1
|
Qureshi AY, Stevens RD. Neuroscience of coma. HANDBOOK OF CLINICAL NEUROLOGY 2025; 207:29-47. [PMID: 39986726 DOI: 10.1016/b978-0-443-13408-1.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2025]
Abstract
Coma and disorders of consciousness are frequently considered in terms of two linked anatomic-functional systems: the arousal system and the awareness system. The mesopontine tegmentum (namely the cuneiform/subcuneiform nuclei of the caudal midbrain and the pontis oralis nucleus of the rostral pons) and the monoamine nuclei generate signals of arousal. These signals are augmented in lateral hypothalamus and basal forebrain, which then project to the thalamus and diffusely across the cortex. The medial dorsal tegmental tract is the main conduit for the ascending arousal system to directly activate the thalamic intralaminar nuclei and modulate thalamocortical networks, while the lateral dorsal tegmental tract connects to the thalamic reticular nucleus for regulation of intrathalamic inhibitory networks. The central thalamus (particularly the intralaminar nuclei) and the mesocircuit regulate the arousal system. Lesions to any part of this system, particularly paramedian and bilateral lesions, result in a depressed level of arousal. Distinct from the arousal pathways, the awareness system runs continuously as a stream of consciousness. It consists of large-scale distributed cortical networks that are necessary for representations of the external (executive control network with the dorsal/ventral attention networks) and the internal world (executive control network in conjunction with the default network). A feature of the awareness system is that it does not capture external and internal worlds at once and instead, holds singular representations, serially moment-by-moment. The medial dorsal nucleus of the thalamus serves as the associative nuclei of the default network, and the thalamic reticular nucleus regulates the awareness system. Lesions that disrupt large-scale networks, particularly nodes of cortical hubs, result in lack of awareness. Integrative paradigms such as the integrated information theory and the global neuronal workspace models are attempts to bind awareness and arousal into a unified experience of consciousness.
Collapse
Affiliation(s)
- Abid Y Qureshi
- Department of Neurology, University of Kansas Medical Center, Kansas, MO, United States
| | - Robert D Stevens
- Departments of Anesthesiology and Critical Care Medicine and Neurology, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
2
|
Podvalny E, Sanchez-Romero R, Cole MW. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. Cereb Cortex 2024; 34:bhae192. [PMID: 38745558 DOI: 10.1093/cercor/bhae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which, in turn, modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (n = 149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
Collapse
Affiliation(s)
- Ella Podvalny
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Ave, Newark, NJ 07102, United States
| |
Collapse
|
3
|
Podvalny E, Sanchez-Romero R, Cole MW. Functionality of arousal-regulating brain circuitry at rest predicts human cognitive abilities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574917. [PMID: 38617344 PMCID: PMC11014470 DOI: 10.1101/2024.01.09.574917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Arousal state is regulated by subcortical neuromodulatory nuclei, such as locus coeruleus, which send wide-reaching projections to cortex. Whether higher-order cortical regions have the capacity to recruit neuromodulatory systems to aid cognition is unclear. Here, we hypothesized that select cortical regions activate the arousal system, which in turn modulates large-scale brain activity, creating a functional circuit predicting cognitive ability. We utilized the Human Connectome Project 7T functional magnetic resonance imaging dataset (N=149), acquired at rest with simultaneous eye tracking, along with extensive cognitive assessment for each subject. First, we discovered select frontoparietal cortical regions that drive large-scale spontaneous brain activity specifically via engaging the arousal system. Second, we show that the functionality of the arousal circuit driven by bilateral posterior cingulate cortex (associated with the default mode network) predicts subjects' cognitive abilities. This suggests that a cortical region that is typically associated with self-referential processing supports cognition by regulating the arousal system.
Collapse
Affiliation(s)
- Ella Podvalny
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Ruben Sanchez-Romero
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| | - Michael W. Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
4
|
Foo C, Lozada A, Aljadeff J, Li Y, Wang JW, Slesinger PA, Kleinfeld D. Reinforcement learning links spontaneous cortical dopamine impulses to reward. Curr Biol 2021; 31:4111-4119.e4. [PMID: 34302743 DOI: 10.1016/j.cub.2021.06.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/15/2022]
Abstract
In their pioneering study on dopamine release, Romo and Schultz speculated "...that the amount of dopamine released by unmodulated spontaneous impulse activity exerts a tonic, permissive influence on neuronal processes more actively engaged in preparation of self-initiated movements...."1 Motivated by the suggestion of "spontaneous impulses," as well as by the "ramp up" of dopaminergic neuronal activity that occurs when rodents navigate to a reward,2-5 we asked two questions. First, are there spontaneous impulses of dopamine that are released in cortex? Using cell-based optical sensors of extrasynaptic dopamine, [DA]ex,6 we found that spontaneous dopamine impulses in cortex of naive mice occur at a rate of ∼0.01 per second. Next, can mice be trained to change the amplitude and/or timing of dopamine events triggered by internal brain dynamics, much as they can change the amplitude and timing of dopamine impulses based on an external cue?7-9 Using a reinforcement learning paradigm based solely on rewards that were gated by feedback from real-time measurements of [DA]ex, we found that mice can volitionally modulate their spontaneous [DA]ex. In particular, by only the second session of daily, hour-long training, mice increased the rate of impulses of [DA]ex, increased the amplitude of the impulses, and increased their tonic level of [DA]ex for a reward. Critically, mice learned to reliably elicit [DA]ex impulses prior to receiving a reward. These effects reversed when the reward was removed. We posit that spontaneous dopamine impulses may serve as a salient cognitive event in behavioral planning.
Collapse
Affiliation(s)
- Conrad Foo
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Adrian Lozada
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA
| | - Johnatan Aljadeff
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Yulong Li
- Peking University, School of Life Sciences, Peking University, Beijing 100871, P.R. China
| | - Jing W Wang
- Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Paul A Slesinger
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - David Kleinfeld
- Department of Physics, University of California at San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Mechanisms underlying gain modulation in the cortex. Nat Rev Neurosci 2020; 21:80-92. [PMID: 31911627 DOI: 10.1038/s41583-019-0253-y] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 01/19/2023]
Abstract
Cortical gain regulation allows neurons to respond adaptively to changing inputs. Neural gain is modulated by internal and external influences, including attentional and arousal states, motor activity and neuromodulatory input. These influences converge to a common set of mechanisms for gain modulation, including GABAergic inhibition, synaptically driven fluctuations in membrane potential, changes in cellular conductance and changes in other biophysical neural properties. Recent work has identified GABAergic interneurons as targets of neuromodulatory input and mediators of state-dependent gain modulation. Here, we review the engagement and effects of gain modulation in the cortex. We highlight key recent findings that link phenomenological observations of gain modulation to underlying cellular and circuit-level mechanisms. Finally, we place these cellular and circuit interactions in the larger context of their impact on perception and cognition.
Collapse
|
6
|
Jacob SN, Nienborg H. Monoaminergic Neuromodulation of Sensory Processing. Front Neural Circuits 2018; 12:51. [PMID: 30042662 PMCID: PMC6048220 DOI: 10.3389/fncir.2018.00051] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022] Open
Abstract
All neuronal circuits are subject to neuromodulation. Modulatory effects on neuronal processing and resulting behavioral changes are most commonly reported for higher order cognitive brain functions. Comparatively little is known about how neuromodulators shape processing in sensory brain areas that provide the signals for downstream regions to operate on. In this article, we review the current knowledge about how the monoamine neuromodulators serotonin, dopamine and noradrenaline influence the representation of sensory stimuli in the mammalian sensory system. We review the functional organization of the monoaminergic brainstem neuromodulatory systems in relation to their role for sensory processing and summarize recent neurophysiological evidence showing that monoamines have diverse effects on early sensory processing, including changes in gain and in the precision of neuronal responses to sensory inputs. We also highlight the substantial evidence for complementarity between these neuromodulatory systems with different patterns of innervation across brain areas and cortical layers as well as distinct neuromodulatory actions. Studying the effects of neuromodulators at various target sites is a crucial step in the development of a mechanistic understanding of neuronal information processing in the healthy brain and in the generation and maintenance of mental diseases.
Collapse
Affiliation(s)
- Simon N Jacob
- Department of Neurosurgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrikje Nienborg
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
7
|
Are there “local hotspots?” When concepts of cognitive psychology do not fit with physiological results. Behav Brain Sci 2016; 39:e208. [DOI: 10.1017/s0140525x1500179x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractMather and colleagues' arguments require rethinking at the mechanistic level. The arguments on the physiological effects of norepinephrine at the cortical level are inconsistent with large parts of the literature. There is no evidence that norepinephrine induces local “hotspots”: Norepinephrine mainly decreases evoked responses; facilitating effects are rare and not localized. More generally, the idea that perception benefits from “local hotspots” is hardly compatible with the fact that neural representations involve largely distributed activation of cortical and subcortical networks.
Collapse
|
8
|
Gaucher Q, Edeline JM. Stimulus-specific effects of noradrenaline in auditory cortex: implications for the discrimination of communication sounds. J Physiol 2014; 593:1003-20. [PMID: 25398527 DOI: 10.1113/jphysiol.2014.282855] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/02/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Many studies have described the action of Noradrenaline (NA) on the properties of cortical receptive fields, but none has assessed how NA affects the discrimination abilities of cortical cells between natural stimuli. In the present study, we compared the consequences of NA topical application on spectro-temporal receptive fields (STRFs) and responses to communication sounds in the primary auditory cortex. NA application reduced the STRFs (an effect replicated by the alpha1 agonist Phenylephrine) but did not change, on average, the responses to communication sounds. For cells exhibiting increased evoked responses during NA application, the discrimination abilities were enhanced as quantified by Mutual Information. The changes induced by NA on parameters extracted from the STRFs and from responses to communication sounds were not related. ABSTRACT The alterations exerted by neuromodulators on neuronal selectivity have been the topic of a vast literature in the visual, somatosensory, auditory and olfactory cortices. However, very few studies have investigated to what extent the effects observed when testing these functional properties with artificial stimuli can be transferred to responses evoked by natural stimuli. Here, we tested the effect of noradrenaline (NA) application on the responses to pure tones and communication sounds in the guinea-pig primary auditory cortex. When pure tones were used to assess the spectro-temporal receptive field (STRF) of cortical cells, NA triggered a transient reduction of the STRFs in both the spectral and the temporal domain, an effect replicated by the α1 agonist phenylephrine whereas α2 and β agonists induced STRF expansion. When tested with communication sounds, NA application did not produce significant effects on the firing rate and spike timing reliability, despite the fact that α1, α2 and β agonists by themselves had significant effects on these measures. However, the cells whose evoked responses were increased by NA application displayed enhanced discriminative abilities. These cells had initially smaller STRFs than the rest of the population. A principal component analysis revealed that the variations of parameters extracted from the STRF and those extracted from the responses to natural stimuli were not correlated. These results suggest that probing the action of neuromodulators on cortical cells with artificial stimuli does not allow us to predict their action on responses to natural stimuli.
Collapse
Affiliation(s)
- Quentin Gaucher
- Centre de Neurosciences Paris-Sud (CNPS), CNRS UMR 8195, , Université Paris-Sud, Bâtiment 446, 91405, Orsay cedex, France
| | | |
Collapse
|
9
|
Moxon KA, Oliviero A, Aguilar J, Foffani G. Cortical reorganization after spinal cord injury: always for good? Neuroscience 2014; 283:78-94. [PMID: 24997269 DOI: 10.1016/j.neuroscience.2014.06.056] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/09/2014] [Accepted: 06/25/2014] [Indexed: 12/29/2022]
Abstract
Plasticity constitutes the basis of behavioral changes as a result of experience. It refers to neural network shaping and re-shaping at the global level and to synaptic contacts remodeling at the local level, either during learning or memory encoding, or as a result of acute or chronic pathological conditions. 'Plastic' brain reorganization after central nervous system lesions has a pivotal role in the recovery and rehabilitation of sensory and motor dysfunction, but can also be "maladaptive". Moreover, it is clear that brain reorganization is not a "static" phenomenon but rather a very dynamic process. Spinal cord injury immediately initiates a change in brain state and starts cortical reorganization. In the long term, the impact of injury - with or without accompanying therapy - on the brain is a complex balance between supraspinal reorganization and spinal recovery. The degree of cortical reorganization after spinal cord injury is highly variable, and can range from no reorganization (i.e. "silencing") to massive cortical remapping. This variability critically depends on the species, the age of the animal when the injury occurs, the time after the injury has occurred, and the behavioral activity and possible therapy regimes after the injury. We will briefly discuss these dependencies, trying to highlight their translational value. Overall, it is not only necessary to better understand how the brain can reorganize after injury with or without therapy, it is also necessary to clarify when and why brain reorganization can be either "good" or "bad" in terms of its clinical consequences. This information is critical in order to develop and optimize cost-effective therapies to maximize functional recovery while minimizing maladaptive states after spinal cord injury.
Collapse
Affiliation(s)
- K A Moxon
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA.
| | - A Oliviero
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - J Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain
| | - G Foffani
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda s/n, 45071 Toledo, Spain.
| |
Collapse
|
10
|
Fitzgerald PJ. Gray colored glasses: is major depression partially a sensory perceptual disorder? J Affect Disord 2013; 151:418-422. [PMID: 23906865 DOI: 10.1016/j.jad.2013.06.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 06/15/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
BACKGROUND Major depression is a neuropsychiatric disorder that can involve profound dysregulation of mood. While depression is associated with additional abnormalities besides reduced mood, such as cognitive dysfunction, it is not well established that sensory perception is also altered in this disorder (aside from in psychotic depression). Recent studies have shown that visual processing, in as early a stage as the retina, is impaired in depression. This paper examines the hypothesis that major depression can involve alterations in sensory perception. METHODS A Pubmed literature search investigated several lines of evidence: innervation of sensory cortex by serotonin and norepinephrine; antidepressant drugs and depression itself affecting processing of facial expressions of emotion; electroencephalography (EEG) studies of depressed persons and antidepressant drugs; involvement of the serotonergic 5HT2A receptor in both depression and hallucinogenic drug action; psychotic depression involving sensory distortions; dopamine possibly playing a role in depression; and the antidepressant effect of blocking the NMDA receptor with ketamine. RESULTS Data from each of these lines of evidence support the hypothesis that major depression can involve sensory perceptual alterations. CONCLUSIONS Loss of interest in one's daily activities and inability to experience pleasure, also known as anhedonia, in major depression may in part be mediated by sensory abnormalities, whereby normal sensory perceptions are no longer present to activate reward circuitry. LIMITATIONS The data supporting the hypothesis tend to be associative, so further confirmation of the hypothesis awaits additional controlled experiments.
Collapse
Affiliation(s)
- Paul J Fitzgerald
- Department of Psychology, Room 3200 ILSB, Texas A&M University, College Station, TX 77843-4235, USA.
| |
Collapse
|
11
|
Ganzer PD, Moxon KA, Knudsen EB, Shumsky JS. Serotonergic pharmacotherapy promotes cortical reorganization after spinal cord injury. Exp Neurol 2012; 241:84-94. [PMID: 23262119 DOI: 10.1016/j.expneurol.2012.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/06/2012] [Indexed: 01/17/2023]
Abstract
Cortical reorganization plays a significant role in recovery of function after injury of the central nervous system. The neural mechanisms that underlie this reorganization may be the same as those normally responsible for skilled behaviors that accompany extended sensory experience and, if better understood, could provide a basis for further promoting recovery of function after injury. The work presented here extends studies of spontaneous cortical reorganization after spinal cord injury to the role of rehabilitative strategies on cortical reorganization. We use a complete spinal transection model to focus on cortical reorganization in response to serotonergic (5-HT) pharmacotherapy without any confounding effects from spared fibers left after partial lesions. 5-HT pharmacotherapy has previously been shown to improve behavioral outcome after SCI but the effect on cortical organization is unknown. After a complete spinal transection in the adult rat, 5-HT pharmacotherapy produced more reorganization in the sensorimotor cortex than would be expected by transection alone. This reorganization was dose dependent, extended into intact (forelimb) motor cortex, and, at least in the hindlimb sensorimotor cortex, followed a somatotopic arrangement. Animals with the greatest behavioral outcome showed the greatest extent of cortical reorganization suggesting that the reorganization is likely to be in response to both direct effects of 5-HT on cortical circuits and indirect effects in response to the behavioral improvement below the level of the lesion.
Collapse
Affiliation(s)
- Patrick D Ganzer
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3141 Chestnut St., Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
12
|
Edeline JM. Beyond traditional approaches to understanding the functional role of neuromodulators in sensory cortices. Front Behav Neurosci 2012; 6:45. [PMID: 22866031 PMCID: PMC3407859 DOI: 10.3389/fnbeh.2012.00045] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/03/2012] [Indexed: 02/01/2023] Open
Abstract
Over the last two decades, a vast literature has described the influence of neuromodulatory systems on the responses of sensory cortex neurons (review in Gu, 2002; Edeline, 2003; Weinberger, 2003; Metherate, 2004, 2011). At the single cell level, facilitation of evoked responses, increases in signal-to-noise ratio, and improved functional properties of sensory cortex neurons have been reported in the visual, auditory, and somatosensory modality. At the map level, massive cortical reorganizations have been described when repeated activation of a neuromodulatory system are associated with a particular sensory stimulus. In reviewing our knowledge concerning the way the noradrenergic and cholinergic system control sensory cortices, I will point out that the differences between the protocols used to reveal these effects most likely reflect different assumptions concerning the role of the neuromodulators. More importantly, a gap still exists between the descriptions of neuromodulatory effects and the concepts that are currently applied to decipher the neural code operating in sensory cortices. Key examples that bring this gap into focus are the concept of cell assemblies and the role played by the spike timing precision (i.e., by the temporal organization of spike trains at the millisecond time-scale) which are now recognized as essential in sensory physiology but are rarely considered in experiments describing the role of neuromodulators in sensory cortices. Thus, I will suggest that several lines of research, particularly in the field of computational neurosciences, should help us to go beyond traditional approaches and, ultimately, to understand how neuromodulators impact on the cortical mechanisms underlying our perceptual abilities.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Centre de Neurosciences Paris-Sud, CNRS UMR 8195, Université Paris-Sud, Bâtiment Orsay Cedex, France
| |
Collapse
|
13
|
Dopaminergic modulation of receptive fields in rat sensorimotor cortex. Neuroimage 2010; 54:154-60. [PMID: 20643216 DOI: 10.1016/j.neuroimage.2010.07.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 06/15/2010] [Accepted: 07/13/2010] [Indexed: 12/15/2022] Open
Abstract
Dopaminergic projections to primary sensorimotor cortex (SMC) have been described anatomically, but their functional role is unknown. The objective here was to characterize how dopamine modulates the somatosensory evoked potential (SEP) and its receptive field in SMC. SEPs were evoked by median and tibial nerve stimulation and recorded using thin-film multielectrode arrays implanted epidurally over the caudal sensorimotor cortex of rats. SEP amplitudes and receptive fields were measured before and after intracortical injection of a D1- (SCH 23390) or a D2-receptor antagonist (raclopride). Both increased maximum SEP amplitudes by 107.5% and 82.1%, respectively (p<0.01), while vehicle application had no effect (5.9% change). SEP latencies and receptive fields remained unchanged. Dopamine antagonists increase the excitability of sensorimotor cortex to afferent signals. Dopamine, therefore, expectedly reduces SMC excitability thereby improving sensory signal-to-noise ratio. Dopaminergic modulation may render SMC circuitry more effective in processing sensory information from different sources.
Collapse
|
14
|
Isakova AV, Mednikova YS. Comparative roles of acetylcholine and noradrenaline in controlling the spontaneous activity of cortical neurons. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2007; 37:689-96. [PMID: 17763988 DOI: 10.1007/s11055-007-0069-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/15/2006] [Indexed: 10/22/2022]
Abstract
The effects of acetylcholine and noradrenaline on the spike activity of neurons recorded in guinea pig parietal cortex slices were studied. Iontophoretic application of these two neurotransmitters to cortical neurons induced similar responses consisting of slowly developing and prolonged increases in spike activity. Differences in the temperature sensitivity of responses to acetylcholine and noradrenaline were identified. When the incubation medium temperature was increased from 32-34 degrees C to 35-36 degrees C, the effects of acetylcholine on neuron spike activity increased sharply, with the result that neurons which showed no spontaneous activity at 32-34 degrees C became sensitive to acetylcholine. The temperature-dependent increases in the extent of responses to acetylcholine were accompanied by stable increases in the level of spontaneous activity. Responses to application of noradrenaline showed no significant change when the temperature increased from 32-34 degrees C to 35-36 degrees C. Since neuron responses to the iontophoretic application of glutamate, the major excitatory neurotransmitter in the cortex, remained constant over this range of temperatures, the data obtained here lead to the conclusion that acetylcholine is the main regulator of the level of spontaneous activity of cortical neurons.
Collapse
Affiliation(s)
- A V Isakova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow.
| | | |
Collapse
|
15
|
Bandyopadhyay S, Gonzalez-Islas C, Hablitz JJ. Dopamine Enhances Spatiotemporal Spread of Activity in Rat Prefrontal Cortex. J Neurophysiol 2005; 93:864-72. [PMID: 15469958 DOI: 10.1152/jn.00922.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopaminergic modulation of prefrontal cortex (PFC) is important for neuronal integration in this brain region known to be involved in cognition and working memory. Because of the complexity and heterogeneity of the effect of dopamine on synaptic transmission across layers of the neocortex, dopamine's net effect on local circuits in PFC is difficult to predict. We have combined whole cell patch-clamp recording and voltage-sensitive dye imaging to examine the effect of dopamine on the excitability of local excitatory circuits in rat PFC in vitro. Whole cell voltage-clamp recording from visually identified layer II/III pyramidal neurons in rat brain slices revealed that, in the presence of bicuculline (10 μM), bath-applied dopamine (30–60 μM) increased the amplitude of excitatory postsynaptic currents (EPSCs) evoked by weak intracortical stimulus. The effect was mimicked by the selective D1 receptor agonist SKF 81297 (1 μM). Increasing stimulation resulted in epileptiform discharges. SKF 81297 (1 μM) significantly lowered the threshold stimulus required for generating epileptiform discharges to 83% of control. In the imaging experiments, bath application of dopamine or SKF 81297 enhanced the spatiotemporal spread of activity in response to weak stimulation and previously subthreshold stimulation resulted in epileptiform activity that spread across the whole cortex. These effects could be blocked by the selective D1 receptor antagonist SCH 23390 (10 μM) but not by the D2 receptor antagonist eticlopride (5 μM). These results indicate that dopamine, by a D1 receptor–mediated mechanism, enhances spatiotemporal spread of synaptic activity and lowers the threshold for epileptiform activity in local excitatory circuits within PFC.
Collapse
Affiliation(s)
- Susanta Bandyopadhyay
- Department of Neurobiology and Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
16
|
Lecas JC. Locus coeruleus activation shortens synaptic drive while decreasing spike latency and jitter in sensorimotor cortex. Implications for neuronal integration. Eur J Neurosci 2004; 19:2519-30. [PMID: 15128405 DOI: 10.1111/j.0953-816x.2004.03341.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chronic recording of locus coeruleus (LC) neurons in rat and monkey have pointed out that brief, phasic LC discharges, but not sustained activity, are specifically related to salient stimuli and attention. However, the sensory consequences of phasic activation of the noradrenergic system by a brief conditioning stimulation of the LC have not been fully investigated. This study examined the effect of LC activation on synaptic and neuronal responses to a tactile stimulus in the sensorimotor cortex of the anaesthetized rat, by analysing the fine temporal structure of sensory discharges and current source-density profiles recorded from the same electrodes. LC stimulation, with minimal EEG effects, consistently reduced the synaptic input in layers IV and V-VI, by decreasing the amplitude and duration of short-latency current sinks, but not the slope of their early rising phase. Simultaneously, most multiple and single unit excitatory responses were shortened by the suppression of their late component after 25-30 ms, whereas robust temporal facilitation of the early discharge was found for spike latency mean and variance, spike timing and synchronization to the stimulus, but leaving the number of spikes unaffected. These two apparently opposite effects on the synaptic drive and neuronal response are reminiscent of the noradrenergic depression of afferent synaptic potentials observed with an increased neuronal excitability in vitro. They are interpreted as a noradrenergic sharpening of thalamocortical processing consistent with a presumed role of synchronous discharges in perception that would depend on activated states, particularly when LC activity is correlated with vigilance or attention.
Collapse
Affiliation(s)
- Jean-Claude Lecas
- Laboratoire de Neurobiologie des Processus Adaptatifs (neuromodulation et processus mnésiques), CNRS UMR 7102, Université Pierre et Marie Curie, 9, quai St Bernard, Bât B, 5étage, 75005 Paris, France.
| |
Collapse
|
17
|
Edeline JM. The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 2003; 153:554-72. [PMID: 14517594 DOI: 10.1007/s00221-003-1608-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2002] [Accepted: 06/14/2003] [Indexed: 11/26/2022]
Abstract
The goal of this review is twofold. First, it aims to describe the dynamic regulation that constantly shapes the receptive fields (RFs) and maps in the thalamo-cortical sensory systems of undrugged animals. Second, it aims to discuss several important issues that remain unresolved at the intersection between behavioral neurosciences and sensory physiology. A first section presents the RF modulations observed when an undrugged animal spontaneously shifts from waking to slow-wave sleep or to paradoxical sleep (also called REM sleep). A second section shows that, in contrast with the general changes described in the first section, behavioral training can induce selective effects which favor the stimulus that has acquired significance during learning. A third section reviews the effects triggered by two major neuromodulators of the thalamo-cortical system--acetylcholine and noradrenaline--which are traditionally involved both in the switch of vigilance states and in learning experiences. The conclusion argues that because the receptive fields and maps of an awake animal are continuously modulated from minute to minute, learning-induced sensory plasticity can be viewed as a "crystallization" of the receptive fields and maps in one of the multiple possible states. Studying the interplays between neuromodulators can help understanding the neurobiological foundations of this dynamic regulation.
Collapse
Affiliation(s)
- Jean-Marc Edeline
- Laboratoire de Neurobiologie de l'Apprentissage de la Mémoire et de la Communication, Université Paris-Sud, UMR 8620, Bat 446, 91405 Orsay, France.
| |
Collapse
|
18
|
Awenowicz PW, Porter LL. Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex. J Neurophysiol 2002; 88:3439-51. [PMID: 12466459 DOI: 10.1152/jn.00078.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cortical neurons respond in a variety of ways to locally applied dopamine, perhaps because of the activation of different receptors within or among subpopulations of cells. This study was conducted to assess the effects of dopamine and the receptor subtypes that mediate the responses of a specific population of neurons, the pyramidal tract neurons (PTNs) in the rodent motor cortex. The specific subfamilies of dopamine receptors expressed by PTNs also were determined. PTNs were identified by antidromic stimulation in intact animals. Extracellular recordings of their spontaneous activity and glutamate-induced excitation were performed with multi-barrel pipettes to allow simultaneous recording and iontophoresis of several drugs. Prolonged (30 s) application of dopamine caused a progressive, nonlinear decrease in spontaneous firing rates for nearly all PTNs, with significant reductions from baseline spontaneous activity (71% of baseline levels) occurring between 20 and 30 s of iontophoresis. The D1 selective (SCH23390) and the D2 selective (eticlopride) antagonists were both effective in blocking dopamine-induced inhibition in nearly all PTNs. Mean firing levels were maintained within 3% of baseline levels during co-application of the D1 antagonist with dopamine and within 11% of baseline levels during co-application of the D2 antagonist and dopamine. SCH23390 was ineffective however, in 2 of 16 PTNs, and eticlopride was ineffective in 3 PTNs. The dopamine blockade by both antagonists in most neurons, along with the selective blockade by one, but not the other antagonist in a few neurons indicate that the overall population of PTNs exhibits a heterogeneous expression of dopamine receptors. The firing rate of PTNs was significantly enhanced by iontophoresis of glutamate (mean = 141% of baseline levels). These increases were attenuated significantly (mean= 98% of baseline) by co-application with dopamine in all PTNs, indicating dopaminergic interactions with glutamate transmission. The expression of dopamine receptors was studied with dual-labeling techniques. PTNs were identified by retrograde labeling with fast blue and the D1a, D2, or D5 receptor proteins were stained immunohistochemically. Some, but not all PTNs, showed labeling for D1a, D2, or D5 receptors. The D1a and D2 receptor immunoreactivity was observed primarily in the somata of PTNs, whereas D5 immunoreactivity extended well into the apical dendrites of PTNs. In accordance with findings of D1 and D2 receptor antagonism of dopamine's actions, the identification of three DA receptor subtypes on PTNs suggests that dopamine can directly modulate PTN activity through one or more receptor subtypes.
Collapse
Affiliation(s)
- Patrick W Awenowicz
- Program in Neuroscience, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | |
Collapse
|
19
|
Ego-Stengel V, Bringuier V, Shulz DE. Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study. Neuroscience 2002; 111:275-89. [PMID: 11983314 DOI: 10.1016/s0306-4522(02)00011-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In vitro intracellular studies have shown that norepinephrine modulates cellular excitability and synaptic transmission in the cortex. Based on these effects, norepinephrine has been proposed to enhance the signal-to-noise ratio and to improve functional selectivity by potentiating strong synaptic responses and reducing weak ones. Here we have studied the functional effects of iontophoretic applications of norepinephrine during in vivo extracellular and intracellular recordings from neurons of the primary visual cortex of kittens and adult cats. Analysis of extracellular data concentrated on norepinephrine-induced changes in spontaneous and evoked activities, in signal-to-noise ratio, and in orientation and direction selectivity. Analysis of the intracellular data concentrated on actions of norepinephrine on spike firing accommodation, which has been shown to be reduced by norepinephrine in vitro, and on synaptic responses. Application of norepinephrine resulted in a depression of both spontaneous and evoked spiking activity. However, no systematic change in signal-to-noise ratio was observed. The suppressive effect of norepinephrine was exerted with no significant sharpening of direction or orientation selectivity tuning. The overall reduction in visual activity by norepinephrine affected the orientation tuning curves in a way compatible with a divisive effect, that is a normalization or gain control with no change in tuning width. Norepinephrine applied during intracellular recordings reduced the visually evoked depolarizing potentials whereas no change in the responsiveness of the cell to current-induced depolarizations was observed. In conditions of optimal visual stimulation which produced large depolarizations of several hundreds of milliseconds and sustained repetitive firing comparable to that obtained by direct current injection, we were unable to observe a facilitation of the evoked responses by norepinephrine as it would be expected from the well-documented increase in excitability induced by norepinephrine in vitro. In conclusion, from these results we suggest that norepinephrine released in the primary visual cortex primarily reduces the level of cortical activation by afferent signals, without affecting the cortical functional selectivity nor increasing the signal-to-noise ratio.
Collapse
Affiliation(s)
- V Ego-Stengel
- Unité de Neurosciences Intégratives et Computationnelles, Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, 1, Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | | |
Collapse
|
20
|
Abstract
It has been recognized for some time that serotonin fibers originating in raphe nuclei are present in the inferior colliculi of all mammalian species studied. More recently, serotonin has been found to modulate the responses of single inferior colliculus neurons to many types of auditory stimuli, ranging from simple tone bursts to complex species-specific vocalizations. The effects of serotonin are often quite strong, and for some neurons are also highly specific. A dramatic illustration of this is that serotonin can change the selectivity of some neurons for sounds, including species-specific vocalizations. These results are discussed in light of several theories on the function of serotonin in the IC, and of outstanding issues that remain to be addressed.
Collapse
Affiliation(s)
- Laura M Hurley
- 1001 E. Third St., Jordan Hall, Indiana University, , Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
21
|
Lavin A, Grace AA. Stimulation of D1-type dopamine receptors enhances excitability in prefrontal cortical pyramidal neurons in a state-dependent manner. Neuroscience 2001; 104:335-46. [PMID: 11377838 DOI: 10.1016/s0306-4522(01)00096-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Prefrontal cortex neurons recorded in vivo exhibit bistable activity states, consisting of a depolarized phase (-55mV) and a hyperpolarized phase (-85mV). These "up" and "down" states have durations ranging from 800ms to 1s and a periodicity of approximately 1Hz. This study examines the state-dependency of prefrontal cortical neuron responses to dopamine, in which the bistable-state was approximated in vitro by intracellular current injection. At resting membrane potential (n=10), dopamine caused a significant depolarization of the membrane potential without altering any of the other electrophysiological characteristics tested. In contrast, both dopamine (30 microM, 5min) and the D1 receptor agonist SKF 38393 (5 and 10 microM) increased cell excitability when the cell was in the depolarized state (i.e., -55mV) but not the hyperpolarized state (i.e., -85 mV; n=10). This increase in excitability was accompanied by a decrease in the rheobase current. The SKF 38393-enhanced excitability was dose-dependent and could be blocked by bath administration of the D1 receptor antagonist SCH 23390 (5 and 10 microM). Administration of the GABA antagonist bicuculline (7 microM) plus the N-methyl-D-aspartate channel blocker CPP (10 microM) produced an additional increase in the excitability of prefrontal cortex neurons that was not dependent on the membrane potential. From these data we suggest that dopamine exerts state-dependent modulatory effects on the excitability of neurons in deep layers of the prefrontal cortex.
Collapse
Affiliation(s)
- A Lavin
- Department of Neuroscience, University of Pittsburgh, 446 Crawford Hall, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
22
|
Gabriel Manjarrez G, Hernández ZE, Robles OA, González RM, Hernández RJ. Developmental impairment of auditory evoked N1/P2 component in rats undernourished in utero: its relation to brain serotonin activity. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 127:149-55. [PMID: 11335001 DOI: 10.1016/s0165-3806(01)00129-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In utero undernourishment produces an elevation of L-tryptophan and serotonin in the brain, including the auditory cortex (A1), such changes seem to be related to an increase in the free fraction (FFT) of plasma L-tryptophan that is transported into the brain through the blood-brain barrier, where it is taken up by serotonergic neurons for serotonin synthesis. Our observations support that FFT has a positive correlation with L-tryptophan (L-Trp) and serotonin levels in the auditory cortex (r=0.95 and 0.82, respectively). Interestingly, a decreased intensity dependence of the auditory evoked N1/P2 component was found in gestationally undernourished animals during their postnatal development. The N1/P2 component had a negative correlation (r=0.81) with A1 serotonin, such that it reflects changes in the neurotransmitter concentration. The present observations suggest a relevant role of serotonin in modulating the activity of the auditory cortex. Since the N1/P2 component is mainly associated with the activity of A1 neurons, it may well be that perception of auditory information is impaired during this developmental period, in the early undernourished animals, possibly affecting cognitive processes. This may be relevant to humans since low birth weight babies that also suffered gestational undernourishment (fetal-placental insufficiency) present an increase in plasma FFT from birth up to 3 months of age. These findings support that the plasma FFT and the intensity dependence of the auditory evoked N1/P2 component relate one another and may be markers of changes of the brain serotonergic activity.
Collapse
Affiliation(s)
- G Gabriel Manjarrez
- Laboratory of Developmental Neurochemistry, National Medical Center, Mexican Institute of Social Security (IMSS), Mexico City, Mexico.
| | | | | | | | | |
Collapse
|
23
|
Paspalas CD, Papadopoulos GC. Serotoninergic afferents preferentially innervate distinct subclasses of peptidergic interneurons in the rat visual cortex. Brain Res 2001; 891:158-67. [PMID: 11164819 DOI: 10.1016/s0006-8993(00)03193-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Although it is well documented that the non-pyramidal neurons of the cerebral cortex are under the influence of the vast serotoninergic input, the ultrastructural substrate for such functional interactions appears largely obscure. We sought to address this issue by dual immunoelectron microscopy, combining antibodies against serotonin (5-HT) and three neurochemical markers for peptidergic interneurons, namely somatostatin (SRIF), neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). The gold-substituted silver-peroxidase method was employed to intensify and differentiate the end-product of the peptide-immunoreaction from the non-intensified 5-HT fibers. Mainly the SRIF but also the NPY neurons were encountered among the postsynaptic targets of the 5-HT boutons. Recipients of synapses were perikarya and proximal dendrites of SRIF and NPY cells but also distal dendrites of the SRIF neurons. Neither synaptic relationships nor close appositions were ever identified between 5-HT boutons and VIP-immunoreactive elements. This remarkable synaptic preference/avoidance of 5-HT afferents for specific peptidergic subpopulations reveals a 'wired' component of cortical serotonin neurotransmission, which should be carefully interpreted within the frame of the available literature for extrasynaptic serotonin release.
Collapse
Affiliation(s)
- C D Paspalas
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, 54006, Thessaloniki, Greece
| | | |
Collapse
|
24
|
Hurley LM, Thompson AM. Serotonergic innervation of the auditory brainstem of the Mexican free-tailed bat,Tadarida brasiliensis. J Comp Neurol 2001; 435:78-88. [PMID: 11370012 DOI: 10.1002/cne.1194] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anatomical and electrophysiological evidence suggests that serotonin alters the processing of sound in the auditory brainstem of many mammalian species. The Mexican free-tailed bat is a hearing specialist, like other microchiropteran bats. At the same time, many aspects of its auditory brainstem are similar to those in other mammals. This dichotomy raises an interesting question regarding the serotonergic innervation of the bat auditory brainstem: Is the serotonergic input to the auditory brainstem similar in bats and other mammals, or are there specializations in the serotonergic innervation of bats that may be related to their exceptional hearing capabilities? To address this question, we immunocytochemically labeled serotonergic fibers in the brainstem of the Mexican free-tailed bat, Tadarida brasiliensis. We found many similarities in the pattern of serotonergic innervation of the auditory brainstem in Tadarida compared with other mammals, but we also found two striking differences. Similarities to staining patterns in other mammals included a higher density of serotonergic fibers in the dorsal cochlear nucleus and in granule cell regions than in the ventral cochlear nucleus, a high density of fibers in some periolivary nuclei of the superior olive, and a higher density of fibers in peripheral regions of the inferior colliculus compared with its core. The two novel features of serotonergic innervation in Tadarida were a high density of fibers in the fusiform layer of the dorsal cochlear nucleus relative to surrounding layers and a relatively high density of serotonergic fibers in the low-frequency regions of the lateral and medial superior olive.
Collapse
Affiliation(s)
- L M Hurley
- Section of Neurobiology, University of Texas, Austin, Texas 78712, USA
| | | |
Collapse
|
25
|
Lecas JC. Noradrenergic modulation of tactile responses in rat cortex. Current source-density and unit analyses. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2001; 324:33-44. [PMID: 11212500 DOI: 10.1016/s0764-4469(00)01276-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This study describes the noradrenergic modulation of tactile afferent information in the sensorimotor cortex of urethane-anesthetized rats. Synaptic and spike responses to a mechanical stimulation of the hand palm were evaluated by means of current source-density analysis and unit activity recording in all cortical layers. Results showed that activation of the locus coeruleus decreased and shortened afferent synaptic excitation in supragranular, but not in deep layers. On the average, unit responses exhibited facilitated latency, moderately increased amplitude, enhanced postexcitatory inhibition and synchronization of responses across layers. The apparent paradox of this global phasic facilitation correlated with a decrease in input synaptic currents was discussed according to hypotheses which might explain its functional significance.
Collapse
Affiliation(s)
- J C Lecas
- Département Neuromodulation et processus cognitifs, Institut des Neurosciences, CNRS, UMR c7624, Université Pierre et Marie Curie (Paris-VI), Paris, France.
| |
Collapse
|
26
|
Soulière F, Urbain N, Gervasoni D, Schmitt P, Guillemort C, Fort P, Renaud B, Luppi PH, Chouvet G. Single-unit and polygraphic recordings associated with systemic or local pharmacology: a multi-purpose stereotaxic approach for the awake, anaesthetic-free, and head-restrained rat. J Neurosci Res 2000; 61:88-100. [PMID: 10861804 DOI: 10.1002/1097-4547(20000701)61:1<88::aid-jnr11>3.0.co;2-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to avoid any artifactual pharmacological interferences with anaesthetic agents, a procedure has been developed for working on the awake, anaesthetic-free rat in a head-restrained condition. It allows, on the same animal and over several consecutive days, single-unit recordings in combination with systemic or local pharmacology (microiontophoresis or micropressure ejections), as well as monitoring vigilance states via the electroencephalogram and the electromyogram. After the cementing of a special "U"-shaped device on its skull under general anaesthesia, the animal is progressively habituated to stay daily, for several hours, under a painless corresponding stereotaxic restraint. This system can be easily adapted to different stereotaxic frames and, because of its spatial flexibility for targetting the desired rostrocaudal or lateral positions, allows access to a large number of cerebral structures. Experiments performed on Globus Pallidus, Substantia Nigra, and Locus Coeruleus neurons, combining the different possibilities of this system, are reported. They demonstrate, on the awake anaesthetic-free head-restrained rat, and under suitable ethical conditions, the feasibility of single-unit recordings of identified neurons associated with the study of their pharmacological reactivity after systemic or local drug administrations without any other drug interferences, and in physiologically relevant conditions such as the spontaneous alternance of vigilance states.
Collapse
Affiliation(s)
- F Soulière
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U512, Université Claude Bernard Lyon 1, Lyon-Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The mode of discharge of auditory cortex cells was studied during iontophoretic application of noradrenaline (NA). Only seven of 190 cells showed changes in interspike interval distribution during NA application. A similar conclusion was drawn when the analysis focused on 68 cells classified as bursting (n = 15), regular spiking (n = 49) or thin spike (n = 4) cells. Only two bursting cells showed changes in their ISI distribution. The effects on the mode of discharge were independent of the effect on the spike rate and were not a function of cortical depth. These results suggest that the changes in firing mode previously described in vitro occur for a limited percentage of cells and/or for cell types not very often recorded in vivo.
Collapse
Affiliation(s)
- Y Manunta
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS UMR 8620, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
28
|
Serotonin differentially modulates responses to tones and frequency-modulated sweeps in the inferior colliculus. J Neurosci 1999. [PMID: 10479707 DOI: 10.1523/jneurosci.19-18-08071.1999] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although almost all auditory brainstem nuclei receive serotonergic innervation, little is known about its effects on auditory neurons. We address this question by evaluating the effects of serotonin on sound-evoked activity of neurons in the inferior colliculus (IC) of Mexican free-tailed bats. Two types of auditory stimuli were used: tone bursts at the neuron's best frequency and frequency-modulated (FM) sweeps with a variety of spectral and temporal structures. There were two main findings. First, serotonin changed tone-evoked responses in 66% of the IC neurons sampled. Second, the influence of serotonin often depended on the type of signal presented. Although serotonin depressed tone-evoked responses in most neurons, its effects on responses to FM sweeps were evenly mixed between depression and facilitation. Thus in most cells serotonin had a different effect on tone-evoked responses than it did on FM-evoked responses. In some neurons serotonin depressed responses evoked by tone bursts but left the responses to FM sweeps unchanged, whereas in others serotonin had little or no effect on responses to tone bursts but substantially facilitated responses to FM sweeps. In addition, serotonin could differentially affect responses to various FM sweeps that differed in temporal or spectral structure. Previous studies have revealed that the efficacy of the serotonergic innervation is partially modulated by sensory stimuli and by behavioral states. Thus our results suggest that the population activity evoked by a particular sound is not simply a consequence of the hard wiring that connects the IC to lower and higher regions but rather is highly dynamic because of the functional reconfigurations induced by serotonin and almost certainly other neuromodulators as well.
Collapse
|
29
|
Manunta Y, Edeline JM. Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. Eur J Neurosci 1999; 11:2134-50. [PMID: 10336682 DOI: 10.1046/j.1460-9568.1999.00633.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study shows the effects of noradrenaline (NA) on receptive fields of auditory cortex neurons in awake animals; it is the first one to describe the effects of NA on neurons in sensory cortex, in different natural states of vigilance. The frequency receptive field of 250 auditory cortex neurons was determined before, during and after ionophoretic application of NA while recording the state of vigilance of unanaesthetized guinea-pigs. When NA significantly changed the spontaneous activity (85 out of 250 cells), the dominant effect was a decrease (61 out of 85 cells, 72%). When NA significantly changed the evoked activity (107 out of 250 cells), the dominant effect was also a decrease (84 out of 107 cells, 78%). During and after NA application, the signal-to-noise ratio (S/N, i.e. evoked/spontaneous activity) was unchanged, but the selectivity for pure-tone frequencies was enhanced. When the effects occurring in wakefulness and in slow-wave sleep (SWS) were compared, it appeared that the predominantly inhibitory effect of NA on spontaneous and evoked activity was present in both states. The S/N ratio was unchanged and the selectivity was increased in both states. However, during SWS, the percentage of cells inhibited by NA was lower, and the effects on the frequency selectivity were smaller than in wakefulness. In contrast, GABA produced similar inhibitory effects on spontaneous and on evoked activity during wakefulness and SWS. Comparisons with previous data obtained using the same protocol in urethane anaesthetized animals (Manunta & Edeline 1997) indicate that the effects of NA were qualitatively the same. Based on these results, we suggest that any hypothesis concerning the role of NA in cortical plasticity should take into account the fact that the predominantly inhibitory effects of NA lead to decrease the size of the receptive field.
Collapse
Affiliation(s)
- Y Manunta
- Laboratoire de Neurobiologie de l'Apprentissage et de la Mémoire, CNRS URA 1491, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
30
|
Edeline JM. Learning-induced physiological plasticity in the thalamo-cortical sensory systems: a critical evaluation of receptive field plasticity, map changes and their potential mechanisms. Prog Neurobiol 1999; 57:165-224. [PMID: 9987805 DOI: 10.1016/s0301-0082(98)00042-2] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The goal of this review is to give a detailed description of the main results obtained in the field of learning-induced plasticity. The review is focused on receptive field and map changes observed in the auditory, somatosensory and visual thalamo-cortical system as a result of an associative training performed in waking animals. Receptive field (RF) plasticity, 2DG and map changes obtained in the auditory and somatosensory system are reviewed. In the visual system, as there is no RF and map analysis during learning per se, the evidence presented are from increased neuronal responsiveness, and from the effects of perceptual learning in human and non human primates. Across sensory modalities, the re-tuning of neurons to a significant stimulus or map reorganizations in favour of the significant stimuli were observed at the thalamic and/or cortical level. The analysis of the literature in each sensory modality indicates that relationships between learning-induced sensory plasticity and behavioural performance can, or cannot, be found depending on the tasks that were used. The involvement (i) of Hebbian synaptic plasticity in the described neuronal changes and (ii) of neuromodulators as "gating" factors of the neuronal changes, is evaluated. The weakness of the Hebbian schema to explain learning-induced changes and the need to better define what the word "learning" means are stressed. It is suggested that future research should focus on the dynamic of information processing in sensory systems, and the concept of "effective connectivity" should be useful in that matter.
Collapse
Affiliation(s)
- J M Edeline
- NAMC, URA CNRS 1491, Université Paris-Sud, Orsay, France.
| |
Collapse
|
31
|
Abstract
Noradrenaline (NA) from the locus coeruleus and GABA from intracortical nonpyramidal cells exert strong influences on cortical activity. To assess possible interaction between the two, the effects of noradrenergic agonists on spontaneous GABAergic IPSCs as well as on the activity of identified GABAergic cell types were investigated by in vitro whole-cell recordings from the frontal cortex of 18- to 22-d-old rats. NA (3-50 microM) and an alpha-adrenergic agonist, 6-fluoronorepinephrine (FNE; 30-50 microM), induced an increase of IPSC frequency in pyramidal cells, but a beta-adrenergic agonist did not. This increase was reduced by tetrodotoxin, bicuculline, and alpha-adrenergic antagonists, suggesting that GABAergic cells are excited via alpha-adrenoceptors. Fast-spiking or late-spiking cells were depolarized by application of NA or FNE, but none demonstrated spike firings. The former morphologically included common multipolar cells with extended axonal arborizations as well as chandelier cells, and the latter neurogliaform cells. Most somatostatin-immunoreactive regular or burst-spiking cells, including Martinotti cells and wide arbor cells, were depolarized and accompanied by spike firing. In a few cases this was preceded by hyperpolarization. Cholecystokinin-immunoreactive regular or burst-spiking nonpyramidal cells, including large basket cells, were affected heterogeneously: depolarization, hyperpolarization followed by depolarization, or hyperpolarization resulted. The findings suggest that, similar to the effects of acetylcholine, the excitability of cortical GABAergic cell types is differentially regulated by NA and that NA actions are similar to cholinergic ones in some GABAergic cell types but not in others.
Collapse
|
32
|
Abstract
The selectivity of rat auditory cortex neurons for pure tone frequency was studied during and after ionophoretic application (5-40 nA) of noradrenaline in urethane-anaesthetized rats. The dominant effect induced by noradrenaline was a significant decrease in spontaneous (93/268 cells) and evoked activity (133/268 cells) which outlasted the application. In the whole population of cells (n = 268) the signal-to-noise ratio, computed using as the signal either the mean evoked response or the response at the best frequency, was unchanged during noradrenaline application. It was significantly increased only for cells showing significantly decreased spontaneous activity, and was significantly decreased for cells showing increased spontaneous activity. Frequency selectivity was significantly increased for the whole population during and after noradrenaline application. It was also significantly increased for cells showing significantly decreased evoked activity, and was significantly decreased for cells showing increased evoked activity. The noradrenaline-induced inhibition was not blocked by propranolol (beta antagonist); it was blocked by prazosin (alpha1 antagonist) and partly mimicked by phenylephrine (alpha1 agonist). GABA, which also inhibited spontaneous and evoked activity, slightly increased the signal-to-noise ratio and significant increased frequency selectivity. However, when noradrenaline was ejected in the presence of bicuculline at doses that were able to block GABAergic inhibition, the inhibitory effects of noradrenaline on spontaneous and evoked activity were still observed. The possible function of noradrenaline-induced inhibitions in sensory cortices is briefly discussed.
Collapse
Affiliation(s)
- Y Manunta
- Laboratoire de Neurobiologie de l'Apprentissage et de la Mémoire, CNRSURA 1491, Université Paris-Sud, Orsay, France
| | | |
Collapse
|
33
|
Edeline JM. The alpha 2-adrenergic antagonist idazoxan enhances the frequency selectivity and increases the threshold of auditory cortex neurons. Exp Brain Res 1995; 107:221-40. [PMID: 8773242 DOI: 10.1007/bf00230044] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Idazoxan (IDA), an alpha 2 antagonist of adrenoceptors, has been shown to increase cortical release of norepinephrine (NE) by an action mediated primarily by the alpha 2 autoreceptors located on the NE terminals. In the present experiment, IDA application was used to increase the cortial concentration of NE. Single unit activity (n = 107) was recorded in the rat auditory cortex, and the neurons' frequency receptive fields (FRF) were determined before and after systemic (intraperitoneal or intravenous) or local application of IDA. In the whole population (n = 107) there was a decrease in spontaneous activity and/or evoked activity for 84% of the recordings (90/107 cells). Decreased tone-evoked responses were obtained after systemic injections (n = 39), as well as after local applications (n = 68) of IDA. These effects were not observed after either systemic injections (n = 13) or local applications (n = 9) of saline. The signal-to-noise ratio (the mean evoked responses divided by the spontaneous activity) was slightly decreased after systemic injections and slightly increased after local applications. However, after both systemic and local injections the frequency selectivity of the neuronal responses was increased. For a group of neurons (n = 27), testing the FRF at three intensities indicated that this increased selectivity can be expressed at high or middle range intensity but not at low intensity. For 37 cells, the intensity function was tested at the best frequency before and after IDA application, and the threshold for excitatory responses was determined in 28 cases. An increased threshold was observed in 16 of 28 cases after IDA application. Thus, using a pharmacological procedure to increase the extracellular concentration of NE, the dominant inhibitory effect on the auditory cortex neurons led to an enhancement of the frequency selectivity, but also an increase in the threshold of these neurons.
Collapse
Affiliation(s)
- J M Edeline
- Laboratoire de Neurobiologie de l'Apprentissage et de la Mémoire, CNRS URA 1491, Université Paris-Sud, Orsay, France
| |
Collapse
|
34
|
Hoffman RE, Rapaport J, Ameli R, McGlashan TH, Harcherik D, Servan-Schreiber D. A Neural Network Simulation of Hallucinated “Voices” and Associated Speech Perception Impairments in Schizophrenic Patients. J Cogn Neurosci 1995; 7:479-96. [DOI: 10.1162/jocn.1995.7.4.479] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Abstract
The mechanism of hallucinated speech, a symptom commonly reported by schizophrenic patients, is unknown. The hypothesis that these hallucinations arise from pathologically altered working memory underlying speech perception was explored. A neural network computer simulation of contextually guided sequential word detection based on Elman (1990a,b) was studied. Pruning anatomic connections or reducing neuronal activation in working memory caused word “percepts” to emerge spontaneously (i.e., in the absence of external “speech inputs”), thereby providing a model of hallucinated speech. These simulations also demonstrated distinct patterns of word detection impairments when inputs were accompanied by varying levels of noise. In a parallel human study, the ability to shadow noisecontaminated, connected speech was assessed. Schizophrenic patients reporting hallucinated speech demonstrated a pattern of speech perception impairments similar to a simulated neural network with reduced anatomic connectivity and enhanced neuronal activation. Schizophrenic patients not reporting this symptom did not demonstrate these speech perception impairments. Neural network simulations and human empirical data, when considered together, suggested that the primary cause of hallucinated “voices” in schizophrenia is reduced neuroanatomic connectivity in verbal working memory.
Collapse
|
35
|
|
36
|
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Prog Neurobiol 1992; 39:337-88. [PMID: 1354387 DOI: 10.1016/0301-0082(92)90012-4] [Citation(s) in RCA: 743] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- D A McCormick
- Section of Neurobiology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
37
|
Beauregard M, Ferron A, Descarries L. Opposite effects of neurotensin on dopamine inhibition in different regions of the rat brain: An iontophoretic study. Neuroscience 1992; 47:613-9. [PMID: 1350070 DOI: 10.1016/0306-4522(92)90170-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anatomical, biochemical and behavioral data suggest functional interactions between dopamine and neurotensin in regions of the brain receiving a co-existent and/or distinct innervation by these two transmitters. We therefore measured and compared the effects of iontophoretically applied dopamine and neurotensin in the prefrontal and anterior cingulate cortex (co-existent innervation) vs the nucleus accumbens and neostriatum (distinct innervation) of urethane-anesthetized rats. In every region, the firing rate of most spontaneously active neurons was depressed by dopamine. Neurotensin had no effect on the same cells, except for a few nucleus accumbens units which were inhibited by the peptide. When dopamine and neurotensin were concomitantly applied, the magnitude of maximal inhibitions induced by dopamine was modified in the majority of neurons tested. A significant decrease in dopamine inhibition was observed in 100% of anterior cingulate, 74% of prefrontal cortex and 48% of accumbens units. On the contrary, in neostriatum, dopamine inhibition was significantly increased in 60% of the units tested. In every region, the remaining neurons showed less than 30% changes in dopamine responsiveness, and were therefore considered unaffected by neurotensin. In the anterior cingulate cortex, inhibitions, respectively, induced by the dopamine D1 agonist, SKF 38393, and the D2 agonist, LY 171555, were also decreased by simultaneous application of neurotensin. Together with currently available data on the cellular localization of neurotensin receptors in rat brain, these results suggest that the modulation of dopamine inhibition by neurotensin may have opposite effects depending on whether the neurotensin receptors are located postsynaptically on target neurons (antagonistic effects) or presynaptically on dopamine terminals (potentiating effects).
Collapse
Affiliation(s)
- M Beauregard
- Département de physiologie, Faculté de médecine, Université de Montŕeal, Québec, Canada
| | | | | |
Collapse
|