1
|
Heiser H, Kiessler F, Roggenbach A, Ibanez V, Wieckhorst M, Helmchen F, Gjorgjieva J, Wahl AS. Brain-wide microstrokes affect the stability of memory circuits in the hippocampus. Nat Commun 2025; 16:3462. [PMID: 40216776 PMCID: PMC11992252 DOI: 10.1038/s41467-025-58688-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/25/2025] [Indexed: 04/14/2025] Open
Abstract
Cognitive deficits affect over 70% of stroke survivors, yet the mechanisms by which multiple small ischemic events contribute to cognitive decline remain poorly understood. In this study, we employed chronic two-photon calcium imaging to longitudinally track the fate of individual neurons in the hippocampus of mice navigating a virtual reality environment, both before and after inducing brain-wide microstrokes. Our findings reveal that, under normal conditions, hippocampal neurons exhibit varying degrees of stability in their spatial memory coding. However, microstrokes disrupted this functional network architecture, leading to cognitive impairments. Notably, the preservation of stable coding place cells, along with the stability, precision, and persistence of the hippocampal network, was strongly predictive of cognitive outcomes. Mice with more synchronously active place cells near important locations demonstrated recovery from cognitive impairment. This study uncovers critical cellular responses and network alterations following brain injury, providing a foundation for novel therapeutic strategies preventing cognitive decline.
Collapse
Affiliation(s)
- Hendrik Heiser
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Filippo Kiessler
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Adrian Roggenbach
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Victor Ibanez
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Martin Wieckhorst
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| | - Julijana Gjorgjieva
- School of Life Sciences, Technical University of Munich, Maximus-von-Imhof-Forum 3, 85354, Freising, Germany
| | - Anna-Sophia Wahl
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland.
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, 81377, Munich, Germany.
- Department of Neuroanatomy, Institute of Anatomy, Ludwigs-Maximilians-University, Pettikoferstrasse 11, 80336, Munich, Germany.
| |
Collapse
|
2
|
Neher CM, Triolo E, RezayAraghi F, Khegai O, Balchandani P, McGarry M, Kurt M. Perfusion-mechanics coupling of the hippocampus. Interface Focus 2025; 15:20240051. [PMID: 40191030 PMCID: PMC11969186 DOI: 10.1098/rsfs.2024.0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/27/2025] [Accepted: 02/24/2025] [Indexed: 04/09/2025] Open
Abstract
The hippocampus is a highly scrutinized brain structure due to its entanglement in multiple neuropathologies and vulnerability to metabolic insults. This study aims to non-invasively assess the perfusion-mechanics relationship of the hippocampus in the healthy brain across magnetic resonance imaging sequences and magnetic field strengths. In total, 17 subjects (aged 22-35, 7 males/10 females) were scanned with magnetic resonance elastography and arterial spin labelling acquisitions at 3T and 7T in a baseline physiological state. No significant differences in perfusion or stiffness were observed across magnetic field strengths or acquisitions. The hippocampus had the highest vascularity within the deep grey matter, followed closely by the caudate nucleus and putamen. We discovered a positive perfusion-mechanics correlation in the hippocampus across both 3T and 7T groups, with a highly significant correlation overall (R = 0.71, p = 0.0019), which was not observed in the caudate nucleus, a similarly vascular region. Furthermore, we supported our hypothesis that increased perfusion in the hippocampus would lead to greater pulsatile displacement in a small cohort (n = 10). Given that the hippocampus is an exceptionally vulnerable structure, with perfusion deficits often seen in diseases related to learning and memory, our results suggest a unique mechanistic link between metabolic health and stiffness biomarkers in this key region for the first time.
Collapse
Affiliation(s)
| | - Em Triolo
- University of Washington, Seattle, WA, USA
| | | | | | | | | | | |
Collapse
|
3
|
Kharkongor R, Stephen J, Khan U, Radhakrishnan R. Exposure to an enriched environment and fucoidan supplementation ameliorate learning and memory function in rats subjected to global cerebral ischemia. Neurosci Lett 2025; 847:138094. [PMID: 39736397 DOI: 10.1016/j.neulet.2024.138094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025]
Abstract
An enriched environment (EE) constitutes a proficient strategy that instigates social, cognitive, and motor faculties, fostering healing and heightening learning and memory function after ischemia, while fucoidan derived from brown seaweed encompasses a diverse array of bioactivities and is known to possess neuroprotective properties. This study aims to investigate the effectiveness of combining fucoidan and EE in a rat model of vascular dementia to overcome cognitive challenges. The rats were randomly assigned as Sham, Lesion - 4-vessel occlusion (4VO) i.e., transient global cerebral ischemia (tGCI), 4VO + F50mg/kg, 4VO + EE, and 4VO + F50mg/kg + EE. At the end of the study periods, the rats were exposed to the Novel object task, T-maze, and the Morris water maze. The profile of hippocampal pyramidal neurons and their dendrites was assessed through the CFV, and Golgi cox stained brain sections. Neuroinflammatory markers (IL-1β, IL-6, NF-κB, TNF-α) and synaptogenic markers (BDNF, SYP, PSD-95) were evaluated through western blot analysis. The levels of oxidative stress marker (LPO) and antioxidants (SOD, CAT, GSH, GST, GPX) in the hippocampus were quantified through biochemical assay. The findings revealed that the cognitive deficits were significantly reduced in both the 4VO + F50mg/kg and 4VO + F50mg/kg + EE treatment groups and inflammatory markers were reduced with increased antioxidant levels and synaptogenic markers when compared with the lesion group. However, through this study, the combination therapy involving fucoidan and exposure to an EE was proven effective in preserving neural integrity and restoring cognitive function against the damage caused by oxidative stress and inflammation following tGCI.
Collapse
Affiliation(s)
- Ronyson Kharkongor
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - JenishaChris Stephen
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - UlfathTasneem Khan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rameshkumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
| |
Collapse
|
4
|
Ramírez-delaCruz M, Ortiz-Sánchez D, Bravo-Sánchez A, Portillo J, Esteban-García P, Abián-Vicén J. Effects of different exposures to normobaric hypoxia on cognitive performance in healthy young adults.: Normobaric hypoxia and cognitive performance. Physiol Behav 2025; 288:114747. [PMID: 39547435 DOI: 10.1016/j.physbeh.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/05/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Normobaric hypoxia has become an innovative non-pharmacological therapy to treat cognitive dysfunction. Nevertheless, the acute effects of exposure to hypoxia on cognitive performance remain unclear. We aimed to determine the effects of different normobaric hypoxic exposures on cognitive function in healthy young adults. Nineteen participants (13 men and 6 women; 23.7 ± 3.9 years; 172.0 ± 8.4 cm; 69.1 ± 12.2 kg) completed a cross-over randomized control trial with the following doses of fraction of inspired oxygen (FiO2): a) 21 %, b) 15 %, c) 13 % or d) 11 %. During experimental trials, the physiological response (blood oxygen saturation and heart rate) and the following cognitive abilities were evaluated: memory, sustained attention, anticipation, and reaction time. Sustained attention improved under hypoxia at 15 % FiO2 (mean difference (MD) 0.024, 95 % confidence intervals (CI) 0.005 to 0.044 s; p = 0.018) compared to 11 % and 21 % FiO2. During 11 % and 15 % FiO2, participants showed improved anticipation ability compared to normoxia (MD -0.023, 95 % CI -0.042 to -0.003 s, p = 0.020, and MD -0.009, 95 % CI -0.016 to -0.001 s, p = 0.022, respectively). However, reaction time was impaired under 11 % compared to 21 % FiO2 (MD 0.033, 95 % CI 0.008 to 0.059 s, p = 0.013). Finally, we did not find significant effects of hypoxia on memory (p > 0.05). Severe normobaric hypoxic exposure (11 % FiO2) produces detrimental effects on reaction time, although anticipation seems to be improved, compared to normoxia. In addition, cognitive processes of attention and anticipation appear to improve with moderate hypoxic exposure (15 % FiO2).
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - David Ortiz-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1,800, 28223, Pozuelo de Alarcón, Spain.
| | - Javier Portillo
- Motor Competence and Excellence in Sport, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071. Toledo, Spain.
| | - Paula Esteban-García
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, Avda. Carlos III s/n., 45071, Toledo, Spain.
| |
Collapse
|
5
|
Dugan S, Patch M, Hoang T, Anderson JC. Anoxic Brain Injury: A Subtle and Often Overlooked Finding in Non-Fatal Intimate Partner Strangulation. J Emerg Med 2024; 67:e599-e607. [PMID: 39304396 PMCID: PMC11634656 DOI: 10.1016/j.jemermed.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND A paucity of literature exists dedicated to the identification of anoxic brain injury in patients that survive non-fatal intimate partner strangulation (NF-IPS). While some individuals report experiencing symptoms of brain hypoxia followed by a loss of consciousness, other individuals report symptoms of brain hypoxia prior to amnesia, rendering some unable to recall loss of consciousness (LOC). OBJECTIVE Using a standardized clinical assessment tool, the purpose of this retrospective analysis is to describe anoxic brain injury symptom prevalence in a sample of patients reporting NF-IPS. METHODS One hundred and ninety-one unique patients, reporting a total of 267 strangulation events, were assessed by a member of the Shasta Community Forensic Care Team utilizing the Strangulation Hypoxia Anoxia Symptom TBI Assessment (SHASTA) tool. The sample is 98% female and includes adult patients ages 18-68. Examination records were categorized based on the presence or absence of hypoxia and anoxia symptoms. This manuscript utilizes the STROBE checklist. RESULTS Amnesia was reported in 145 of the 267 strangulations (54.3%). Of those, 74 reported LOC (51.0%) while 71 did not recall LOC (49.0%). CONCLUSIONS Within our sample, 49% of patients with amnesia did not recall losing consciousness, demonstrating that LOC is an imperfect measure of anoxia for patients following NF-IPS. Healthcare providers examining NF-IPS patients should inquire about additional symptoms of hypoxia and amnesia, which can be captured on the SHASTA tool.
Collapse
Affiliation(s)
- Sean Dugan
- Shasta Community Health Center, Redding, California.
| | - Michelle Patch
- Johns Hopkins University School of Nursing, Baltimore, Maryland
| | - Taman Hoang
- Shasta Community Health Center, Redding, California
| | | |
Collapse
|
6
|
Chareyron LJ, Chong WK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual Magnetic Resonance Imaging examinations. Hippocampus 2024; 34:645-658. [PMID: 39268888 PMCID: PMC11489024 DOI: 10.1002/hipo.23638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Despite bilateral hippocampal damage dating to the perinatal or early childhood period and severely impaired episodic memory, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganize to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate, and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40%, while the atrophy of the uncus was moderate (-24%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance, viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions. More severe hippocampal damage may be more likely to promote structural and/or functional reorganization in areas connected to the hippocampus. In this hypothesis, different levels of hippocampal function may be rescued following this variable reorganization. Our findings document not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
Affiliation(s)
- Loïc J. Chareyron
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
- Laboratory of Brain and Cognitive Development, Institute of Psychology, University of Lausanne, 1015 Lausanne, Switzerland
| | - W.K. Kling Chong
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Tina Banks
- Developmental Imaging & Biophysics, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, WC1N 3AZ London, UK
| | - Richard C. Saunders
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Faraneh Vargha-Khadem
- Cognitive Neuroscience and Neuropsychiatry, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, WC1N 1EH London, UK
| |
Collapse
|
7
|
Ramírez-delaCruz M, Bravo-Sánchez A, Sánchez-Infante J, Abián P, Abián-Vicén J. Effects of Acute Hypoxic Exposure in Simulated Altitude in Healthy Adults on Cognitive Performance: A Systematic Review and Meta-Analysis. BIOLOGY 2024; 13:835. [PMID: 39452143 PMCID: PMC11504018 DOI: 10.3390/biology13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The neurocognitive response following hypoxia has received special interest. However, it is necessary to understand the impact of acute hypoxic exposure induced by simulated altitude on cognitive performance. This study aimed to determine the effects of acute hypoxic exposure in simulated altitude in healthy adults on reaction time, response accuracy, memory, and attention. Five electronic databases were searched. The inclusion criteria were: (1) Experimental studies involving a hypoxia intervention induced by a hypoxic air generator to determine the effects on cognitive performance; and (2) Conducted in adults (males and/or females; aged 18-50 years) without pathologies or health/mental problems. Four meta-analyses were performed: (1) reaction time, (2) response accuracy, (3) memory, and (4) attention. Finally, 37 studies were included in the meta-analysis. Hypoxia exposure induced detrimental effects on reaction time (standard mean difference (SMD) -0.23; 95% confidence interval (CI) -0.38--0.07; p = 0.004), response accuracy (SMD -0.20; 95% CI -0.38--0.03; p = 0.02), and memory (SMD -0.93; 95% CI: -1.68--0.17; p = 0.02). Nevertheless, attention was not affected during hypoxia exposure (SMD -0.06; 95% CI: -0.23-0.11; p = 0.47). Acute exposure to hypoxia in controlled lab conditions appears to be detrimental to cognitive performance, specifically in reaction time, response accuracy, and memory.
Collapse
Affiliation(s)
- María Ramírez-delaCruz
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| | - Alfredo Bravo-Sánchez
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
| | - Jorge Sánchez-Infante
- Faculty of Health Sciences, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda km 1800, 28223 Pozuelo de Alarcón, Spain; (A.B.-S.); (J.S.-I.)
- Toledo Physiotherapy Research Group (GIFTO), Faculty of Physiotherapy and Nursing of Toledo, Universidad de Castilla-La Mancha, 45071 Toledo, Spain
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sports Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain;
| |
Collapse
|
8
|
Anogianakis G, Daios S, Topouzis N, Barmpagiannos K, Kaiafa G, Myrou A, Ztriva E, Tsankof A, Karlafti E, Anogeianaki A, Kakaletsis N, Savopoulos C. Current Trends in Stroke Biomarkers: The Prognostic Role of S100 Calcium-Binding Protein B and Glial Fibrillary Acidic Protein. Life (Basel) 2024; 14:1247. [PMID: 39459548 PMCID: PMC11508791 DOI: 10.3390/life14101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 10/28/2024] Open
Abstract
Stroke is the third leading cause of death in the developed world and a major cause of chronic disability, especially among the elderly population. The major biomarkers of stroke which are the most promising for predicting onset time and independently differentiating ischemic from hemorrhagic and other stroke subtypes are at present limited to a few. This review aims to emphasize on the prognostic role of S100 calcium-binding protein b (S100B), and Glial Fibrillary Acidic Protein (GFAP) in patients with stroke. An electronic search of the published research from January 2000 to February 2024 was conducted using the MEDLINE, Scopus, and Cochrane databases. The implementation of S100B and GFAP in existing clinical scales and imaging modalities may be used to improve diagnostic accuracy and realize the potential of blood biomarkers in clinical practice. The reviewed studies highlight the potential of S100B and GFAP as significant biomarkers in the prognosis and diagnosis of patients with stroke and their ability of predicting long-term neurological deficits. They demonstrate high sensitivity and specificity in differentiating between ischemic and hemorrhagic stroke and they correlate well with stroke severity and outcomes. Several studies also emphasize on the early elevation of these biomarkers post-stroke onset, underscoring their value in early diagnosis and risk stratification. The ongoing research in this field should aim at improving patient outcomes and reducing stroke-related morbidity and mortality by developing a reliable, non-invasive diagnostic tool that can be easily implemented in several healthcare settings, with the ultimate goal of improving stroke management.
Collapse
Affiliation(s)
- Georgios Anogianakis
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Stylianos Daios
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Nikolaos Topouzis
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Konstantinos Barmpagiannos
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Georgia Kaiafa
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Athena Myrou
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Eleftheria Ztriva
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Alexandra Tsankof
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Eleni Karlafti
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
- Department of Emergency, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Antonia Anogeianaki
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Nikolaos Kakaletsis
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| | - Christos Savopoulos
- First Propaedeutic Department of Internal Medicine, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece; (G.A.); (S.D.); (N.T.); (K.B.); (G.K.); (A.M.); (E.Z.); (A.T.); (E.K.); (A.A.); (N.K.)
| |
Collapse
|
9
|
Ghosh S, Kumar V, Mukherjee H, Saini S, Gupta S, Chauhan S, Kushwaha K, Lahiri D, Sircar D, Roy P. Assessment of the mechanistic role of an Indian traditionally used ayurvedic herb Bacopa monnieri (L.)Wettst. for ameliorating oxidative stress in neuronal cells. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:117899. [PMID: 38341111 DOI: 10.1016/j.jep.2024.117899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/23/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This study has important ethnopharmacological implications since it systematically investigated the therapeutic potential of Bacopa monnieri(L.) Wettst. (Brahmi) in treating neurological disorders characterized by oxidative stress-a growing issue in the aging population. Bacopa monnieri, which is strongly rooted in Ayurveda, has long been recognized for its neuroprotective and cognitive advantages. The study goes beyond conventional wisdom by delving into the molecular complexities of Bacopa monnieri, particularly its active ingredient, Bacoside-A, in countering oxidative stress. The study adds to the ethnopharmacological foundation for using this herbal remedy in the context of neurodegenerative disorders by unravelling the scientific underpinnings of Bacopa monnieri's effectiveness, particularly at the molecular level, against brain damage and related conditions influenced by oxidative stress. This dual approach, which bridges traditional wisdom and modern investigation, highlights Bacopa monnieri's potential as a helpful natural remedy for oxidative stress-related neurological diseases. AIM OF THE STUDY The aim of this study is to investigate the detailed molecular mechanism of action (in vitro, in silico and in vivo) of Bacopa monnieri (L.) Wettst. methanolic extract and its active compound, Bacoside-A, against oxidative stress in neurodegenerative disorders. MATERIALS AND METHODS ROS generation activity, mitochondrial membrane potential, calcium deposition and apoptosis were studied through DCFDA, Rhodamine-123, FURA-2 AM and AO/EtBr staining respectively. In silico study to check the effect of Bacoside-A on the Nrf-2 and Keap1 axis was performed through molecular docking study and validated experimentally through immunofluorescence co-localization study. In vivo antioxidant activity of Bacopa monnieri extract was assessed by screening the oxidative stress markers and stress-inducing hormone levels as well as through histopathological analysis of tissues. RESULTS The key outcome of this study is that the methanolic extract of Bacopa monnieri (BME) and its active component, Bacoside-A, protect against oxidative stress in neurodegenerative diseases. At 100 and 20 μg/ml, BME and Bacoside-A respectively quenched ROS, preserved mitochondrial membrane potential, decreased calcium deposition, and inhibited HT-22 mouse hippocampus cell death. BME and Bacoside-A regulated the Keap1 and Nrf-2 axis and their downstream antioxidant enzyme-specific genes to modify cellular antioxidant machinery. In vivo experiments utilizing rats subjected to restrained stress indicated that pre-treatment with BME (50 mg/kg) downregulated oxidative stress markers and stress-inducing hormones, and histological staining demonstrated that BME protected the neuronal cells of the Cornu Ammonis (CA1) area in the hippocampus. CONCLUSIONS Overall, the study suggests that Bacopa monnieri(L.) Wettst. has significant potential as a natural remedy for neurodegenerative disorders, and its active compounds could be developed as new drugs for the prevention and treatment of oxidative stress-related diseases.
Collapse
Affiliation(s)
- Souvik Ghosh
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Viney Kumar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Haimanti Mukherjee
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Saakshi Saini
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Sumeet Gupta
- Department of Pharmacy, Maharshi Markandeshwar University (Deemed to Be University), Mullana, Haryana, 133207, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Komal Kushwaha
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debrupa Lahiri
- Biomaterials and Multiscale Mechanics Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India; Centre of Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Debabrata Sircar
- Plant Molecular Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
10
|
Engstrom AC, Alitin JP, Kapoor A, Dutt S, Lohman T, Sible IJ, Marshall AJ, Shenasa F, Gaubert A, Ferrer F, Nguyen A, Bradford DR, Rodgers K, Sordo L, Head E, Shao X, Wang DJ, Nation DA. Spontaneous cerebrovascular reactivity at rest in older adults with and without mild cognitive impairment and memory deficits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.18.24309109. [PMID: 38946941 PMCID: PMC11213117 DOI: 10.1101/2024.06.18.24309109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Older adults with mild cognitive impairment (MCI) exhibit deficits in cerebrovascular reactivity (CVR), suggesting CVR is a biomarker for vascular contributions to MCI. This study examined if spontaneous CVR is associated with MCI and memory impairment. Methods 161 older adults free of dementia or major neurological/psychiatric disorders were recruited. Participants underwent clinical interviews, cognitive testing, venipuncture for Alzheimer's biomarkers, and brain MRI. Spontaneous CVR was quantified during 5 minutes of rest. Results Whole brain CVR was negatively associated with age, but not MCI. Lower CVR in the parahippocampal gyrus (PHG) was found in participants with MCI and was linked to worse memory performance on memory tests. Results remained significant after adjusting for Alzheimer's biomarkers and vascular risk factors. Conclusion Spontaneous CVR deficits in the PHG are observed in older adults with MCI and memory impairment, indicating medial temporal microvascular dysfunction's role in cognitive decline.
Collapse
Affiliation(s)
- Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - John Paul Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Shubir Dutt
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa J Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Aimée Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Farrah Ferrer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - David Robert Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Xingfeng Shao
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Danny Jj Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
11
|
McCall DM, Homayouni R, Yu Q, Raz S, Ofen N. Meta-Analysis of Hippocampal Volume and Episodic Memory in Preterm and Term Born Individuals. Neuropsychol Rev 2024; 34:478-495. [PMID: 37060422 DOI: 10.1007/s11065-023-09583-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/22/2022] [Indexed: 04/16/2023]
Abstract
Preterm birth (< 37 weeks gestation) has been associated with memory deficits, which has prompted investigation of possible alterations in hippocampal volume in this population. However, existing literature reports varying effects of premature birth on hippocampal volume. Specifically, it is unclear whether smaller hippocampal volume in preterm-born individuals is merely reflective of smaller total brain volume. Further, it is not clear if hippocampal volume is associated with episodic memory functioning in preterm-born individuals. Meta-analysis was used to investigate the effects of premature birth on hippocampal volume and episodic memory from early development to young adulthood (birth to 26). PubMed, PsychINFO, and Web of Science were searched for English peer-reviewed articles that included hippocampal volume of preterm and term-born individuals. Thirty articles met the inclusion criteria. Separate meta-analyses were used to evaluate standardized mean differences between preterm and term-born individuals in uncorrected and corrected hippocampal volume, as well as verbal and visual episodic memory. Both uncorrected and corrected hippocampal volume were smaller in preterm-born compared to term-born individuals. Although preterm-born individuals had lower episodic memory performance than term-born individuals, the limited number of studies only permitted a qualitative review of the association between episodic memory performance and hippocampal volume. Tested moderators included mean age, pre/post-surfactant era, birth weight, gestational age, demarcation method, magnet strength, and slice thickness. With this meta-analysis, we provide novel evidence of the effects of premature birth on hippocampal volume.
Collapse
Affiliation(s)
- Dana M McCall
- Institute of Gerontology, Wayne State University, Detroit, MI, USA.
- Department of Neuropsychology, Gundersen Health System, La Crosse, WI, USA.
| | - Roya Homayouni
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Qijing Yu
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
| | - Sarah Raz
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Noa Ofen
- Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, Wayne State University, Detroit, MI, USA
- Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
12
|
Burch AM, Garcia JD, O'Leary H, Haas A, Orfila JE, Tiemeier E, Chalmers N, Smith KR, Quillinan N, Herson PS. TRPM2 and CaMKII Signaling Drives Excessive GABAergic Synaptic Inhibition Following Ischemia. J Neurosci 2024; 44:e1762232024. [PMID: 38565288 PMCID: PMC11079974 DOI: 10.1523/jneurosci.1762-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.
Collapse
Affiliation(s)
- Amelia M Burch
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Joshua D Garcia
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Heather O'Leary
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Ami Haas
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - James E Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| | - Erika Tiemeier
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nicholas Chalmers
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Nidia Quillinan
- Neuronal Injury & Plasticity Program, Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado 80045
| | - Paco S Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, Ohio 43210
| |
Collapse
|
13
|
Chareyron LJ, Chong WKK, Banks T, Burgess N, Saunders RC, Vargha-Khadem F. Anatomo-functional changes in neural substrates of cognitive memory in developmental amnesia: Insights from automated and manual MRI examinations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.23.525152. [PMID: 36789443 PMCID: PMC9928053 DOI: 10.1101/2023.01.23.525152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite bilateral hippocampal damage dating to perinatal or early-childhood period, and severely-impaired episodic memory that unfolds in later childhood, patients with developmental amnesia continue to exhibit well-developed semantic memory across the developmental trajectory. Detailed information on the extent and focality of brain damage in these patients is needed to hypothesize about the neural substrate that supports their remarkable capacity for encoding and retrieval of semantic memory. In particular, we need to assess whether the residual hippocampal tissue is involved in this preservation, or whether the surrounding cortical areas reorganise to rescue aspects of these critical cognitive memory processes after early injury. We used voxel-based morphometry (VBM) analysis, automatic (FreeSurfer) and manual segmentation to characterize structural changes in the brain of an exceptionally large cohort of 23 patients with developmental amnesia in comparison with 32 control subjects. Both the VBM and the FreeSurfer analyses revealed severe structural alterations in the hippocampus and thalamus of patients with developmental amnesia. Milder damage was found in the amygdala, caudate and parahippocampal gyrus. Manual segmentation demonstrated differences in the degree of atrophy of the hippocampal subregions in patients. The level of atrophy in CA-DG subregions and subicular complex was more than 40% while the atrophy of the uncus was moderate (-23%). Anatomo-functional correlations were observed between the volumes of residual hippocampal subregions in patients and selective aspects of their cognitive performance viz, intelligence, working memory, and verbal and visuospatial recall. Our findings suggest that in patients with developmental amnesia, cognitive processing is compromised as a function of the extent of atrophy in hippocampal subregions, such that the greater the damage, the more likely it is that surrounding cortical areas will be recruited to rescue the putative functions of the damaged subregions. Our findings document for the first time not only the extent, but also the limits of circuit reorganization occurring in the young brain after early bilateral hippocampal damage.
Collapse
|
14
|
Kharkongor R, Nambi P, Radhakrishnan R. Fucoidan protects CA1 pyramidal neurons of the hippocampus and preserves the cognitive profile of rats subjected to transient forebrain ischemia. Brain Res 2024; 1828:148769. [PMID: 38237671 DOI: 10.1016/j.brainres.2024.148769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
Fucoidan, a polysaccharide derived from brown seaweeds, especially Fucus Vesiculosus has been documented as an effective neuroprotectant. This study investigates the efficacy of fucoidan in mitigating the cognitive deficits in the rat model of vascular dementia induced through the 4-vessel occlusions (4VO) method. Male Wistar rats weighing about 250-300 g were randomly assigned into four groups, sham, lesion (4VO), 4VO + F5mg/kg, and 4VO + F50mg/kg. The rats were assessed for cognitive behaviour performance through novel object task, T-maze and Morris water maze, and finally, the hippocampus from the brain was harvested to quantify the profile of CA1 pyramidal neurons through CFV staining and the expression of inflammatory markers and angiogenic markers were quantified through western blot assessment on day7 and 30 of the study period. The rats were treated with fucoidan at a dose of 50 mg/kg. body weight showed improved spatial learning and memory compared to the lesion group and the cytoarchitecture of CA1 pyramidal cells was observed to be well preserved. The expression of IL1β, IL6, TNFα, NFk-B, CD68 and HIFα were found to be down-regulated, while on the contrary the VEGFR2 and angiopoietin-1 were up regulated in the 4VO + F50mg/kg group when compared with the lesion group. In conclusion, this study ascertains the role of fucoidan in support of the cognitive profile of rats subjected to vascular dementia and in preserving the CA1 pyramidal neurons of the hippocampus by regulating the inflammatory and angiogenic factors.
Collapse
Affiliation(s)
- Ronyson Kharkongor
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Pradeepkumar Nambi
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India
| | - Rameshkumar Radhakrishnan
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai, India.
| |
Collapse
|
15
|
Stahlke S, Frai J, Busse JF, Matschke V, Theiss C, Weber T, Herzog-Niescery J. Innovative in vivo rat model for global cerebral hypoxia: a new approach to investigate therapeutic and preventive drugs. Front Physiol 2024; 15:1293247. [PMID: 38405120 PMCID: PMC10885152 DOI: 10.3389/fphys.2024.1293247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/09/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction: Severe acute global cerebral hypoxia can lead to significant disability in humans. Although different animal models have been described to study hypoxia, there is no endogenous model that considers hypoxia and its effect on the brain as an independent factor. Thus, we developed a minimally invasive rat model, which is based on the non-depolarizing muscle blocking agent rocuronium in anesthetized animals. This drug causes respiratory insufficiency by paralysis of the striated muscles. Methods: In this study, 14 rats underwent 12 min of hypoxemia with an oxygen saturation of approximately 60% measured by pulse oximetry; thereafter, animals obtained sugammadex to antagonize rocuronium immediately. Results: Compared to controls (14 rats, anesthesia only), hypoxic animals demonstrated significant morphological alterations in the hippocampus (cell decrease in the CA 1 region) and the cerebellum (Purkinje cell decrease), as well as significant changes in hypoxia markers in blood (Hif2α, Il1β, Tgf1β, Tnfα, S100b, cspg2, neuron-specific enolase), hippocampus (Il1β, Tnfα, S100b, cspg2, NSE), and cerebellum (Hif1α, Tnfα, S100b, cspg2, NSE). Effects were more pronounced in females than in males. Discussion: Consequently, this model is suitable to induce hypoxemia with consecutive global cerebral hypoxia. As significant morphological and biochemical changes were proven, it can be used to investigate therapeutic and preventive drugs for global cerebral hypoxia.
Collapse
Affiliation(s)
- Sarah Stahlke
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Jonas Frai
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | | | - Veronika Matschke
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Carsten Theiss
- Institute of Anatomy, Department of Cytology, Ruhr-University Bochum, Bochum, Germany
| | - Thomas Weber
- Department of Anesthesiology and Intensive Care Medicine, St.Josef-Hospital Bochum, Bochum, Germany
| | - Jennifer Herzog-Niescery
- Department of Anesthesiology and Intensive Care Medicine, St.Josef-Hospital Bochum, Bochum, Germany
| |
Collapse
|
16
|
Davidson TL, Stevenson RJ. Vulnerability of the Hippocampus to Insults: Links to Blood-Brain Barrier Dysfunction. Int J Mol Sci 2024; 25:1991. [PMID: 38396670 PMCID: PMC10888241 DOI: 10.3390/ijms25041991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The hippocampus is a critical brain substrate for learning and memory; events that harm the hippocampus can seriously impair mental and behavioral functioning. Hippocampal pathophysiologies have been identified as potential causes and effects of a remarkably diverse array of medical diseases, psychological disorders, and environmental sources of damage. It may be that the hippocampus is more vulnerable than other brain areas to insults that are related to these conditions. One purpose of this review is to assess the vulnerability of the hippocampus to the most prevalent types of insults in multiple biomedical domains (i.e., neuroactive pathogens, neurotoxins, neurological conditions, trauma, aging, neurodegenerative disease, acquired brain injury, mental health conditions, endocrine disorders, developmental disabilities, nutrition) and to evaluate whether these insults affect the hippocampus first and more prominently compared to other brain loci. A second purpose is to consider the role of hippocampal blood-brain barrier (BBB) breakdown in either causing or worsening the harmful effects of each insult. Recent research suggests that the hippocampal BBB is more fragile compared to other brain areas and may also be more prone to the disruption of the transport mechanisms that act to maintain the internal milieu. Moreover, a compromised BBB could be a factor that is common to many different types of insults. Our analysis indicates that the hippocampus is more vulnerable to insults compared to other parts of the brain, and that developing interventions that protect the hippocampal BBB may help to prevent or ameliorate the harmful effects of many insults on memory and cognition.
Collapse
Affiliation(s)
- Terry L. Davidson
- Department of Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Avenue, NW, Washington, DC 20016, USA
| | | |
Collapse
|
17
|
Chen CA, Li CX, Zhang ZH, Xu WX, Liu SL, Ni WC, Wang XQ, Cheng FF, Wang QG. Qinzhizhudan formula dampens inflammation in microglia polarization of vascular dementia rats by blocking MyD88/NF-κB signaling pathway: Through integrating network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116769. [PMID: 37400007 DOI: 10.1016/j.jep.2023.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/24/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qinzhizhudan Formula (QZZD) is composed of Scutellaria baicalensis Georgi (Huang Qin) extract, Gardenia jasminoides (Zhizi) extract and Suis Fellis Pulvis (Zhudanfen) (ratio of 4:5:6). This formula is optimized from Qingkailing (QKL) injection. Regarding brain injury, QZZD is protective. However, the mechanism by which QZZD treats vascular dementia (VD) has not been elucidated. AIM OF THE STUDY To ascertain QZZD's effect on the treatment of VD and further investigate the molecular mechanisms. MATERIALS AND METHODS In this study, we screened the possible components and targets of QZZD against VD and microglia polarization using network pharmacology (NP), then an animal model of bilateral common carotid artery ligation method (2VO) was induced. Afterward, The Morris water maze was employed to evaluate cognitive ability, and pathological alterations in the CA1 area of the hippocampus were detected using HE and Nissl staining. To confirm the affect of QZZD on VD and its molecular mechanism, the contents of inflammatory factors IL-1β, TNF-α, IL-4, and IL-10 were performed to detect by ELISA, the phenotype polarization of microglia cells was detected by immunofluorescence staining, and the expressions of MyD88, p-IκBα and p-NF-κB p65 in brain tissue were detected by western blot. RESULTS A total of 112 active compounds and 363 common targets of QZZD, microglia polarization, and VD were identified, according to the NP analysis. 38 hub targets were screened out from the PPI network. GO analysis and KEGG pathway analysis showed that QZZD may regulate microglia polarization through anti-inflammatory mechanism such as Toll-like receptor signaling pathway and NF-κB signaling pathway. The further results showed that QZZD can alleviate the memory impairment induced by 2VO. QZZD profoundly rescued brain hippocampus neuronal damage and increased the number of neurons. These advantageous outcomes were linked to the control of microglia polarization. QZZD decreased M1 phenotypic marker expression while increasing M2 phenotypic marker expression. QZZD may controll the polarization of the M1 microglia by blocking the core part of Toll-like receptor signaling pathway, that is the MyD88/NF-κB signaling pathway, which reduced the neurotoxic effects of the microglia. CONCLUSION Here, we explored the anti-VD microglial polarization characteristic of QZZD for the first time and clarified its mechanisms. These findings will provide valuable clues for the discovery of anti-VD agents.
Collapse
Affiliation(s)
- Cong-Ai Chen
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chang-Xiang Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Ze-Han Zhang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wen-Xiu Xu
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shu-Ling Liu
- Dongzhimen Hospital Beijing University of Chinese Medicine, Beijing, 100700, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Wen-Chao Ni
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xue-Qian Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Fa-Feng Cheng
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Qing-Guo Wang
- Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
18
|
Lana D, Magni G, Landucci E, Wenk GL, Pellegrini-Giampietro DE, Giovannini MG. Phenomic Microglia Diversity as a Druggable Target in the Hippocampus in Neurodegenerative Diseases. Int J Mol Sci 2023; 24:13668. [PMID: 37761971 PMCID: PMC10531074 DOI: 10.3390/ijms241813668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Phenomics, the complexity of microglia phenotypes and their related functions compels the continuous study of microglia in disease animal models to find druggable targets for neurodegenerative disorders. Activation of microglia was long considered detrimental for neuron survival, but more recently it has become apparent that the real scenario of microglia morphofunctional diversity is far more complex. In this review, we discuss the recent literature on the alterations in microglia phenomics in the hippocampus of animal models of normal brain aging, acute neuroinflammation, ischemia, and neurodegenerative disorders, such as AD. Microglia undergo phenomic changes consisting of transcriptional, functional, and morphological changes that transform them into cells with different properties and functions. The classical subdivision of microglia into M1 and M2, two different, all-or-nothing states is too simplistic, and does not correspond to the variety of phenotypes recently discovered in the brain. We will discuss the phenomic modifications of microglia focusing not only on the differences in microglia reactivity in the diverse models of neurodegenerative disorders, but also among different areas of the brain. For instance, in contiguous and highly interconnected regions of the rat hippocampus, microglia show a differential, finely regulated, and region-specific reactivity, demonstrating that microglia responses are not uniform, but vary significantly from area to area in response to insults. It is of great interest to verify whether the differences in microglia reactivity may explain the differential susceptibility of different brain areas to insults, and particularly the higher sensitivity of CA1 pyramidal neurons to inflammatory stimuli. Understanding the spatiotemporal heterogeneity of microglia phenomics in health and disease is of paramount importance to find new druggable targets for the development of novel microglia-targeted therapies in different CNS disorders. This will allow interventions in three different ways: (i) by suppressing the pro-inflammatory properties of microglia to limit the deleterious effect of their activation; (ii) by modulating microglia phenotypic change to favor anti-inflammatory properties; (iii) by influencing microglia priming early in the disease process.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Giada Magni
- Institute of Applied Physics “Nello Carrara”, National Research Council (IFAC-CNR), Via Madonna del Piano 10, 50019 Florence, Italy;
| | - Elisa Landucci
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Gary L. Wenk
- Department of Psychology, The Ohio State University, Columbus, OH 43210, USA;
| | - Domenico Edoardo Pellegrini-Giampietro
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy; (E.L.); (D.E.P.-G.); (M.G.G.)
| |
Collapse
|
19
|
Hamasaki MY, Mendes C, Batagello DS, Hirata MH, Britto LRGD, Nogueira MI. Pathophysiological aspects of neonatal anoxia and temporal expression of S100β in different brain regions. Neuroreport 2023; 34:575-582. [PMID: 37384931 DOI: 10.1097/wnr.0000000000001927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The aim of this study was to investigate the temporal variations of S100β in the hippocampus, cerebellum and cerebral cortex of neonatal rats (Wistar strain) under anoxic conditions. Real-time PCR and western blotting techniques were used for gene expression and protein analysis. Animals were divided into two groups, a control group and an anoxic group, and further separated at different time points for analysis. After anoxia, S100β gene expression showed a significant peak in the hippocampus and cerebellum after 2 h, followed by a decline compared to the control group at other time points. The increased gene expression in these regions was also accompanied by an increase in S100β protein levels in the anoxia group, observable 4 h after injury. In contrast, S100β mRNA content in the cerebral cortex never exceeded control values at any time point. Similarly, the protein content of S100β in the cerebral cortex did not show statistically significant differences compared to control animals at any assessment time point. These results suggest that the production profile of S100β differs by brain region and developmental stage. The observed differences in vulnerability between the hippocampus, cerebellum and cerebral cortex may be attributed to their distinct developmental periods. The hippocampus and cerebellum, which develop earlier than the cerebral cortex, showed more pronounced effects in response to anoxia, which is supported by the gene expression and protein content in this study. This result reveals the brain region-dependent nature of S100β as a biomarker of brain injury.
Collapse
Affiliation(s)
| | - Caroline Mendes
- Department of Anatomy and Physiology, Institute of Biomedical Sciences
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Universitdade de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
20
|
Macias-Velez RDJ, Rivera-Cervantes MC, Marín-López AG, Murguía-Castillo J. Intranasal erythropoietin protects granular cells and reduces astrogliosis in the dentate gyrus after ischemic damage, an effect associated with molecular changes in erythropoietin and its receptor. Neurosci Lett 2023; 812:137366. [PMID: 37393008 DOI: 10.1016/j.neulet.2023.137366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
Within the hippocampus, the CA1 and dentate gyrus (DG) regions are considered the most and the least susceptible to damage by cerebral ischemia, respectively. In addition, it has been tested that rHuEPO exhibits neuroprotective properties. This work investigates the effect of different intranasal doses of rHuEPO, applied in different ischemic post-damage times in the DG, and the effect of the rHuEPO on astroglial reactivity after cerebral ischemia. Additionally, an effective dose for neuroprotection and an administration time was used to evaluate gene and protein expression changes of EPO and EPOR in the DG region. We observed a considerable loss of cells on the granular layer and an increased number of GFAP immunoreactive cells in this region only 72 h after the onset of ischemia/damage. When rHuEPO was administered, the number of morphologically abnormal cells and immunoreactivity decreased. In the analysis of protein and gene expression, there is no correlation between expression level of these molecules, although the rHuEPO amplifies the response to ischemia of EPO and EPOR gene for each evaluated time; in the case of the protein only at 2 h this effect was observed. We demonstrated the susceptibility of the DG to ischemia; so granular cells damage was observed, moreover of the astrocytic response, which is accompanied by molecular changes in signaling mediated by rHuEPO intranasal administration.
Collapse
Affiliation(s)
- Rafael de Jesús Macias-Velez
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico.
| | - Martha Catalina Rivera-Cervantes
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico.
| | - Alejandra Guadalupe Marín-López
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico.
| | - Justo Murguía-Castillo
- Laboratorio de Neurobiología Celular, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Jalisco, Mexico.
| |
Collapse
|
21
|
André C, Kuhn E, Rehel S, Ourry V, Demeilliez-Servouin S, Palix C, Felisatti F, Champetier P, Dautricourt S, Yushkevich P, Vivien D, de La Sayette V, Chételat G, de Flores R, Rauchs G. Association of Sleep-Disordered Breathing and Medial Temporal Lobe Atrophy in Cognitively Unimpaired Amyloid-Positive Older Adults. Neurology 2023; 101:e370-e385. [PMID: 37258299 PMCID: PMC10435067 DOI: 10.1212/wnl.0000000000207421] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/03/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Sleep disordered breathing (SDB) has been related to amyloid deposition and an increased dementia risk. However, how SDB relates to medial temporal lobe neurodegeneration and subsequent episodic memory impairment is unclear. Our objective was to investigate the impact of amyloid positivity on the associations between SDB severity, medial temporal lobe subregions, and episodic memory performance in cognitively unimpaired older adults. METHODS Data were acquired between 2016 and 2020 in the context of the Age-Well randomized controlled trial of the Medit-Aging European project. Participants older than 65 years who were free of neurologic, psychiatric, or chronic medical diseases were recruited from the community. They completed a neuropsychological evaluation, in-home polysomnography, a Florbetapir PET, and an MRI, including a specific high-resolution assessment of the medial temporal lobe and hippocampal subfields. Multiple linear regressions were conducted to test interactions between amyloid status and SDB severity on the volume of MTL subregions, controlling for age, sex, education, and the ApoE4 status. Secondary analyses aimed at investigating the links between SDB, MTL subregional atrophy, and episodic memory performance at baseline and at a mean follow-up of 20.66 months in the whole cohort and in subgroups stratified according to amyloid status. RESULTS We included 122 cognitively intact community-dwelling older adults (mean age ± SD: 69.40 ± 3.85 years, 77 women, 26 Aβ+ individuals) in baseline analyses and 111 at follow-up. The apnea-hypopnea index interacted with entorhinal (β = -0.81, p < 0.001, pη2 = 0.19), whole hippocampal (β = -0.61, p < 0.001, pη2 = 0.10), subiculum (β = -0.56, p = 0.002, pη2 = 0.08), CA1 (β = -0.55, p = 0.002, pη2 = 0.08), and DG (β = -0.53, p = 0.003, pη2 = 0.08) volumes such that a higher sleep apnea severity was related to lower MTL subregion volumes in amyloid-positive individuals, but not in those who were amyloid negative. In the whole cohort, lower whole hippocampal (r = 0.27, p = 0.005) and CA1 (r = 0.28, p = 0.003) volumes at baseline were associated with worse episodic memory performance at follow-up. DISCUSSION Overall, we showed that SDB was associated with MTL atrophy in cognitively asymptomatic older adults engaged in the Alzheimer continuum, which may increase the risk of developing memory impairment over time. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02977819.
Collapse
Affiliation(s)
- Claire André
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Elizabeth Kuhn
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Stéphane Rehel
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Valentin Ourry
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Solène Demeilliez-Servouin
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Cassandre Palix
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Francesca Felisatti
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Pierre Champetier
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Sophie Dautricourt
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Paul Yushkevich
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Denis Vivien
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Vincent de La Sayette
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Gaël Chételat
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Robin de Flores
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France
| | - Géraldine Rauchs
- From the Normandie Univ (C.A., E.K., S.R., V.O., S.D.-S., C.P., F.F., P.C., S.D., D.V., G.C., R.F., G.R.), UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders" NEUROPRESAGE Team, Institut Blood and Brain @ Caen-Normandie, GIP Cyceron, France; Normandie Univ (C.A., S.R., V.O., P.C., V.L.S.), UNICAEN, PSL Université, EPHE, INSERM, CHU de Caen, GIP Cyceron, NIMH, France; Penn Image Computing and Science Laboratory (PICSL) (P.Y.), University of Pennsylvania, Philadelphia; Département de Recherche Clinique (D.V.), CHU Caen-Normandie, France; and Service de Neurologie (V.L.S.), CHU de Caen, France.
| |
Collapse
|
22
|
Sible IJ, Yoo HJ, Min J, Nashiro K, Chang C, Nation DA, Mather M. Short-term blood pressure variability is inversely related to regional amplitude of low frequency fluctuations in older and younger adults. AGING BRAIN 2023; 4:100085. [PMID: 37485296 PMCID: PMC10362312 DOI: 10.1016/j.nbas.2023.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023] Open
Abstract
Blood pressure variability (BPV), independent of mean blood pressure levels, is associated with cerebrovascular disease burden on MRI and postmortem evaluation. However, less is known about relationships with markers of cerebrovascular dysfunction, such as diminished spontaneous brain activity as measured by the amplitude of low frequency fluctuations (ALFF), especially in brain regions with vascular and neuronal vulnerability in aging. We investigated the relationship between short-term BPV and concurrent regional ALFF from resting state fMRI in a sample of community-dwelling older adults (n = 44) and healthy younger adults (n = 49). In older adults, elevated systolic BPV was associated with lower ALFF in widespread medial temporal regions and the anterior cingulate cortex. Higher systolic BPV in younger adults was also related to lower ALFF in the medial temporal lobe, albeit in fewer subregions, and the amygdala. There were no significant associations between systolic BPV and ALFF across the right/left whole brain or in the insular cortex in either group. Findings suggest a possible regional vulnerability to cerebrovascular dysfunction and short-term fluctuations in blood pressure. BPV may be an understudied risk factor for cerebrovascular changes in aging.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Hyun Joo Yoo
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jungwon Min
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Kaoru Nashiro
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Catie Chang
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
- Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Mara Mather
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
23
|
Lee J, Thomas Broome S, Jansen MI, Mandwie M, Logan GJ, Marzagalli R, Musumeci G, Castorina A. Altered Hippocampal and Striatal Expression of Endothelial Markers and VIP/PACAP Neuropeptides in a Mouse Model of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:11118. [PMID: 37446298 DOI: 10.3390/ijms241311118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/01/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Neuropsychiatric systemic lupus erythematosus (NPSLE) is one of the most common and severe manifestations of lupus; however, its pathogenesis is still poorly understood. While there is sparse evidence suggesting that the ongoing autoimmunity may trigger pathogenic changes to the central nervous system (CNS) microvasculature, culminating in inflammatory/ischemic damage, further evidence is still needed. In this study, we used the spontaneous mouse model of SLE (NZBWF1 mice) to investigate the expression of genes and proteins associated with endothelial (dys)function: tissue and urokinase plasminogen activators (tPA and uPA), intercellular and vascular adhesion molecules 1 (ICAM-1 and VCAM-1), brain derived neurotrophic factor (BDNF), endothelial nitric oxide synthase (eNOS) and Krüppel-like factor 4 (KLF4) and neuroprotection/immune modulation: pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal peptide (VIP), PACAP receptor (PAC1), VIP receptors 1 and 2 (VPAC1 and VPAC2). Analyses were carried out both in the hippocampus and striatum of SLE mice of two different age groups (2 and 7 months old), since age correlates with disease severity. In the hippocampus, we identified a gene/protein expression profile indicative of mild endothelial dysfunction, which increased in severity in aged SLE mice. These alterations were paralleled by moderate alterations in the expression of VIP, PACAP and related receptors. In contrast, we report a robust upregulation of endothelial activation markers in the striatum of both young and aged mice, concurrent with significant induction of the VIP/PACAP system. These data identify molecular signatures of endothelial alterations in the hippocampus and striatum of NZBWF1 mice, which are accompanied by a heightened expression of endogenous protective/immune-modulatory neuropeptides. Collectively, our results support the idea that NPSLE may cause alterations of the CNS micro-vascular compartment that cannot be effectively counteracted by the endogenous activity of the neuropeptides PACAP and VIP.
Collapse
Affiliation(s)
- Jayden Lee
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Margo Iris Jansen
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mawj Mandwie
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Grant J Logan
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
24
|
Sible IJ, Nation DA. Blood Pressure Variability and Cerebral Perfusion Decline: A Post Hoc Analysis of the SPRINT MIND Trial. J Am Heart Assoc 2023; 12:e029797. [PMID: 37301768 PMCID: PMC10356024 DOI: 10.1161/jaha.123.029797] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Background Blood pressure variability (BPV) is predictive of cerebrovascular disease and dementia, possibly though cerebral hypoperfusion. Higher BPV is associated with cerebral blood flow (CBF) decline in observational cohorts, but relationships in samples with strictly controlled blood pressure remain understudied. We investigated whether BPV relates to change in CBF in the context of intensive versus standard antihypertensive treatment. Methods and Results In this post hoc analysis of the SPRINT MIND (Systolic Blood Pressure Intervention Trial-Memory and Cognition in Decreased Hypertension) trial, 289 participants (mean, 67.6 [7.6 SD] years, 38.8% women) underwent 4 blood pressure measurements over a 9-month period after treatment randomization (intensive versus standard) and pseudo-continuous arterial spin labeling magnetic resonance imaging at baseline and ≈4-year follow-up. BPV was calculated as tertiles of variability independent of mean. CBF was determined for whole brain, gray matter, white matter, hippocampus, parahippocampal gyrus, and entorhinal cortex. Linear mixed models examined relationships between BPV and change in CBF under intensive versus standard antihypertensive treatment. Higher BPV in the standard treatment group was associated with CBF decline in all regions (ß comparing the first versus third tertiles of BPV in whole brain: -0.09 [95% CI, -0.17 to -0.01]; P=0.03), especially in medial temporal regions. In the intensive treatment group, elevated BPV was related to CBF decline only in the hippocampus (ß, -0.10 [95% CI, -0.18, -0.01]; P=0.03). Conclusions Elevated BPV is associated with CBF decline, especially under standard blood pressure-lowering strategies. Relationships were particularly robust in medial temporal regions, consistent with prior work using observational cohorts. Findings highlight the possibility that BPV remains a risk for CBF decline even in individuals with strictly controlled mean blood pressure levels. Registration URL: http://clinicaltrials.gov. Identifier: NCT01206062.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of PsychologyUniversity of Southern CaliforniaLos AngelesCA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological DisordersUniversity of California IrvineIrvineCA
- Department of Psychological ScienceUniversity of California IrvineIrvineCA
| |
Collapse
|
25
|
Martinez Villar G, Daneault V, Martineau-Dussault MÈ, Baril AA, Gagnon K, Lafond C, Gilbert D, Thompson C, Marchi NA, Lina JM, Montplaisir J, Carrier J, Gosselin N, André C. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea. Front Neurol 2023; 14:1215882. [PMID: 37470008 PMCID: PMC10353887 DOI: 10.3389/fneur.2023.1215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer's disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance. Methods Ninety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate. Results In the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns. Discussion OSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer's disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated.
Collapse
Affiliation(s)
- Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health Institute, McGill University, Montréal, QC, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Laboratory and Sleep Clinic, Hôpital en Santé Mentale Rivière-des-Prairies, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Chantal Lafond
- Department of Pulmonology, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, QC, Canada
- Department of Radiology, Hopital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Ile-de, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Département de Génie Electrique, École de Technologie Supérieure, Montréal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
26
|
Spencer APC, Lee‐Kelland R, Brooks JCW, Jary S, Tonks J, Cowan FM, Thoresen M, Chakkarapani E. Brain volumes and functional outcomes in children without cerebral palsy after therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy. Dev Med Child Neurol 2023; 65:367-375. [PMID: 35907252 PMCID: PMC10087533 DOI: 10.1111/dmcn.15369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/11/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023]
Abstract
AIM To investigate whether brain volumes were reduced in children aged 6 to 8 years without cerebral palsy, who underwent therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (patients), and matched controls, and to examine the relation between subcortical volumes and functional outcome. METHOD We measured regional brain volumes in 31 patients and 32 controls (median age 7 years and 7 years 2 months respectively) from T1-weighted magnetic resonance imaging (MRI). We assessed cognition using the Wechsler Intelligence Scales for Children, Fourth Edition and motor ability using the Movement Assessment Battery for Children, Second Edition (MABC-2). RESULTS Patients had lower volume of whole-brain grey matter, white matter, pallidi, hippocampi, and thalami than controls (false discovery rate-corrected p < 0.05). Differences in subcortical grey-matter volumes were not independent of total brain volume (TBV). In patients, hippocampal and thalamic volumes correlated with full-scale IQ (hippocampi, r = 0.477, p = 0.010; thalami, r = 0.452, p = 0.016) and MABC-2 total score (hippocampi, r = 0.526, p = 0.004; thalami, r = 0.505, p = 0.006) independent of age, sex, and TBV. No significant correlations were found in controls. In patients, cortical injury on neonatal MRI was associated with reduced volumes of hippocampi (p = 0.001), thalami (p = 0.002), grey matter (p = 0.015), and white matter (p = 0.013). INTERPRETATION Children who underwent therapeutic hypothermia have reduced whole-brain grey and white-matter volumes, with associations between hippocampal and thalamic volumes and functional outcomes.
Collapse
Affiliation(s)
- Arthur P. C. Spencer
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
| | - Richard Lee‐Kelland
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - Jonathan C. W. Brooks
- Clinical Research and Imaging CentreUniversity of BristolBristolUK
- School of PsychologyUniversity of East AngliaNorwichUK
| | - Sally Jary
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
| | - James Tonks
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- University of Exeter Medical SchoolExeterUK
| | - Frances M. Cowan
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Department of PaediatricsImperial College LondonLondonUK
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Faculty of Medicine, Institute of Basic Medical SciencesUniversity of OsloOsloNorway
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical SchoolUniversity of BristolBristolUK
- Neonatal Intensive Care Unit, St Michael's HospitalUniversity Hospitals Bristol and Weston NHS Foundation TrustBristolUK
| |
Collapse
|
27
|
Ahrens E, Tartler TM, Suleiman A, Wachtendorf LJ, Ma H, Chen G, Kendale SM, Kienbaum P, Subramaniam B, Wagner S, Schaefer MS. Dose-dependent relationship between intra-procedural hypoxaemia or hypocapnia and postoperative delirium in older patients. Br J Anaesth 2023; 130:e298-e306. [PMID: 36192221 DOI: 10.1016/j.bja.2022.08.032] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previous studies indicated an association between impaired cerebral perfusion and post-procedural neurological disorders. We investigated whether intra-procedural hypoxaemia or hypocapnia are associated with delirium after surgery. METHODS Inpatients ≥60 yr of age undergoing anaesthesia for surgical or interventional procedures between 2009 and 2020 at an academic healthcare network in the USA (Massachusetts) were included in this hospital registry study. The primary exposure was intra-procedural hypoxaemia, defined as peripheral oxygen saturation <90% for >2 cohering min. The co-primary exposure was hypocapnia during general anaesthesia, defined as end-tidal carbon dioxide pressure ≤25 mm Hg for >5 cohering min. The primary outcome was delirium within 7 days after surgery. RESULTS Of 71 717 included patients, 1702 (2.4%) developed postoperative delirium, and hypoxaemia was detected in 2532 (3.5%). Of 42 894 patients undergoing general anaesthesia, 532 (1.2%) experienced hypocapnia. The occurrence of either hypoxaemia (adjusted odds ratio [ORadj]=1.71; 95% confidence interval [CI], 1.40-2.07; P<0.001) or hypocapnia (ORadj=1.77; 95% CI, 1.30-2.41; P<0.001) was associated with a higher risk of delirium within 7 days. Both associations were dependent on the magnitude, and increased with event duration (ORadj=1.03; 95% CI, 1.02-1.04; P<0.001 and ORadj=1.01; 95% CI, 1.00-1.01; P=0.005, for each minute increase in the longest continuous episode, respectively). There was no association between occurrence of hypercapnia and postoperative delirium (ORadj=1.24; 95% CI, 0.90-1.71; P=0.181). CONCLUSIONS Intra-procedural hypoxaemia and hypocapnia were dose-dependently associated with a higher risk of postoperative delirium. These findings support maintaining normal gas exchange to avoid postoperative neurological disorders.
Collapse
Affiliation(s)
- Elena Ahrens
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tim M Tartler
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Aiman Suleiman
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Luca J Wachtendorf
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Haobo Ma
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guanqing Chen
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Samir M Kendale
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peter Kienbaum
- Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany
| | - Balachundhar Subramaniam
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Soeren Wagner
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology and Intensive Care, Technical University of Munich, School of Medicine, Klinikum Rechts der Isar, Munich, Germany; Department of Anesthesiology, Katharinenhospital Klinikum Stuttgart, Stuttgart, Germany
| | - Maximilian S Schaefer
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center for Anesthesia Research Excellence (CARE) Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Anesthesiology, Duesseldorf University Hospital, Duesseldorf, Germany.
| |
Collapse
|
28
|
Brossard-Racine M, Panigrahy A. Structural Brain Alterations and Their Associations With Function in Children, Adolescents, and Young Adults With Congenital Heart Disease. Can J Cardiol 2023; 39:123-132. [PMID: 36336305 DOI: 10.1016/j.cjca.2022.10.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022] Open
Abstract
Most neonates who receive surgery for complex congenital heart disease (CHD) will survive well into adulthood, however, many of them will face functional challenges at one point during their life as a consequence of their atypical neurodevelopment. Recent advances in neuroscience and the increasing accessibility of magnetic resonance imaging have allowed numerous studies to identify the nature and extent of the brain alterations that are particular to survivors with CHD. Nevertheless, and considering that the range of outcomes is broad in this population, the functional consequences of these brain differences is not always evident. In this review, we summarize the present state of knowledge regarding the structure-function relationships evaluated in children, adolescents, and young adults with CHD using structural magnetic resonance imaging. Overall smaller total and regional brain volume, as well as lower fractional anisotropy in numerous brain regions, were frequently associated with lower cognitive outcomes including executive functioning and memory in adolescents and young adults with CHD. However, we identify several gaps in knowledge including the limited number of prospective investigations involving neonatal imaging and follow-up during childhood or adolescence, as well as the need for studies that evaluate a broader range of functional outcomes and not only the cognitive abilities. Future interdisciplinary investigations using multimodal imaging techniques could help address these gaps.
Collapse
Affiliation(s)
- Marie Brossard-Racine
- Advances in Brain and Child Development Research Laboratory, Research Institute of McGill University Health Center - Child Heald and Human Development, and School of Physical and Occupational Therapy, Department of Pediatrics - Division of Neonatology and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.
| | - Ashok Panigrahy
- Pediatric Radiology, Children's Hospital of Pittsburgh of UPMC, and Clinical and Translational Imaging Research, Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Gilchrist CP, Thompson DK, Alexander B, Kelly CE, Treyvaud K, Matthews LG, Pascoe L, Zannino D, Yates R, Adamson C, Tolcos M, Cheong JLY, Inder TE, Doyle LW, Cumberland A, Anderson PJ. Growth of prefrontal and limbic brain regions and anxiety disorders in children born very preterm. Psychol Med 2023; 53:759-770. [PMID: 34105450 DOI: 10.1017/s0033291721002105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Children born very preterm (VP) display altered growth in corticolimbic structures compared with full-term peers. Given the association between the cortiocolimbic system and anxiety, this study aimed to compare developmental trajectories of corticolimbic regions in VP children with and without anxiety diagnosis at 13 years. METHODS MRI data from 124 VP children were used to calculate whole brain and corticolimbic region volumes at term-equivalent age (TEA), 7 and 13 years. The presence of an anxiety disorder was assessed at 13 years using a structured clinical interview. RESULTS VP children who met criteria for an anxiety disorder at 13 years (n = 16) displayed altered trajectories for intracranial volume (ICV, p < 0.0001), total brain volume (TBV, p = 0.029), the right amygdala (p = 0.0009) and left hippocampus (p = 0.029) compared with VP children without anxiety (n = 108), with trends in the right hippocampus (p = 0.062) and left medial orbitofrontal cortex (p = 0.079). Altered trajectories predominantly reflected slower growth in early childhood (0-7 years) for ICV (β = -0.461, p = 0.020), TBV (β = -0.503, p = 0.021), left (β = -0.518, p = 0.020) and right hippocampi (β = -0.469, p = 0.020) and left medial orbitofrontal cortex (β = -0.761, p = 0.020) and did not persist after adjusting for TBV and social risk. CONCLUSIONS Region- and time-specific alterations in the development of the corticolimbic system in children born VP may help to explain an increase in anxiety disorders observed in this population.
Collapse
Affiliation(s)
- Courtney P Gilchrist
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Deanne K Thompson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Bonnie Alexander
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Neurosurgery, Royal Children's Hospital, Melbourne, Australia
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Karli Treyvaud
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- La Trobe University, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
| | - Lillian G Matthews
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Leona Pascoe
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Diana Zannino
- Clinical Epidemiology and Biostatistics Unit, Murdoch Children's Research Institute, Melbourne, Australia
| | - Rosemary Yates
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| | - Chris Adamson
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Jeanie L Y Cheong
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Terrie E Inder
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Lex W Doyle
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Australia
- Royal Women's Hospital, Melbourne, Victoria, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, Australia
| | - Angela Cumberland
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Australia
| | - Peter J Anderson
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, Australia
| |
Collapse
|
30
|
Beresewicz-Haller M. Hippocampal region-specific endogenous neuroprotection as an approach in the search for new neuroprotective strategies in ischemic stroke. Fiction or fact? Neurochem Int 2023; 162:105455. [PMID: 36410452 DOI: 10.1016/j.neuint.2022.105455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Ischemic stroke is the leading cause of death and long-term disability worldwide, and, while considerable progress has been made in understanding its pathophysiology, the lack of effective treatments remains a major concern. In that context, receiving more and more consideration as a promising therapeutic method is the activation of natural adaptive mechanisms (endogenous neuroprotection) - an approach that seeks to enhance and/or stimulate the endogenous processes of plasticity and protection of the neuronal system that trigger the brain's intrinsic capacity for self-defence. Ischemic preconditioning is a classic example of endogenous neuroprotection, being the process by which one or more brief, non-damaging episodes of ischemia-reperfusion (I/R) induce tissue resistance to subsequent prolonged, damaging ischemia. Another less-known example is resistance to an I/R episode mounted by the hippocampal region consisting of CA2, CA3, CA4 and the dentate gyrus (here abbreviated to CA2-4, DG). This can be contrasted with the ischemia-vulnerable CA1 region. There is not yet a good understanding of these different sensitivities of the hippocampal regions, and hence of the endogenous neuroprotection characteristic of CA2-4, DG. However, this region is widely reported to have properties distinct from CA1, and capable of generating resistance to an I/R episode. These include activation of neurotrophic and neuroprotective factors, greater activation of anti-excitotoxic and anti-oxidant mechanisms, increased plasticity potential, a greater energy reserve and improved mitochondrial function. This review seeks to summarize properties of CA2-4, DG in the context of endogenous neuroprotection, and then to assess the potential utility of these properties to therapeutic approaches. In so doing, it appears to represent the first such addressing of the issue of ischemia resistance attributable to CA2-4, DG.
Collapse
|
31
|
Is Nrf2 Behind Endogenous Neuroprotection of the Hippocampal CA2-4,DG Region? Mol Neurobiol 2023; 60:1645-1658. [PMID: 36547847 PMCID: PMC9899192 DOI: 10.1007/s12035-022-03166-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is the master regulator of genes known to be involved in antioxidant, and anti-inflammatory processes, metabolic regulation, and other cellular functions. Here, we also hypothesize a core role for it in endogenous neuroprotection, i.e., the natural adaptive mechanisms protecting the brain from ischemia-reperfusion (I/R) episode. An example of endogenous neuroprotection is ischemia-resistance of the hippocampal regions comprising the CA2, CA3, CA4 and dentate gyrus subfields (here abbreviated to CA2-4,DG) which can be contrasted with the ischemia-vulnerable CA1 region. In the work detailed here, we used a gerbil model of transient cerebral ischemia to examined Nrf2 activation in CA1 and CA2-4,DG, in a control group, and post I/R episode. Data obtained indicate enhanced Nrf2 activity in CA2-4,DG as compared with CA1 in the control, with this difference seen to persist even after I/R. While I/R does indeed cause further activation of Nrf2 in CA2-4,DG, it is associated with slight and transient activation in CA1. Sub-regional differences in Nrf2 activity correlate with immunoreactivity of Keap1 (an Nrf2 suppressor) and Nrf2 target proteins, including heme oxygenase 1, the catalytic and modulatory sub-units of glutamate-cysteine ligase, and glutathione peroxidase 1. Pharmacological Nrf2 activation by sulforaphane results in protection of CA1 after I/R episode. Our results therefore suggest that high Nrf2 activity in CA2-4,DG may guarantee resistance of this region to I/R, potentially explaining the differential sensitivities of the hippocampal regions.
Collapse
|
32
|
Wu F, Li Y, Liu W, Xiao R, Yao B, Gao M, Xu D, Wang J. Comparative Investigation of Raw and Processed Radix Polygoni Multiflori on the Treatment of Vascular Dementia by Liquid Chromatograph-Mass Spectrometry Based Metabolomic Approach. Metabolites 2022; 12:metabo12121297. [PMID: 36557335 PMCID: PMC9785642 DOI: 10.3390/metabo12121297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Radix Polygoni Multiflori (PM) is a well-known nootropic used in traditional Chinese medicine (TCM). Considering the efficacy and application discrepancy between raw (RPM) and processed PM (PPM), the similarities and differences between them in the treatment of vascular dementia (VaD) is intriguing. In this study, a VaD rat model was constructed by 2-vessel occlusion (2-VO). During 28 days of treatment, plasma was collected on days 7, 14, 21, and 28 after the start of dosing and the metabolic profile was analyzed by HPLC-MS/MS-based metabolomics. The Morris Water Maze Test, hematoxylin-eosin and Nissl staining, and biochemical analysis were used to assess cognitive function, pathogenic alterations and oxidative stress, respectively. RPM and PPM effectivelyreducedthe 2VO-induced cognitive impairment and mitigated histological alterations in hippocampus tissue. The 2-VO model significantly elevated MDA level and decreased SOD activity and GSH level, indicating severe oxidative stress, which could also be attenuated by RPM and PPM treatment. RPM outperformed PPM in decreasing MDA levels while PPM outperformed RPM in increasing GSH levels. Differential metabolites were subjected to Metabolite Set Enrichment Analysis (MSEA) and genes corresponding to proteins having interactions with metabolites were further annotated with Gene Ontology (GO). Both RPM and PPM ameliorated VaD-relevant vitamin B6 metabolism, pentose phosphate pathways, and taurine and hypotaurine metabolism. In addition, the metabolism of cysteine and methionine was regulated only by RPM, and riboflavin metabolism was modulated only by PPM. The results suggested that raw and processed PM had comparable efficacy in the treatment of VaD but also with some mechanistic differenece.
Collapse
|
33
|
Therapeutic Administration of Oxcarbazepine Saves Cerebellar Purkinje Cells from Ischemia and Reperfusion Injury Induced by Cardiac Arrest through Attenuation of Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11122450. [PMID: 36552657 PMCID: PMC9774942 DOI: 10.3390/antiox11122450] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Research reports using animal models of ischemic insults have demonstrated that oxcarbazepine (a carbamazepine analog: one of the anticonvulsant compounds) extends neuroprotective effects against cerebral or forebrain injury induced by ischemia and reperfusion. However, research on protective effects against ischemia and reperfusion cerebellar injury induced by cardiac arrest (CA) and the return of spontaneous circulation has been poor. Rats were assigned to four groups as follows: (Groups 1 and 2) sham asphyxial CA and vehicle- or oxcarbazepine-treated, and (Groups 3 and 4) CA and vehicle- or oxcarbazepine-treated. Vehicle (0.3% dimethyl sulfoxide/saline) or oxcarbazepine (200 mg/kg) was administered intravenously ten minutes after the return of spontaneous circulation. In this study, CA was induced by asphyxia using vecuronium bromide (2 mg/kg). We conducted immunohistochemistry for calbindin D-28kDa and Fluoro-Jade B histofluorescence to examine Purkinje cell death induced by CA. In addition, immunohistochemistry for 4-hydroxy-2-nonenal (4HNE) was carried out to investigate CA-induced oxidative stress, and immunohistochemistry for Cu, Zn-superoxide dismutase (SOD1) and Mn-superoxide dismutase (SOD2) was performed to examine changes in endogenous antioxidant enzymes. Oxcarbazepine treatment after CA significantly increased the survival rate and improved neurological deficit when compared with vehicle-treated rats with CA (survival rates ≥ 63.6 versus 6.5%), showing that oxcarbazepine treatment dramatically protected cerebellar Purkinje cells from ischemia and reperfusion injury induced by CA. The salvation of the Purkinje cells from ischemic injury by oxcarbazepine treatment paralleled a dramatic reduction in 4HNE (an end-product of lipid peroxidation) and increased or maintained the endogenous antioxidant enzymes (SOD1 and SOD2). In brief, this study shows that therapeutic treatment with oxcarbazepine after CA apparently saved cerebellar neurons (Purkinje cells) from CA-induced neuronal death by attenuating oxidative stress and suggests that oxcarbazepine can be utilized as a therapeutic medicine for ischemia and reperfusion brain (cerebellar) injury induced by CA.
Collapse
|
34
|
Neuroprotective and Regenerative Effects of Growth Hormone (GH) in the Embryonic Chicken Cerebral Pallium Exposed to Hypoxic-Ischemic (HI) Injury. Int J Mol Sci 2022; 23:ijms23169054. [PMID: 36012320 PMCID: PMC9409292 DOI: 10.3390/ijms23169054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/07/2023] Open
Abstract
Prenatal hypoxic−ischemic (HI) injury inflicts severe damage on the developing brain provoked by a pathophysiological response that leads to neural structural lesions, synaptic loss, and neuronal death, which may result in a high risk of permanent neurological deficits or even newborn decease. It is known that growth hormone (GH) can act as a neurotrophic factor inducing neuroprotection, neurite growth, and synaptogenesis after HI injury. In this study we used the chicken embryo to develop both in vitro and in vivo models of prenatal HI injury in the cerebral pallium, which is the equivalent of brain cortex in mammals, to examine whether GH exerts neuroprotective and regenerative effects in this tissue and the putative mechanisms involved in these actions. For the in vitro experiments, pallial cell cultures obtained from chick embryos were incubated under HI conditions (<5% O2, 1 g/L glucose) for 24 h and treated with 10 nM GH, and then collected for analysis. For the in vivo experiments, chicken embryos (ED14) were injected in ovo with GH (2.25 µg), exposed to hypoxia (12% O2) for 6 h, and later the pallial tissue was obtained to perform the studies. Results show that GH exerted a clear anti-apoptotic effect and promoted cell survival and proliferation in HI-injured pallial neurons, in both in vitro and in vivo models. Neuroprotective actions of GH were associated with the activation of ERK1/2 and Bcl-2 signaling pathways. Remarkably, GH protected mature neurons that were particularly harmed by HI injury, but was also capable of stimulating neural precursors. In addition, GH stimulated restorative processes such as the number and length of neurite outgrowth and branching in HI-injured pallial neurons, and these effects were blocked by a specific GH antibody, thus indicating a direct action of GH. Furthermore, it was found that the local expression of several synaptogenic markers (NRXN1, NRXN3, GAP-43, and NLG1) and neurotrophic factors (GH, BDNF, NT-3, IGF-1, and BMP4) were increased after GH treatment during HI damage. Together, these results provide novel evidence supporting that GH exerts protective and restorative effects in brain pallium during prenatal HI injury, and these actions could be the result of a joint effect between GH and endogenous neurotrophic factors. Also, they encourage further research on the potential role of GH as a therapeutic complement in HI encephalopathy treatments.
Collapse
|
35
|
Fujimura M, Unoki T. Preliminary evaluation of the mechanism underlying vulnerability/resistance to methylmercury toxicity by comparative gene expression profiling of rat primary cultured cerebrocortical and hippocampal neurons. J Toxicol Sci 2022; 47:211-219. [PMID: 35527009 DOI: 10.2131/jts.47.211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg), an environmentally toxic substance, causes site-specific neuronal cell death; while MeHg exposure causes death in cerebrocortical neurons, interestingly, it does not in hippocampal neurons, which are generally considered to be vulnerable to toxic substances. This phenomenon of site-specific neuronal cell death can be reproduced in animal experiments; however, the mechanism underlying the resistance of hippocampal neurons to MeHg toxicity has not been clarified. In this study, we comparatively analyzed the response to MeHg exposure in terms of viability and the expression characteristics of primary cultured cerebrocortical neurons and hippocampal neurons derived from fetal rat brain. Neuronal differentiated hippocampal neurons were more resistant to MeHg toxicity than cerebrocortical neurons, as indicated by a 2‒3 fold higher half-maximal inhibitory concentration (IC50; 3.3 μM vs. 1.2 μM), despite similar intracellular mercury concentrations in both neuronal cell types. Comprehensive RNA sequencing-based gene expression analysis of non-MeHg-exposed cells revealed that 80 out of 15,208 genes showed at least 10-fold higher expression in hippocampal neurons than in cerebrocortical neurons, whereas six genes showed at least 10-fold higher expression in cerebrocortical neurons than in hippocampal neurons. In particular, genes related to neuronal function, including those encoding transthyretin and brain-derived neurotrophic factor, showed approximately 50-fold higher expression in hippocampal neurons than in cerebrocortical neurons. In conclusion, the resistance of hippocampal neurons to MeHg toxicity may be related to the high expression of neuronal function-related proteins.
Collapse
Affiliation(s)
- Masatake Fujimura
- Department of Basic Medical Sciences, National Institute for Minamata Disease
| | - Takamitsu Unoki
- Department of Basic Medical Sciences, National Institute for Minamata Disease
| |
Collapse
|
36
|
Intensity distribution segmentation in ultrafast Doppler combined with scanning laser confocal microscopy for assessing vascular changes associated with ageing in murine hippocampi. Sci Rep 2022; 12:6784. [PMID: 35473942 PMCID: PMC9042937 DOI: 10.1038/s41598-022-10457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
The hippocampus plays an important role in learning and memory, requiring high-neuronal oxygenation. Understanding the relationship between blood flow and vascular structure—and how it changes with ageing—is physiologically and anatomically relevant. Ultrafast Doppler (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μDoppler) and scanning laser confocal microscopy (SLCM) are powerful imaging modalities that can measure in vivo cerebral blood volume (CBV) and post mortem vascular structure, respectively. Here, we apply both imaging modalities to a cross-sectional and longitudinal study of hippocampi vasculature in wild-type mice brains. We introduce a segmentation of CBV distribution obtained from \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μDoppler and show that this mice-independent and mesoscopic measurement is correlated with vessel volume fraction (VVF) distribution obtained from SLCM—e.g., high CBV relates to specific vessel locations with large VVF. Moreover, we find significant changes in CBV distribution and vasculature due to ageing (5 vs. 21 month-old mice), highlighting the sensitivity of our approach. Overall, we are able to associate CBV with vascular structure—and track its longitudinal changes—at the artery-vein, venules, arteriole, and capillary levels. We believe that this combined approach can be a powerful tool for studying other acute (e.g., brain injuries), progressive (e.g., neurodegeneration) or induced pathological changes.
Collapse
|
37
|
Neuroprotective strategies for acute ischemic stroke: Targeting oxidative stress and prolyl hydroxylase domain inhibition in synaptic signalling. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
38
|
Sible IJ, Yew B, Dutt S, Li Y, Blanken AE, Jang JY, Ho JK, Marshall AJ, Kapoor A, Gaubert A, Bangen KJ, Sturm VE, Shao X, Wang DJ, Nation DA. Selective vulnerability of medial temporal regions to short-term blood pressure variability and cerebral hypoperfusion in older adults. NEUROIMAGE. REPORTS 2022; 2:100080. [PMID: 35784272 PMCID: PMC9249026 DOI: 10.1016/j.ynirp.2022.100080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood pressure variability is an emerging risk factor for stroke, cognitive impairment, and dementia, possibly through links with cerebral hypoperfusion. Recent evidence suggests visit-to-visit (e.g., over months, years) blood pressure variability is related to cerebral perfusion decline in brain regions vulnerable to Alzheimer's disease. However, less is known about relationships between short-term (e.g., < 24 hours) blood pressure variability and regional cerebral perfusion, and whether these relationships may differ by age. We investigated short-term blood pressure variability and concurrent regional cerebral microvascular perfusion in a sample of community-dwelling older adults without history of dementia or stroke and healthy younger adults. Blood pressure was collected continuously during perfusion MRI. Cerebral blood flow was determined for several brain regions implicated in cerebrovascular dysfunction in Alzheimer's disease. Elevated systolic blood pressure variability was related to lower levels of concurrent cerebral perfusion in medial temporal regions: hippocampus (β = -.60 [95% CI -.90, -.30]; p < .001), parahippocampal gyrus (β = -.57 [95% CI -.89, -.25]; p = .001), entorhinal cortex (β = -.42 [95% CI -.73, -.12]; p = .009), and perirhinal cortex (β = -.37 [95% CI -.72, -.03]; p = .04), and not in other regions, and in older adults only. Findings suggest a possible age-related selective vulnerability of the medial temporal lobes to hypoperfusion in the context of short-term blood pressure fluctuations, independent of average blood pressure, white matter hyperintensities, and gray matter volume, which may underpin the increased risk for dementia associated with elevated BPV.
Collapse
Affiliation(s)
- Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Belinda Yew
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA,Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA
| | - Katherine J. Bangen
- Research Service, Veteran Affairs San Diego Healthcare System, San Diego, CA 92161, USA,Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Virginia E. Sturm
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94158, USA,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, 94158, USA,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Xingfeng Shao
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Danny J. Wang
- Laboratory of Functional MRI Technology, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, 90033, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA,Department of Psychological Science, University of California Irvine, Irvine, CA 92697, USA,Corresponding Author: Daniel A. Nation, Ph.D., Associate Professor, University of California Irvine, Department of Psychological Science, 4201 Social and Behavioral Sciences Gateway, Irvine, CA 92697-7085, Phone: (949) 824-9339,
| |
Collapse
|
39
|
Franjic D, Skarica M, Ma S, Arellano JI, Tebbenkamp ATN, Choi J, Xu C, Li Q, Morozov YM, Andrijevic D, Vrselja Z, Spajic A, Santpere G, Li M, Zhang S, Liu Y, Spurrier J, Zhang L, Gudelj I, Rapan L, Takahashi H, Huttner A, Fan R, Strittmatter SM, Sousa AMM, Rakic P, Sestan N. Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 2022; 110:452-469.e14. [PMID: 34798047 PMCID: PMC8813897 DOI: 10.1016/j.neuron.2021.10.036] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 02/04/2023]
Abstract
The hippocampal-entorhinal system supports cognitive functions, has lifelong neurogenic capabilities in many species, and is selectively vulnerable to Alzheimer's disease. To investigate neurogenic potential and cellular diversity, we profiled single-nucleus transcriptomes in five hippocampal-entorhinal subregions in humans, macaques, and pigs. Integrated cross-species analysis revealed robust transcriptomic and histologic signatures of neurogenesis in the adult mouse, pig, and macaque but not humans. Doublecortin (DCX), a widely accepted marker of newly generated granule cells, was detected in diverse human neurons, but it did not define immature neuron populations. To explore species differences in cellular diversity and implications for disease, we characterized subregion-specific, transcriptomically defined cell types and transitional changes from the three-layered archicortex to the six-layered neocortex. Notably, METTL7B defined subregion-specific excitatory neurons and astrocytes in primates, associated with endoplasmic reticulum and lipid droplet proteins, including Alzheimer's disease-related proteins. This resource reveals cell-type- and species-specific properties shaping hippocampal-entorhinal neurogenesis and function.
Collapse
Affiliation(s)
- Daniel Franjic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jon I Arellano
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jinmyung Choi
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Chuan Xu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Qian Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yury M Morozov
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Zvonimir Vrselja
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ana Spajic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Neurogenomics Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM), DCEXS, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shupei Zhang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yang Liu
- Department of Biomedical Engineering, Yale Stem Cell Center and Yale Cancer Center, and Human and Translational Immunology Program, Yale University, New Haven, CT 06520, USA
| | - Joshua Spurrier
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Le Zhang
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Ivan Gudelj
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Lucija Rapan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Hideyuki Takahashi
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Anita Huttner
- Department of Pathology, Brady Memorial Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale Stem Cell Center and Yale Cancer Center, and Human and Translational Immunology Program, Yale University, New Haven, CT 06520, USA
| | - Stephen M Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Departments of Neurology and of Neuroscience, Yale School of Medicine, New Haven, CT 06536, USA
| | - Andre M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Waisman Center and Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pasko Rakic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Psychiatry and Comparative Medicine, Program in Cellular Neuroscience, Neurodegeneration and Repair, and Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
40
|
The Effects of In Utero Fetal Hypoxia and Creatine Treatment on Mitochondrial Function in the Late Gestation Fetal Sheep Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3255296. [PMID: 35132347 PMCID: PMC8817846 DOI: 10.1155/2022/3255296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 01/05/2022] [Indexed: 12/21/2022]
Abstract
Near-term acute hypoxia in utero can result in significant fetal brain injury, with some brain regions more vulnerable than others. As mitochondrial dysfunction is an underlying feature of the injury cascade following hypoxia, this study is aimed at characterizing mitochondrial function at a region-specific level in the near-term fetal brain after a period of acute hypoxia. We hypothesized that regional differences in mitochondrial function would be evident, and that prophylactic creatine treatment would mitigate mitochondrial dysfunction following hypoxia; thereby reducing fetal brain injury. Pregnant Border-Leicester/Merino ewes with singleton fetuses were surgically instrumented at 118 days of gestation (dGa; term is ~145 dGA). A continuous infusion of either creatine (n = 15; 6 mg/kg/h) or isovolumetric saline (n = 16; 1.5 ml/kg/h) was administered to the fetuses from 121 dGa. After 10 days of infusion, a subset of fetuses (8 saline-, 7 creatine-treated) were subjected to 10 minutes of umbilical cord occlusion (UCO) to induce a mild global fetal hypoxia. At 72 hours after UCO, the fetal brain was collected for high-resolution mitochondrial respirometry and molecular and histological analyses. The results show that the transient UCO-induced acute hypoxia impaired mitochondrial function in the hippocampus and the periventricular white matter and increased the incidence of cell death in the hippocampus. Creatine treatment did not rectify the changes in mitochondrial respiration associated with hypoxia, but there was a negative relationship between cell death and creatine content following treatment. Irrespective of UCO, creatine increased the proportion of cytochrome c bound to the inner mitochondrial membrane, upregulated the mRNA expression of the antiapoptotic gene Bcl2, and of PCG1-α, a driver of mitogenesis, in the hippocampus. We conclude that creatine treatment prior to brief, acute hypoxia does not fundamentally modify mitochondrial respiratory function, but may improve mitochondrial structural integrity and potentially increase mitogenesis and activity of antiapoptotic pathways.
Collapse
|
41
|
Hypoxia/Ischemia-Induced Rod Microglia Phenotype in CA1 Hippocampal Slices. Int J Mol Sci 2022; 23:ijms23031422. [PMID: 35163344 PMCID: PMC8836225 DOI: 10.3390/ijms23031422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of microglia phenotypes and their related functions compels the continuous study of microglia in diseases animal models. We demonstrated that oxygen-glucose deprivation (OGD) induced rapid, time- and space-dependent phenotypic microglia modifications in CA1 stratum pyramidalis (SP) and stratum radiatum (SR) of rat organotypic hippocampal slices as well as the degeneration of pyramidal neurons, especially in the outer layer of SP. Twenty-four h following OGD, many rod microglia formed trains of elongated cells spanning from the SR throughout the CA1, reaching the SP outer layer where they acquired a round-shaped amoeboid phagocytic head and phagocytosed most of the pyknotic, damaged neurons. NIR-laser treatment, known to preserve neuronal viability after OGD, prevented rod microglia formation. In CA3 SP, pyramidal neurons were less damaged, no rod microglia were found. Thirty-six h after OGD, neuronal damage was more pronounced in SP outer and inner layers of CA1, rod microglia cells were no longer detectable, and most microglia were amoeboid/phagocytic. Damaged neurons, more numerous 36 h after OGD, were phagocytosed by amoeboid microglia in both inner and outer layers of CA1. In response to OGD, microglia can acquire different morphofunctional phenotypes which depend on the time after the insult and on the subregion where microglia are located.
Collapse
|
42
|
Guo Y, Cho SM, Wei Z, Wang Q, Modi HR, Gharibani P, Lu H, Thakor NV, Geocadin RG. Early Thalamocortical Reperfusion Leads to Neurologic Recovery in a Rodent Cardiac Arrest Model. Neurocrit Care 2022; 37:60-72. [PMID: 35072925 DOI: 10.1007/s12028-021-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/29/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Cerebral blood flow (CBF) plays an important role in neurological recovery after cardiac arrest (CA) resuscitation. However, the variations of CBF recovery in distinct brain regions and its correlation with neurologic recovery after return of spontaneous circulation (ROSC) have not been characterized. This study aimed to investigate the characteristics of regional cerebral reperfusion following resuscitation in predicting neurological recovery. METHODS Twelve adult male Wistar rats were studied, ten resuscitated from 7-min asphyxial CA and two uninjured rats, which were designated as healthy controls (HCs). Dynamic changes in CBF in the cerebral cortex, hippocampus, thalamus, brainstem, and cerebellum were assessed by pseudocontinuous arterial spin labeling magnetic resonance imaging, starting at 60 min after ROSC to 156 min (or time to spontaneous arousal). Neurologic outcomes were evaluated by the neurologic deficit scale at 24 h post-ROSC in a blinded manner. Correlations between regional CBF (rCBF) and neurological recovery were undertaken. RESULTS All post-CA animals were found to be nonresponsive during the 60-156 min post ROSC, with reductions in rCBF by 24-42% compared with HC. Analyses of rCBF during the post-ROSC time window from 60 to 156 min showed the rCBF recovery of hippocampus and thalamus were positively associated with better neurological outcomes (rs = 0.82, p = 0.004 and rs = 0.73, p < 0.001, respectively). During 96 min before arousal, thalamic and cortical rCBF exhibited positive correlations with neurological recovery (rs = 0.80, p < 0.001 and rs = 0.65, p < 0.001, respectively); for predicting a favorable neurological outcome, the thalamic rCBF threshold was above 50.84 ml/100 g/min (34% of HC) (area under the curve of 0.96), whereas the cortical rCBF threshold was above 60.43 ml/100 g/min (38% of HC) (area under the curve of 0.88). CONCLUSIONS Early magnetic resonance imaging analyses showed early rCBF recovery in thalamus, hippocampus, and cortex post ROSC was positively correlated with neurological outcomes at 24 h. Our findings suggest new translational insights into the regional reperfusion and the time window that may be critical in neurological recovery and warrant further validation.
Collapse
Affiliation(s)
- Yu Guo
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung-Min Cho
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA
| | - Zhiliang Wei
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qihong Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiren R Modi
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Payam Gharibani
- Departments of Neurology, Division of Neuroimmunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Departments of Neurology, Anesthesiology, Critical Care Medicine and Neurosurgery, Johns Hopkins University School of Medicine, 600 N Wolfe Street, Phipps 455, Baltimore, MD, 21287, USA.
| |
Collapse
|
43
|
Hippocampal mTOR Dysregulation and Morphological Changes in Male Rats after Fetal Growth Restriction. Nutrients 2022; 14:nu14030451. [PMID: 35276811 PMCID: PMC8839133 DOI: 10.3390/nu14030451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) has been linked to long-term neurocognitive impairment, especially in males. To determine possible underlying mechanisms, we examined hippocampal cellular composition and mTOR signaling of male rat FGR offspring during main brain growth and development (postnatal days (PND) 1 and 12). FGR was either induced by a low-protein diet throughout pregnancy, experimental placental insufficiency by bilateral uterine vessel ligation or intrauterine stress by “sham” operation. Offspring after unimpaired gestation served as common controls. Low-protein diet led to a reduced cell density in the molecular dentate gyrus subregion, while intrauterine surgical stress was associated with increased cell density in the cellular CA2 subregion. Experimental placental insufficiency caused increased mTOR activation on PND 1, whereas intrauterine stress led to mTOR activation on PND 1 and 12. To determine long-term effects, we additionally examined mTOR signaling and Tau phosphorylation, which is altered in neurodegenerative diseases, on PND 180, but did not find any changes among the experimental groups. Our findings suggest that hippocampal cellular proliferation and mTOR signaling are dysregulated in different ways depending on the cause of FGR. While a low-protein diet induced a decreased cell density, prenatal surgical stress caused hyperproliferation, possibly via increased mTOR signaling.
Collapse
|
44
|
Ge X, Zheng Y, Qiao Y, Pan N, Simon JP, Lee M, Jiang W, Kim H, Shi Y, Liu M. Hippocampal Asymmetry of Regional Development and Structural Covariance in Preterm Neonates. Cereb Cortex 2021; 32:4271-4283. [PMID: 34969086 DOI: 10.1093/cercor/bhab481] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Premature birth is associated with a high prevalence of neurodevelopmental impairments in surviving infants. The hippocampus is known to be critical for learning and memory, yet the putative effects of hippocampal dysfunction remain poorly understood in preterm neonates. In particular, while asymmetry of the hippocampus has been well noted both structurally and functionally, how preterm birth impairs hippocampal development and to what extent the hippocampus is asymmetrically impaired by preterm birth have not been well delineated. In this study, we compared volumetric growth and shape development in the hippocampal hemispheres and structural covariance (SC) between hippocampal vertices and cortical thickness in cerebral cortex regions between two groups. We found that premature infants had smaller volumes of the right hippocampi only. Lower thickness was observed in the hippocampal head in both hemispheres for preterm neonates compared with full-term peers, though preterm neonates exhibited an accelerated age-related change of hippocampal thickness in the left hippocampi. The SC between the left hippocampi and the limbic lobe of the premature infants was severely impaired compared with the term-born neonates. These findings suggested that the development of the hippocampus during the third trimester may be altered following early extrauterine exposure with a high degree of asymmetry.
Collapse
Affiliation(s)
- Xinting Ge
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China.,Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,School of Medical Imaging, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Yuchuan Qiao
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Ningning Pan
- School of Information Science and Engineering, Shandong Normal University, 250014 Jinan, China
| | - Julia Pia Simon
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mitchell Lee
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wenjuan Jiang
- College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Hosung Kim
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yonggang Shi
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Mengting Liu
- Department of Neurology, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
45
|
Mikloska KV, Zrini ZA, Bernier NJ. Severe hypoxia exposure inhibits larval brain development but does not affect the capacity to mount a cortisol stress response in zebrafish. J Exp Biol 2021; 225:274120. [PMID: 34931659 DOI: 10.1242/jeb.243335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022]
Abstract
Fish nursery habitats are increasingly hypoxic and the brain is recognized as highly hypoxia-sensitive, yet there is a lack of information on the effects of hypoxia on the development and function of the larval fish brain. Here, we tested the hypothesis that by inhibiting brain development, larval exposure to severe hypoxia has persistent functional effects on the cortisol stress response in zebrafish (Danio rerio). Exposing 5 days post-fertilization (dpf) larvae to 10% dissolved O2 (DO) for 16 h only marginally reduced survival, but it decreased forebrain neural proliferation by 55%, and reduced the expression of neurod1, gfap, and mbpa, markers of determined neurons, glia, and oligodendrocytes, respectively. The 5 dpf hypoxic exposure also elicited transient increases in whole body cortisol and in crf, uts1, and hsd20b2 expression, key regulators of the endocrine stress response. Hypoxia exposure at 5 dpf also inhibited the cortisol stress response to hypoxia in 10 dpf larvae and increased hypoxia tolerance. However, 10% DO exposure at 5 dpf for 16h did not affect the cortisol stress response to a novel stressor in 10 dpf larvae or the cortisol stress response to hypoxia in adult fish. Therefore, while larval exposure to severe hypoxia can inhibit brain development, it also increases hypoxia tolerance. These effects may transiently reduce the impact of hypoxia on the cortisol stress response but not its functional capacity to respond to novel stressors. We conclude that the larval cortisol stress response in zebrafish has a high capacity to cope with severe hypoxia-induced neurogenic impairment.
Collapse
Affiliation(s)
- Kristina V Mikloska
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Zoe A Zrini
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
46
|
Guo H, Jiang Y, Gu Z, Ren L, Zhu C, Yu S, Wei R. ZFP36 protects against oxygen-glucose deprivation/reoxygenation-induced mitochondrial fragmentation and neuronal apoptosis through inhibiting NOX4-DRP1 pathway. Brain Res Bull 2021; 179:57-67. [PMID: 34896479 DOI: 10.1016/j.brainresbull.2021.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 01/23/2023]
Abstract
The imbalance of mitochondrial dynamics plays an important role in the pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Zinc-finger protein 36 (ZFP36) has been documented to have neuroprotective effects, however, whether ZFP36 is involved in the regulation of neuronal survival during cerebral I/R injury remains unknown. In this study, we found that the transcriptional and translational levels of ZFP36 were increased in immortalized hippocampal HT22 neuronal cells after oxygen-glucose deprivation/reoxygenation (OGD/R) treatment. ZFP36 gene silencing exacerbated OGD/R-induced dynamin-related protein 1 (DRP1) activity, mitochondrial fragmentation, oxidative stress and neuronal apoptosis, whereas ZFP36 overexpression exhibited the opposite effects. Besides, we found that NADPH oxidase 4 (NOX4) was upregulated by OGD/R, and NOX4 inhibition remarkably attenuated OGD/R-instigated DRP1 activity, mitochondrial fragmentation and neuronal apoptosis. Further study demonstrated that ZFP36 targeted NOX4 mRNA directly by binding to the AU-rich elements (AREs) in the NOX4 3'-untranslated regions (3'-UTR) and inhibited NOX4 expression. Taken together, our data indicate that ZFP36 protects against OGD/R-induced neuronal injury by inhibiting NOX4-mediated DRP1 activation and excessive mitochondrial fission. Pharmacological targeting of ZFP36 to suppress excessive mitochondrial fission may provide new therapeutic strategies in the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Hengjiang Guo
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Yan Jiang
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Zhiqing Gu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Lulu Ren
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Change Zhu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Shenghua Yu
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China
| | - Rong Wei
- Department of Anesthesiology, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai 200062, China.
| |
Collapse
|
47
|
Barbeau-Meunier CA, Bernier M, Côté S, Gilbert G, Bocti C, Whittingstall K. Sexual dimorphism in the cerebrovascular network: Brain MRI shows lower arterial density in women. J Neuroimaging 2021; 32:337-344. [PMID: 34861082 DOI: 10.1111/jon.12951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Accumulating evidence suggests that there is a sexual dimorphism in brain health, with women exhibiting greater disability following strokes of comparable size and having a higher prevalence of cognitive impairment later in life. Despite the critical implication of the cerebrovascular architecture in brain perfusion and brain health, it remains unclear whether structural differences in vessel density exist across the sexes. METHODS In this study, we used high-density MRI imaging to characterize the intracerebral arterial and venous density of 28 (14 women) sex-matched healthy young volunteers in vivo. Using an in-house vessel segmentation algorithm, we quantified and compared these vascular features across the cortical and subcortical deep gray matter, white matter, and periventricular white matter. RESULTS We found that, on average, women have reduced intracerebral arterial density in comparison to men (F 2.34 ± 0.48%, M 2.67 ± 0.39%; p<.05). This difference was most pronounced in the subcortical deep gray matter (F 1.78 ± 0.53%, M 2.38 ± 0.82%; p<.05) and periventricular white matter (F 0.68 ± 0.15%, M 1.14 ± 0.33%; p<.0005), indicating a potential sex-specific vulnerability to hypoperfusion in areas critical to core cerebral functions. In contrast, venous density did not exhibit a significant difference between sexes. CONCLUSIONS While this research remains exploratory, it raises important pathophysiological considerations for brain health, adverse cerebrovascular events, and dementia across the sexes. Our findings also highlight the need to take into account sex differences when investigating cerebral characteristics in humans.
Collapse
Affiliation(s)
| | - Michaël Bernier
- Martinos Center - MGH - Harvard Medical School, Charlestown, Massachusetts, USA
| | - Samantha Côté
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, Ontario, Canada
| | - Christian Bocti
- Research Center on Aging, Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Whittingstall
- Department of Nuclear Medicine and Radiobiology, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
48
|
Ganesana M, Venton BJ. Spontaneous, transient adenosine release is not enhanced in the CA1 region of hippocampus during severe ischemia models. J Neurochem 2021; 159:887-900. [PMID: 34453336 PMCID: PMC8627433 DOI: 10.1111/jnc.15496] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022]
Abstract
Ischemic stroke causes damage in the brain, and a slow buildup of adenosine is neuroprotective during ischemic injury. Spontaneous, transient adenosine signaling, lasting only 3 s per event, has been discovered that increases in frequency in the caudate-putamen during early stages of mild ischemia-reperfusion injury. However, spontaneous adenosine changes have not been studied in the hippocampus during ischemia, an area highly susceptible to stroke. Here, we investigated changes of spontaneous, transient adenosine in the CA1 region of rat hippocampus during three different models of the varied intensity of ischemia. During the early stages of the milder bilateral common carotid artery occlusion (BCCAO) model, there were fewer spontaneous, transient adenosine, but no change in the concentration of individual events. In contrast, during the moderate 2 vertebral artery occlusion (2VAO) and severe 4 vessel occlusion (4VO) models, both the frequency of spontaneous, transient adenosine and the average event adenosine concentration decreased. Blood flow measurements validate that the ischemia models decreased blood flow, and corresponding pathological changes were observed by transmission electron microscopy (TEM). 4VO occlusion showed the most severe damage in histology and BCCAO showed the least. Overall, our data suggest that there is no enhanced spontaneous adenosine release in the hippocampus during moderate and severe ischemia, which could be due to depletion of the rapidly releasable adenosine pool. Thus, during ischemic stroke, there are fewer spontaneous adenosine events that could inhibit neurotransmission, which might lead to more damage and less neuroprotection in the hippocampus CA1 region. Read the Editorial Highlight for this article on page 800.
Collapse
Affiliation(s)
- Mallikarjunarao Ganesana
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
49
|
Sehati F, Ahmadi I, Farivar N, Ranjbaran M, Sadat-Shirazi MS, Nabavizadeh F, Mahla Shavakandi S, Ashabi G. Tannic acid protects aged brain against cerebral hypoperfusion via modulation of Nrf2 and inflammatory pathways. Neurosci Lett 2021; 765:136263. [PMID: 34562517 DOI: 10.1016/j.neulet.2021.136263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 02/01/2023]
Abstract
Current study purposed to investigate the neuroprotective effects of Tannic Acid (TA) on mild chronic cerebral hypoperfusion model in rats. Male Wistar rats were subjected to permanent Unilateral Common Carotid Artery Occlusion (UCCAO), followed by TA treatment (0.05% w/v) in drinking water for one month. Nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H: quinone oxidoreductase 1 (NQO-1), heme oxygenase-1 (HO-1), factor kappa-light-chain-enhancer of activated B cells (NF-κB), tumor necrosis factor-α (TNF-α), B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, blood triglyceride, blood glucose, and liver enzymes' activity were detected after the experimental period. Also, behavioral tests, hematoxylin and eosin (H&E) staining, and PET scan were performed after treatment. Post-treatment of TA improved locomotion and memory function (P < 0.001), and reduced neural cell death (P < 0.001) in the treatment group compared to UCCAO rats. Furthermore, long-term TA treatment significantly increased the levels of Nrf2 (P < 0.001), NQO-1 (P < 0.001), and HO-1 (P < 0.001) in the hippocampus of the treatment group compared to the UCCAO group. TA consumption in the treatment group applied its anti-inflammatory effects via reducing the activity of NF-κB and TNF-α in comparison with the UCCAO group (P < 0.001 for both). Blood triglyceride, blood glucose, and liver enzymes did not change considerably in the groups (P > 0.05). The current results indicate that long-term post-treatment of TA exhibits protective effects against memory deficit and motor dysfunction. The cellular mechanism of TA in hypoperfused rats might be associated with the activation of antioxidant pathways, especially the Nrf2 pathway, and suppressing inflammatory factors like NF-κB and TNF-α.
Collapse
Affiliation(s)
- Fardin Sehati
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Nika Farivar
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Ranjbaran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra-Sadat Sadat-Shirazi
- Department of Genetic, Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghorbangol Ashabi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Mucellini AB, Miguel PM, Dalle Molle R, Rodrigues DM, Machado TD, Reis RS, Toazza R, Salum GA, Bortoluzzi A, Franco AR, Buchweitz A, Barth B, Agranonik M, Nassim M, Meaney MJ, Manfro GG, Silveira PP. Diminished insulin sensitivity is associated with altered brain activation to food cues and with risk for obesity - Implications for individuals born small for gestational age. Appetite 2021; 169:105799. [PMID: 34767841 DOI: 10.1016/j.appet.2021.105799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
While classically linked to memory, the hippocampus is also a feeding behavior modulator due to its multiple interconnected pathways with other brain regions and expression of receptors for metabolic hormones. Here we tested whether variations in insulin sensitivity would be correlated with differential brain activation following exposure to palatable food cues, as well as with variations in implicit food memory in a cohort of healthy adolescents, some of whom were born small for gestational age (SGA). Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was positively correlated with activation in the cuneus, and negatively correlated with activation in the middle frontal lobe, superior frontal gyrus and precuneus when presented with palatable food images versus non-food images in healthy adolescents. Additionally, HOMA-IR and insulinemia were higher in participants with impaired food memory. SGA individuals had higher snack caloric density and greater chance for impaired food memory. There was also an interaction between the HOMA-IR and birth weight ratio influencing external eating behavior. We suggest that diminished insulin sensitivity correlates with activation in visual attention areas and inactivation in inhibitory control areas in healthy adolescents. Insulin resistance also associated with less consistency in implicit memory for a consumed meal, which may suggest lower ability to establish a dietary pattern, and can contribute to obesity. Differences in feeding behavior in SGA individuals were associated with insulin sensitivity and hippocampal alterations, suggesting that cognition and hormonal regulation are important components involved in their food intake modifications throughout life.
Collapse
Affiliation(s)
- Amanda B Mucellini
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia M Miguel
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Roberta Dalle Molle
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Danitsa M Rodrigues
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania D Machado
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberta S Reis
- Graduate Program in Child and Adolescent Health, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rudinéia Toazza
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Giovanni A Salum
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Andressa Bortoluzzi
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Alexandre R Franco
- Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Augusto Buchweitz
- Brain Institute of Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Integrated Program in Neurosciences, McGill University, Montreal, QC, Canada
| | - Marilyn Agranonik
- Fundação de Economia e Estatística Siegfried Emanuel Heuser, Porto Alegre, Brazil
| | - Marouane Nassim
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Translational Neuroscience Programme, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Gisele G Manfro
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Patrícia P Silveira
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|