C. Molecular properties and cellular distribution of cholinergic synaptic proteins. PROGRESS IN BRAIN RESEARCH 1996; 109:31-40. [PMID: 9009690 DOI: 10.1016/s0079-6123(08)62085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H Zimmermann
- Biozentrum J.W. Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
20
|
Annaert WG, Llona I, de Ridder E, Weyns A, Quatacker J, de Potter WP. Subcellular localization of synaptophysin in noradrenergic nerve terminals: a biochemical and morphological study. Synapse 1995; 21:65-76. [PMID: 8525464 DOI: 10.1002/syn.890210110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The subcellular localization of synaptophysin was investigated in noradrenergic nerve terminals of bovine vas deferens and dog spleen and compared with membrane-bound and soluble markers of noradrenergic storage vesicles. At the light microscopical level chromogranin A- and cytochrome b561-immunoreactivity revealed an identical and very dense innervation of the entire vas deferens. In the case of synaptophysin, most immunoreactivity was found only in the outmost varicosities closest to the lumen, which were also positive for chromogranin A. Small dense-core vesicles of dog spleen were purified using a combination of velocity gradient centrifugation and size exclusion chromatography. Small dense-core vesicles were enriched 64 times as measured by the noradrenaline content. Enrichments for dopamine-beta-hydroxylase were in a similar range. Synaptophysin-containing vesicles were smaller in size and they did not contain the typical noradrenergic markers dopamine-beta-hydroxylase, cytochrome b561, and noradrenaline. Instead, they might store adenosine triphosphate (ATP). A greater part of synaptophysin immunoreactivity was consistently found at high sucrose densities at the position of large dense-core vesicles. We conclude that in the noradrenergic nerve terminal: (1) small dense-core vesicles have a membrane composition similar to large dense-core vesicles, indicating that the former are derived from the latter, and (2) synaptophysin seems not to be present on small dense-core vesicles. We suggest the possibility that synaptophysin-containing vesicles form a residual population whose role in neurotransmission has been taken over by large and small dense-core vesicles following noradrenergic differentiation.
Collapse
Affiliation(s)
- W G Annaert
- Department of Medicine, University of Antwerp, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Zhang X, Aman K, Hökfelt T. Secretory pathways of neuropeptides in rat lumbar dorsal root ganglion neurons and effects of peripheral axotomy. J Comp Neurol 1995; 352:481-500. [PMID: 7536758 DOI: 10.1002/cne.903520402] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using immunocytochemistry combined with confocal and electron microscopy, the secretory pathways related to substance P (SP), calcitonin gene-related peptide (CGRP), galanin (GAL), and neuropeptide Y (NPY) were investigated in neurons in rat lumbar (L) 4 and L5 dorsal root ganglia (DRGs) before and after peripheral axotomy. All four peptides were processed through the regulated secretory pathway in many small neurons in normal DRGs, and CGRP through this pathway also in some large neurons. In many small neurons, two neuropeptides could be sorted into the same or separate large dense-core vesicles (LDCVs). The LDCVs had a significantly larger diameter in small as compared to large DRG neurons. Fourteen days after sciatic nerve cut, the levels of SP- and CGRP-like immunoreactivities (-LIs) and the number of LDCVs containing these peptides were markedly reduced, but SP- and CGRP-LIs were still seen in the regulated pathway. GAL-LI was markedly increased in many small neurons and some large neurons and NPY-LI mainly in large neurons. Both peptides were particularly abundant in the Golgi region. In small neurons, the number of LDCVs containing GAL- or NPY-LI was increased, but did not appear to reach the numbers containing SP- or CGRP-LI in normal DRG neurons. After axotomy, CGRP-LI and GAL-LI were often in separate LDCVs. One type of NPY-positive large neurons showed budding off of LDCVs after axotomy, but also some "scattered" labeling in the cytoplasm. In the second type, NPY-LI was mainly found in multivesicular bodies. In several myelinated nerve fibers a "diffuse" distribution of NPY was seen together with some LDCVs containing NPY-LI. In contrast, in unmyelinated nerve fibers, NPY-, GAL-, SP-, and CGRP-LIs were always observed in LDCVs. Thus, both in normal and axotomized DRG neurons, peptides are processed through the regulated pathway. However, in some large neurons, NPY is, in addition, secreted through the constitutive pathway, perhaps as a consequence of limited sorting mechanisms for NPY, i.e., the plasticity of the secretory mechanisms does not match the rate of peptide synthesis after axotomy.
Collapse
Affiliation(s)
- X Zhang
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
22
|
Valtorta F, Benfenati F. Membrane trafficking in nerve terminals. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1995; 32:505-57. [PMID: 7748803 DOI: 10.1016/s1054-3589(08)61021-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- F Valtorta
- Department of Medical Pharmacology, San Raffaele Scientific Institute, University of Milan, Italy
| | | |
Collapse
|
23
|
Abstract
Synaptic vesicles play the central role in synaptic transmission. They are regarded as key organelles involved in synaptic functions such as uptake, storage and stimulus-dependent release of neurotransmitter. In the last few years our knowledge concerning the molecular components involved in the functioning of synaptic vesicles has grown impressively. Combined biochemical and molecular genetic approaches characterize many constituents of synaptic vesicles in molecular detail and contribute to an elaborate understanding of the organelle responsible for fast neuronal signalling. By studying synaptic vesicles from the electric organ of electric rays and from the mammalian cerebral cortex several proteins have been characterized as functional carriers of vesicle function, including proteins involved in the molecular cascade of exocytosis. The synaptic vesicle specific proteins, their presumptive function and targets of synaptic vesicle proteins will be discussed. This paper focuses on the small synaptic vesicles responsible for fast neuronal transmission. Comparing synaptic vesicles from the peripheral and central nervous systems strengthens the view of a high conservation in the overall composition of synaptic vesicles with a unique set of proteins attributed to this cellular compartment. Synaptic vesicle proteins belong to gene families encoding multiple isoforms present in subpopulations of neurons. The overall architecture of synaptic vesicle proteins is highly conserved during evolution and homologues of these proteins govern the constitutive secretion in yeast. Neurotoxins from different sources helped to identify target proteins of synaptic vesicles and to elucidate the molecular machinery of docking and fusion. Synaptic vesicle proteins and their markers are useful tools for the understanding of the complex life cycle of synaptic vesicles.
Collapse
Affiliation(s)
- W Volknandt
- Zoologisches Institut, J. W. Goethe-Universität, Frankfurt/M., Germany
| |
Collapse
|
24
|
Schikorski T, Braun N, Zimmermann H. Immunocytochemical characterization of the synaptic innervation of a single spinal neuron, the electric catfish electromotoneuron. J Comp Neurol 1994; 343:647-57. [PMID: 7913476 DOI: 10.1002/cne.903430413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The electric catfish, Malapterurus electricus, possesses electric organs that are innervated by a pair of identifiable electromotoneurons located within the cervical spinal cord. The pattern of synaptic innervation of the electromotoneurons can be revealed by an antibody against the synaptic vesicle protein SV2. Both somata and proximal dendrites are densely innervated. Several transmitters contribute to this innervation. Glutamate, the neurotransmitter of the dorsal root sensory fibers, reveals a weak punctuate immunoreactivity. The previously described electrical synapses of the electromotoneurons were visualized by an antibody against a gap-junctional protein. In contrast to the electromotoneurons of other electric fish, the electric catfish electromotoneurons possess many inhibitory synapses. With antibodies against glycine and against the glycine receptor, a dense immunoreactivity of the surface of the somata and proximal dendrites can be revealed. The glycine receptor-like immunoreactivity exhibits a patch-like distribution similar to that revealed by the anti-SV2 antibody. gamma-Aminobutyric acid (GABA)-immunopositive terminals contribute to the inhibitory electromotoneuron innervations to a lesser degree. The chemical characteristics of the electromotoneuron innervations of Malapterurus resemble those of other spinal motoneurons rather than spinal electromotoneurons of other electric fish. Thus our immunocytochemical study supports the view that the pattern of electromotoneuron innervations in Malapterurus reveals little specialization. The capacity for information processing required for the control of the electric organ discharge appears to be achieved by the increased integrational capacity of the newly evolved multiple dendrites and not by an additional parallel channel specific for the electromotor system.
Collapse
Affiliation(s)
- T Schikorski
- Zoologisches Institut, J.W.-Goethe Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Annaert WG, Quatacker J, Llona I, De Potter WP. Differences in the distribution of cytochrome b561 and synaptophysin in dog splenic nerve: a biochemical and immunocytochemical study. J Neurochem 1994; 62:265-74. [PMID: 7505312 DOI: 10.1046/j.1471-4159.1994.62010265.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Compared with neurons of the CNS, the organization of the peripheral adrenergic axon and nerve terminal is more complex because two types of neurotransmitter-containing vesicles, i.e., large (LDVs) and small dense-core vesicles, coexist with the axonal reticulum (AR) and the well-characterized small synaptic vesicles. The AR, which is still poorly examined, is assumed to play some role in neurosecretion. We have studied the subcellular localization of noradrenaline, cytochrome b561, and synaptophysin in control and ligated dog splenic nerve using both biochemical and ultrastructural approaches. Noradrenaline and cytochrome b561 coaccumulated proximal to a ligation, whereas distally only the latter was found. Despite a codistribution with noradrenaline at high densities in sucrose gradients, synaptophysin did not accumulate on either side of the ligation. At the ultrastructural level, cytochrome b561 immunoreactivity was found on LDVs and AR elements, both accumulating proximal to the ligation. Distally, the multivesicular bodies (MVBs), immunolabeled for cytochrome b561, account for the retrograde transport of LDVs and AR membranes retrieved at the nerve terminal. No synaptophysin immunoreactivity could be detected on LDVs, AR, or MVBs. The results obtained from the ligation experiments together with the ultrastructural data clearly illustrate that synaptophysin is absent from LDVs and AR elements in adrenergic axons.
Collapse
Affiliation(s)
- W G Annaert
- Department of Medicine, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
26
|
Grimes M, Zhou J, Li Y, Holtzman D, Mobley WC. Neurotrophin signalling in the nervous system. ACTA ACUST UNITED AC 1993. [DOI: 10.1016/s1044-5765(05)80029-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Affiliation(s)
- R Jahn
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536
| | | |
Collapse
|
28
|
Zimmermann H, Vogel M, Laube U. Hippocampal localization of 5'-nucleotidase as revealed by immunocytochemistry. Neuroscience 1993; 55:105-12. [PMID: 8350982 DOI: 10.1016/0306-4522(93)90458-r] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of binding sites for an antibody against ecto-5'-nucleotidase was investigated in the mouse hippocampus by light microscopical immunocytochemistry. The antibody selectively labels a band corresponding to the innervation area of mossy fibre terminals within area CA3. Area CA1 as well as the dendate gyrus are negative. In area CA3 only the proximal but not the distal parts of the apical dendrites of pyramidal cells are labelled. Labelling is in the form of large dots around dendrites of pyramidal cells suggesting that mossy fibre terminals are immunopositive. In contrast, an antibody against the ubiquitous synaptic vesicle protein SV2 labels the large mossy fibre terminals as well as fine and punctate structures in the dendritic and somatic regions throughout the hippocampus. Labelled astrocytes can be found in the entire hippocampus and are frequent in the stratum radiatum and stratum oriens of the CA1 region. Immunopositive astrocytic processes can be found in association with capillary walls. Our results suggest that ecto-5'-nucleotidase may play a crucial role in the hydrolysis of AMP to adenosine at the mossy fibre synapses. Thus, at these synapses, 5'-nucleotidases could function both in completing the extracellular hydrolysis of synaptically released ATP as well as in the extracellular formation of adenosine.
Collapse
Affiliation(s)
- H Zimmermann
- Zoologisches Institut der J. W. Goethe-Universität, Frankfurt am Main, F.R.G
| | | | | |
Collapse
|
29
|
Volknandt W, Hausinger A, Wittich B, Zimmermann H. The synaptic vesicle-associated G protein o-rab3 is expressed in subpopulations of neurons. J Neurochem 1993; 60:851-7. [PMID: 8436975 DOI: 10.1111/j.1471-4159.1993.tb03229.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The distribution of o-rab3--a synaptic vesicle-associated low-molecular-weight GTP-binding protein--was studied in various neural tissues of the electric ray Torpedo marmorata. o-rab3 was shown to be associated selectively with isolated cholinergic synaptic vesicles derived from the electric organ. Gel filtration of cholinergic synaptic vesicles using Sephacryl S-1000 column chromatography demonstrated a copurification of o-rab3 with the synaptic vesicle content marker ATP and with SV2--a synaptic vesicle transmembrane glycoprotein. Indirect immunofluorescence using antibodies against o-rab3 and SV2 and a double labeling protocol revealed an identical distribution of both antigens in the cholinergic nerve terminals within the electric organ and at neuromuscular junctions. An immunoelectron microscopic analysis demonstrated the presence of o-rab3 at the surface of the synaptic vesicle membrane. In the CNS immunofluorescence of o-rab3 and SV2 overlap only in small and distinct areas. Whereas SV2 has an overall only in small and distinct areas. Whereas SV2 has an overall distribution in nerve terminals of the entire CNS, o-rab3 is restricted to a subpopulation of nerve terminals in the dorsolateral neuropile of the rhombencephalon and in the dorsal horn of the spinal cord. Our results demonstrate that the synaptic vesicle-associated G protein o-rab3 is specifically expressed only in subpopulations of neurons in the Torpedo CNS.
Collapse
Affiliation(s)
- W Volknandt
- AK Neurochemie, Zoologisches Institut, J. W. Goethe-Universität, Frankfurt am Main, F.R.G
| | | | | | | |
Collapse
|
30
|
Zimmermann H, Volknandt W, Wittich B, Hausinger A. Synaptic vesicle life cycle and synaptic turnover. JOURNAL OF PHYSIOLOGY, PARIS 1993; 87:159-70. [PMID: 8136785 DOI: 10.1016/0928-4257(93)90027-q] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cholinergic synaptic vesicles contain a mixture of soluble low molecular mass constituents. Besides acetylcholine these include Ca2+, ATP, GTP, small amounts of ADP and AMP, and also the diadenosine polyphosphates Ap4A and Ap5A. In synaptic vesicles isolated from the electric ray these diadenosine polyphosphates occur in mmol concentrations and might represent a novel cotransmitter. The membrane proteins of cholinergic synaptic vesicles presumably are identical to those in other types of electron-lucent synaptic vesicles. A presumptive exception are the transmitter-specific carriers. The life cycle of the synaptic vesicle in intact neurons and in situ was investigated by analysis of all cytoplasmic membrane compartments that share membrane integral proteins with synaptic vesicles. The results suggest that the synaptic vesicle membrane compartment might originate from the trans-Golgi network and, after cycles of exo- and endocytosis in the nerve terminal, might fuse into an endosomal membrane compartment early on retrograde transport. Tracer experiments using membrane proteins and soluble contents suggest that the synaptic vesicle membrane compartment does not intermix with the presynaptic plasma membrane on repeated cycles of exo- and endocytosis if low frequency stimulation is applied. A cDNA has been isolated from the electric ray electric lobe that codes for o-rab3, a small GTP-binding protein highly homologous to mammalian rab3. While abundant in the nerve terminals of the electric organ and at the neuromuscular junction this protein occurs only in limited subpopulations of nerve terminals in electric ray brain. Immunocytochemical analysis using the colloidal gold technique and a monospecific antibody against o-rab3 suggests that the GTP-binding protein remains attached to recycling synaptic vesicles. No evidence was found for a major contribution of an intraterminal endosomal sorting compartment involved in synaptic vesicle recycling.
Collapse
Affiliation(s)
- H Zimmermann
- AK Neurochemie, Zoologisches Institut, JW Goethe-Universität, Frankfurt-am-Main, Germany
| | | | | | | |
Collapse
|
31
|
Régnier-Vigouroux A, Huttner WB. Biogenesis of small synaptic vesicles and synaptic-like microvesicles. Neurochem Res 1993; 18:59-64. [PMID: 8464536 DOI: 10.1007/bf00966923] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
32
|
|
33
|
Gatzinsky KP, Berthold CH, Fabricius C, Mellström A. Lysosomal activity at nodes of Ranvier in dorsal column and dorsal root axons of the cat after injection of horseradish peroxidase in the dorsal column nuclei. Brain Res 1991; 566:131-9. [PMID: 1726059 DOI: 10.1016/0006-8993(91)91690-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The occurrence of acid phosphatase (AcPase)-positive bodies, i.e. lysosomes, in dorsal column and dorsal root axons of the spinal cord segments C8 and L7 in adult cats was analyzed by light and electron cytochemical methods after injection of horseradish peroxidase (HRP) in the dorsal column nuclei. Axonal lysosomes were, with few exceptions, concentrated at the nodes of Ranvier. We found no changes in nodal occurrence and distribution of lysosomes in axons of the HRP-injected sides, as compared to axons of the uninjected sides or of animals not exposed to HRP. Axonal lysosomes were very rare in the dorsal columns, where the frequency of nodes containing light microscopically detectable AcPase-positive bodies was 0-5% at the HRP-injected sides, 0-6% at the contralateral sides, and 0-3% in control animals. The corresponding values in the cervical and lumbar dorsal roots were 6-23%, 9-20%, 10-12% and 19-37%, 21-40%, 26-43%, respectively. In view of our recent observations in alpha-motor neurons, the results point at a noteworthy difference in local degradative ability between dorsal column axons and alpha-motor axons, the latter being able to accumulate intramuscularly injected and retrogradely transported HRP at their PNS nodes of Ranvier for 48-60 h, during which period the axoplasmic AcPase activity/concentration increases at some nodes. Such a degradative activity, which could protect the motor neurons by restricting axoplasmic transport of exogenous materials imbibed by their axon terminals outside the CNS, may not be of the same significance for neurons, e.g. dorsal root ganglion neurons, the axon terminals of which are located within the CNS.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy, University of Göteborg, Sweden
| | | | | | | |
Collapse
|
34
|
Schmidle T, Weiler R, Desnos C, Scherman D, Fischer-Colbrie R, Floor E, Winkler H. Synaptin/synaptophysin, p65 and SV2: their presence in adrenal chromaffin granules and sympathetic large dense core vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1060:251-6. [PMID: 1751512 DOI: 10.1016/s0005-2728(05)80314-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The subcellular distribution of three proteins of synaptic vesicles (synaptin/synaptophysin, p65 and SV2) was determined in bovine adrenal medulla and sympathetic nerve axons. In adrenals most p65 and SV2 is confined to chromaffin granules. Part of synaptin/synaptophysin is apparently also present in these organelles, but a considerable portion is found in a light vesicle which does not contain significant concentrations of typical markers of chromaffin granules (cytochrome b-561, dopamine beta-hydroxylase or the amine carrier). An analogous finding was obtained for sympathetic axons. The large dense core vesicles contain most p65 and also SV2 but only a smaller portion of synaptin/synaptophysin. A lighter vesicle containing this latter antigen and some SV2 has also been found. These results establish that in adrenal medulla and sympathetic axons three typical antigens of synaptic vesicles are not restricted to light vesicles. Apparently, a varying part of these antigens is found in chromaffin granules and large dense core vesicles. On the other hand, the light vesicles do not contain significant concentrations of functional antigens of chromaffin granules. Thus, the biogenesis of small presynaptic vesicles which contain all three antigens as well as functional components like the amine carrier is likely to involve considerable membrane sorting.
Collapse
Affiliation(s)
- T Schmidle
- Department of Pharmacology, University of Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
35
|
Gatzinsky KP, Berthold CH, Fabricius C. Lysosomal activity in developing cat alpha-motor axons under normal conditions and during retrograde axonal transport of horseradish peroxidase. J Comp Neurol 1991; 312:599-609. [PMID: 1722223 DOI: 10.1002/cne.903120410] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The occurrence of acid phosphatase (AcPase)-positive bodies, i.e., lysosomes, in lumbosacral alpha-motor axons of kittens, 0-16 weeks of age, was analyzed by light and electron cytochemical methods under normal conditions and after intramuscular injection of horseradish peroxidase (HRP). Axonal lysosomes were rare early postnatally. In 3-week-old animals, a few AcPase-positive bodies appeared in the axoplasm at some nodes of Ranvier in the peripheral nervous system (PNS) and internodally in the intrafunicular motor axon parts within the central nervous system (CNS). From 6 weeks postnatally, a nodal concentration of AcPase-positive bodies was also noted in the CNS. The number of AcPase-positive bodies continued to increase gradually in the course of neuronal maturation. In 16-week-old animals, axonal AcPase activity was still at considerably lower levels than at adult stages. At all ages, acid hydrolase-containing organelles were most commonly found at ventral root nodes. After injection of HRP in the medial gastrocnemius muscle, accumulations of AcPase-positive bodies were seen in the axoplasm at some PNS nodes of the HRP-injected sides of kittens aged 8, 12, and 16 weeks. Incubation for demonstration of both HRP and AcPase activity showed that some organelles at HRP-transporting nodes contained both types of reaction product. The nodal AcPase activity in the intrafunicular, CNS parts of alpha-motor axons of the HRP-exposed sides did not differ from that of the contralateral, uninjected sides. In view of our previous observations in alpha-motor neurons of adult cats in which a lysosome-mediated degradation of axonally transported materials may take place at PNS nodes of Ranvier, the present study illuminates possible differences in the ability to interfere with axonal transport between developing and mature neurons. The infrequent presence of lysosomes in developing alpha-motor axons and the implied disability of their nodal regions to interfere with axonally transported constituents in a way similar to that seen in adult animals may be of significance in that trophic and chemical signals can pass unhindered between the periphery and perikaryon. However, this could also have negative consequences for the vulnerable immature neuron in that various materials retrieved at the axon terminals outside the CNS are permitted a more-or-less free access to the perikaryon.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy, University of Göteborg, Sweden
| | | | | |
Collapse
|
36
|
Volknandt W, Pevsner J, Elferink LA, Schilling J, Scheller RH. A synaptic vesicle specific GTP-binding protein from ray electric organ. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1991; 11:283-90. [PMID: 1721993 DOI: 10.1016/0169-328x(91)90037-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A cDNA encoding a synaptic vesicle associated GTP-binding protein was identified by screening a lambda gt11 expression library derived from the electric lobe of Discopyge ommata with polyclonal antibodies recognizing vesicle-specific proteins of Mr 25,000. Nucleotide sequence analysis defines an open reading frame of 218 amino acids. The protein belongs to the ras superfamily and shares about 75% amino acid identity with smg-25A, B and C identified in bovine brain and rab3A characterized in rat brain. Northern blot analysis revealed a 4.5 kb transcript present only in neural tissues, the highest level of expression being observed in electric lobe. Western blot analysis of total tissue homogenates derived from D. ommata detected the protein in electric organ, forebrain and to a lesser extent in electric lobe and spinal cord. No immunoreactivity was detected in non-neuronal tissues. Blotting of subcellular fractions derived from electric ray electric organ revealed that the GTP-binding protein co-purifies with synaptic vesicles. The neural specific expression and the localization to synaptic vesicles suggest a role of this protein in synaptic vesicle trafficking and targeting.
Collapse
Affiliation(s)
- W Volknandt
- AK Neurochemie, Zoologisches Institut der J.W. Goethe-Universität, Frankfurt, F.R.G
| | | | | | | | | |
Collapse
|
37
|
Vogel M, Kowalewski HJ, Zimmermann H, Janetzko A, Margolis RU, Wollny HE. Association of the HNK-1 epitope with 5'-nucleotidase from Torpedo marmorata (electric ray) electric organ. Biochem J 1991; 278 ( Pt 1):199-202. [PMID: 1715684 PMCID: PMC1151468 DOI: 10.1042/bj2780199] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
5'-Nucleotidase isolated from the electric organ of the electric ray (Torpedo marmorata) has a molecular mass of 62 kDa and, on two-dimensional electrophoresis, separates into up to 13 isoforms within a pI range of 5.9-6.7. The N-terminal sequence data show a 71% identity over 17 amino acids with that previously published for the rat liver enzyme. All forms of 5'-nucleotidase are recognized by the HNK-1 monoclonal antibody. HNK-1 immunoreactivity is found at the surface of the Schwann-cell processes covering the synaptic terminals and in this respect corresponds to that of 5'-nucleotidase in the same tissue. Since a number of glycoproteins involved in cell recognition and cell adhesion carry the HNK-1 epitope, 5'-nucleotidase may play a role in cell-cell or cell-extracellular matrix interaction in addition to its activity as an enzyme.
Collapse
Affiliation(s)
- M Vogel
- AK Neurochemie, Zoologisches Institut der J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
38
|
Gatzinsky KP, Berthold CH, Rydmark M. Axon-Schwann cell networks are regular components of nodal regions in normal large nerve fibres of cat spinal roots. Neurosci Lett 1991; 124:264-8. [PMID: 2067726 DOI: 10.1016/0304-3940(91)90109-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The paranodal occurrence of axon-Schwann cell networks (ASNs), which are entities assumed to take part in the removal of degenerate axonal material, was examined quantitatively by electron microscopical serial section analysis in normal cat ventral and dorsal spinal roots. In nerve fibres greater than or equal to 10 microns in diameter 88% of the nodal regions in the ventral roots and 97% in the dorsal roots showed ASN complexes, which especially in the ventral roots often consisted of many segregated axoplasmic portions. The corresponding frequencies in fibres less than 10 microns were 28% and 62% in the ventral and the dorsal roots, respectively. ASN complexes were rare in fibres less than 5 microns. The results show that the ASN is a part of the normal paranodal architecture in large myelinated nerve fibres. The ASN occurrence seems to differ with neurone type.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy, University of Göteborg, Sweden
| | | | | |
Collapse
|
39
|
Gatzinsky KP, Berthold CH. Lysosomal activity at nodes of Ranvier during retrograde axonal transport of horseradish peroxidase in alpha-motor neurons of the cat. JOURNAL OF NEUROCYTOLOGY 1990; 19:989-1002. [PMID: 1705579 DOI: 10.1007/bf01186826] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lysosomal activity at nodes of Ranvier of feline hindlimb alpha-motor neurons was examined by light and electron microscopical acid phosphatase (AcPase) histochemistry during retrograde axonal transport of intramuscularly injected horseradish peroxidase (HRP). Several nodes along the PNS parts of the alpha-motor axons of the HRP-injected side showed accumulations of AcPase-positive bodies in the constricted nodal axon segment and the adjacent paranodal axoplasm. Such lysosomal accumulations were most prominent in the ventral root and differed in number and intensity depending on survival time after the HRP injection. At nodes showing high AcPase activity the axoplasm proximal to the nodal midlevel was occupied by many small, AcPase-positive, vesiculotubular profiles. Larger AcPase-positive bodies were mainly situated distal to the nodal midlevel. Double incubation for demonstration of both HRP and AcPase activity showed similar accumulations of AcPase-positive bodies at some of the HRP-transporting nodes. The AcPase activity differed considerably between nodes exhibiting comparable levels of HRP-positivity. Many of the AcPase-positive bodies also contained HRP reaction product. At some HRP-positive nodes the number of AcPase-positive bodies situated in the paranodal axon-Schwann cell network was elevated when compared to nodes of the contralateral, control side. In contrast to the PNS nodes, the nodal occurrence and distribution of lysosomes in the CNS part of alpha-motor axons seemed not to be affected by HRP transport. These observations support our previous proposal that nodes of Ranvier in the PNS parts of alpha-motor axons, in contrast to their CNS nodes, possess an ability to control passage of and initiate lysosomal degradation of axonally transported substances. Such an ability may provide a protective function to the motor neuron by restricting the intraneuronal transport of materials imbibed by the axon terminals outside the CNS.
Collapse
Affiliation(s)
- K P Gatzinsky
- Department of Anatomy, Gothenburg University, Sweden
| | | |
Collapse
|
40
|
Bonzelius F, Zimmermann H. Recycled synaptic vesicles contain vesicle but not plasma membrane marker, newly synthesized acetylcholine, and a sample of extracellular medium. J Neurochem 1990; 55:1266-73. [PMID: 2398359 DOI: 10.1111/j.1471-4159.1990.tb03134.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To monitor the fate of the synaptic vesicle membrane compartment, synaptic vesicles were isolated under varying experimental conditions from blocks of perfused Torpedo electric organ. In accordance with previous results, after low-frequency stimulation (0.1 Hz, 1,800 pulses) of perfused blocks of electric organ, a population of vesicles (VP2 type) can be separated by density gradient centrifugation and chromatography on porous glass beads that is denser and smaller than resting vesicles (VP1 type). By simultaneous application of fluorescein isothiocyanate-dextran as extracellular volume marker and [3H]acetate as precursor of vesicular acetylcholine, and by identifying the vesicular membrane compartment with an antibody against the synaptic vesicle transmembrane glycoprotein SV2, we can show that the membrane compartment of part of the synaptic vesicles becomes recycled during the stimulation period. It then contains both newly synthesized acetylcholine and a sample of extracellular medium. Recycled vesicles have not incorporated the presynaptic plasma membrane marker acetylcholinesterase. Cisternae or vacuoles are presumably not involved in vesicle recycling. After a subsequent period of recovery (18 h), all vesicular membrane compartments behave like VP1 vesicles on subcellular fractionation and still retain both volume markers. Our results imply that on low-frequency stimulation, synaptic vesicles are directly recycled, equilibrating their luminal contents with the extracellular medium and retaining their membrane identity and capability to accumulate acetylcholine.
Collapse
Affiliation(s)
- F Bonzelius
- AK Neurochemie, Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, F.R.G
| | | |
Collapse
|
41
|
Zimmermann H, Vogt M. Membrane proteins of synaptic vesicles and cytoskeletal specializations at the node of Ranvier in electric ray and rat. Cell Tissue Res 1989; 258:617-29. [PMID: 2611862 DOI: 10.1007/bf00218875] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Binding sites for antibodies against membrane proteins of synaptic vesicles have been shown to be enhanced at nodes of Ranvier in electromotor axons of the electric ray Torpedo marmorata and sciatic nerve axons of the rat, using indirect immunofluorescence and monoclonal antibodies against the synaptic vesicle transmembrane proteins SV2 and synaptophysin (rat) or SV2 (Torpedo). In the electric lobe of Torpedo, vesicle-membrane constituents occurred at higher density in the proximal axon segments covered by oligodendroglia cells than in the distal axon segments where myelin is formed by Schwann cells. Antibody binding sites were enhanced at nodes forming the borderline of the central and peripheral nervous systems. Filamentous actin was present in the Schwann-cell processes covering both the nodal and the paranodal axon segments as suggested by the pattern of phalloidin labelling. Furthermore, in rat sciatic nerve, Schmidt-Lanterman incisures were intensely labelled by phalloidin. A similar nodal distribution was found for binding sites of antibodies against actin and myosin. Binding of antibodies to tubulin was enhanced at nodes in Torpedo electromotor axons. The apparent nodal accumulation of constituents of synaptic vesicle membranes and the presence of filamentous actin and of myosin are discussed in relation to the substantial constriction of the axoplasm at nodes of Ranvier.
Collapse
Affiliation(s)
- H Zimmermann
- Zoologisches Institut, J.W. Goethe-Universität, Frankfurt am Main, Federal Republic of Germany
| | | |
Collapse
|