1
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
2
|
Sitnikova E, Pupikina M, Rutskova E. Alpha2 Adrenergic Modulation of Spike-Wave Epilepsy: Experimental Study of Pro-Epileptic and Sedative Effects of Dexmedetomidine. Int J Mol Sci 2023; 24:9445. [PMID: 37298397 PMCID: PMC10254047 DOI: 10.3390/ijms24119445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/20/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
In the present report, we evaluated adrenergic mechanisms of generalized spike-wave epileptic discharges (SWDs), which are the encephalographic hallmarks of idiopathic generalized epilepsies. SWDs link to a hyper-synchronization in the thalamocortical neuronal activity. We unclosed some alpha2-adrenergic mechanisms of sedation and provocation of SWDs in rats with spontaneous spike-wave epilepsy (WAG/Rij and Wistar) and in control non-epileptic rats (NEW) of both sexes. Dexmedetomidine (Dex) was a highly selective alpha-2 agonist (0.003-0.049 mg/kg, i.p.). Injections of Dex did not elicit de novo SWDs in non-epileptic rats. Dex can be used to disclose the latent form of spike-wave epilepsy. Subjects with long-lasting SWDs at baseline were at high risk of absence status after activation of alpha2- adrenergic receptors. We create the concept of alpha1- and alpha2-ARs regulation of SWDs via modulation of thalamocortical network activity. Dex induced the specific abnormal state favorable for SWDs-"alpha2 wakefulness". Dex is regularly used in clinical practice. EEG examination in patients using low doses of Dex might help to diagnose the latent forms of absence epilepsy (or pathology of cortico-thalamo-cortical circuitry).
Collapse
Affiliation(s)
- Evgenia Sitnikova
- Institute of the Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Butlerova Str., 5A, 117485 Moscow, Russia (E.R.)
| | | | | |
Collapse
|
3
|
Komoltsev I, Salyp O, Volkova A, Bashkatova D, Shirobokova N, Frankevich S, Shalneva D, Kostyunina O, Chizhova O, Kostrukov P, Novikova M, Gulyaeva N. Posttraumatic and Idiopathic Spike-Wave Discharges in Rats: Discrimination by Morphology and Thalamus Involvement. Neurol Int 2023; 15:609-621. [PMID: 37218977 DOI: 10.3390/neurolint15020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
The possibility of epileptiform activity generation by the thalamocortical neuronal network after focal brain injuries, including traumatic brain injury (TBI), is actively debated. Presumably, posttraumatic spike-wave discharges (SWDs) involve a cortico-thalamocortical neuronal network. Differentiation of posttraumatic and idiopathic (i.e., spontaneously generated) SWDs is imperative for understanding posttraumatic epileptogenic mechanisms. Experiments were performed on male Sprague-Dawley rats with electrodes implanted into the somatosensory cortex and the thalamic ventral posterolateral nucleus. Local field potentials were recorded for 7 days before and 7 days after TBI (lateral fluid percussion injury, 2.5 atm). The morphology of 365 SWDs (89 idiopathic before craniotomy, and 262 posttraumatic that appeared only after TBI) and their appearance in the thalamus were analyzed. The occurrence of SWDs in the thalamus determined their spike-wave form and bilateral lateralization in the neocortex. Posttraumatic discharges were characterized by more "mature" characteristics as compared to spontaneously generated discharges: higher proportions of bilateral spreading, well-defined spike-wave form, and thalamus involvement. Based on SWD parameters, the etiology could be established with an accuracy of 75% (AUC 0.79). Our results support the hypothesis that the formation of posttraumatic SWDs involves a cortico-thalamocortical neuronal network. The results form a basis for further research of mechanisms associated with posttraumatic epileptiform activity and epileptogenesis.
Collapse
Affiliation(s)
- Ilia Komoltsev
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Olga Salyp
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Aleksandra Volkova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Daria Bashkatova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Shirobokova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Stepan Frankevich
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| | - Daria Shalneva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olga Kostyunina
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Olesya Chizhova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Pavel Kostrukov
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Margarita Novikova
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
| | - Natalia Gulyaeva
- Department of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow 117485, Russia
- Moscow Research and Clinical Center for Neuropsychiatry, Moscow 115419, Russia
| |
Collapse
|
4
|
Taylor JA, Smith ZZ, Barth DS. Spike-wave discharges in Sprague-Dawley rats reflect precise intra- and interhemispheric synchronization of somatosensory cortex. J Neurophysiol 2022; 128:1152-1167. [PMID: 36169203 PMCID: PMC9621715 DOI: 10.1152/jn.00303.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 11/22/2022] Open
Abstract
Spike-wave discharges (SWDs) are among the most prominent electrical signals recordable from the rat cerebrum. Increased by inbreeding, SWDs have served as an animal model of human genetic absence seizures. Yet, SWDs are ubiquitous in inbred and outbred rats, suggesting they reflect normal brain function. We hypothesized that SWDs represent oscillatory neural ensemble activity underlying sensory encoding. To test this hypothesis, we simultaneously mapped SWDs from wide areas (8 × 8 mm) of both hemispheres in anesthetized rats, using 256-electrode epicortical arrays that covered primary and secondary somatosensory, auditory and visual cortex bilaterally. We also recorded the laminar pattern of SWDs with linear microelectrode arrays. We compared the spatial and temporal organization of SWDs to somatosensory-evoked potentials (SEPs), as well as auditory- and visual-evoked potentials (AEPs and VEPs) to examine similarities and/or differences between sensory-evoked and spontaneous oscillations in the same animals. We discovered that SWDs are confined to the facial representation of primary and secondary somatosensory cortex (SI and SII, respectively), areas that are preferentially engaged during environmental exploration in the rat. Furthermore, these oscillations exhibit highly synchronized bilateral traveling waves in SI and SII, simultaneously forming closely matched spread patterns in both hemispheres. We propose that SWDs could reflect a previously unappreciated capacity for rat somatosensory cortex to perform precise spatial and temporal analysis of rapidly changing sensory input at the level of large neural ensembles synchronized both within and between the cerebral hemispheres.NEW & NOTEWORTHY We simultaneously mapped electrocortical SWDs from both cerebral hemispheres of Sprague-Dawley rats and discovered that they reflect systematic activation of the facial representation of somatosensory cortex. SWDs form mirror spatiotemporal patterns in both hemispheres that are precisely aligned in both space and time. Our data suggest that SWDs may reflect a substrate by which large neural ensembles perform precise spatiotemporal processing of rapidly changing somatosensory input.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Zachary Z Smith
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
5
|
Kumar U, Li L, Bragin A, Engel J. Spike and wave discharges and fast ripples during posttraumatic epileptogenesis. Epilepsia 2021; 62:1842-1851. [PMID: 34155626 DOI: 10.1111/epi.16958] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVE The goal of the present study was to determine whether spike and wave discharges (SWDs) and SWDs with superimposed fast ripples (SWDFRs) could be biomarkers of posttraumatic epileptogenesis. METHODS Fluid percussion injury was conducted on 13-14-week old male Sprague Dawley rats. Immediately after traumatic brain injury (TBI), they were implanted with microelectrodes in the neocortex, hippocampus, and striatum bilaterally. Age-matched sham rats with the same electrode implantation montage acted as controls. Wideband brain electrical activity was recorded intermittently from Day 1 of TBI, and continued from 2 to 21 weeks after TBI. SWD and SWDFR analysis was performed during the first 2 weeks to investigate whether the occurrence of this pattern predicted development of epilepsy. The remaining 3-21 weeks were used for identifying which rats became epileptic (E+ group) and which did not (E- group). RESULTS The E+ group (n = 9) showed a significant increase in SWD rate in prefrontal cortex during Weeks 1 and 2 after TBI. The E- group showed a significant increase in SWD rate only in the second week. One hundred percent of rats in the E+ group displayed SWDFRs beginning from the first week after TBI. The SWDFR pattern was observed in all recorded brain areas: prefrontal and perilesional cortices, hippocampus, and striatum. None of rats in the E- group showed coexistence of fast ripples with SWDs. SIGNIFICANCE Occurrence of SWDFRs after TBI, but not an increase in the rate of SWDs, could be a noninvasive electroencephalographic biomarker of posttraumatic epileptogenesis.
Collapse
Affiliation(s)
- Udaya Kumar
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA
| | - Lin Li
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Biomedical Engineering, University of North Texas, Denton, Texas, USA
| | - Anatol Bragin
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jerome Engel
- Department of Neurology, University of California, Los Angeles, Los Angeles, California, USA.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California, USA.,Department of Neurobiology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
6
|
Epilepsy and aging. HANDBOOK OF CLINICAL NEUROLOGY 2020. [PMID: 31753149 DOI: 10.1016/b978-0-12-804766-8.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The intersection of epilepsy and aging has broad, significant implications. Substantial increases in seizures occur both in the elderly population, who are at a higher risk of developing new-onset epilepsy, and in those with chronic epilepsy who become aged. There are notable gaps in our understanding of aging and epilepsy at the basic and practical levels, which have important consequences. We are in the early stages of understanding the complex relationships between epilepsy and other age-related brain diseases such as stroke, dementia, traumatic brain injury (TBI), and cancer. Furthermore, the clinician must recognize that the presentation and treatment of epilepsy in the elderly are different from those of younger populations. Given the developing awareness of the problem and the capabilities of contemporary, multidisciplinary approaches to advance understanding about the biology of aging and epilepsy, it is reasonable to expect that we will unravel some of the intricacies of epilepsy in the elderly; it is also reasonable to expect that these gains will lead to further improvements in our understanding and treatment of epilepsy for all age groups.
Collapse
|
7
|
Kadam SD, D'Ambrosio R, Duveau V, Roucard C, Garcia-Cairasco N, Ikeda A, de Curtis M, Galanopoulou AS, Kelly KM. Methodological standards and interpretation of video-electroencephalography in adult control rodents. A TASK1-WG1 report of the AES/ILAE Translational Task Force of the ILAE. Epilepsia 2017; 58 Suppl 4:10-27. [PMID: 29105073 DOI: 10.1111/epi.13903] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2017] [Indexed: 01/13/2023]
Abstract
In vivo electrophysiological recordings are widely used in neuroscience research, and video-electroencephalography (vEEG) has become a mainstay of preclinical neuroscience research, including studies of epilepsy and cognition. Studies utilizing vEEG typically involve comparison of measurements obtained from different experimental groups, or from the same experimental group at different times, in which one set of measurements serves as "control" and the others as "test" of the variables of interest. Thus, controls provide mainly a reference measurement for the experimental test. Control rodents represent an undiagnosed population, and cannot be assumed to be "normal" in the sense of being "healthy." Certain physiological EEG patterns seen in humans are also seen in control rodents. However, interpretation of rodent vEEG studies relies on documented differences in frequency, morphology, type, location, behavioral state dependence, reactivity, and functional or structural correlates of specific EEG patterns and features between control and test groups. This paper will focus on the vEEG of standard laboratory rodent strains with the aim of developing a small set of practical guidelines that can assist researchers in the design, reporting, and interpretation of future vEEG studies. To this end, we will: (1) discuss advantages and pitfalls of common vEEG techniques in rodents and propose a set of recommended practices and (2) present EEG patterns and associated behaviors recorded from adult rats of a variety of strains. We will describe the defining features of selected vEEG patterns (brain-generated or artifactual) and note similarities to vEEG patterns seen in adult humans. We will note similarities to normal variants or pathological human EEG patterns and defer their interpretation to a future report focusing on rodent seizure patterns.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Department of Neurology, Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, U.S.A
| | - Raimondo D'Ambrosio
- Department of Neurological Surgery and Regional Epilepsy Center, University of Washington, Seattle, Washington, U.S.A
| | | | | | - Norberto Garcia-Cairasco
- Neurophysiology and Experimental Neuroethology Laboratory, Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Akio Ikeda
- Department of Epilepsy, Movement Disorders, and Physiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Marco de Curtis
- Epileptology and Experimental Neurophysiology Unit, Institutes of Hospitality and Care of a Scientific Nature (IRCCS) Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Aristea S Galanopoulou
- Laboratory of Developmental Epilepsy, Saul R. Korey Department of Neurology, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, U.S.A
| | - Kevin M Kelly
- Brain Injury and Epilepsy Research Laboratory, Allegheny Health Network Research Institute, Allegheny General Hospital, Pittsburgh, Pennsylvania, U.S.A
| |
Collapse
|
8
|
|
9
|
Taylor JA, Rodgers KM, Bercum FM, Booth CJ, Dudek FE, Barth DS. Voluntary Control of Epileptiform Spike-Wave Discharges in Awake Rats. J Neurosci 2017; 37:5861-5869. [PMID: 28522734 PMCID: PMC6596506 DOI: 10.1523/jneurosci.3235-16.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 11/21/2022] Open
Abstract
Genetically inherited absence epilepsy in humans is typically characterized by brief (seconds) spontaneous seizures, which involve spike-wave discharges (SWDs) in the EEG and interruption of consciousness and ongoing behavior. Genetic (inbred) models of this disorder in rats have been used to examine mechanisms, comorbidities, and antiabsence drugs. SWDs have also been proposed as models of complex partial seizures (CPSs) following traumatic brain injury (post-traumatic epilepsy). However, the ictal characteristics of these rat models, including SWDs and associated immobility, are also prevalent in healthy outbred laboratory rats. We therefore hypothesized that SWDs are not always associated with classically defined absence seizures or CPSs. To test this hypothesis, we used operant conditioning in male rats to determine whether outbred strains, Sprague Dawley and Long-Evans, and/or the inbred WAG/Rij strain (a rat model of heritable human absence epilepsy) could exercise voluntary control over these epileptiform events. We discovered that both inbred and outbred rats could shorten the duration of SWDs to obtain a reward. These results indicate that SWD and associated immobility in rats may not reflect the obvious cognitive/behavioral interruption classically associated with absence seizures or CPSs in humans. One interpretation of these results is that human absence seizures and perhaps CPSs could permit a far greater degree of cognitive capacity than often assumed and might be brought under voluntary control in some cases. However, these results also suggest that SWDs and associated immobility may be nonepileptic in healthy outbred rats and reflect instead voluntary rodent behavior unrelated to genetic manipulation or to brain trauma.SIGNIFICANCE STATEMENT Our evidence that inbred and outbred rats learn to control the duration of spike-wave discharges (SWDs) suggests a voluntary behavior with maintenance of consciousness. If SWDs model mild absence seizures and/or complex partial seizures in humans, then an opportunity may exist for operant control complementing or in some cases replacing medication. Their equal occurrence in outbred rats also implies a major potential confound for behavioral neuroscience experiments, at least in adult rats where SWDs are prevalent. Alternatively, the presence and voluntary control of SWDs in healthy outbred rats could indicate that these phenomena do not always model heritable absence epilepsy or post-traumatic epilepsy in humans, and may instead reflect typical rodent behavior.
Collapse
Affiliation(s)
- Jeremy A Taylor
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Krista M Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Florencia M Bercum
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309
| | - Carmen J Booth
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, and
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309,
| |
Collapse
|
10
|
Kirazlı Ö, Çavdar S, Yıldızel S, Onat F, Kaptanoğlu E. A developmental study of glutamatergic neuron populations in the ventrobasal and the lateral geniculate nucleus of the thalamus: Comparing Genetic Absence Rats from Strasbourg (GAERS) and normal control wistar rats. Int J Dev Neurosci 2016; 56:35-41. [PMID: 27939427 DOI: 10.1016/j.ijdevneu.2016.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/04/2016] [Indexed: 11/28/2022] Open
Abstract
An imbalance of GABAergic inhibition and glutamatergic excitation is suspected to be the cause of absence epileptic seizures. Absence seizures are known to be generated in thalamocortical circuitry. In the present study we used light microscopy immunohistochemistry to quantify the density of glutamate+ve neurons at two developmental stages (P10 and P60) in two thalamic nuclei, the ventrobasal (VB) and lateral geniculate nucleus (LGN) in Wistar rats and compared the results with similar data obtained from genetic absence epilepsy rats from Strasbourg (GAERS). Rats were perfused transcardially with glutaraldehyde and paraformaldehyde fixative, then samples from VB and LGN were removed from each animal and sectioned. The glutamatergic neurons were labelled using light-microscopic glutamate immunohistochemistry. The disector method was used to quantify the glutamate+ve neurons in VB and LGN of GAERS and Wistar rats. The data were statistically analyzed. The distribution of the glutamate+ve neurons in the VB thalamic nucleus showed a significant reduction in the neuronal profiles per unit thalamic area from P10 to P60 in both Wistar and GAERS. The decrease was greater in the GAERS compared to the Wistar animals. However, in the LGN no reduction was observed either in the Wistar or in the GAERS. Comparing the density of glutamate+ve neurons in the VB thalamic nucleus of P10 of Wistar animals with of P10 GAERS showed statistically significant greater densities of these neurons in GAERS than in the Wistar rats. However no significant difference was present at P60 between the Wistar and GAERS animals. The disproportional decrease in GAERS may be related to the onset of absence seizures or may be related to neurogenesis of absence epilepsy.
Collapse
Affiliation(s)
- Özlem Kirazlı
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Safiye Çavdar
- Department of Anatomy, School of Medicine, Koç University, Rumelifeneri Yolu Sarıyer, Istanbul, Turkey.
| | - Sercan Yıldızel
- Department of Anatomy, School of Medicine, Marmara University, Istanbul, Turkey
| | - Filiz Onat
- Department of Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Erkan Kaptanoğlu
- Department of Neurosurgery, Marmara University, School of Medicine, Institute of Neurological Sciences, Istanbul, Turkey
| |
Collapse
|
11
|
Russo E, Citraro R, Constanti A, Leo A, Lüttjohann A, van Luijtelaar G, De Sarro G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci Biobehav Rev 2016; 71:388-408. [DOI: 10.1016/j.neubiorev.2016.09.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Revised: 09/19/2016] [Indexed: 02/06/2023]
|
12
|
Posttraumatic seizures and epilepsy in adult rats after controlled cortical impact. Epilepsy Res 2015; 117:104-16. [PMID: 26432760 DOI: 10.1016/j.eplepsyres.2015.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 08/26/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022]
Abstract
Posttraumatic epilepsy (PTE) has been modeled with different techniques of experimental traumatic brain injury (TBI) using mice and rats at various ages. We hypothesized that the technique of controlled cortical impact (CCI) could be used to establish a model of PTE in young adult rats. A total of 156 male Sprague-Dawley rats of 2-3 months of age (128 CCI-injured and 28 controls) was used for monitoring and/or anatomical studies. Provoked class 3-5 seizures were recorded by video monitoring in 7/57 (12.3%) animals in the week immediately following CCI of the right parietal cortex; none of the 7 animals demonstrated subsequent spontaneous convulsive seizures. Monitoring with video and/or video-EEG was performed on 128 animals at various time points 8-619 days beyond one week following CCI during which 26 (20.3%) demonstrated nonconvulsive or convulsive epileptic seizures. Nonconvulsive epileptic seizures of >10s were demonstrated in 7/40 (17.5%) animals implanted with 2 or 3 depth electrodes and usually characterized by an initial change in behavior (head raising or animal alerting) followed by motor arrest during an ictal discharge that consisted of high-amplitude spikes or spike-waves with frequencies ranging between 1 and 2Hz class 3-5 epileptic seizures were recorded by video monitoring in 17/88 (19%) and by video-EEG in 2/40 (5%) CCI-injured animals. Ninety of 156 (58%) animals (79 CCI-injured, 13 controls) underwent transcardial perfusion for gross and microscopic studies. CCI caused severe brain tissue loss and cavitation of the ipsilateral cerebral hemisphere associated with cell loss in the hippocampal CA1 and CA3 regions, hilus, and dentate granule cells, and thalamus. All Timm-stained CCI-injured brains demonstrated ipsilateral hippocampal mossy fiber sprouting in the inner molecular layer. These results indicate that the CCI model of TBI in adult rats can be used to study the structure-function relationships that underlie epileptogenesis and PTE.
Collapse
|
13
|
Rodgers KM, Dudek FE, Barth DS. Progressive, Seizure-Like, Spike-Wave Discharges Are Common in Both Injured and Uninjured Sprague-Dawley Rats: Implications for the Fluid Percussion Injury Model of Post-Traumatic Epilepsy. J Neurosci 2015; 35:9194-204. [PMID: 26085641 PMCID: PMC6605152 DOI: 10.1523/jneurosci.0919-15.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/19/2015] [Accepted: 05/10/2015] [Indexed: 01/05/2023] Open
Abstract
Variable-duration oscillations and repetitive, high-voltage spikes have been recorded in the electrocorticogram (ECoG) of rats weeks and months after fluid percussion injury (FPI), a model of traumatic brain injury. These ECoG events, which have many similarities to spike-wave-discharges (SWDs) and absence seizures, have been proposed to represent nonconvulsive seizures characteristic of post-traumatic epilepsy (PTE). The present study quantified features of SWD episodes in rats at different time points after moderate to severe FPI, and compared them with age-matched control rats. Control and FPI-injured rats at 1 year of age displayed large-amplitude and frequent SWD events at frontal and parietal recording sites. At 3-6 months, SWDs were shorter in duration and less frequent; extremely brief SWDs (i.e., "larval") were detected as early as 1 month. The onset of the SWDs was nearly always synchronous across electrodes and of larger amplitude in frontal regions. A sensory stimulus, such as a click, immediately and consistently stopped the occurrence of the SWDs. SWDs were consistently accompanied by behavioral arrest. All features of SWDs in control and experimental (FPI) rats were indistinguishable. None of the FPI-treated rats developed nonconvulsive or convulsive seizures that could be distinguished electrographically or behaviorally from SWDs. Because SWDs have features similar to genetic absence seizures, these results challenge the hypothesis that SWDs after FPI reflect PTE.
Collapse
Affiliation(s)
- Krista M Rodgers
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and
| | - F Edward Dudek
- Department of Neurosurgery, University of Utah School of Medicine, Salt Lake City, Utah 84108
| | - Daniel S Barth
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado 80309, and
| |
Collapse
|
14
|
Marques-Carneiro JE, Faure JB, Cosquer B, Koning E, Ferrandon A, de Vasconcelos AP, Cassel JC, Nehlig A. Anxiety and locomotion in Genetic Absence Epilepsy Rats from Strasbourg (GAERS): Inclusion of Wistar rats as a second control. Epilepsia 2014; 55:1460-8. [DOI: 10.1111/epi.12738] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Affiliation(s)
- José Eduardo Marques-Carneiro
- Laboratory of Cognitive and Adaptive Neuroscience (LNCA); Faculty of Psychology; UMR 7364; University of Strasbourg - CNRS; Strasbourg France
- Faculty of Medicine; INSERM U 666; University of Strasbourg; Strasbourg France
| | - Jean-Baptiste Faure
- Laboratory of Cognitive and Adaptive Neuroscience (LNCA); Faculty of Psychology; UMR 7364; University of Strasbourg - CNRS; Strasbourg France
- Faculty of Medicine; INSERM U 666; University of Strasbourg; Strasbourg France
| | - Brigitte Cosquer
- Laboratory of Cognitive and Adaptive Neuroscience (LNCA); Faculty of Psychology; UMR 7364; University of Strasbourg - CNRS; Strasbourg France
| | - Estelle Koning
- Faculty of Medicine; INSERM U 666; University of Strasbourg; Strasbourg France
| | - Arielle Ferrandon
- Faculty of Medicine; INSERM U 666; University of Strasbourg; Strasbourg France
| | - Anne Pereira de Vasconcelos
- Laboratory of Cognitive and Adaptive Neuroscience (LNCA); Faculty of Psychology; UMR 7364; University of Strasbourg - CNRS; Strasbourg France
| | - Jean-Christophe Cassel
- Laboratory of Cognitive and Adaptive Neuroscience (LNCA); Faculty of Psychology; UMR 7364; University of Strasbourg - CNRS; Strasbourg France
| | - Astrid Nehlig
- Faculty of Medicine; INSERM U 666; University of Strasbourg; Strasbourg France
- Hospital Necker; INSERM U 1129; University Paris Descartes; Paris France
| |
Collapse
|
15
|
Pearce PS, Friedman D, LaFrancois JJ, Iyengar SS, Fenton AA, MacLusky NJ, Scharfman HE. Spike-wave discharges in adult Sprague-Dawley rats and their implications for animal models of temporal lobe epilepsy. Epilepsy Behav 2014; 32:121-31. [PMID: 24534480 PMCID: PMC3984461 DOI: 10.1016/j.yebeh.2014.01.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 01/02/2023]
Abstract
Spike-wave discharges (SWDs) are thalamocortical oscillations that are often considered to be the EEG correlate of absence seizures. Genetic absence epilepsy rats of Strasbourg (GAERS) and Wistar Albino Glaxo rats from Rijswijk (WAG/Rij) exhibit SWDs and are considered to be genetic animal models of absence epilepsy. However, it has been reported that other rat strains have SWDs, suggesting that SWDs may vary in their prevalence, but all rats have a predisposition for them. This is important because many of these rat strains are used to study temporal lobe epilepsy (TLE), where it is assumed that there is no seizure-like activity in controls. In the course of other studies using the Sprague-Dawley rat, a common rat strain for animal models of TLE, we found that approximately 19% of 2- to 3-month-old naive female Sprague-Dawley rats exhibited SWDs spontaneously during periods of behavioral arrest, which continued for months. Males exhibited SWDs only after 3 months of age, consistent with previous reports (Buzsáki et al., 1990). Housing in atypical lighting during early life appeared to facilitate the incidence of SWDs. Spike-wave discharges were often accompanied by behaviors similar to stage 1-2 limbic seizures. Therefore, additional analyses were made to address the similarity. We observed that the frequency of SWDs was similar to that of hippocampal theta rhythm during exploration for a given animal, typically 7-8 Hz. Therefore, activity in the frequency of theta rhythm that occurs during frozen behavior may not reflect seizures necessarily. Hippocampal recordings exhibited high frequency oscillations (>250 Hz) during SWDs, suggesting that neuronal activity in the hippocampus occurs during SWDs, i.e., it is not a passive structure. The data also suggest that high frequency oscillations, if rhythmic, may reflect SWDs. We also confirmed that SWDs were present in a common animal model of TLE, the pilocarpine model, using female Sprague-Dawley rats. Therefore, damage and associated changes to thalamic, hippocampal, and cortical neurons do not prevent SWDs, at least in this animal model. The results suggest that it is possible that SWDs occur in rodent models of TLE and that investigators mistakenly assume that they are stage 1-2 limbic seizures. We discuss the implications of the results and ways to avoid the potential problems associated with SWDs in animal models of TLE.
Collapse
Affiliation(s)
- Patrice S. Pearce
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA,The Sackler Institute of Biomedical Sciences, New York University Langone Medical Center, New York, NY 10016 USA
| | - Daniel Friedman
- Department of Neurology, New York University Langone Medical Center, New York, NY 10016 USA
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - Sloka S. Iyengar
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962 USA
| | - André A. Fenton
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003
| | - Neil J. MacLusky
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Child & Adolescent Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA; Department of Physiology & Neuroscience, New York University Langone Medical Center, New York, NY 10016, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
16
|
How can we identify ictal and interictal abnormal activity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:3-23. [PMID: 25012363 DOI: 10.1007/978-94-017-8914-1_1] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The International League Against Epilepsy (ILAE) defined a seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word 'seizure,' such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise.
Collapse
|
17
|
Yang C, Ge SN, Zhang JR, Chen L, Yan ZQ, Heng LJ, Zhao TZ, Li WX, Jia D, Zhu JL, Gao GD. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. PLoS One 2013; 8:e64637. [PMID: 23755132 PMCID: PMC3674001 DOI: 10.1371/journal.pone.0064637] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/09/2013] [Indexed: 12/02/2022] Open
Abstract
High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical–basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D1-like receptors or D2-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D2-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D2-like receptor antagonists. On the contrary, the selective dopamine D1-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D2-like receptors, but not D1-like receptors, were involved in HVS regulation. This supports the important role of dopamine D2-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.
Collapse
Affiliation(s)
- Chen Yang
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Shun-Nan Ge
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Jia-Rui Zhang
- Department of Pathology, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Lei Chen
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Zhi-Qiang Yan
- Department of Neurosurgery, Urumqi General Hospital of Lanzhou Military Command, Urumqi, People’s Republic of China
| | - Li-Jun Heng
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Tian-Zhi Zhao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Wei-Xin Li
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Dong Jia
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
| | - Jun-Ling Zhu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
- * E-mail: (GDG); (JLZ)
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, People’s Republic of China
- * E-mail: (GDG); (JLZ)
| |
Collapse
|
18
|
Zheng TW, O'Brien TJ, Morris MJ, Reid CA, Jovanovska V, O'Brien P, van Raay L, Gandrathi AK, Pinault D. Rhythmic neuronal activity in S2 somatosensory and insular cortices contribute to the initiation of absence-related spike-and-wave discharges. Epilepsia 2012; 53:1948-58. [PMID: 23083325 DOI: 10.1111/j.1528-1167.2012.03720.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The origin of bilateral synchronous spike-and-wave discharges (SWDs) that underlie absence seizures has been widely debated. Studies in genetic rodent models suggest that SWDs originate from a restricted region in the somatosensory cortex. The properties of this initiation site remain unknown. Our goal was to characterize the interictal, preictal and ictal neuronal activity in the primary and secondary cortical regions (S1, S2) and in the adjacent insular cortex (IC) in Genetic Absence Epilepsy Rats from Strasbourg (GAERS). METHODS We performed electroencephalography (EEG) recordings in combination with multisite local field potential (LFP) and single cell juxtacellular recordings, and cortical electrical stimulations, in freely moving rats and those under neurolept-anesthesia. KEY FINDINGS The onset of the SWDs was preceded by 5-9 Hz field potential oscillations, which were detected earlier in S2 and IC than in S1. Sustained SWDs could be triggered by a 2-s train of 7-Hz electrical stimuli at a lower current intensity in S2 than in S1. In S2 and IC, subsets of neurons displayed rhythmic firing (5-9 Hz) in between seizures. S2 and IC layers V and VI neurons fired during the same time window, whereas in S1 layer VI, neurons fired before layer V neurons. Just before the spike component of each SW complex, short-lasting high-frequency oscillations consistently occurred in IC ∼20 msec before S1. SIGNIFICANCE Our findings demonstrate that the S2/IC cortical areas are a critical component of the macro-network that is responsible for the generation of absence-related SWDs.
Collapse
Affiliation(s)
- Thomas W Zheng
- Departments of Medicine, Surgery and Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria 3050, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ge S, Yang C, Li M, Li J, Chang X, Fu J, Chen L, Chang C, Wang X, Zhu J, Gao G. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res 2012; 1465:66-79. [DOI: 10.1016/j.brainres.2012.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 04/24/2012] [Accepted: 05/02/2012] [Indexed: 11/29/2022]
|
20
|
Kelly KM, Shiau DS, Jukkola PI, Miller ER, Mercadante AL, Quigley MM, Nair SP, Sackellares JC. Effects of age and cortical infarction on EEG dynamic changes associated with spike wave discharges in F344 rats. Exp Neurol 2011; 232:15-21. [PMID: 21820433 DOI: 10.1016/j.expneurol.2011.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/07/2011] [Accepted: 07/18/2011] [Indexed: 12/14/2022]
Abstract
Rodent models of absence seizures are used to investigate the network properties and regulatory mechanisms of the seizure's generalized spike and wave discharge (SWD). As rats age, SWDs occur more frequently, suggesting aging-related changes in the regulation of the corticothalamic mechanisms generating the SWD. We hypothesized that brain resetting mechanisms - how the brain "resets" itself to a more normal functional state following a transient period of abnormal function, e.g., a SWD - are impaired in aged animals and that brain infarction would further affect these resetting mechanisms. The main objective of this study was to determine the effects of aging, infarction, and their potential interaction on the resetting of EEG dynamics assessed by quantitative EEG (qEEG) measures of linear (signal energy measured by amplitude variation; signal frequency measured by mean zero-crossings) and nonlinear (signal complexity measured by the pattern match regularity statistic and the short-term maximum Lyapunov exponent) brain EEG dynamics in 4- and 20-month-old F344 rats with and without brain infarction. The main findings of the study were: 1) dynamic resetting of both linear and nonlinear EEG characteristics occurred following SWDs; 2) animal age significantly affected the degree of dynamic resetting in all four qEEG measures: SWDs in older rats exhibited a lower degree of dynamic resetting; 3) infarction significantly affected the degree of dynamic resetting only in terms of EEG signal complexity: SWDs in infarcted rats exhibited a lower degree of dynamic resetting; and 4) in all four qEEG measures, there was no significant interaction effect between age and infarction on dynamic resetting. We conclude that recovery of the brain to its interictal state following SWDs was better in young adult animals compared with aged animals, and to a lesser degree, in age-matched controls compared with infarction-injured animal groups, suggesting possible effects of brain resetting mechanisms and/or the disruption of the epileptogenic network that triggers SWDs.
Collapse
Affiliation(s)
- Kevin M Kelly
- Center for Neuroscience Research, Allegheny-Singer Research Institute, Department of Neurology, Allegheny General Hospital, Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sarkisova K, van Luijtelaar G. The WAG/Rij strain: a genetic animal model of absence epilepsy with comorbidity of depression [corrected]. Prog Neuropsychopharmacol Biol Psychiatry 2011; 35:854-76. [PMID: 21093520 DOI: 10.1016/j.pnpbp.2010.11.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 09/28/2010] [Accepted: 11/09/2010] [Indexed: 01/02/2023]
Abstract
A great number of clinical observations show a relationship between epilepsy and depression. Idiopathic generalized epilepsy, including absence epilepsy, has a genetic basis. The review provides evidence that WAG/Rij rats can be regarded as a valid genetic animal model of absence epilepsy with comorbidity of depression. WAG/Rij rats, originally developed as an animal model of human absence epilepsy, share many EEG and behavioral characteristics resembling absence epilepsy in humans, including the similarity of action of various antiepileptic drugs. Behavioral studies indicate that WAG/Rij rats exhibit depression-like symptoms: decreased investigative activity in the open field test, increased immobility in the forced swimming test, and decreased sucrose consumption and preference (anhedonia). In addition, WAG/Rij rats adopt passive strategies in stressful situations, express some cognitive disturbances (reduced long-term memory), helplessness, and submissiveness, inability to make choice and overcome obstacles, which are typical for depressed patients. Elevated anxiety is not a characteristic (specific) feature of WAG/Rij rats; it is a characteristic for only a sub-strain of WAG/Rij rats susceptible to audiogenic seizures. Interestingly, WAG/Rij rats display a hyper-response to amphetamine similar to anhedonic depressed patients. WAG/Rij rats are sensitive only to chronic, but not acute, antidepressant treatments, suggesting that WAG/Rij rats fulfill a criterion of predictive validity for a putative animal model of depression. However, more and different antidepressant drugs still await evaluation. Depression-like behavioral symptoms in WAG/Rij rats are evident at baseline conditions, not exclusively after stress. Experiments with foot-shock stress do not point towards higher stress sensitivity at both behavioral and hormonal levels. However, freezing behavior (coping deficits) and blunted response of 5HT in the frontal cortex to uncontrollable sound stress, increased c-fos expression in the terminal regions of the meso-cortico-limbic brain systems and greater DA response of the mesolimbic system to forced swim stress suggest that WAG/Rij rats are vulnerable to some, but not to all types of stressors. We propose that genetic absence epileptic WAG/Rij rats have behavioral depression-like symptoms, are vulnerable to stress and might represent a model of chronic low-grade depression (dysthymia). Both 5HT and DAergic abnormalities detected in the brain of WAG/Rij rats are involved in modulation of vulnerability to stress and provocation of behavioral depression-like symptoms. The same neurotransmitter systems modulate SWDs as well. Recent studies suggest that the occurrence and repetition of absence seizures are a precipitant of depression-like behavior. Whether the neurochemical changes are primary to depression-like behavioral alterations remains to be determined. In conclusion, the WAG/Rij rats can be considered as a genetic animal model for absence epilepsy with comorbidity of dysthymia. This model can be used to investigate etiology, pathogenic mechanisms and treatment of a psychiatric comorbidity, such as depression in absence epilepsy, to reveal putative genes contributing to comorbid depressive disorder, and to screen novel psychotropic drugs with a selective and/or complex (dual) action on both pathologies.
Collapse
Affiliation(s)
- Karine Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov str. 5a, Moscow 117485, Russia.
| | | |
Collapse
|
22
|
Liu F, Jiang H, Zhong W, Wu X, Luo J. Changes in ensemble activity of hippocampus CA1 neurons induced by chronic morphine administration in freely behaving mice. Neuroscience 2010; 171:747-59. [PMID: 20888400 DOI: 10.1016/j.neuroscience.2010.09.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/08/2010] [Accepted: 09/17/2010] [Indexed: 11/24/2022]
Abstract
The hippocampus plays an important role in the formation of new memories and spatial navigation. Recently, growing evidence supports the view that it is also involved in addiction to opiates and other drugs. Theoretical and experimental studies suggest that hippocampal neural-network oscillations at specific frequencies and unit firing patterns reflect information of learning and memory encoding. Here, using multichannel recordings from the hippocampal CA1 area in behaving mice, we investigated the phase correlations between the theta (4-10 Hz) and gamma (40-100 Hz) oscillations, and the timing of spikes modulated by these oscillations. Local field potentials and single unit recordings in the CA1 area of mice receiving chronic morphine treatment revealed that the power of the theta rhythm was strongly increased; at the same time, the theta frequency during different behavioral states shifted markedly, and the characteristic coupling of theta and gamma oscillations was altered. Surprisingly, though the gamma oscillation frequency changed, the power of gamma lacking theta did not. Moreover, the timing of pyramidal cell spikes relative to the theta rhythm and the timing of interneuron spikes relative to the gamma rhythm changed during chronic morphine administration. Furthermore, these responses were impaired by a selective D1/D5 receptor antagonist intra-hippocampus injection. These results indicate that chronic morphine administration induced the changes of ensemble activity in the CA1 area, and these changes were dependent on local dopamine receptor activation.
Collapse
Affiliation(s)
- F Liu
- Department of Neurobiology, Institute of Neuroscience, Zhejiang University School of Medicine, 388 Yu Hang Tang Road, Hangzhou 310058, PR China
| | | | | | | | | |
Collapse
|
23
|
Jones NC, Martin S, Megatia I, Hakami T, Salzberg MR, Pinault D, Morris MJ, O'Brien TJ, van den Buuse M. A genetic epilepsy rat model displays endophenotypes of psychosis. Neurobiol Dis 2010; 39:116-25. [DOI: 10.1016/j.nbd.2010.02.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/21/2009] [Accepted: 02/03/2010] [Indexed: 12/22/2022] Open
|
24
|
del Campo CM, Velázquez JLP, Freire MAC. EEG recording in rodents, with a focus on epilepsy. ACTA ACUST UNITED AC 2010; Chapter 6:Unit 6.24. [PMID: 19802816 DOI: 10.1002/0471142301.ns0624s49] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This unit describes the materials, methods, and analytical techniques available for the study of electrical activity of neural tissue in rodents in both homeostatic and disease states, with emphasis on epileptogenesis. A table containing a list of suppliers of relevant materials and equipment is also provided.
Collapse
|
25
|
Bercovici E, Cortez MA, Wang X, Snead III OC. Monoamine variability in the chronic model of atypical absence seizures. Epilepsia 2009; 50:768-75. [DOI: 10.1111/j.1528-1167.2008.01880.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Mansvelder HD, van Aerde KI, Couey JJ, Brussaard AB. Nicotinic modulation of neuronal networks: from receptors to cognition. Psychopharmacology (Berl) 2006; 184:292-305. [PMID: 16001117 DOI: 10.1007/s00213-005-0070-z] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Accepted: 05/09/2005] [Indexed: 02/02/2023]
Abstract
RATIONALE Nicotine affects many aspects of human cognition, including attention and memory. Activation of nicotinic acetylcholine receptors (nAChRs) in neuronal networks modulates activity and information processing during cognitive tasks, which can be observed in electroencephalograms (EEGs) and functional magnetic resonance imaging studies. OBJECTIVES In this review, we will address aspects of nAChR functioning as well as synaptic and cellular modulation important for nicotinic impact on neuronal networks that ultimately underlie its effects on cognition. Although we will focus on general mechanisms, an emphasis will be put on attention behavior and nicotinic modulation of prefrontal cortex. In addition, we will discuss how nicotinic effects at the neuronal level could be related to its effects on the cognitive level through the study of electrical oscillations as observed in EEGs and brain slices. RESULTS/CONCLUSIONS Very little is known about mechanisms of how nAChR activation leads to a modification of electrical oscillation frequencies in EEGs. The results of studies using pharmacological interventions and transgenic animals implicate some nAChR types in aspects of cognition, but neuronal mechanisms are only poorly understood. We are only beginning to understand how nAChR distribution in neuronal networks impacts network functioning. Unveiling receptor and neuronal mechanisms important for nicotinic modulation of cognition will be instrumental for treatments of human disorders in which cholinergic signaling have been implicated, such as schizophrenia, attention deficit/hyperactivity disorder, and addiction.
Collapse
Affiliation(s)
- Huibert D Mansvelder
- Department of Experimental Neurophysiology, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Kelly KM. Spike-wave discharges: absence or not, a common finding in common laboratory rats. Epilepsy Curr 2005; 4:176-7. [PMID: 16059491 PMCID: PMC1176363 DOI: 10.1111/j.1535-7597.2004.04503.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
28
|
Sitnikova E, van Luijtelaar G. Reduction of adrenergic neurotransmission with clonidine aggravates spike-wave seizures and alters activity in the cortex and the thalamus in WAG/Rij rats. Brain Res Bull 2005; 64:533-40. [PMID: 15639550 DOI: 10.1016/j.brainresbull.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 11/03/2004] [Accepted: 11/09/2004] [Indexed: 11/23/2022]
Abstract
The alpha-2 adrenoreceptor agonist clonidine in low dose inhibits the release of noradrenaline and aggravates absence seizures. The present study examines properties of two types of spike-wave discharges (SWD) in a genetic model of absence epilepsy, the WAG/Rij rats. After reduction of noradrenergic neurotransmission with clonidine (0.00625 mg/kg, i.p.), the electrical activity was recorded in the neocortex, the ventroposteromedial nucleus (VPM) and the reticular thalamic nucleus (RTN). Clonidine temporally reduced percentage of wakefulness but did not affect sleep. Clonidine decreased the spectral power of sleep EEG (mostly in the delta band), this effect was found in the cortex and in the VPM. Clonidine increased the incidence of SWD type I (generalized); the spectral power of SWD I was lower in the frontal cortex (mostly in 1-9 and 30-100 Hz) and in the VPM (1-5 Hz), but higher in the RTN (9-14 Hz). Local occipital SWD (type II) had a tendency to be less numerous after clonidine, they had a lower power in the 5-9 Hz band in the occipital cortex, in the VPM and in the RTN. It can be concluded that strengthening of 9-14 Hz activity in the RTN may underlie clonidine-induced aggravation of SWD I.
Collapse
Affiliation(s)
- Evgenia Sitnikova
- NICI, Biological Psychology, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands.
| | | |
Collapse
|
29
|
Kharlamov EA, Jukkola PI, Schmitt KL, Kelly KM. Electrobehavioral characteristics of epileptic rats following photothrombotic brain infarction. Epilepsy Res 2004; 56:185-203. [PMID: 14643003 DOI: 10.1016/j.eplepsyres.2003.09.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The goal of this study was to characterize the electroencephalographic (EEG) and behavioral properties of young adult rats during extended video-EEG monitoring following photothrombotic brain infarction. Two-month-old male Sprague-Dawley rats underwent photothrombotic brain infarction of the left sensorimotor cortex with the photosensitive dye rose bengal (n=10) or were used as controls (n=9). Qualitative and quantitative EEG analysis was performed on digital video-EEG records obtained during 6 months of recording. The main finding of this study was that 5/10 (50%) lesioned animals developed focal epileptic seizures ipsilateral to the cortical infarct characterized by rhythmic spike-wave discharges with or without behavioral change. Epileptic animals demonstrated increased delta, theta, and low beta-range power ipsilateral to the infarct that reliably distinguished them from lesioned nonepileptic and control animals. Lesioned animals (epileptic and nonepileptic) also demonstrated a distinct pattern of focal rhythmic theta activity before or after generalized high beta-range discharges. Electrical and behavioral characteristics common to both lesioned and control animals included: (1) focal rhythmic theta activity in either hemisphere; (2) focal low beta-range discharges in either hemisphere; (3) generalized high beta-range discharges; (4) absence seizures; (5) generalized pseudoperiodic spike discharges associated with mild multifocal body jerks; (6) tonic-clonic seizures (one nai;ve control; one lesioned animal). Cresyl violet staining of lesioned animals' brains showed consistent infarcts of the sensorimotor cortex extending to the subcortical white matter. These results provide an expanded electrobehavioral description of young adult rats following photothrombotic brain infarction and augment further investigation into the molecular, cellular, and network alterations that contribute to the establishment of post-stroke epilepsy.
Collapse
Affiliation(s)
- E A Kharlamov
- Department of Neurology, Allegheny-Singer Research Institute, Allegheny General Hospital, 940 South Tower, 320 E. North Avenue, Pittsburgh, PA 15212-4772, USA
| | | | | | | |
Collapse
|
30
|
Sarkisova KY, Midzianovskaia IS, Kulikov MA. Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav Brain Res 2003; 144:211-26. [PMID: 12946611 DOI: 10.1016/s0166-4328(03)00090-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Wistar derived inbred line, the WAG/Rij rats, genetically absence epilepsy prone and their normal counterparts, outbred Wistar rats, were compared in respect to differences in behavior, in acute and chronic antidepressant imipramine treatment and in the immediate early gene c-fos expression in the brain regions induced by forced swimming test procedure. The WAG/Rij rats as compared with Wistar rats were found to exhibit decreased activity in the open field test, increased immobility in the forced swimming test and decreased sucrose intake (anhedonia). Interline differences indicating increased anxiety in the WAG/Rij rats were not revealed in the light-dark choice, social interaction and elevated plus-maze tests. The WAG/Rij rats in contrast to Wistar rats responded only to chronic antidepressant imipramine treatment with a reduction in their enhanced immobility in the forced swimming test. "Behavioral despair" induced by forced swimming led to c-fos expression in frontal cortex, nucleus accumbens and striatum, terminal regions of three dopaminergic brain systems (mesocortical, mesolimbic, nigrostriatal). The c-fos expression in the brain of WAG/Rij rats was substantially higher than that of Wistar rats. Moreover, the strains differed in the distribution of c-fos expression between brain regions. Results suggest that WAG/Rij rats are prone to adopt passive strategies of behavior in stressful situations, and so in this certain aspect this strain might be regarded as new experimental (genetic) model of depressive-like (passive) behavior accompanying absence epilepsy. Further testing this hypothesis is proceeding. This putative model could be used for the investigation of neurobiological basis and mechanisms of such "double pathology" and for the examination of new concepts of its therapy.
Collapse
Affiliation(s)
- K Yu Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerov Str. 5A, Moscow 117485, Russia.
| | | | | |
Collapse
|
31
|
Abstract
Behavioral and electrographic measures of CNS hyperexcitability were studied in separate groups of mice undergoing multiple ethanol (EtOH) withdrawals in a well-characterized model of EtOH withdrawal sensitization. Consistent with previous studies from this laboratory, mice experiencing repeated cycles of EtOH intoxication and withdrawal exhibited significantly more severe withdrawal seizures (handling-induced convulsions, HIC) in comparison to animals tested following a single withdrawal episode. Spontaneous EEG data collected from a separate group of mice undergoing the same EtOH exposure regimen exhibited a highly-typified alteration during EtOH withdrawal wherein normal EEG was abruptly replaced with high-voltage, repetitive spikes in a frequency range of seven to nine spikes per second. This paroxysmal EEG data, termed 'brief spindle episodes' (BSE) was virtually absent at baseline (prior to EtOH exposure). However, following withdrawal from chronic EtOH exposure, the percent of the EEG recordings containing BSE increased significantly in a time dependent manner. Moreover, in mice undergoing multiple cycles of EtOH exposure and withdrawal, BSE activity progressively increased over successive withdrawal cycles. In contrast, mice tested after repeated cycles of similar handling in the absence of EtOH exposure did not exhibit significant BSE activity until experiencing their one and only EtOH withdrawal episode. Thus, both behavioral and electrographic signs of EtOH withdrawal-related CNS hyperexcitability increased in magnitude during the course of each withdrawal cycle as well as progressively intensifying over successive withdrawal cycles.
Collapse
Affiliation(s)
- Lynn M Veatch
- Medical Research Service, Department of Veterans Affairs Medical Center, Charleston, SC 29401, USA.
| | | |
Collapse
|
32
|
Buzsáki G, Kennedy B, Solt VB, Ziegler M. Noradrenergic Control of Thalamic Oscillation: the Role of alpha-2 Receptors. Eur J Neurosci 2002; 3:222-229. [PMID: 12106199 DOI: 10.1111/j.1460-9568.1991.tb00083.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effects of alpha-adrenergic drugs on neocortical high voltage spike and wave spindles (HVS), reflecting thalamic oscillation, was investigated in freely moving rats. HVS occurred spontaneously in the awake but immobile animal. Peripheral administration of the alpha-1 antagonist, prazosin and alpha-2 agonists, xylazine and clonidine increased the incidence and duration of HVS in a dose-dependent manner. The alpha-2 antagonist, yohimbine and the tricyclic antidepressants, desipramine and amitriptyline, significantly decreased the incidence of the neocortical HVS. Bilateral microinjections of the alpha-2 agonists into the nucleus ventralis lateralis area of the thalamus, but not into the hippocampus or corpus callosum, was as effective as peripheral injection of these drugs. Xylazine was most effective in Fischer 344 rats that display high spontaneous rate of HVS and less effective in the Sprague - Dawley and Buffalo strains. The HVS-promoting effect of clonidine was antagonized by prior intrathalamic injection of the alpha-2 antagonist, yohimbine. The amplitude of the HVS was increased by picomole amounts of unilaterally-injected clonidine. Neurotoxic destruction of the thalamopetal noradrenergic afferents by intracisternal or intrathalamic injection of 6-hydroxydopamine, but not by peripheral administration of DSP-4, increased the incidence of HVS. Importantly, intrathalamic administration of xylazine continued to induce HVS after destroying the thalamic noradrenergic terminals. Following downregulation of the alpha-2 adrenoceptors by chronic administration (3 weeks) of amitriptylene the incidence of HVS decreased and the effectiveness of intrathalamic xylazine on the induction of HVS was significantly reduced. Based on these findings, we suggest that a major action of alpha-2 adrenergic drugs on thalamic oscillation may be mediated by postsynaptic alpha-2 adrenoceptors located on the thalamocortical neurons. We hypothesize that noradrenaline in the thalamus has a dual effect on the relay cells: blocking and promoting thalamic oscillation via alpha-1 and alpha-2 receptors, respectively. The final physiological effect is assumed to be a function of the relative density and affinity of these adrenergic receptor subtypes.
Collapse
Affiliation(s)
- G. Buzsáki
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 195 University Avenue, Newark, NJ 07102, USA
| | | | | | | |
Collapse
|
33
|
Kelly KM, Kharlamov A, Hentosz TM, Kharlamova EA, Williamson JM, Bertram EH, Kapur J, Armstrong DM. Photothrombotic brain infarction results in seizure activity in aging Fischer 344 and Sprague Dawley rats. Epilepsy Res 2001; 47:189-203. [PMID: 11738927 DOI: 10.1016/s0920-1211(01)00294-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study was designed to determine whether photothrombotic brain infarction could result in epileptic seizures in adult animals. Male Fischer 344 (F344) rats at 2, 6, 12, 24, and 30 months of age and male Sprague Dawley (SD) rats at 2 and 6 months of age underwent photothrombotic brain infarction with the photosensitive dye rose bengal by focusing a wide (6 mm) or narrow (3 mm) diameter white light beam on the skull overlying left hemisphere anterior frontal, midfrontal, frontoparietal, or parietal areas. Animals were monitored with video and EEG recordings. Morphological analysis of infarct size was performed with a computer-assisted image analysis system. The primary finding of this study was that epileptic seizures were recorded in post-mature rats 2 months after lesioning the frontoparietal cortex with large photothrombotic infarcts that extended to the cortical-subcortical interface. These seizures were characterized behaviorally by motor arrest, appeared to originate in the periinfarct area, and could be distinguished from inherited spontaneous bilateral cortical discharges by the morphology, frequency, duration, and laterality of the ictal discharges. Small cortical lesions were ineffective in producing seizures except for one animal that demonstrated recurrent prolonged focal discharges unaccompanied by behavioral change. Stage 3 seizures were observed in a small number of mid-aged and aged animals lesioned with large infarcts in anterior frontal and frontoparietal areas. These results suggest that the technique of photothrombosis can be used to produce neocortical infarction as a means to study mechanisms of secondary epileptogenesis.
Collapse
Affiliation(s)
- K M Kelly
- Department of Neurology, Allegheny General Hospital, 940 South Tower, 320 E. North Avenue, Pittsburgh, PA 15212-4772, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
de Bruin NM, van Luijtelaar EL, Cools AR, Ellenbroek BA. Dopamine characteristics in rat genotypes with distinct susceptibility to epileptic activity: apomorphine-induced stereotyped gnawing and novelty/amphetamine-induced locomotor stimulation. Behav Pharmacol 2001; 12:517-25. [PMID: 11742146 DOI: 10.1097/00008877-200111000-00013] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Rat genotypes differ in their susceptibility to spontaneously occurring spike-wave discharges and in their dopaminergic properties. In a previous study, it was found that spike-wave discharge incidence decreased in the following order in four rat genotypes during baseline and following injection with the dopamine antagonist haloperidol: apomorphine-susceptible (APO-SUS) > WAG/Rij > apomorphine-unsusceptible (APO-UNSUS) and ACI rats. The question in the present study was to what extent certain dopaminergic properties are pathognomonic for epileptic rats. Therefore, behavioral responses were assessed in order to investigate the dopaminergic properties in the four rat genotypes. Apomorphine-induced gnawing data imply that the dopamine activity of the nigrostriatal system in the WAG/Rij rats is higher than in APO-SUS but lower than in the ACI and APO-UNSUS rats. Furthermore, in previous studies APO-SUS have been shown to have a higher novelty/amphetamine-induced locomotion, indicative of a higher dopamine reactivity of the mesolimbic system as compared to APO-UNSUS rats. Results from the present study showed that WAG/Rij rats have a higher locomotor responsiveness to novelty/amphetamine, indicating a higher dopamine reactivity of the mesolimbic system in comparison to the ACI rats. It is suggested that the functional dopaminergic mesolimbic dominance is an important factor in the susceptibility to show spontaneously occurring spike-wave discharges.
Collapse
Affiliation(s)
- N M de Bruin
- NICI / Department of Psychoneuropharmacology, University of Nijmegen, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
35
|
Pinault D, Vergnes M, Marescaux C. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 2001; 105:181-201. [PMID: 11483311 DOI: 10.1016/s0306-4522(01)00182-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In humans with absence epilepsy, spike-and-wave discharges develop in the thalamocortical system during quiet immobile wakefulness or drowsiness. The present study examined the initial stage of the spontaneous development of spike-and-wave discharges in Genetic Absence Epilepsy Rats from Strasbourg. Bilateral electrocorticograms were recorded in epileptic and non-epileptic rats under freely moving and undrugged conditions and under neuroleptanalgesia. Short-lasting episodes of medium-voltage 5-9-Hz (mean=6-Hz) oscillations usually emerged spontaneously from a desynchronized electrocorticogram and in bilateral synchrony in both rat strains. These oscillations were distinguishable from sleep spindles regarding their internal frequency, duration, morphology, and moment of occurrence. Spontaneous spike-and-wave discharges developed from such synchronized medium-voltage oscillations, the spike-and-wave complex occurring at the same frequency as the 5-9-Hz wave. Because the thalamus is thought to play a significant role in the generation of spike-and-wave discharges, dual extracellular recording and juxtacellular labelling of relay and reticular neurons were conducted to study the thalamic cellular mechanisms associated with the generation of spike-and-wave discharges. During medium-voltage 5-9-Hz oscillations, discharges of relay and reticular cells had identical patterns in epileptic and non-epileptic rats, consisting of occasional single action potentials and/or bursts (interburst frequency of up to 6-8 Hz) in relay cells, and of rhythmic bursts (up to 12-15 Hz) in reticular neurons, these discharging in the burst mode almost always before relay neurons. The discharge frequency of reticular bursts decelerated to 6 Hz by the beginning of the spike-and-wave discharges. During these, relay and reticular neurons usually fired in synchrony a single action potential or a high-frequency burst of two or three action potentials and a high-frequency burst, respectively, about 12 ms before the spike component of the spike-and-wave complexes. The frequency of these corresponded to the maximal frequency of the thalamocortical burst discharges associated with 5-9-Hz oscillations. The patterns of relay and reticular phasic cellular firings associated with spike-and-wave discharges had temporal characteristics similar to those associated with medium-voltage 5-9-Hz oscillations, suggesting that these normal and epileptic oscillations are underlain by similar thalamic cellular mechanisms. In conclusion, medium-voltage 5-9-Hz oscillations in the thalamocortical loop give rise to spike-and-wave discharges. Such oscillations are not themselves sufficient to initiate spike-and-wave discharges, meaning that genetic factors render thalamocortical networks prone to generate epileptic electrical activity, possibly by decreasing the excitability threshold in reticular cells. While these GABAergic neurons play a key role in the synchronization of glutamatergic relay neurons during seizures, relay cells may participate significantly in the regulation of the recurrence of the spike-and-wave complex. Furthermore, it is very likely that synchronization of relay and reticular cellular discharges during absence seizures is generated in part by corticothalamic inputs.
Collapse
Affiliation(s)
- D Pinault
- INSERM U398, Neurobiologie et Neuropharmacologie des Epilepsies Généralisées, Faculté de Médecine, 11 rue Humann, F-67085, Strasbourg, France.
| | | | | |
Collapse
|
36
|
Meeren HK, van Cappellen van Walsum AM, van Luijtelaar EL, Coenen AM. Auditory evoked potentials from auditory cortex, medial geniculate nucleus, and inferior colliculus during sleep-wake states and spike-wave discharges in the WAG/Rij rat. Brain Res 2001; 898:321-31. [PMID: 11306019 DOI: 10.1016/s0006-8993(01)02209-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Click auditory evoked potentials (AEP) were simultaneously recorded from the auditory cortex (ACx), the medial geniculate nucleus (MGN), and the inferior colliculus (IC) in the freely moving WAG/Rij rat, to investigate state-dependent changes of the AEP in different anatomical locations along the auditory pathway. METHODS AEPs obtained during active (AW) and passive wakefulness (PW), slow wave sleep (SWS), rapid-eye-movement sleep (REM) and generalized spike-wave discharges (SWD; a specific trait of the WAG/Rij rat, a genetic model for absence epilepsy), were compared. RESULTS The early components in ACx, MGN and IC were stable throughout the sleep-wake cycle and SWD, apart from a slight increase in the IC during SWD. At all three locations a prominent enlargement of a later component (i.e., N32 in IC, N33 in MGN, and N44 in ACx) was found during SWS and SWD. CONCLUSIONS The early AEP components are not modulated by the normal sleep-wake states, and are not impaired during SWD. A strong state-dependent modulation of a later AEP component occurs at all three anatomical locations investigated. This suggests that apart from the thalamic burst firing mode, additional mechanisms must exist for the enlargement of the AEP during EEG-synchronized states at the prethalamic and cortical level.
Collapse
Affiliation(s)
- H K Meeren
- Department of Comparative and Physiological Psychology, Nijmegen Institute of Cognition and Information (NICI), University of Nijmegen, P.O. Box 9104, 6500 HE, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
37
|
Affiliation(s)
- M Avoli
- Montreal Neurological Institute and Department of Neurology, McGill University, Quebec, Canada.
| | | | | |
Collapse
|
38
|
de Bruin NM, van Luijtelaar EL, Jansen SJ, Cools AR, Ellenbroek BA. Dopamine characteristics in different rat genotypes: the relation to absence epilepsy. Neurosci Res 2000; 38:165-73. [PMID: 11000443 DOI: 10.1016/s0168-0102(00)00154-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dopaminergic neurotransmission has been shown to participate in the control of absence epilepsy. This type of epilepsy, a generalized non-convulsive form, is associated with bursts of bilateral synchronous spike wave discharges (SWDs) recorded in the EEG. In a previous study, it was suggested that two features of the apomorphine-susceptible (APO-SUS) rat genotype, a relatively low dopaminergic reactivity of the nigrostriatal system and relatively high dopaminergic reactivity of the mesolimbic system, contribute to the high incidence of SWDs. Indeed, apomorphine-unsusceptible (APO-UNSUS) rats, characterized by opposite dopaminergic features, show considerably less SWDs than APO-SUS rats. The first goal of the present study was to assess the baseline SWD incidence in four rat genotypes (WAG/Rij, ACI, APO-SUS and APO-UNSUS) in order to replicate previous findings. It was expected that both the APO-SUS and WAG/Rij rats would show a considerably higher SWD incidence in comparison to the APO-UNSUS and ACI rats. For this purpose, rats were registered for a 19 hour period. Assuming that haloperidol decreases dopaminergic transmission in the nigrostriatal system via inhibition of the dopamine receptors and enhances dopaminergic transmission in the mesolimbic system via inhibition of the noradrenergic receptors, it was postulated that haloperidol would enhance the difference in dopaminergic reactivity between both systems in favor of the accumbens. Therefore, the second purpose in the present study was to investigate whether haloperidol (2 mg/kg, IP) could further potentiate SWD incidence when injected in the APO-SUS rats, already characterized by a relatively low dopaminergic reactivity of the nigrostriatal system and relatively high dopaminergic reactivity of the mesolimbic system, in comparison to the APO-UNSUS rat genotype. Finally, the third aim was to study if another epileptic rat genotype, the WAG/Rij, would show similar increases in SWD incidence following an injection with haloperidol as expected for the APO-SUS. First, previous findings were replicated: the value of the hourly number of SWDs decreased in the following order: APO-SUS > WAG/Rij > APO-UNSUS and ACI. Secondly, earlier data were extended by the fact that the APO-SUS responded to a systemic injection of haloperidol with an increase in SWD number and duration, in contrast to the APO-UNSUS rats. The hypothesis that the SWD incidence would be mostly affected by haloperidol in the APO-SUS rats, was confirmed by these findings. It is suggested that haloperidol increases the SWD incidence in APO-SUS rats by enhancing the difference between the dopaminergic reactivity in the nigrostriatal and mesolimbic system. Finally, further research is required to provide evidence in favor of the hypothesis that the relative dominance of the dopaminergic mesolimbic system is smaller in WAG/Rij than in APO-SUS.
Collapse
Affiliation(s)
- N M de Bruin
- NICI/Department of Psychoneuropharmacology, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Previous research has shown that neocortical gamma waves (approximately 30-80 Hz) are continuously present during low voltage fast neocortical activity (LVFA) occurring during waking or active sleep. Gamma waves occur in a burst-suppression pattern in association with large amplitude slow waves during quiet sleep or anesthesia. The present experiments show that continuous gamma activity is also present in rats during LVFA occurring during surgical anesthesia (with ether, isoflurane or urethane) and that a burst-suppression pattern of gamma activity occurs during large amplitude slow waves occurring in the waking state either spontaneously in undrugged rats or as a result of treatment with parachlorophenylalanine and scopolamine. The amplitude of gamma activity occurring during anesthesia is variable but is often greater than it is in the normal waking state. It is concluded that the pattern of neocortical gamma wave activity is strongly related to the presence or absence of large amplitude slow waves but is quite independent of the state of behavioral arousal. Whether or not gamma wave activity is related to subjective awareness is a very difficult question which cannot be answered with certainty at the present time.
Collapse
Affiliation(s)
- C H Vanderwolf
- Department of Psychology and Graduate Program in Neuroscience, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
40
|
Haapalinna A, Sirviö J, MacDonald E, Virtanen R, Heinonen E. The effects of a specific alpha(2)-adrenoceptor antagonist, atipamezole, on cognitive performance and brain neurochemistry in aged Fisher 344 rats. Eur J Pharmacol 2000; 387:141-50. [PMID: 10650154 DOI: 10.1016/s0014-2999(99)00819-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present experiments investigated the effects of a specific and potent alpha(2)-adrenoceptor antagonist, atipamezole, on cognitive performance and neurochemistry in aged rats. Aged control Fisher 344 rats, which had lower activities of choline acetyltransferase in the frontal cortex, were impaired in the acquisition of the linear arm maze task both in terms of repetition errors and their behavioural activity (the speed of arm visits), and they needed longer time to complete this task as compared to adult control rats. Atipamezole treatment (0.3 mg/kg) facilitated the acquisition of this task in the aged rats as they committed fewer errors and completed the task more quickly than saline-treated aged control rats. A separate experiment indicated that atipamezole enhanced the turnover of noradrenaline both in the adult and aged rats, but this effect was more pronounced in the aged rats. Furthermore, atipamezole enhanced significantly the turnover of serotonin and dopamine only in the aged rats when analysed in the whole brain samples. As alpha(2)-adrenoceptor antagonists are known to alleviate akinesia in the experimental models of Parkinson's disease, the present results could be especially relevant for the development of palliative treatment for demented Parkinsonian patients.
Collapse
Affiliation(s)
- A Haapalinna
- Orion Pharma, Preclinical R&D, Orion, PO Box 425, FIN-20101, Turku, Finland.
| | | | | | | | | |
Collapse
|
41
|
Abstract
The mediodorsal thalamic nucleus (MD) receives convergent inputs from subcortical limbic structures that overlap with a dopaminergic (DA) innervation. In this study, we describe the effects of DA agonists on the basal and evoked electrophysiological activity of identified thalamic cells of rats recorded in vitro. Administration of the D1 agonist SFK 38393 (10 microM) did not produce a clear effect on the physiological properties of the thalamic cells recorded. In contrast, bath administration of the D2 agonist quinpirole (10 microM) resulted in an enhancement of membrane excitability, facilitation of the occurrence of low-threshold spikes (LTSs), and changes in the resting membrane potential of the thalamic cells tested. The quinpirole-mediated responses were reversed by administration of the D2 antagonist haloperidol. Results from experiments performed with different [K+] and K+ channel blockers suggest that the effects of quinpirole are mediated at least in part by changes in K+ conductances. The results from this study suggest that DA can modulate the excitability of thalamic cells and in turn may influence the way that the thalamocortical system integrates information.
Collapse
|
42
|
Abstract
In both primates and rodents, the prefrontal cortex (PFC) is highly innervated by dopaminergic fibers originating from the ventral tegmental area, and activation of this mesocortical dopaminergic system decreases spontaneous and evoked activity in the PFC in vivo. We have examined the effects of dopamine (DA), over a range of concentrations, on the passive and active membrane properties of layer V pyramidal cells from the rat medial PFC (mPFC). Whole-cell and perforated-patch recordings were made from neurons in rat mPFC. As a measure of cell excitability, trains of action potentials were evoked with 1-sec-long depolarizing current steps. Bath application of DA (0.05-30 microM) produced a reversible decrease in the number of action potentials evoked by a given current step. In addition, DA reversibly decreased the input resistance (RN) of these cells. In a subset of experiments, a transient increase in excitability was observed after the washout of DA. Control experiments suggest that these results are not attributable to changes in spontaneous synaptic activity, age-dependent processes, or strain-specific differences in dopaminergic innervation and physiology. Pharmacological analyses, using D1 agonists (SKF 38393 and SKF 81297), a D1 antagonist (SCH 23390), a D2 receptor agonist (quinpirole), and a D2 antagonist (sulpiride) suggest that decreases in spiking and RN are mediated by D2 receptor activation. Together, these results demonstrate that DA, over a range of concentrations, has an inhibitory effect on layer V pyramidal neurons in the rat mPFC, possibly through D2 receptor activation.
Collapse
|
43
|
Przewłocka B, Lasoń W, Turchan J, de Bruin N, van Luijtelaar G, Przewłocki R, Coenen A. Anatomical and functional aspects of mu opioid receptors in epileptic WAG/Rij rats. Epilepsy Res 1998; 29:167-73. [PMID: 9477150 DOI: 10.1016/s0920-1211(97)00081-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Involvement of opioid systems in the pathogenesis of absence epilepsy has been postulated. However, the role of the mu opioid receptor has not been fully elucidated as yet. In the present study the role of this receptor in absence epilepsy was investigated autoradiographically and pharmacologically. The density of mu opioid receptors in discrete brain areas was quantified in WAG/Rij rats, which are regarded as a genetic model of primarily generalized absence epilepsy and in three control groups of non-epileptic rats. The autoradiographic study showed an abundance of mu opioid receptors (labelled with [3H]DAMGO) in the structures involved in generation and propagation of spike-wave discharges, such as the thalamus, cortex and striatum. A significant decrease in the mu receptor density was found only in the frontal cortex of epileptic WAG/Rij rats. In the pharmacological study, the effect of mu opioid receptor activation in different brain structures of WAG/Rij rats on the number of complexes of spike-wave discharges was investigated. DAMGO (0.02 and 0.07 microg/0.5 microl) was bilaterally injected into the thalamus, striatum and frontal cortex. DAMGO resulted in a dose-related increase in the number of spike-wave discharges after intracortical and intrastriatal administration by approximately 200-300% and after intrathalamic administration by approximately 500%. The injection of DAMGO into those structures had no significant effect of any kind on the behavior measured, except for passive behavior which was reduced after intrastriatal injection. The high density of mu opioid receptors in the areas involved in the genesis of spike-wave discharges, as well as the highest responsiveness of thalamic mu opioid receptors to the epileptogenic effects of DAMGO, suggest involvement of mu receptors in the genesis of spike-wave discharges.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Autoradiography
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/physiopathology
- Electroencephalography/drug effects
- Epilepsy, Absence/physiopathology
- Frontal Lobe/drug effects
- Injections, Intraventricular
- Male
- Putamen/drug effects
- Rats
- Rats, Inbred Strains
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/physiology
- Thalamic Nuclei/chemistry
- Thalamic Nuclei/drug effects
Collapse
Affiliation(s)
- B Przewłocka
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Kraków, Poland
| | | | | | | | | | | | | |
Collapse
|
44
|
Jäkälä P, Riekkinen P. Combined cholinergic and 5-HT2 receptor activation suppresses thalamocortical oscillations in aged rats. Pharmacol Biochem Behav 1997; 56:713-8. [PMID: 9130298 DOI: 10.1016/s0091-3057(96)00411-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The present study investigated whether combined stimulation of the cholinergic system and 5-hydroxytryptamine (5-HT) subtype 2 receptors can suppress neocortical high-voltage spindles (HVSs) reflecting thalamocortical oscillations in aged rats. Cholinesterase inhibitors-tetrahydro-aminoacridine (THA: 1.0 and 3.0 mg/kg i.p.) and physostigmine (0.36 mg/kg i.p.)- and a 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI; 0.3 and 1.0 mg/kg SC)-suppressed HVSs in aged rats. A combination of subthreshold doses of THA (0.3 mg/kg i.p.) and DOI (0.1 mg/kg s.c.) suppressed HVSs more effectively than either drug alone. Furthermore, a 5-HT2 receptor antagonist, ketanserin (5.0 and 20.0 mg/kg s.c.), reduced the efficacy of THA (1.0 and 3.0 mg/kg i.p.) and physostigmine (0.12 and 0.36 mg/kg i.p.) in decreasing HVSs. THA and ketanserin slightly decreased, physostigmine tended to increase, and DOI significantly increased behavioral activity of the rats, demonstrating that the effects of the drugs on behavioral activity may be separated from their effects on generation of thalamocortical oscillations. The results suggest that activation of the cholinergic system and 5-HT2 receptors has additive effects in the suppression of thalamocortical oscillations in aged rats.
Collapse
Affiliation(s)
- P Jäkälä
- Department of Neuroscience and Neurology, University of Kuopio, Finland.
| | | |
Collapse
|
45
|
Jäkälä P, Björklund M, Koivisto E, Riekkinen P. The effects of cholinergic drugs on rat neocortical high-voltage spindles in ketanserin-treated rats. Eur J Pharmacol 1996; 316:181-93. [PMID: 8982685 DOI: 10.1016/s0014-2999(96)00679-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To investigate the roles of the cholinergic system and 5-HT2 receptors in the modulation of thalamocortical oscillations, we studied the effects of systemic (s.c.) administration of anticholinesterases (physostigmine, tetrahydroaminoacridine) and muscarinic acetylcholine receptor agonists (pilocarpine, oxotremorine) on spontaneous thalamically generated rhythmic neocortical high-voltage spindles in adult rats pretreated with either saline or ketanserin, a 5-HT2 receptor antagonist. Ketanserin at 20.0 mg/kg increased the number of high-voltage spindles. In saline-treated rats, tetrahydroaminoacridine 3.0 and 9.0 mg/kg was able to decrease high-voltage spindles, whereas in ketanserin 20.0 mg/kg-treated rats only the highest dose of tetrahydroaminoacridine (9.0 mg/kg) decreased high-voltage spindles. Both doses of physostigmine, 0.12 and 0.36 mg/kg, decreased high-voltage spindles in both saline and ketanserin 20.0 mg/kg-treated rats. Lower doses of tetrahydroaminoacridine (1.0 mg/kg) and physostigmine (0.06 mg/kg) were ineffective in both saline- and ketanserin 20.0 mg/kg-treated rats. Pilocarpine 3.0 mg/kg and oxotremorine 0.1 and 0.9 mg/kg decreased high-voltage spindles in saline-treated rats. However, in rats treated with ketanserin 20.0 mg/kg, only the lower doses of pilocarpine (0.3 and 1.0 mg/kg) and oxotremorine (0.03 mg/kg) were able to decrease the high-voltage spindles. The results suggest that activation of the cholinergic system and activation of 5-HT2 receptors have additive effects in the suppression of thalamocortical oscillations and related neocortical high-voltage spindles in rats, thus maintaining effective information processing in thalamocortical networks.
Collapse
Affiliation(s)
- P Jäkälä
- Department of Neurology, University of Kuopio, Finland
| | | | | | | |
Collapse
|
46
|
Kuznetsova GD, Petrova EV, Coenen AM, Van Luijtelaar EL. Generalized absence epilepsy and catalepsy in rats. Physiol Behav 1996; 60:1165-9. [PMID: 8884948 DOI: 10.1016/0031-9384(96)00175-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Adult WAG/Rij rats are considered adequate genetic models for human generalized absence epilepsy. Rats of this strain of 8, 12, and 18 weeks old and age-matched control Wistar rats were exposed to sound stimulation. After offset of stimulation, all WAG/Rij rats showed cataleptic or even cataplexic reactions, which could persist for up to 20 min. Age effects could be demonstrated. None of the Wistar rats showed cataleptic reactions. Electroencephalographic studies in WAG/Rij rats of 21 weeks showed that spike-wave discharges were abundantly present in the background electroencephalogram prior to sound stimulation. Age-matched Wistar rats had almost no spike-wave discharges. Spike-wave discharges in WAG/Rij rats disappeared during sound stimulation and were then increased compared to the prestimulation and stimulation periods. The electroencephalogram during the cataleptic state was also characterized by the presence of large amplitude 2 Hz waves, interspersed with spike-wave discharges. The data suggest that the cataleptic state can be elicited in genetically epilepsy-prone rats. The youngest WAG/Rij rats showed no spike-wave discharges during the cataleptic state. In all, the data suggest that epilepsy-prone animals are sensitive for catalepsy at an age at which the EEG signs of generalized absence epilepsy are not yet manifest.
Collapse
Affiliation(s)
- G D Kuznetsova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | |
Collapse
|
47
|
Abstract
Recent studies have suggested an important kindling-like exacerbation of ethanol withdrawal symptoms after repeated cycles of ethanol intoxication and withdrawal. Few studies, however, have evaluated the effect of multiple episodes of intoxication and withdrawal on spontaneous EEG activity after cessation of ethanol intake. In this study, electrographic activity in cortical and subcortical structures male Sprague-Dawley rats was examined after multiple cycles of ethanol intoxication and withdrawal. After surgical implantation of electrodes, animals received repeated cycles of chronic ethanol exposure in vapor inhalation chambers for 10 or 20 days, with 4-day withdrawal periods between each. Upon removal from the inhalation chamber, spontaneous EEG activity was recorded intermittently for 72 hr. These data were then examined for the presence of spikes and sharp waves. Results indicate that the levels of spike and sharp wave activity observed vary with both length of ethanol exposure and with the number of withdrawal cycles, and that these effects varied with neuronal site. Changes in spike and sharp wave activity were first observed within hippocampal areas, with other subcortical and cortical sites showing increased activity after additional ethanol exposure or additional cycles of intoxication and withdrawal. Hippocampal areas CA1 and CA3 differed significantly from one another in their response to chronic ethanol exposure, with area CA1 most affected by changes in amount of ethanol exposure and are CA3 most affected by number of withdrawal cycles. These results indicate an increased severity of the ethanol withdrawal syndrome after repeated ethanol withdrawal episodes and suggest differential, site-specific changes in neuronal excitability.
Collapse
Affiliation(s)
- L M Veatch
- Department of Psychiatry and Behavioral Sciences, University of Oklahoma Health Sciences Center, Oklahoma City 73190-3000, USA
| | | |
Collapse
|
48
|
Jäkälä P, Björklund M, Riekkinen P. Suppression of neocortical high-voltage spindles by nicotinic acetylcholine and 5-HT2 receptor stimulation. Eur J Pharmacol 1996; 299:47-60. [PMID: 8901007 DOI: 10.1016/0014-2999(95)00833-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To investigate the roles of the nicotinic acetylcholine receptor and the serotonin (5-hydroxytryptamine; 5-HT) subtype 2 receptor in the modulation of rat thalamocortical oscillations, the effects of systemic (s.c.) administration of nicotine, a nicotinic acetylcholine receptor agonist, and 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), a 5-HT2 receptor agonist, on neocortical high-voltage spindle activity occurring during quiet waking-immobility behavior in aged (28 months of age) and adult (7 months of age) rats were studied. Nicotine 0.1 and 0.3 mg/kg alleviated the age-related increase of neocortical high-voltage spindles, whereas in adult rats only nicotine 0.3 mg/kg was effective. DOI 0.3, 1.0 and 2.0 mg/kg suppressed high-voltage spindles in both aged and adult rats. In aged rats, a combination of subthreshold doses of nicotine (0.03 mg/kg) and DOI (0.1 mg/kg) decreased neocortical high-voltage spindles, whereas in adult rats two different subthreshold dose combinations (nicotine 0.03 or 0.1 mg/kg+DOI 0.1 mg/kg) had no effect. p-Chlorophenylalanine (400 mg/kg/day i.p. for 3 consecutive days) treatment decreased brain serotonin concentration (> 80% reduction), but did not affect high-voltage spindles. However, in both aged and adult rats, p-chlorophenylalanine treatment blocked the decrease in high-voltage spindle activity produced by DOI 0.3 mg/kg, though not the decrease produced by higher doses of DOI (1.0 and 2.0 mg/kg). It is important that, in adult rats, p-chlorophenylalanine treatment was able to abolish the decrease in high-voltage spindle activity seen after a relatively high dose of nicotine (0.3 mg/kg). The results suggest that nicotinic acetylcholine and 5-HT2 receptors may act in concert to suppress neocortical high-voltage spindling in rats, and that intact brain serotonergic systems may be important for some of the therapeutic effects of nicotine.
Collapse
Affiliation(s)
- P Jäkälä
- Department of Neurology, University of Kuopio, Finland
| | | | | |
Collapse
|
49
|
Abstract
The clinical benefits of dopamine agonists in the management of epilepsy can be traced back over a century, whilst the introduction of neuroleptics into psychiatry practice 40 years ago witnessed the emergence of fits as a side effect of dopamine receptor blockade. Epidemiologists noticed a reciprocal relationship between the supposed dopaminergic overactivity syndrome of schizophrenia and epilepsy, which came to be regarded as a dopamine underactivity condition. Early pharmacological studies of epilepsy employed nonselective drugs, that often did not permit dopamine's antiepileptic action to be clearly dissociated from that of other monoamines. Likewise, the biochemical search for genetic abnormalities in brain dopamine function, as predeterminants of spontaneous epilepsy, proved largely inconclusive. The discovery of multiple dopamine receptor families (D1 and D2), mediating opposing influences on neuronal excitability, heralded a new era of dopamine-epilepsy research. The traditional anticonvulsant action of dopamine was attributed to D2 receptor stimulation in the forebrain, while the advent of selective D1 agonists with proconvulsant properties revealed for the first time that dopamine could also lower the seizure threshold from the midbrain. Whilst there is no immediate prospect of developing D2 agonists or D1 antagonists as clinically useful antiepileptics, there is a growing awareness that seizures might be precipitated as a consequence of treating other neurological disorders with D2 antagonists (schizophrenia) or D1 agonists (parkinsonism).
Collapse
Affiliation(s)
- M S Starr
- Department of Pharmacology, School of Pharmacy, London, United Kingdom
| |
Collapse
|
50
|
Jäkälä P, Sirviö J, Koivisto E, Björklund M, Kaukua J, Riekkinen P. Modulation of rat neocortical high-voltage spindle activity by 5-HT1/5-HT2 receptor subtype specific drugs. Eur J Pharmacol 1995; 282:39-55. [PMID: 7498288 DOI: 10.1016/0014-2999(95)00272-m] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To investigate the role of serotonin (5-hydroxytryptamine; 5-HT) receptors in the modulation of rat thalamocortical oscillations, we studied the effects of 5-HT1/5-HT2 receptor subtype specific drugs on neocortical high-voltage spindle activity in adult male rats. A 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (0.03, 0.1, 0.3 and 1.0 mg/kg s.c.), had no effect on neocortical high-voltage spindle activity. Furthermore, a mixed 5-HT1/5-HT2 receptor antagonist, methysergide (1.0, 5.0 and 15.0 mg/kg i.p.), had no effect, whereas a non-specific mixed 5-HT1/5-HT2 receptor antagonist, methiothepin (0.2, 1.0 and 5.0 mg/kg i.p.), significantly increased neocortical high-voltage spindles. Of the 5-HT2 receptor antagonists, ritanserin (0.1, 1.0 and 5.0 mg/kg s.c.) had no effect, whereas ketanserin (1.0, 5.0 and 20.0 mg/kg s.c.) increased neocortical high-voltage spindles, but only at the highest dose used. A 5-HT2 receptor agonist, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.5, 1.0 and 2.0 mg/kg s.c.), at the two highest doses significantly decreased neocortical high-voltage spindle activity, and this effect was blocked by the 5-HT2 receptor antagonists, ketanserin (1.0, 5.0 and 20.0 mg/kg s.c.) and ritanserin (1.0 and 5.0 mg/kg s.c.), as well as by methiothepin (0.2, 1.0 and 5.0 mg/kg i.p.) and methysergide (1.0, 5.0 and 15.0 mg/kg i.p.). Furthermore, unilateral intrathalamic infusions, but not intrahippocampal control infusions, of DOI (10 and 50 micrograms/1.0 microliters/rat) decreased neocortical high-voltage spindle activity and systemic administration of ketanserin (20.0 mg/kg s.c.) completely blocked this effect. The present results suggest that (1) the serotonergic system modulates rat thalamocortical oscillations as measured by neocortical high-voltage spindle activity, (2) activation of 5-HT2 receptors, possibly located in the thalamus, with a specific 5-HT2 receptor agonist, DOI, causes a reduction in rat neocortical high-voltage spindle activity.
Collapse
Affiliation(s)
- P Jäkälä
- Department of Neurology, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|