1
|
Ratna DD, Francis TC. Extrinsic and intrinsic control of striatal cholinergic interneuron activity. Front Mol Neurosci 2025; 18:1528419. [PMID: 40018010 PMCID: PMC11865219 DOI: 10.3389/fnmol.2025.1528419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025] Open
Abstract
The striatum is an integrated component of the basal ganglia responsible for associative learning and response. Besides the presence of the most abundant γ-aminobutyric acid (GABA-ergic) medium spiny neurons (MSNs), the striatum also contains distributed populations of cholinergic interneurons (ChIs), which bidirectionally communicate with many of these neuronal subtypes. Despite their sparse distribution, ChIs provide the largest source of acetylcholine (ACh) to striatal cells, have a prominent level of arborization and activity, and are potent modulators of striatal output and play prominent roles in plasticity underlying associative learning and reinforcement. Deviations from this tonic activity, including phasic bursts or pauses caused by region-selective excitatory input, neuromodulator, or neuropeptide release can exert strong influences on intrinsic activity and synaptic plasticity via diverse receptor signaling. Recent studies and new tools have allowed improved identification of factors driving or suppressing cholinergic activity, including peptides. This review aims to outline our current understanding of factors that control tonic and phasic ChI activity, specifically focusing on how neuromodulators and neuropeptides interact to facilitate or suppress phasic ChI responses underlying learning and plasticity.
Collapse
Affiliation(s)
| | - Tanner Chase Francis
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
2
|
Chuang KH, Qian C, Gilad AA, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. Front Neurosci 2024; 18:1459120. [PMID: 39411150 PMCID: PMC11473493 DOI: 10.3389/fnins.2024.1459120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact our understanding of brain function in health and disease. The combination of neurostimulation methods and functional MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area-, and temporal-specific control of neural activity. The magnetogenetic protein-Electromagnetic Perceptive Gene (EPG)-is activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI static and gradient fields while simultaneously measuring their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation, resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a means to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf A. Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
3
|
Kleven H, Schlegel U, Groenewegen HJ, Leergaard TB, Bjerke IE. Comparison of basal ganglia regions across murine brain atlases using metadata models and the Waxholm Space. Sci Data 2024; 11:1036. [PMID: 39333155 PMCID: PMC11437236 DOI: 10.1038/s41597-024-03863-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
The murine basal ganglia regions are targets for research into complex brain functions such as motor control and habit formation. However, there are several ways to name and annotate these regions, posing challenges for interpretation and comparison of data across studies. Here, we give an overview of basal ganglia terms and boundaries in the literature and reference atlases, and describe the criteria used for annotating these regions in the Waxholm Space rat brain atlas. We go on to compare basal ganglia annotations in stereotaxic rat brain atlases and the Allen Mouse brain Common Coordinate Framework to those in the Waxholm Space rat brain atlas. We demonstrate and describe considerable differences in the terms and boundaries of most basal ganglia regions across atlases and their versions. We also register information about atlases and regions in the openMINDS metadata framework, facilitating integration of data in neuroscience databases. The comparisons of terms and boundaries across rat and mouse atlases support analysis and interpretation of existing and new data from the basal ganglia.
Collapse
Affiliation(s)
- H Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - U Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - H J Groenewegen
- Department of Anatomy and Neurosciences, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - T B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - I E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
4
|
van Beest EH, Abdelwahab MAO, Cazemier JL, Baltira C, Maes MC, Peri BD, Self MW, Willuhn I, Roelfsema PR. The direct and indirect pathways of the basal ganglia antagonistically influence cortical activity and perceptual decisions. iScience 2024; 27:110753. [PMID: 39280625 PMCID: PMC11402218 DOI: 10.1016/j.isci.2024.110753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
The striatum, the main input nucleus of the basal ganglia, receives topographically organized input from the cortex and gives rise to the direct and indirect output pathways, which have antagonistic effects on basal ganglia output directed to the cortex. We optogenetically stimulated the direct and indirect pathways in a visual and a working memory task in mice that responded by licking. Unilateral direct pathway stimulation increased the probability of lick responses toward the contralateral, non-stimulated side and increased cortical activity globally. In contrast, indirect pathway stimulation increased the probability of responses toward the stimulated side and decreased activity in the stimulated hemisphere. Moreover, direct pathway stimulation enhanced the neural representation of a contralateral visual stimulus during the delay of the working memory task, whereas indirect pathway stimulation had the opposite effect. Our results demonstrate how these two pathways influence perceptual decisions and working memory and modify activity in the dorsal cortex.
Collapse
Affiliation(s)
- Enny H van Beest
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Mohammed A O Abdelwahab
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - J Leonie Cazemier
- Department of Cortical Structure and Function, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Chrysiida Baltira
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - M Cassandra Maes
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Brandon D Peri
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Ingo Willuhn
- Department of Neuromodulation and Behavior, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
- Department of Neurosurgery, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), VU University, Amsterdam, the Netherlands
- Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
5
|
Papale AE, Harish M, Paletzki RF, O'Connor NJ, Eastwood BS, Seal RP, Williamson RS, Gerfen CR, Hooks BM. Symmetry in Frontal But Not Motor and Somatosensory Cortical Projections. J Neurosci 2024; 44:e1195232024. [PMID: 38937102 PMCID: PMC11326871 DOI: 10.1523/jneurosci.1195-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 06/29/2024] Open
Abstract
The neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision-making, where lateralization of function may be less important. This study contrasted the topographic precision of cell-type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes. While sensory cortical areas had strongly topographic outputs to the ipsilateral cortex and striatum, they were weaker and not as topographically precise to contralateral targets. The motor cortex had somewhat stronger projections but still relatively weak contralateral topography. In contrast, frontal cortical areas had high degrees of topographic similarity for both ipsilateral and contralateral projections to the cortex and striatum. Corticothalamic organization is mainly ipsilateral, with weaker, more medial contralateral projections. Corticostriatal computations might integrate input outside closed basal ganglia loops using contralateral projections, enabling the two hemispheres to act as a unit to converge on one result in motor planning and decision-making.
Collapse
Affiliation(s)
- Andrew E Papale
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Madhumita Harish
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ronald F Paletzki
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | - Rebecca P Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Ross S Williamson
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Bryan M Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
6
|
Bradshaw JL, Wilson EN, Mabry S, Shrestha P, Gardner JJ, Cunningham RL. Impact of sex and hypoxia on brain region-specific expression of membrane androgen receptor AR45 in rats. Front Endocrinol (Lausanne) 2024; 15:1420144. [PMID: 39092288 PMCID: PMC11291194 DOI: 10.3389/fendo.2024.1420144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
Background Sex differences in oxidative stress-associated cognitive decline are influenced by sex hormone levels. Notably, oxidative stress-associated neuronal cell death can be exacerbated through testosterone signaling via membrane androgen receptor AR45, which is complexed with G protein Gαq within plasma membrane-associated lipid rafts. The objective of this study was to elucidate the impact of sex on the expression of AR45 and Gαq in brain regions associated with cognitive function, specifically hippocampus subregions and entorhinal cortex. Additionally, we investigated whether chronic intermittent hypoxia (CIH), an oxidative stressor with sex-specific effects, would modulate AR45 and Gαq expression in these brain regions. Methods Adult male and female Sprague-Dawley rats were exposed to CIH or normoxia (room air) during their sleep phase for 14 days. We quantified AR45 and Gαq protein expression in various cognition-associated brain regions [dorsal hippocampal CA1, CA3, dentate gyrus (DG), and entorhinal cortex (ETC)] via western blotting. For comparisons, AR45 and Gαq protein expression were also assessed in brain regions outside the hippocampal-ETC circuit [thalamus (TH) and striatum (STR)]. Results The highest AR45 levels were expressed in the hippocampal CA1 and DG while the lowest expression was observed in the extrahippocampal STR. The highest Gαq levels were expressed in the hippocampal-associated ETC while the lowest expression was observed in the extrahippocampal TH. Females expressed higher levels of AR45 in the hippocampal DG compared to males, while no sex differences in Gαq expression were observed regardless of brain region assessed. Moreover, there was no effect of CIH on AR45 or Gαq expression in any of the brain regions examined. AR45 expression was positively correlated with Gαq expression in the CA1, DG, ETC, TH, and STR in a sex-dependent manner. Conclusion Our findings reveal enrichment of AR45 and Gαq protein expression within the hippocampal-ETC circuit, which is vulnerable to oxidative stress and neurodegeneration during cognitive decline. Nonetheless, CIH does not modulate the expression of AR45 or Gαq. Importantly, there are sex differences in AR45 expression and its association with Gαq expression in various brain regions, which may underlie sex-specific differences in cognitive and motor function-associated declines with aging.
Collapse
Affiliation(s)
- Jessica L. Bradshaw
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - E. Nicole Wilson
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Steve Mabry
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Pawan Shrestha
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Jennifer J. Gardner
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Rebecca L. Cunningham
- Department of Pharmaceutical Sciences, University of North Texas (UNT) System College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
7
|
Hirokane K, Nakamura T, Terashita T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Representation of rhythmic chunking in striatum of mice executing complex continuous movement sequences. Cell Rep 2024; 43:114312. [PMID: 38848217 PMCID: PMC11262464 DOI: 10.1016/j.celrep.2024.114312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/09/2024] Open
Abstract
We used a step-wheel system to examine the activity of striatal projection neurons as mice practiced stepping on complexly arranged foothold pegs in this Ferris-wheel-like device to receive reward. Sets of dorsolateral striatal projection neurons were sensitive to specific parameters of repetitive motor coordination during the runs. They responded to combinations of the parameters of continuous movements (interval, phase, and repetition), forming "chunking responses"-some for combinations of these parameters across multiple body parts. Recordings in sensorimotor cortical areas exhibited notably fewer such responses but were documented for smaller neuron sets whose heterogeneity was significant. Striatal movement encoding via chunking responsivity could provide insight into neural strategies governing effective motor control by the striatum. It is possible that the striking need for external rhythmic cuing to allow movement sequences by Parkinson's patients could, at least in part, reflect dysfunction in such striatal coding.
Collapse
Affiliation(s)
- Kojiro Hirokane
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Toru Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Takuma Terashita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Yasuo Kubota
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Hu
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Takeshi Yagi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Takashi Kitsukawa
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
8
|
Martínez-Degollado M, Medina AC, Bello-Medina PC, Quirarte GL, Prado-Alcalá RA. Intense training prevents the amnestic effect of inactivation of dorsomedial striatum and induces high resistance to extinction. PLoS One 2024; 19:e0305066. [PMID: 38843228 PMCID: PMC11156383 DOI: 10.1371/journal.pone.0305066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
A large body of evidence has shown that treatments that interfere with memory consolidation become ineffective when animals are subjected to an intense learning experience; this effect has been observed after systemic and local administration of amnestic drugs into several brain areas, including the striatum. However, the effects of amnestic treatments on the process of extinction after intense training have not been studied. Previous research demonstrated increased spinogenesis in the dorsomedial striatum, but not in the dorsolateral striatum after intense training, indicating that the dorsomedial striatum is involved in the protective effect of intense training. To investigate this issue, male Wistar rats, previously trained with low, moderate, or high levels of foot shock, were used to study the effect of tetrodotoxin inactivation of dorsomedial striatum on memory consolidation and subsequent extinction of inhibitory avoidance. Performance of the task was evaluated during seven extinction sessions. Tetrodotoxin produced a marked deficit of memory consolidation of inhibitory avoidance trained with low and moderate intensities of foot shock, but normal consolidation occurred when a relatively high foot shock was used. The protective effect of intense training was long-lasting, as evidenced by the high resistance to extinction exhibited throughout the extinction sessions. We discuss the possibility that increased dendritic spinogenesis in dorsomedial striatum may underly this protective effect, and how this mechanism may be related to the resilient memory typical of post-traumatic stress disorder (PTSD).
Collapse
Affiliation(s)
- Martha Martínez-Degollado
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Andrea C. Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Paola C. Bello-Medina
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Gina L. Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Roberto A. Prado-Alcalá
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
9
|
Papale AE, Harish M, Paletzki RF, O’Connor NJ, Eastwood BS, Seal RP, Williamson RS, Gerfen CR, Hooks BM. Symmetry in frontal but not motor and somatosensory cortical projections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.02.543431. [PMID: 37398221 PMCID: PMC10312571 DOI: 10.1101/2023.06.02.543431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision making, where lateralization of function may be less important. This study contrasted the topographic precision of cell type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes. While sensory cortical areas had strongly topographic outputs to ipsilateral cortex and striatum, they were weaker and not as topographically precise to contralateral targets. Motor cortex had somewhat stronger projections, but still relatively weak contralateral topography. In contrast, frontal cortical areas had high degrees of topographic similarity for both ipsilateral and contralateral projections to cortex and striatum. Corticothalamic organization is mainly ipsilateral, with weaker, more medial contralateral projections. Corticostriatal computations might integrate input outside closed basal ganglia loops using contralateral projections, enabling the two hemispheres to act as a unit to converge on one result in motor planning and decision making.
Collapse
Affiliation(s)
- Andrew E. Papale
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Madhumita Harish
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | | | - Rebecca P. Seal
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Ross S. Williamson
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Bryan M. Hooks
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
10
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
11
|
Chuang KH, Qian C, Gilad A, Pelled G. Magnetogenetic stimulation inside MRI induces spontaneous and evoked changes in neural circuits activity in rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571681. [PMID: 38168269 PMCID: PMC10760131 DOI: 10.1101/2023.12.14.571681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The ability to modulate specific neural circuits and simultaneously visualize and measure brain activity with MRI would greatly impact understanding brain function in health and disease. The combination of neurostimulation methods and MRI in animal models have already shown promise in elucidating fundamental mechanisms associated with brain activity. We developed an innovative magnetogenetics neurostimulation technology that can trigger neural activity through magnetic fields. Similar to other genetic-based neuromodulation methods, magnetogenetics offers cell-, area- and temporal-specific control of neural activity. However, the magnetogenetics protein (Electromagnetic Preceptive Gene (EPG)) are activated by non-invasive magnetic fields, providing a unique way to target neural circuits by the MRI gradients while simultaneously measure their effect on brain activity. EPG was expressed in rat's visual cortex and the amplitude of low-frequency fluctuation (fALFF), resting-state functional connectivity (FC), and sensory activation was measured using a 7T MRI. The results demonstrate that EPG-expressing rats had significantly higher signal fluctuations in the visual areas and stronger FC in sensory areas consistent with known anatomical visuosensory and visuomotor connections. This new technology complements the existing neurostimulation toolbox and provides a mean to study brain function in a minimally-invasive way which was not possible previously.
Collapse
Affiliation(s)
- Kai-Hsiang Chuang
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
- Australian Research Council Training Centre for Innovation in Biomedical Imaging Technology, Brisbane, QLD, Australia
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, MI, United States
| | - Assaf Gilad
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, United States
| | - Galit Pelled
- Department of Radiology, Michigan State University, East Lansing, MI, United States
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
12
|
Augustin SM, Gracias AL, Luo G, Anumola RC, Lovinger DM. Striatonigral direct pathway 2-arachidonoylglycerol contributes to ethanol effects on synaptic transmission and behavior. Neuropsychopharmacology 2023; 48:1941-1951. [PMID: 37528221 PMCID: PMC10584873 DOI: 10.1038/s41386-023-01671-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Endocannabinoids (eCB) and cannabinoid receptor 1 (CB1) play important roles in mediating short- and long-term synaptic plasticity in many brain regions involved in learning and memory, as well as the reinforcing effects of misused substances. Ethanol-induced plasticity and neuroadaptations predominantly occur in striatal direct pathway projecting medium spiny neurons (dMSNs). It is hypothesized that alterations in eCB neuromodulation may be involved. Recent work has implicated a role of eCB 2-arachidonoylglycerol (2-AG) in the rewarding effects of ethanol. However, there is insufficient research to answer which cellular subtype is responsible for mediating the 2-AG eCB signal that might be involved in the rewarding properties of ethanol and the mechanisms by which that occurs. To examine the role of dMSN mediated 2-AG signaling in ethanol related synaptic transmission and behaviors, we used conditional knockout mice in which the 2-AG-synthesizing enzyme diacylglycerol lipase α (DGLα) was deleted in dMSNs, DGLαD1-Cre+. Using acute brain slice photometry and a genetically encoded fluorescent eCB sensor, GRABeCB2.0, to assess real-time eCB mediated activity of sensorimotor inputs from primary motor cortices (M1/M2) to the dorsolateral striatum, we showed that DGLαD1-Cre+ mice had blunted evoked eCB-mediated presynaptic eCB signaling compared to littermate controls. Furthermore, ethanol induced eCB inhibition was significantly reduced in DGLαD1-Cre+ deficient mice. Additionally, there was a reduction in the duration of loss of righting reflex (LORR) to a high dose of ethanol in the DGLαD1-Cre+ mice compared to controls. These mice also showed a male-specific decrease in ethanol preference accompanied by an increase in ethanol-induced water consumption in a voluntary drinking paradigm. There were no significant differences observed in sucrose and quinine consumption between the genotypes. These findings reveal a novel role for dMSN mediated 2-AG signaling in modulating ethanol effects on presynaptic function and behavior.
Collapse
Affiliation(s)
- Shana M Augustin
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Alexa L Gracias
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Guoxiang Luo
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rishitha C Anumola
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
13
|
Roman KM, Dinasarapu AR, VanSchoiack A, Ross PM, Kroeppler D, Jinnah HA, Hess EJ. Spiny projection neurons exhibit transcriptional signatures within subregions of the dorsal striatum. Cell Rep 2023; 42:113435. [PMID: 37952158 PMCID: PMC10841649 DOI: 10.1016/j.celrep.2023.113435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/11/2023] [Accepted: 10/29/2023] [Indexed: 11/14/2023] Open
Abstract
The dorsal striatum is organized into functional territories defined by corticostriatal inputs onto both direct and indirect spiny projection neurons (SPNs), the major cell types within the striatum. In addition to circuit connectivity, striatal domains are likely defined by the spatially determined transcriptomes of SPNs themselves. To identify cell-type-specific spatiomolecular signatures of direct and indirect SPNs within dorsomedial, dorsolateral, and ventrolateral dorsal striatum, we used RNA profiling in situ hybridization with probes to >98% of protein coding genes. We demonstrate that the molecular identity of SPNs is mediated by hundreds of differentially expressed genes across territories of the striatum, revealing extraordinary heterogeneity in the expression of genes that mediate synaptic function in both direct and indirect SPNs. This deep insight into the complex spatiomolecular organization of the striatum provides a foundation for understanding both normal striatal function and for dissecting region-specific dysfunction in disorders of the striatum.
Collapse
Affiliation(s)
- Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
| | | | | | - P Martin Ross
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - David Kroeppler
- NanoString Technologies, 530 Fairview Avenue N, Seattle, WA 98109, USA
| | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA; Department of Neurology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
14
|
Rodrigues D, Monteiro P. Chronic stress promotes basal ganglia disinhibition by increasing the excitatory drive of direct-pathway neurons. Neurobiol Stress 2023; 27:100571. [PMID: 37781564 PMCID: PMC10540042 DOI: 10.1016/j.ynstr.2023.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023] Open
Abstract
Chronic stress (CS) is a well-recognized triggering factor in obsessive-compulsive disorder (OCD) and Tourette's syndrome (TS), two neuropsychiatric disorders characterized by the presence of stereotypic motor symptoms. Planning and execution of motor actions are controlled by the dorsal striatum, a brain region that promotes or suppresses motor movement by activating striatal neurons from the direct- or indirect-pathway, respectively. Despite the dorsal striatum being affected in motor disorders and by CS exposure, how CS affects the two opposing pathways is not fully understood. Here, we report that CS in mice selectively potentiates the direct-pathway, while sparing the indirect-pathway. Specifically, we show that CS both increases excitation and reduces inhibition over direct-pathway neurons in the dorsomedial striatum (DMS). Furthermore, inhibitory interneurons located in the DMS also display reduced excitatory drive after chronic stress, thus amplifying striatal disinhibition. Altogether, we propose a model where both increased excitatory drive and decreased inhibitory drive in the striatum causes disinhibition of basal ganglia's motor direct pathway - a mechanism that might explain the emergence of motor stereotypies and tic disorders under stress.
Collapse
Affiliation(s)
- Diana Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
| | - Patricia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimaraes, Portugal
- Department of Biomedicine - Experimental Biology Unit, Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| |
Collapse
|
15
|
Hirokane K, Nakamura T, Terashita T, Kubota Y, Hu D, Yagi T, Graybiel AM, Kitsukawa T. Rhythm Receptive Fields in Striatum of Mice Executing Complex Continuous Movement Sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.23.559115. [PMID: 37790358 PMCID: PMC10542522 DOI: 10.1101/2023.09.23.559115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
By the use of a novel experimental system, the step-wheel, we investigated the neural underpinnings of complex and continuous movements. We recorded neural activities from the dorsolateral striatum and found neurons sensitive to movement rhythm parameters. These neurons responded to specific combinations of interval, phase, and repetition of movement, effectively forming what we term "rhythm receptive fields." Some neurons even responsive to the combination of movement phases of multiple body parts. In parallel, cortical recordings in sensorimotor areas highlighted a paucity of neurons responsive to multiple parameter combinations, relative to those in the striatum. These findings have implications for comprehending motor coordination deficits seen in brain disorders including Parkinson's disease. Movement encoding by rhythm receptive fields should streamline the brain's capacity to encode temporal patterns, help to resolve the degrees of freedom problem. Such rhythm fields hint at the neural mechanisms governing effective motor control and processing of rhythmic information.
Collapse
|
16
|
Rios A, Nonomura S, Kato S, Yoshida J, Matsushita N, Nambu A, Takada M, Hira R, Kobayashi K, Sakai Y, Kimura M, Isomura Y. Reward expectation enhances action-related activity of nigral dopaminergic and two striatal output pathways. Commun Biol 2023; 6:914. [PMID: 37673949 PMCID: PMC10482957 DOI: 10.1038/s42003-023-05288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
Neurons comprising nigrostriatal system play important roles in action selection. However, it remains unclear how this system integrates recent outcome information with current action (movement) and outcome (reward or no reward) information to achieve appropriate subsequent action. We examined how neuronal activity of substantia nigra pars compacta (SNc) and dorsal striatum reflects the level of reward expectation from recent outcomes in rats performing a reward-based choice task. Movement-related activity of direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively) were enhanced by reward expectation, similarly to the SNc dopaminergic neurons, in both medial and lateral nigrostriatal projections. Given the classical basal ganglia model wherein dopamine stimulates dSPNs and suppresses iSPNs through distinct dopamine receptors, dopamine might not be the primary driver of iSPN activity increasing following higher reward expectation. In contrast, outcome-related activity was affected by reward expectation in line with the classical model and reinforcement learning theory, suggesting purposive effects of reward expectation.
Collapse
Affiliation(s)
- Alain Rios
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
| | - Satoshi Nonomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Shigeki Kato
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Junichi Yoshida
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Natsuki Matsushita
- Division of Laboratory Animal Research, Aichi Medical University, Aichi, 480-1195, Japan
| | - Atsushi Nambu
- Division of System Neurophysiology, National Institute of Physiological Sciences and Department of Physiological Sciences, SOKENDAI, Aichi, 444-8585, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Aichi, 484-8506, Japan
| | - Riichiro Hira
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Science, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yutaka Sakai
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Minoru Kimura
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan
| | - Yoshikazu Isomura
- Department of Physiology and Cell Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, 113-8510, Japan.
- Brain Science Institute, Tamagawa University, Tokyo, 194-8610, Japan.
| |
Collapse
|
17
|
Denne T, Winfrey LC, Moore C, Whitner C, D'Silva T, Soumyanath A, Shinto L, Hiller A, Meshul CK. Recovery of motor function is associated with rescue of glutamate biomarkers in the striatum and motor cortex following treatment with Mucuna pruriens in a murine model of Parkinsons disease. Mol Cell Neurosci 2023; 126:103883. [PMID: 37527694 DOI: 10.1016/j.mcn.2023.103883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/26/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
There is growing interest in the use of natural products for the treatment of Parkinson's disease (PD). Mucuna pruriens has been used in the treatment of humans with PD. The goal of this study was to determine if daily oral treatment with an extract of Mucuna pruriens, starting after the MPTP-induced loss of nigrostriatal dopamine in male mice, would result in recovery/restoration of motor function, tyrosine hydroxylase (TH) protein expression in the nigrostriatal pathway, or glutamate biomarkers in both the striatum and motor cortex. Following MPTP administration, resulting in an 80 % loss of striatal TH, treatment with Mucuna pruriens failed to rescue either striatal TH or the dopamine transporter back to the control levels, but there was restoration of gait/motor function. There was an MPTP-induced loss of TH-labeled neurons in the substantia nigra pars compacta and in the number of striatal dendritic spines, both of which failed to be recovered following treatment with Mucuna pruriens. This Mucuna pruriens-induced locomotor recovery following MPTP was associated with restoration of two striatal glutamate transporter proteins, GLAST (EAAT1) and EAAC1 (EAAT3), and the vesicular glutamate transporter 2 (Vglut2) within the motor cortex. Post-MPTP treatment with Mucuna pruriens, results in locomotor improvement that is associated with recovery of striatal and motor cortex glutamate transporters but is independent of nigrostriatal TH restoration.
Collapse
Affiliation(s)
| | | | - Cindy Moore
- VA Medical Center/Portland, Portland, OR, USA
| | | | | | - Amala Soumyanath
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Lynne Shinto
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Amie Hiller
- Department of Neurology, Oregon Health & Science University, Portland, OR, USA; VA Medical Center/Portland, Portland, OR, USA
| | - Charles K Meshul
- Department of Behavioral Neuroscience and Pathology, Oregon Health & Science University, Portland, OR, USA; VA Medical Center/Portland, Portland, OR, USA.
| |
Collapse
|
18
|
Du W, Li E, Guo J, Arano R, Kim Y, Chen YT, Thompson A, Oh SJ, Samuel A, Li Y, Oyibo HK, Xu W. Directed stepwise tracing of polysynaptic neuronal circuits with replication-deficient pseudorabies virus. CELL REPORTS METHODS 2023; 3:100506. [PMID: 37426757 PMCID: PMC10326449 DOI: 10.1016/j.crmeth.2023.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/17/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023]
Abstract
Brain functions are accomplished by polysynaptic circuits formed by neurons wired together through multiple orders of synaptic connections. Polysynaptic connectivity has been difficult to examine due to a lack of methods of continuously tracing the pathways in a controlled manner. Here, we demonstrate directed, stepwise retrograde polysynaptic tracing by inducible reconstitution of replication-deficient trans-neuronal pseudorabies virus (PRVΔIE) in the brain. Furthermore, PRVΔIE replication can be temporally restricted to minimize its neurotoxicity. With this tool, we delineate a wiring diagram between the hippocampus and striatum-two major brain systems for learning, memory, and navigation-that consists of projections from specific hippocampal domains to specific striatal areas via distinct intermediate brain regions. Therefore, this inducible PRVΔIE system provides a tool for dissecting polysynaptic circuits underlying complex brain functions.
Collapse
Affiliation(s)
- Wenqin Du
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elizabeth Li
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jun Guo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel Arano
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yerim Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuh-Tarng Chen
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Alyssa Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - So Jung Oh
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Aspen Samuel
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ying Li
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hassana K. Oyibo
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Wei Xu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
19
|
Estrada-Sánchez AM, Rangel-Barajas C, Howe AG, Barton SJ, Mach RH, Luedtke RR, Rebec GV. Selective Activation of D3 Dopamine Receptors Ameliorates DOI-Induced Head Twitching Accompanied by Changes in Corticostriatal Processing. Int J Mol Sci 2023; 24:ijms24119300. [PMID: 37298250 DOI: 10.3390/ijms24119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
D3 receptors, a key component of the dopamine system, have emerged as a potential target of therapies to improve motor symptoms across neurodegenerative and neuropsychiatric conditions. In the present work, we evaluated the effect of D3 receptor activation on the involuntary head twitches induced by 2,5-dimethoxy-4-iodoamphetamine (DOI) at behavioral and electrophysiological levels. Mice received an intraperitoneal injection of either a full D3 agonist, WC 44 [4-(2-fluoroethyl)-N-[4-[4-(2-methoxyphenyl)piperazin 1-yl]butyl]benzamide] or a partial D3 agonist, WW-III-55 [N-(4-(4-(4-methoxyphenyl)piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide] five minutes before the intraperitoneal administration of DOI. Compared to the control group, both D3 agonists delayed the onset of the DOI-induced head-twitch response and reduced the total number and frequency of the head twitches. Moreover, the simultaneous recording of neuronal activity in the motor cortex (M1) and dorsal striatum (DS) indicated that D3 activation led to slight changes in a single unit activity, mainly in DS, and increased its correlated firing in DS or between presumed cortical pyramidal neurons (CPNs) and striatal medium spiny neurons (MSNs). Our results confirm the role of D3 receptor activation in controlling DOI-induced involuntary movements and suggest that this effect involves, at least in part, an increase in correlated corticostriatal activity. A further understanding of the underlying mechanisms may provide a suitable target for treating neuropathologies in which involuntary movements occur.
Collapse
Affiliation(s)
- Ana María Estrada-Sánchez
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), Camino a la Presa San José No. 2055, Colonia Lomas 4a Sección, San Luis Potosi C.P. 78216, Mexico
| | - Claudia Rangel-Barajas
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Andrew G Howe
- Psychology Department, University of California Los Angeles, Los Angeles, CA 90095, USA
- Intelligent Systems Laboratory, HRL Laboratories, LLC., Malibu, CA 90265, USA
| | - Scott J Barton
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania School of Medicine, Chemistry Building, 231 S. 34th St., Philadelphia, PA 19104, USA
| | - Robert R Luedtke
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA
| | - George V Rebec
- Program in Neuroscience and Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
20
|
Roman KM, Briscione MA, Donsante Y, Ingram J, Fan X, Bernhard D, Campbell SA, Downs AM, Gutman D, Sardar TA, Bonno SQ, Sutcliffe DJ, Jinnah HA, Hess EJ. Striatal Subregion-selective Dysregulated Dopamine Receptor-mediated Intracellular Signaling in a Model of DOPA-responsive Dystonia. Neuroscience 2023; 517:37-49. [PMID: 36871883 PMCID: PMC10085842 DOI: 10.1016/j.neuroscience.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Although the mechanisms underlying dystonia are largely unknown, dystonia is often associated with abnormal dopamine neurotransmission. DOPA-responsive dystonia (DRD) is a prototype disorder for understanding dopamine dysfunction in dystonia because it is caused by mutations in genes necessary for the synthesis of dopamine and alleviated by the indirect-acting dopamine agonist l-DOPA. Although adaptations in striatal dopamine receptor-mediated intracellular signaling have been studied extensively in models of Parkinson's disease, another movement disorders associated with dopamine deficiency, little is known about dopaminergic adaptations in dystonia. To identify the dopamine receptor-mediated intracellular signaling associated with dystonia, we used immunohistochemistry to quantify striatal protein kinase A activity and extracellular signal-related kinase (ERK) phosphorylation after dopaminergic challenges in a knockin mouse model of DRD. l-DOPA treatment induced the phosphorylation of both protein kinase A substrates and ERK largely in D1 dopamine receptor-expressing striatal neurons. As expected, this response was blocked by pretreatment with the D1 dopamine receptor antagonist SCH23390. The D2 dopamine receptor antagonist raclopride also significantly reduced the phosphorylation of ERK; this contrasts with models of parkinsonism in which l-DOPA-induced ERK phosphorylation is not mediated by D2 dopamine receptors. Further, the dysregulated signaling was dependent on striatal subdomains whereby ERK phosphorylation was largely confined to dorsomedial (associative) striatum while the dorsolateral (sensorimotor) striatum was unresponsive. This complex interaction between striatal functional domains and dysregulated dopamine-receptor mediated responses has not been observed in other models of dopamine deficiency, such as parkinsonism, suggesting that regional variation in dopamine-mediated neurotransmission may be a hallmark of dystonia.
Collapse
Affiliation(s)
- Kaitlyn M Roman
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Maria A Briscione
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Yuping Donsante
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Jordan Ingram
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Xueliang Fan
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - Simone A Campbell
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Anthony M Downs
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - David Gutman
- Department of Biomedical Informatics, Emory University, Atlanta, GA, USA
| | - Tejas A Sardar
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | - Sofia Q Bonno
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA
| | | | - H A Jinnah
- Department of Neurology, Emory University, Atlanta, GA, USA; Department of Human Genetics, Emory University, Atlanta, GA, USA; Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Ellen J Hess
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
21
|
Characterizing habit learning in the human brain at the individual and group levels: a multi-modal MRI study. Neuroimage 2023. [DOI: 10.1016/j.neuroimage.2023.120002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
|
22
|
Choi K, Piasini E, Díaz-Hernández E, Cifuentes LV, Henderson NT, Holly EN, Subramaniyan M, Gerfen CR, Fuccillo MV. Distributed processing for value-based choice by prelimbic circuits targeting anterior-posterior dorsal striatal subregions in male mice. Nat Commun 2023; 14:1920. [PMID: 37024449 PMCID: PMC10079960 DOI: 10.1038/s41467-023-36795-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/17/2023] [Indexed: 04/08/2023] Open
Abstract
Fronto-striatal circuits have been implicated in cognitive control of behavioral output for social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output mediated by connectivity to dorsal striatum. Despite evidence for functional diversity along the anterior-posterior striatal axis, it is unclear how distinct fronto-striatal sub-circuits support value-based choice. Here we found segregated prefrontal populations defined by anterior/posterior dorsomedial striatal target. During a feedback-based 2-alternative choice task, single-photon imaging revealed circuit-specific representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-DMS) robustly modulated during choices and negative outcomes, while prelimbic neurons targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition of PL::A-DMS circuits strongly impacted choice monitoring and responses to negative outcomes while inhibition of PL::P-DMS impaired task engagement and strategies following positive outcomes. Together our data uncover PL populations engaged in distributed processing for value-based choice.
Collapse
Affiliation(s)
- Kyuhyun Choi
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eugenio Piasini
- Computational Neuroscience Initiative, University of Pennsylvania, Philadelphia, PA, USA
- Neural Computation Lab, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Edgar Díaz-Hernández
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigim Vargas Cifuentes
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathan T Henderson
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth N Holly
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Manivannan Subramaniyan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles R Gerfen
- Laboratory of Systems Neuroscience, National Institute of Mental Health (NIMH), Bethesda, MD, USA
| | - Marc V Fuccillo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Alfalahi H, Dias SB, Khandoker AH, Chaudhuri KR, Hadjileontiadis LJ. A scoping review of neurodegenerative manifestations in explainable digital phenotyping. NPJ Parkinsons Dis 2023; 9:49. [PMID: 36997573 PMCID: PMC10063633 DOI: 10.1038/s41531-023-00494-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/03/2023] Open
Abstract
Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.
Collapse
Affiliation(s)
- Hessa Alfalahi
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| | - Sofia B Dias
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- CIPER, Faculdade de Motricidade Humana, University of Lisbon, Lisbon, Portugal
| | - Ahsan H Khandoker
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Kallol Ray Chaudhuri
- Parkinson Foundation, International Center of Excellence, King's College London, Denmark Hills, London, UK
- Department of Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, UK
| | - Leontios J Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
24
|
de la Torre-Martinez R, Ketzef M, Silberberg G. Ongoing movement controls sensory integration in the dorsolateral striatum. Nat Commun 2023; 14:1004. [PMID: 36813791 PMCID: PMC9947004 DOI: 10.1038/s41467-023-36648-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The dorsolateral striatum (DLS) receives excitatory inputs from both sensory and motor cortical regions. In the neocortex, sensory responses are affected by motor activity, however, it is not known whether such sensorimotor interactions occur in the striatum and how they are shaped by dopamine. To determine the impact of motor activity on striatal sensory processing, we performed in vivo whole-cell recordings in the DLS of awake mice during the presentation of tactile stimuli. Striatal medium spiny neurons (MSNs) were activated by both whisker stimulation and spontaneous whisking, however, their responses to whisker deflection during ongoing whisking were attenuated. Dopamine depletion reduced the representation of whisking in direct-pathway MSNs, but not in those of the indirect-pathway. Furthermore, dopamine depletion impaired the discrimination between ipsilateral and contralateral sensory stimulation in both direct and indirect pathway MSNs. Our results show that whisking affects sensory responses in DLS and that striatal representation of both processes is dopamine- and cell type-dependent.
Collapse
Affiliation(s)
| | - Maya Ketzef
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
25
|
McNulty CJ, Fallon IP, Amat J, Sanchez RJ, Leslie NR, Root DH, Maier SF, Baratta MV. Elevated prefrontal dopamine interferes with the stress-buffering properties of behavioral control in female rats. Neuropsychopharmacology 2023; 48:498-507. [PMID: 36076018 PMCID: PMC9852231 DOI: 10.1038/s41386-022-01443-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023]
Abstract
Stress-linked disorders are more prevalent in women than in men and differ in their clinical presentation. Thus, investigating sex differences in factors that promote susceptibility or resilience to stress outcomes, and the circuit elements that mediate their effects, is important. In male rats, instrumental control over stressors engages a corticostriatal system involving the prelimbic cortex (PL) and dorsomedial striatum (DMS) that prevent many of the sequelae of stress exposure. Interestingly, control does not buffer against stress outcomes in females, and here, we provide evidence that the instrumental controlling response in females is supported instead by the dorsolateral striatum (DLS). Additionally, we used in vivo microdialysis, fluorescent in situ hybridization, and receptor subtype pharmacology to examine the contribution of prefrontal dopamine (DA) to the differential impact of behavioral control. Although both sexes preferentially expressed D1 receptor mRNA in PL GABAergic neurons, there were robust sex differences in the dynamic properties of prefrontal DA during controllable stress. Behavioral control potently attenuated stress-induced DA efflux in males, but not females, who showed a sustained DA increase throughout the entire stress session. Importantly, PL D1 receptor blockade (SCH 23390) shifted the proportion of striatal activity from the DLS to the DMS in females and produced the protective effects of behavioral control. These findings suggest a sex-selective mechanism in which elevated DA in the PL biases instrumental responding towards prefrontal-independent striatal circuitry, thereby eliminating the protective impact of coping with stress.
Collapse
Affiliation(s)
- Connor J McNulty
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Isabella P Fallon
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Jose Amat
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Rory J Sanchez
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Nathan R Leslie
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - David H Root
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Michael V Baratta
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
26
|
Oligodendrocytes Prune Axons Containing α-Synuclein Aggregates In Vivo: Lewy Neurites as Precursors of Glial Cytoplasmic Inclusions in Multiple System Atrophy? Biomolecules 2023; 13:biom13020269. [PMID: 36830639 PMCID: PMC9953613 DOI: 10.3390/biom13020269] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/17/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
α-Synucleinopathies are spreading neurodegenerative disorders characterized by the intracellular accumulation of insoluble aggregates populated by α-Synuclein (α-Syn) fibrils. In Parkinson's disease (PD) and dementia with Lewy bodies, intraneuronal α-Syn aggregates are referred to as Lewy bodies in the somata and as Lewy neurites in the neuronal processes. In multiple system atrophy (MSA) α-Syn aggregates are also found within mature oligodendrocytes (OLs) where they form Glial Cytoplasmic Inclusions (GCIs). However, the origin of GCIs remains enigmatic: (i) mature OLs do not express α-Syn, precluding the seeding and the buildup of inclusions and (ii) the artificial overexpression of α-Syn in OLs of transgenic mice results in a burden of soluble phosphorylated α-Syn but fails to form α-Syn fibrils. In contrast, mass spectrometry of α-Syn fibrillar aggregates from MSA patients points to the neuronal origin of the proteins intimately associated with the fibrils within the GCIs. This suggests that GCIs are preassembled in neurons and only secondarily incorporated into OLs. Interestingly, we recently isolated a synthetic human α-Syn fibril strain (1B fibrils) capable of seeding a type of neuronal inclusion observed early and specifically during MSA. Our goal was thus to investigate whether the neuronal α-Syn pathology seeded by 1B fibrils could eventually be transmitted to OLs to form GCIs in vivo. After confirming that mature OLs did not express α-Syn to detectable levels in the adult mouse brain, a series of mice received unilateral intra-striatal injections of 1B fibrils. The resulting α-Syn pathology was visualized using phospho-S129 α-Syn immunoreactivity (pSyn). We found that even though 1B fibrils were injected unilaterally, many pSyn-positive neuronal somas were present in layer V of the contralateral perirhinal cortex after 6 weeks. This suggested a fast retrograde spread of the pathology along the axons of crossing cortico-striatal neurons. We thus scrutinized the posterior limb of the anterior commissure, i.e., the myelinated interhemispheric tract containing the axons of these neurons: we indeed observed numerous pSyn-positive linear Lewy Neurites oriented parallel to the commissural axis, corresponding to axonal segments filled with aggregated α-Syn, with no obvious signs of OL α-Syn pathology at this stage. After 6 months however, the commissural Lewy neurites were no longer parallel but fragmented, curled up, sometimes squeezed in-between two consecutive OLs in interfascicular strands, or even engulfed inside OL perikarya, thus forming GCIs. We conclude that the 1B fibril strain can rapidly induce an α-Syn pathology typical of MSA in mice, in which the appearance of GCIs results from the pruning of diseased axonal segments containing aggregated α-Syn.
Collapse
|
27
|
The Sapap3 -/- mouse reconsidered as a comorbid model expressing a spectrum of pathological repetitive behaviours. Transl Psychiatry 2023; 13:26. [PMID: 36717540 PMCID: PMC9886949 DOI: 10.1038/s41398-023-02323-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/30/2022] [Accepted: 01/17/2023] [Indexed: 01/31/2023] Open
Abstract
Symptom comorbidity is present amongst neuropsychiatric disorders with repetitive behaviours, complicating clinical diagnosis and impeding appropriate treatments. This is of particular importance for obsessive-compulsive disorder (OCD) and Tourette syndrome. Here, we meticulously analysed the behaviour of Sapap3 knockout mice, the recent rodent model predominantly used to study compulsive-like behaviours, and found that its behaviour is more complex than originally and persistently described. Indeed, we detected previously unreported elements of distinct pathologically repetitive behaviours, which do not form part of rodent syntactic cephalo-caudal self-grooming. These repetitive behaviours include sudden, rapid body and head/body twitches, resembling tic-like movements. We also observed that another type of repetitive behaviour, aberrant hindpaw scratching, might be responsible for the flagship-like skin lesions of this mouse model. In order to characterise the symptomatological nature of observed repetitive behaviours, we pharmacologically challenged these phenotypes by systemic aripiprazole administration, a first-line treatment for tic-like symptoms in Tourette syndrome and trichotillomania. A single treatment of aripiprazole significantly reduced the number of head/body twitches, scratching, and single-phase grooming, but not syntactic grooming events. These observations are in line with the high comorbidity of tic- and compulsive-like symptoms in Tourette, OCD and trichotillomania patients.
Collapse
|
28
|
Martel AC, Galvan A. Connectivity of the corticostriatal and thalamostriatal systems in normal and parkinsonian states: An update. Neurobiol Dis 2022; 174:105878. [PMID: 36183947 PMCID: PMC9976706 DOI: 10.1016/j.nbd.2022.105878] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 02/06/2023] Open
Abstract
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson's disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Collapse
Affiliation(s)
- Anne-Caroline Martel
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA
| | - Adriana Galvan
- Emory National Primate Research Center, Emory University, Atlanta, GA, USA; Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, GA, USA; Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA.
| |
Collapse
|
29
|
Nozaki T, Sugiyama K, Asakawa T, Namba H, Yokokura M, Terada T, Bunai T, Ouchi Y. Increased anteroventral striatal dopamine transporter and motor recovery after subthalamic deep brain stimulation in Parkinson's disease. J Neurosurg 2022; 137:468-478. [PMID: 34972089 DOI: 10.3171/2021.10.jns211364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease is effective; however, its mechanism is unclear. To investigate the degree of neuronal terminal survival after STN-DBS, the authors examined the striatal dopamine transporter levels before and after treatment in association with clinical improvement using PET with [11C]2β-carbomethoxy-3β-(4-fluorophenyl)tropane ([11C]CFT). METHODS Ten patients with Parkinson's disease who had undergone bilateral STN-DBS were scanned twice with [11C]CFT PET just before and 1 year after surgery. Correlation analysis was conducted between [11C]CFT binding and off-period Unified Parkinson's Disease Rating Scale (UPDRS) scores assessed preoperatively and postoperatively. RESULTS [11C]CFT uptake reduced significantly in the posterodorsal putamen contralateral to the parkinsonism-dominant side after 1 year; however, an increase was noted in the contralateral anteroventral putamen and ipsilateral ventral caudate postoperatively (p < 0.05). The percentage increase in [11C]CFT binding was inversely correlated with the preoperative binding level in the bilateral anteroventral putamen, ipsilateral ventral caudate, contralateral anterodorsal putamen, contralateral posteroventral putamen, and contralateral nucleus accumbens. The percentage reduction in UPDRS-II score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen (p < 0.05). The percentage reduction in UPDRS-III score was significantly correlated with the percentage increase in [11C]CFT binding in the ipsilateral anteroventral putamen, ventral caudate, and nucleus accumbens (p < 0.05). CONCLUSIONS STN-DBS increases dopamine transporter levels in the anteroventral striatum, which is correlated with the motor recovery and possibly suggests the neuromodulatory effect of STN-DBS on dopaminergic terminals in Parkinson's disease patients. A preoperative level of anterior striatal dopamine transporter may predict reserve capacity of STN-DBS on motor recovery.
Collapse
Affiliation(s)
- Takao Nozaki
- 1Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Sugiyama
- 2Department of Neurosurgery, Toyoda Eisei Hospital, Iwata, Japan
| | - Tetsuya Asakawa
- 3Department of Neurology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Hiroki Namba
- 4Department of Neurosurgery, JA Shizuoka Kohseiren Enshu Hospital, Hamamatsu, Japan
| | - Masamichi Yokokura
- 5Department of Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuhiro Terada
- 6Department of Neurology, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Bunai
- 7Department of Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yasuomi Ouchi
- 8Hamamatsu PET Imaging Center, Hamamatsu Medical Photonics Foundation, Hamamatsu, Japan; and
- 9Department of Biofunctional Imaging, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
30
|
Yoo T, Joshi S, Prajapati S, Cho YS, Kim J, Park PH, Bae YC, Kim E, Kim SY. A Deficiency of the Psychiatric Risk Gene DLG2/PSD-93 Causes Excitatory Synaptic Deficits in the Dorsolateral Striatum. Front Mol Neurosci 2022; 15:938590. [PMID: 35966008 PMCID: PMC9370999 DOI: 10.3389/fnmol.2022.938590] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2–/– mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2–/– dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2–/– mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.
Collapse
Affiliation(s)
- Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Shambhu Joshi
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | | | - Yi Sul Cho
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Jinkyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Pil-Hoon Park
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
| | - Yong Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, South Korea
- *Correspondence: Soo Young Kim,
| |
Collapse
|
31
|
Mair RG, Francoeur MJ, Krell EM, Gibson BM. Where Actions Meet Outcomes: Medial Prefrontal Cortex, Central Thalamus, and the Basal Ganglia. Front Behav Neurosci 2022; 16:928610. [PMID: 35864847 PMCID: PMC9294389 DOI: 10.3389/fnbeh.2022.928610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022] Open
Abstract
Medial prefrontal cortex (mPFC) interacts with distributed networks that give rise to goal-directed behavior through afferent and efferent connections with multiple thalamic nuclei and recurrent basal ganglia-thalamocortical circuits. Recent studies have revealed individual roles for different thalamic nuclei: mediodorsal (MD) regulation of signaling properties in mPFC neurons, intralaminar control of cortico-basal ganglia networks, ventral medial facilitation of integrative motor function, and hippocampal functions supported by ventral midline and anterior nuclei. Large scale mapping studies have identified functionally distinct cortico-basal ganglia-thalamocortical subnetworks that provide a structural basis for understanding information processing and functional heterogeneity within the basal ganglia. Behavioral analyses comparing functional deficits produced by lesions or inactivation of specific thalamic nuclei or subregions of mPFC or the basal ganglia have elucidated the interdependent roles of these areas in adaptive goal-directed behavior. Electrophysiological recordings of mPFC neurons in rats performing delayed non-matching-to position (DNMTP) and other complex decision making tasks have revealed populations of neurons with activity related to actions and outcomes that underlie these behaviors. These include responses related to motor preparation, instrumental actions, movement, anticipation and delivery of action outcomes, memory delay, and spatial context. Comparison of results for mPFC, MD, and ventral pallidum (VP) suggest critical roles for mPFC in prospective processes that precede actions, MD for reinforcing task-relevant responses in mPFC, and VP for providing feedback about action outcomes. Synthesis of electrophysiological and behavioral results indicates that different networks connecting mPFC with thalamus and the basal ganglia are organized to support distinct functions that allow organisms to act efficiently to obtain intended outcomes.
Collapse
Affiliation(s)
- Robert G. Mair
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Miranda J. Francoeur
- Neural Engineering and Translation Labs, University of California, San Diego, San Diego, CA, United States
| | - Erin M. Krell
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| | - Brett M. Gibson
- Department of Psychology, The University of New Hampshire, Durham, NH, United States
| |
Collapse
|
32
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
33
|
Lebenheim L, Booker SA, Derst C, Weiss T, Wagner F, Gruber C, Vida I, Zahm DS, Veh RW. A novel giant non-cholinergic striatal interneuron restricted to the ventrolateral striatum coexpresses Kv3.3 potassium channel, parvalbumin, and the vesicular GABA transporter. Mol Psychiatry 2022; 27:2315-2328. [PMID: 33190145 PMCID: PMC9126804 DOI: 10.1038/s41380-020-00948-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The striatum is the main input structure of the basal ganglia. Distinct striatal subfields are involved in voluntary movement generation and cognitive and emotional tasks, but little is known about the morphological and molecular differences of striatal subregions. The ventrolateral subfield of the striatum (VLS) is the orofacial projection field of the sensorimotor cortex and is involved in the development of orofacial dyskinesias, involuntary chewing-like movements that often accompany long-term neuroleptic treatment. The biological basis for this particular vulnerability of the VLS is not known. Potassium channels are known to be strategically localized within the striatum. In search of possible molecular correlates of the specific vulnerability of the VLS, we analyzed the expression of voltage-gated potassium channels in rodent and primate brains using qPCR, in situ hybridization, and immunocytochemical single and double staining. Here we describe a novel, giant, non-cholinergic interneuron within the VLS. This neuron coexpresses the vesicular GABA transporter, the calcium-binding protein parvalbumin (PV), and the Kv3.3 potassium channel subunit. This novel neuron is much larger than PV neurons in other striatal regions, displays characteristic electrophysiological properties, and, most importantly, is restricted to the VLS. Consequently, the giant striatal Kv3.3-expressing PV neuron may link compromised Kv3 channel function and VLS-based orofacial dyskinesias.
Collapse
Affiliation(s)
- Lydia Lebenheim
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Sam A Booker
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Christian Derst
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Torsten Weiss
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Franziska Wagner
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.,Hans Berger Klinik für Neurologie, Universitätsklinikum Jena, An der Klinik 1, D-07747, Jena, Germany
| | - Clemens Gruber
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Imre Vida
- Institut für Integrative Neuroanatomie, Charité-Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany
| | - Daniel S Zahm
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, Saint Louis, MO, 63104, USA.
| | - Rüdiger W Veh
- Institut für Zell- und Neurobiologie, Charité -Universitätsmedizin Berlin, Philippstraße 12, D-10115, Berlin, Germany.
| |
Collapse
|
34
|
Animal models of action control and cognitive dysfunction in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:227-255. [PMID: 35248196 DOI: 10.1016/bs.pbr.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) has historically been considered a motor disorder induced by a loss of dopaminergic neurons in the substantia nigra pars compacta. More recently, it has been recognized to have significant non-motor symptoms, most prominently cognitive symptoms associated with a dysexecutive syndrome. It is common in the literature to see motor and cognitive symptoms treated separately and, indeed, there has been a general call for specialized treatment of the latter, particularly in the more severe cases of PD with mild cognitive impairment and dementia. Animal studies have similarly been developed to model the motor or non-motor symptoms. Nevertheless, considerable research has established that segregating consideration of cognition from the precursors to motor movement, particularly movement associated with goal-directed action, is difficult if not impossible. Indeed, on some contemporary views cognition is embodied in action control, something that is particularly prevalent in theory and evidence relating to the integration of goal-directed and habitual control processes. The current paper addresses these issues within the literature detailing animal models of cognitive dysfunction in PD and their neural and neurochemical bases. Generally, studies using animal models of PD provide some of the clearest evidence for the integration of these action control processes at multiple levels of analysis and imply that consideration of this integrative process may have significant benefits for developing new approaches to the treatment of PD.
Collapse
|
35
|
Enhanced habit formation in Tourette patients explained by shortcut modulation in a hierarchical cortico-basal ganglia model. Brain Struct Funct 2022; 227:1031-1050. [PMID: 35113242 PMCID: PMC8930794 DOI: 10.1007/s00429-021-02446-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/15/2021] [Indexed: 12/28/2022]
Abstract
Devaluation protocols reveal that Tourette patients show an increased propensity to habitual behaviors as they continue to respond to devalued outcomes in a cognitive stimulus-response-outcome association task. We use a neuro-computational model of hierarchically organized cortico-basal ganglia-thalamo-cortical loops to shed more light on habit formation and its alteration in Tourette patients. In our model, habitual behavior emerges from cortico-thalamic shortcut connections, where enhanced habit formation can be linked to faster plasticity in the shortcut or to a stronger feedback from the shortcut to the basal ganglia. We explore two major hypotheses of Tourette pathophysiology-local striatal disinhibition and increased dopaminergic modulation of striatal medium spiny neurons-as causes for altered shortcut activation. Both model changes altered shortcut functioning and resulted in higher rates of responses towards devalued outcomes, similar to what is observed in Tourette patients. We recommend future experimental neuroscientific studies to locate shortcuts between cortico-basal ganglia-thalamo-cortical loops in the human brain and study their potential role in health and disease.
Collapse
|
36
|
Rebec GV, Koceja DM, Bunner KD. Measuring Movement in Health and Disease. Brain Res Bull 2022; 181:167-174. [PMID: 35122899 DOI: 10.1016/j.brainresbull.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 01/07/2023]
Abstract
Evaluating and quantifying the many aspects of movement -- from open-field locomotion and stepping patterns in rodent models to stride trajectory and postural sway in human patients -- are key to understanding brain function. Various experimental approaches have been used in applying these lines of research to investigate the brain mechanisms underlying neurodegenerative disease. Although valuable, data on movement are often limited by the shortcomings inherent in the data collection process itself. Steve Fowler and his research group have been instrumental in pioneering a technology that both minimizes these pitfalls in studies of rodent behavior and has applications to research on human patients. At the center of this technology is the force-plate actometer, developed by the Fowler group to assess multiple aspects of movement in rodent models. Our review highlights how use of the actometer and related behavioral measurements provides valuable insight into Huntington's disease (HD), an autosomal dominant condition of progressively deteriorating behavioral control. HD typically emerges in mid-life and has been replicated in multiple genetically engineered mouse models. The actometer also can be a valuable addition to cutting-edge neuronal and synaptic technologies that are now increasingly applied to studies of behaving animals. In short, the impact of the Fowler contribution to the neuroscience of movement is both meaningful and ongoing.
Collapse
Affiliation(s)
- George V Rebec
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.
| | - David M Koceja
- Department of Kinesiology, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Kendra D Bunner
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
37
|
Kosmowska B, Ossowska K, Wardas J. Blockade of adenosine A 2A receptors inhibits Tremulous Jaw Movements as well as expression of zif-268 and GAD65 mRNAs in brain motor structures. Behav Brain Res 2022; 417:113585. [PMID: 34536428 DOI: 10.1016/j.bbr.2021.113585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/26/2022]
Abstract
Tremor is one of the motor symptoms of Parkinson's disease (PD), present also in neuroleptic-induced parkinsonism. Tremulous Jaw Movements (TJMs) are suggested to be a well-validated rodent model of PD resting tremor. TJMs can be induced by typical antipsychotics and are known to be reduced by different drugs, including adenosine A2A receptor antagonists. The aim of the present study was to search for brain structures involved in the tremorolytic action of SCH58261, a selective A2A receptor antagonist, in TJMs induced by subchronic pimozide. Besides TJMs, we evaluated in the same animals the expression of zif-268 mRNA (neuronal responsiveness marker), and mRNA levels for glutamic acid decarboxylase 65-kDa isoform (GAD65) and vesicular glutamate transporters 1 and 2 (vGluT1/2) in selected brain structures, as markers of GABAergic and glutamatergic neurons, respectively. We found that SCH58261 reduced the pimozide-induced TJMs. Pimozide increased the zif-268 mRNA level in the striatum, nucleus accumbens (NAc) core, and substantia nigra pars reticulata (SNr). Additionally, it increased GAD65 mRNA in the striatum and SNr, and vGluT2 mRNA levels in the subthalamic nucleus (STN). A positive correlation between zif-268, GAD65 and vGluT2 mRNAs and TJMs was found. SCH58261 reversed the pimozide-increased zif-268 mRNA in the striatum and NAc core and GAD65 mRNA in the striatum and SNr. In contrast, SCH58261 did not influence vGluT2 mRNA in STN. The present study suggests an importance of the striato-subthalamo-nigro-thalamic circuit in neuroleptic-induced TJMs. The tremorolytic effect of A2A receptor blockade seems to involve this circuit bypassing, however, STN.
Collapse
Affiliation(s)
- Barbara Kosmowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| | - Krystyna Ossowska
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| | - Jadwiga Wardas
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, 31-343, Kraków, Poland.
| |
Collapse
|
38
|
PESARICO ANAPAULA, CECHELLA JOSÉL, NOGUEIRA CRISTINAW, ROSA SUZANG. Swimming exercise and diphenyl diselenide-supplemented diet modulate cerebral cortical and striatal GABA uptake in aged rats. AN ACAD BRAS CIENC 2022; 94:e20200844. [DOI: 10.1590/0001-3765202220200844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/21/2021] [Indexed: 11/21/2022] Open
|
39
|
Sciamanna G, El Atiallah I, Montanari M, Pisani A. Plasticity, genetics and epigenetics in dystonia: An update. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:199-206. [PMID: 35034734 DOI: 10.1016/b978-0-12-819410-2.00011-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dystonia represents a group of movement disorders characterized by involuntary muscle contractions that result in abnormal posture and twisting movements. In the last 20 years several animal models have been generated, greatly improving our knowledge of the neural and molecular mechanism underlying this pathological condition, but the pathophysiology remains still poorly understood. In this review we will discuss recent genetic factors related to dystonia and the current understanding of synaptic plasticity alterations reported by both clinical and experimental research. We will also present recent evidence involving epigenetics mechanisms in dystonia.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ilham El Atiallah
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Martina Montanari
- Department of Systems Medicine, University of Rome 2 Tor Vergata, Rome, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Movement Disorders Research Center, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
40
|
Patel K, Katz CN, Kalia SK, Popovic MR, Valiante TA. Volitional control of individual neurons in the human brain. Brain 2021; 144:3651-3663. [PMID: 34623400 PMCID: PMC8719845 DOI: 10.1093/brain/awab370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/16/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Brain-machine interfaces allow neuroscientists to causally link specific neural activity patterns to a particular behaviour. Thus, in addition to their current clinical applications, brain-machine interfaces can also be used as a tool to investigate neural mechanisms of learning and plasticity in the brain. Decades of research using such brain-machine interfaces have shown that animals (non-human primates and rodents) can be operantly conditioned to self-regulate neural activity in various motor-related structures of the brain. Here, we ask whether the human brain, a complex interconnected structure of over 80 billion neurons, can learn to control itself at the most elemental scale-a single neuron. We used the unique opportunity to record single units in 11 individuals with epilepsy to explore whether the firing rate of a single (direct) neuron in limbic and other memory-related brain structures can be brought under volitional control. To do this, we developed a visual neurofeedback task in which participants were trained to move a block on a screen by modulating the activity of an arbitrarily selected neuron from their brain. Remarkably, participants were able to volitionally modulate the firing rate of the direct neuron in these previously uninvestigated structures. We found that a subset of participants (learners), were able to improve their performance within a single training session. Successful learning was characterized by (i) highly specific modulation of the direct neuron (demonstrated by significantly increased firing rates and burst frequency); (ii) a simultaneous decorrelation of the activity of the direct neuron from the neighbouring neurons; and (iii) robust phase-locking of the direct neuron to local alpha/beta-frequency oscillations, which may provide some insights in to the potential neural mechanisms that facilitate this type of learning. Volitional control of neuronal activity in mnemonic structures may provide new ways of probing the function and plasticity of human memory without exogenous stimulation. Furthermore, self-regulation of neural activity in these brain regions may provide an avenue for the development of novel neuroprosthetics for the treatment of neurological conditions that are commonly associated with pathological activity in these brain structures, such as medically refractory epilepsy.
Collapse
Affiliation(s)
- Kramay Patel
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
| | - Chaim N Katz
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
| | - Suneil K Kalia
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, Ontario M5G 2A2, Canada
| | - Milos R Popovic
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Taufik A Valiante
- Krembil Brain Institute, Toronto Western Hospital (TWH), Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, Ontario, M5G 2A2, Canada
- The KITE Research Institute, University Health Network, Toronto, Ontario M5G 2A2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5S 1A1, Canada
- Max Planck-University of Toronto Center for Neural Science and Technology, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
41
|
l-Menthol increases extracellular dopamine and c-Fos-like immunoreactivity in the dorsal striatum, and promotes ambulatory activity in mice. PLoS One 2021; 16:e0260713. [PMID: 34847183 PMCID: PMC8631625 DOI: 10.1371/journal.pone.0260713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/15/2021] [Indexed: 01/12/2023] Open
Abstract
Similar to psychostimulants, the peripheral administration of menthol promotes mouse motor activity, and the neurotransmitter dopamine has been suggested to be involved in this effect. The present study aimed to elucidate the effects of l-menthol on parts of the central nervous system that are involved in motor effects. The subcutaneous administration of l-menthol significantly increased the number of c-Fos-like immunoreactive nuclei in the dorsal striatum of the mice, and motor activity was promoted. It also increased the extracellular dopamine level in the dorsal striatum of the mice. These observations indicated that after subcutaneous administration, l-menthol enhances dopamine-mediated neurotransmission, and activates neuronal activity in the dorsal striatum, thereby promoting motor activity in mice.
Collapse
|
42
|
Knowles R, Dehorter N, Ellender T. From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. J Neurosci 2021; 41:9483-9502. [PMID: 34789560 PMCID: PMC8612473 DOI: 10.1523/jneurosci.0620-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding how neurons of the striatum are formed and integrate into complex synaptic circuits is essential to provide insight into striatal function in health and disease. In this review, we summarize our current understanding of the development of striatal neurons and associated circuits with a focus on their embryonic origin. Specifically, we address the role of distinct types of embryonic progenitors, found in the proliferative zones of the ganglionic eminences in the ventral telencephalon, in the generation of diverse striatal interneurons and projection neurons. Indeed, recent evidence would suggest that embryonic progenitor origin dictates key characteristics of postnatal cells, including their neurochemical content, their location within striatum, and their long-range synaptic inputs. We also integrate recent observations regarding embryonic progenitors in cortical and other regions and discuss how this might inform future research on the ganglionic eminences. Last, we examine how embryonic progenitor dysfunction can alter striatal formation, as exemplified in Huntington's disease and autism spectrum disorder, and how increased understanding of embryonic progenitors can have significant implications for future research directions and the development of improved therapeutic options.SIGNIFICANCE STATEMENT This review highlights recently defined novel roles for embryonic progenitor cells in shaping the functional properties of both projection neurons and interneurons of the striatum. It outlines the developmental mechanisms that guide neuronal development from progenitors in the embryonic ganglionic eminences to progeny in the striatum. Where questions remain open, we integrate observations from cortex and other regions to present possible avenues for future research. Last, we provide a progenitor-centric perspective onto both Huntington's disease and autism spectrum disorder. We suggest that future investigations and manipulations of embryonic progenitor cells in both research and clinical settings will likely require careful consideration of their great intrinsic diversity and neurogenic potential.
Collapse
Affiliation(s)
- Rhys Knowles
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australian Capital Territory, Australia
| | - Tommas Ellender
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
- Department of Biomedical Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
43
|
Time coding in rat dorsolateral striatum. Neuron 2021; 109:3663-3673.e6. [PMID: 34508666 DOI: 10.1016/j.neuron.2021.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 12/20/2022]
Abstract
To assess the role of dorsolateral striatum (DLS) in time coding, we recorded neuronal activity in rats tasked with comparing the durations of two sequential vibrations. Bayesian decoding of population activity revealed a representation of the unfolding of the trial across time. However, further analyses demonstrated a distinction between the encoding of trial time and perceived time. First, DLS did not show a privileged representation of the stimulus durations compared with other time spans. Second, higher intensity vibrations were perceived as longer; however, time decoded from DLS was unaffected by vibration intensity. Third, DLS did not encode stimulus duration differently on correct versus incorrect trials. Finally, in rats trained to compare the intensities of two sequential vibrations, stimulus duration was encoded even though it was a perceptually irrelevant feature. These findings lead us to posit that temporal information is inherent to DLS activity irrespective of the rat's ongoing percept.
Collapse
|
44
|
Keshavarzi S, Bracey EF, Faville RA, Campagner D, Tyson AL, Lenzi SC, Branco T, Margrie TW. Multisensory coding of angular head velocity in the retrosplenial cortex. Neuron 2021; 110:532-543.e9. [PMID: 34788632 PMCID: PMC8823706 DOI: 10.1016/j.neuron.2021.10.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/29/2021] [Accepted: 10/20/2021] [Indexed: 01/05/2023]
Abstract
To successfully navigate the environment, animals depend on their ability to continuously track their heading direction and speed. Neurons that encode angular head velocity (AHV) are fundamental to this process, yet the contribution of various motion signals to AHV coding in the cortex remains elusive. By performing chronic single-unit recordings in the retrosplenial cortex (RSP) of the mouse and tracking the activity of individual AHV cells between freely moving and head-restrained conditions, we find that vestibular inputs dominate AHV signaling. Moreover, the addition of visual inputs onto these neurons increases the gain and signal-to-noise ratio of their tuning during active exploration. Psychophysical experiments and neural decoding further reveal that vestibular-visual integration increases the perceptual accuracy of angular self-motion and the fidelity of its representation by RSP ensembles. We conclude that while cortical AHV coding requires vestibular input, where possible, it also uses vision to optimize heading estimation during navigation. Angular head velocity (AHV) coding is widespread in the retrosplenial cortex (RSP) AHV cells maintain their tuning during passive motion and require vestibular input The perception of angular self-motion is improved when visual cues are present AHV coding is similarly improved when both vestibular and visual stimuli are used
Collapse
Affiliation(s)
- Sepiedeh Keshavarzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom.
| | - Edward F Bracey
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Richard A Faville
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Dario Campagner
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom; Gatsby Computational Neuroscience Unit, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Adam L Tyson
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Stephen C Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Tiago Branco
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London (UCL), 25 Howland Street, London W1T 4JG, United Kingdom.
| |
Collapse
|
45
|
Vandaele Y, Ottenheimer DJ, Janak PH. Dorsomedial Striatal Activity Tracks Completion of Behavioral Sequences in Rats. eNeuro 2021; 8:ENEURO.0279-21.2021. [PMID: 34725103 PMCID: PMC8607909 DOI: 10.1523/eneuro.0279-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/24/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
For proper execution of goal-directed behaviors, individuals require both a general representation of the goal and an ability to monitor their own progress toward that goal. Here, we examine how dorsomedial striatum (DMS), a region pivotal for forming associations among stimuli, actions, and outcomes, encodes the execution of goal-directed action sequences that require self-monitoring of behavior. We trained rats to complete a sequence of at least five consecutive lever presses (without visiting the reward port) to obtain a reward and recorded the activity of individual cells in DMS while rats performed the task. We found that the pattern of DMS activity gradually changed during the execution of the sequence, permitting accurate decoding of sequence progress from neural activity at a population level. Moreover, this sequence-related activity was blunted on trials where rats did not complete a sufficient number of presses. Overall, these data suggest a link between DMS activity and the execution of behavioral sequences that require monitoring of ongoing behavior.
Collapse
Affiliation(s)
- Youna Vandaele
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218
| | - David J Ottenheimer
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
46
|
Green JT, Bouton ME. New functions of the rodent prelimbic and infralimbic cortex in instrumental behavior. Neurobiol Learn Mem 2021; 185:107533. [PMID: 34673264 PMCID: PMC8653515 DOI: 10.1016/j.nlm.2021.107533] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 11/22/2022]
Abstract
The prelimbic and infralimbic cortices of the rodent medial prefrontal cortex mediate the effects of context and goals on instrumental behavior. Recent work from our laboratory has expanded this understanding. Results have shown that the prelimbic cortex is important for the modulation of instrumental behavior by the context in which the behavior is learned (but not other contexts), with context potentially being broadly defined (to include at least previous behaviors). We have also shown that the infralimbic cortex is important in the expression of extensively-trained instrumental behavior, regardless of whether that behavior is expressed as a stimulus-response habit or a goal-directed action. Some of the most recent data suggest that infralimbic cortex may control the currently active behavioral state (e.g., habit vs. action or acquisition vs. extinction) when two states have been learned. We have also begun to examine prelimbic and infralimbic cortex function as key nodes of discrete circuits and have shown that prelimbic cortex projections to an anterior region of the dorsomedial striatum are important for expression of minimally-trained instrumental behavior. Overall, the use of an associative learning perspective on instrumental learning has allowed the research to provide new perspectives on how these two "cognitive" brain regions contribute to instrumental behavior.
Collapse
Affiliation(s)
- John T Green
- Department of Psychological Science, University of Vermont, United States.
| | - Mark E Bouton
- Department of Psychological Science, University of Vermont, United States
| |
Collapse
|
47
|
Mouly AM, Bouillot C, Costes N, Zimmer L, Ravel N, Litaudon P. PET Metabolic Imaging of Time-Dependent Reorganization of Olfactory Cued Fear Memory Networks in Rats. Cereb Cortex 2021; 32:2717-2728. [PMID: 34668524 DOI: 10.1093/cercor/bhab376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/24/2022] Open
Abstract
Memory consolidation involves reorganization at both the synaptic and system levels. The latter involves gradual reorganization of the brain regions that support memory and has been mostly highlighted using hippocampal-dependent tasks. The standard memory consolidation model posits that the hippocampus becomes gradually less important over time in favor of neocortical regions. In contrast, this reorganization of circuits in amygdala-dependent tasks has been less investigated. Moreover, this question has been addressed using primarily lesion or cellular imaging approaches thus precluding the comparison of recent and remote memory networks in the same animals. To overcome this limitation, we used microPET imaging to characterize, in the same animals, the networks activated during the recall of a recent versus remote memory in an olfactory cued fear conditioning paradigm. The data highlighted the drastic difference between the extents of the two networks. Indeed, although the recall of a recent odor fear memory activates a large network of structures spanning from the prefrontal cortex to the cerebellum, significant activations during remote memory retrieval are limited to the piriform cortex. These results strongly support the view that amygdala-dependent memories also undergo system-level reorganization, and that sensory cortical areas might participate in the long-term storage of emotional memories.
Collapse
Affiliation(s)
- Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | | | | | - Luc Zimmer
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France.,CERMEP-Life Imaging, Bron Cedex 69677, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Nadine Ravel
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| | - Philippe Litaudon
- Lyon Neuroscience Research Center, CNRS UMR 5292, INSERM U1028, Université Claude Bernard Lyon 1, Bron Cedex 69675, France
| |
Collapse
|
48
|
Zhao P, Lv H, Guo P, Su Y, Liu M, Wang Y, Hua H, Kang S. Altered Brain Functional Connectivity at Resting-State in Patients With Non-arteritic Anterior Ischemic Optic Neuropathy. Front Neurosci 2021; 15:712256. [PMID: 34658763 PMCID: PMC8517223 DOI: 10.3389/fnins.2021.712256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: To investigate the possible changes in functional connectivity (FC) in patients with non-arteritic anterior ischemic optic neuropathy (NAION) using resting-state functional MRI (fMRI). Methods: Thirty-one NAION patients and 31 healthy controls were recruited and underwent resting-state fMRI scans. Regions of interest (ROIs) were defined as bilateral Brodmann’s area 17 (BA17). FC analysis was performed between the ROIs and the rest of the brain regions, and the between group comparisons of FC were performed. We conducted correlation analysis between the FC changes and the clinical variables in NAION patients. Results: Compared with healthy controls, patients with NAION showed significantly decreased FC between the left BA17 and the right inferior frontal gyrus, left caudate nucleus. As for the right BA17, patients exhibited significantly increased FC with the left olfactory gyrus and decreased FC with the right superior frontal gyrus (SFG), right insula. Moreover, FC values between the right insula and the right BA17 were positively correlated with the right side of mean sensitivity in the central visual field (r = 0.52, P < 0.01) and negatively correlated with the right side of mean defect in the central visual field (r = −0.55, P < 0.01). Conclusion: Our study indicated that patients with NAION showed significantly abnormal functional reorganization between the primary visual cortex and several other brain regions not directly related to visual function, which supports that NAION may not only be an ophthalmic disease but also a neuro-ophthalmological disease.
Collapse
Affiliation(s)
- Pengbo Zhao
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengde Guo
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Su
- Department of Ophthalmology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ming Liu
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haiqin Hua
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shaohong Kang
- Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
50
|
A Translation from Goal-Directed to Habitual Control: the Striatum in Drug Addiction. CURRENT ADDICTION REPORTS 2021. [DOI: 10.1007/s40429-021-00392-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|