1
|
Nauen DW, Bi GQ. Measuring action potential-evoked transmission at individual synaptic contacts. J Neural Eng 2012; 9:036014. [PMID: 22626987 DOI: 10.1088/1741-2560/9/3/036014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In the neuronal culture experimental system, the total synaptic connection between two neurons can consist of large numbers of synaptic sites, each behaving probabilistically. Studies of synaptic function with paired recordings typically consider the summed response across all of these sites and from this infer the average response. Understanding of synaptic transmission and plasticity could be improved by examination of activity at as few synaptic sites as possible. To this end, we develop a system for recording responses from individual contacts. It relies on a precisely regulated pneumatic/hydrostatic pressure system to create a microenvironment within which individual synapses are active, and an acoustic signature method to monitor the stability of this microenvironment noninvasively. With this method we are able to record action potential-evoked postsynaptic currents consistent with individual quanta. The approach does not distort synaptic current waveforms and permits stable recording for several hours. The method is applied to address mechanisms of short-term plasticity, the variability of latency at individual synaptic sites and, in a preliminary experiment, the independence of nearby synapses on the same axon.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
2
|
Nauen DW. Methods of measuring activity at individual synapses: a review of techniques and the findings they have made possible. J Neurosci Methods 2010; 194:195-205. [PMID: 20888362 DOI: 10.1016/j.jneumeth.2010.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 10/19/2022]
Abstract
Neurons in the brain are often linked by single synaptic contacts (Gulyás et al., 1993) and the probabilistic character of synaptic activity makes it desirable to increase the resolution of physiological experiments by observing the function of the smallest possible number of synaptic terminals, ideally, one. Because they are critically important and technically difficult to resolve, several of the core questions investigated in singe-site experiments have been under study for decades (Auger and Marty, 2000). Many approaches have been taken toward the goal of measuring activity at few synapses, and consideration of the capabilities and limitations of each of these methods permits a review of the contributions each has made possible to present understanding of synaptic function. A number of methodological advances in recent years have increased resolving power. New techniques often build on previous developments and many effective approaches combine components of existing specialized methods with new technology. One theme that emerges is that synaptic properties vary among regions, reducing the utility of general questions such as whether synaptic glutamate saturates receptors or how rapidly synaptic vesicle pools are depleted. For several core questions, multiple studies using different methods have reached similar conclusions, suggesting that consensus may be emerging for some anatomic synapses.
Collapse
Affiliation(s)
- David W Nauen
- Department of Neurobiology, University of Pittsburgh School of Medicine, W1401 BST, 200 Lothrop Street, Pittsburgh, PA 15261, United States.
| |
Collapse
|
3
|
Henneberger C, Kirischuk S, Grantyn R. Brain-derived neurotrophic factor modulates GABAergic synaptic transmission by enhancing presynaptic glutamic acid decarboxylase 65 levels, promoting asynchronous release and reducing the number of activated postsynaptic receptors. Neuroscience 2005; 135:749-63. [PMID: 16154289 DOI: 10.1016/j.neuroscience.2005.06.044] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 06/10/2005] [Accepted: 06/14/2005] [Indexed: 11/28/2022]
Abstract
Brain-derived neurotrophic factor is known to modulate the function of GABAergic synapses, but the site of brain-derived neurotrophic factor action is still a matter of controversy. This study was aimed at further dissecting the functional alterations produced by brain-derived neurotrophic factor treatment of GABAergic synaptic connections in cultures of the murine superior colliculus. The functional consequences of long-term brain-derived neurotrophic factor treatment were assessed by analysis of unitary evoked and delayed inhibitory postsynaptic currents in response to high frequency stimulation of single axons. It was found that brain-derived neurotrophic factor facilitated the asynchronous release, but had no effect on the probability of evoked release, the size of the readily releasable pool, and the paired-pulse behavior of evoked inhibitory postsynaptic currents. However, the amplitudes of evoked inhibitory postsynaptic currents, delayed inhibitory postsynaptic currents and miniature inhibitory postsynaptic currents were significantly reduced. Non-stationary fluctuation analysis revealed a decrease in the open channel number at the miniature/evoked inhibitory postsynaptic current peak, but no effect on the mean GABA(A) receptor single channel conductance. Quantitative immunocytochemistry uncovered a significant elevation of presynaptic levels of glutamic acid decarboxylase 65. Together, these findings indicate that brain-derived neurotrophic factor treatment induces pre- as well as postsynaptic changes. What effect predominates will depend on the presynaptic activity pattern: at low activation rates brain-derived neurotrophic factor-treated synapses display a pronounced postsynaptic depression, but at high frequencies this depression is fully compensated by an enhancement of asynchronous release.
Collapse
Affiliation(s)
- C Henneberger
- Sensory and Developmental Physiology Group, Institute of Neurophysiology, Johannes-Mueller-Center of Physiology, Charité-University Medicine Berlin, Tucholskystr. 2, D-10117 Berlin, Germany
| | | | | |
Collapse
|
4
|
Axmacher N, Stemmler M, Engel D, Draguhn A, Ritz R. Transmitter Metabolism as a Mechanism of Synaptic Plasticity: A Modeling Study. J Neurophysiol 2004; 91:25-39. [PMID: 13679396 DOI: 10.1152/jn.00797.2003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The nervous system adapts to experience by changes in synaptic strength. The mechanisms of synaptic plasticity include changes in the probability of transmitter release and in postsynaptic responsiveness. Experimental and neuropharmacological evidence points toward a third variable in synaptic efficacy: changes in presynaptic transmitter concentration. Several groups, including our own, have reported changes in the amplitude and frequency of postsynaptic (miniature) events indicating that alterations in transmitter content cause alterations in vesicular transmitter content and vesicle dynamics. It is, however, not a priori clear how transmitter metabolism will affect vesicular transmitter content and how this in turn will affect pre- and postsynaptic functions. We therefore have constructed a model of the presynaptic terminal incorporating vesicular transmitter loading and the presynaptic vesicle cycle. We hypothesize that the experimentally observed synaptic plasticity after changes in transmitter metabolism puts predictable restrictions on vesicle loading, cytoplasmic–vesicular transmitter concentration gradient, and on vesicular cycling or release. The results of our model depend on the specific mechanism linking presynaptic transmitter concentration to vesicular dynamics, that is, alteration of vesicle maturation or alteration of release. It also makes a difference whether differentially filled vesicles are detected and differentially processed within the terminal or whether vesicle filling acts back onto the terminal by presynaptic autoreceptors. Therefore, the model allows one to decide, at a given synapse, how transmitter metabolism is linked to presynaptic function and efficacy.
Collapse
Affiliation(s)
- Nikolai Axmacher
- Johannes-Müller-Institut für Physiologie, Humboldt-Universität Berlin, 10117 Berlin, Germany
| | | | | | | | | |
Collapse
|
5
|
Kirischuk S, Akyeli J, Iosub R, Grantyn R. Pre- and postsynaptic contribution of GABAC receptors to GABAergic synaptic transmission in rat collicular slices and cultures. Eur J Neurosci 2003; 18:752-8. [PMID: 12925001 DOI: 10.1046/j.1460-9568.2003.02805.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mammalian superior colliculus (SC) is reported to contain gamma-aminobutyric acid (GABA)C receptors (GABACRs) at high concentration. However, their role in GABAergic synaptic transmission is not yet known. The aim of the present study was: (i) to clarify whether GABACRs are activated by endogenous GABA; and (ii), to determine whether GABACRs play a role in inhibitory synaptic transmission. Experiments were performed on acute horizontal slices from the postnatal rat SC or on collicular neurons in dissociated cell culture. In both preparations, bicuculline-resistant current responses to exogenous GABA and currents elicited by cis-4-aminocrotonic acid (CACA) were blocked by (1,2,5,6-tetrahydropyridine-4-yl) methylphosphinic acid (TPMPA), a GABACR antagonist. The CACA-induced currents exhibited a linear current-voltage relationship and reversed at the Cl- equilibrium potential. These results indicate that functional GABACRs are present in the somato-dendritic membrane of collicular neurons. Miniature inhibitory postsynaptic currents (mIPSCs) were recorded using the whole-cell patch clamp technique. TPMPA significantly decreased mIPSC amplitudes in slices, but not in cultured neurons. As TPMPA decreased also the coefficient of variation of mIPSCs, we suggest that somatodendritic GABACRs are located extrasynaptically but can be involved in the generation of IPSCs if GABA diffusion is constrained. In cultures, individual connections were activated by focal electrical stimulation of single neurons, and evoked inhibitory postsynaptic currents (eIPSCs) were recorded. Paired-pulse stimulation revealed that TPMPA significantly decreased the paired-pulse ratio at short (50 ms) interstimulus intervals, and this effect was inversely dependent on the amplitude of the first eIPSC. We conclude that presynaptic GABACRs are activated by endogenous GABA and can alleviate the short-term depression resulting from a preceding episode of GABA release. Thus, in GABAergic synapses of the SC GABACRs are involved in pre- and postsynaptic functions and may therefore contribute to the activity-dependent adjustment of GABAergic inhibition.
Collapse
Affiliation(s)
- Sergei Kirischuk
- Developmental Physiology, Johannes Müller Institute of Physiology, Humboldt University Medical School (Charité), Tucholskystrasse 2, 10117 Berlin, Germany.
| | | | | | | |
Collapse
|
6
|
Hsu FC, Waldeck R, Faber DS, Smith SS. Neurosteroid effects on GABAergic synaptic plasticity in hippocampus. J Neurophysiol 2003; 89:1929-40. [PMID: 12612040 PMCID: PMC2909183 DOI: 10.1152/jn.00780.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously reported that short-term (48-72 h) exposure to the GABA-modulatory steroid 3alpha-OH-5alpha-pregnan-20-one (3alpha,5alpha-THP) increases expression of the alpha4 subunit of the GABA(A) receptor (GABAR) in the hippocampus of adult rats. This change in subunit composition was accompanied by altered pharmacology and an increase in general excitability associated with acceleration of the decay time constant (tau) for GABA-gated current of pyramidal cells acutely isolated from CA1 hippocampus similar to what we have reported following withdrawal from the steroid after chronic long-term administration. Because GABAR can be localized to either synaptic or extrasynaptic sites, we tested the hypothesis that this change in receptor kinetics is mediated by synaptic GABAR. To this end, we evaluated the decay kinetics of TTX-resistant miniature inhibitory postsynaptic currents (mIPSCs) recorded from CA1 pyramidal cells in hippocampal slices following 48-h treatment with 3alpha,5alpha/beta-THP (10 mg/kg, ip). Hormone treatment produced a marked acceleration in the fast decay time constant (tau(fast)) of GABAergic mIPSCs. This effect was prevented by suppression of alpha4-subunit expression with antisense (AS) oligonucleotide, suggesting that hormone treatment increases alpha4-containing GABAR subsynaptically. This conclusion was further supported by pharmacological data from 3alpha,5beta-THP-treated animals, demonstrating a bimodal distribution of taus for individual mIPSCs following bath application of the alpha4-selective benzodiazepine RO15-4513, with a shift to slower values. Because 40-50% of the individual taus were also shifted to slower values following bath application of the non-alpha4-selective benzodiazepine agonist lorazepam (LZM), we suggest that the number of GABAR synapses containing alpha4 subunits is equivalent to those that do not following 48-h administration of 3alpha,5beta-THP. The decrease in GABAR-mediated charge transfer resulting from accelerated current decay may then result in increased excitability of the hippocampal circuitry, an effect consistent with the increased behavioral excitability we have previously demonstrated.
Collapse
Affiliation(s)
- Fu-Chun Hsu
- Department of Neurobiology and Anatomy, Medical College of Pennsylvania-Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | | | | | |
Collapse
|
7
|
Heidelberger R. Electrophysiological approaches to the study of neuronal exocytosis and synaptic vesicle dynamics. Rev Physiol Biochem Pharmacol 2001; 143:1-80. [PMID: 11428263 DOI: 10.1007/bfb0115592] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- R Heidelberger
- Department of Neurobiology and Anatomy, W.M. Keck Center for the Neurobiology of Learning and Memory, University of Texas, Houston Health Science Center, Houston, Texas 77025, USA
| |
Collapse
|
8
|
Presynaptic inhibition and antidromic spikes in primary afferents of the crayfish: a computational and experimental analysis. J Neurosci 2001. [PMID: 11157086 DOI: 10.1523/jneurosci.21-03-01007.2001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Primary afferent depolarizations (PADs) are associated with presynaptic inhibition and antidromic discharges in both vertebrates and invertebrates. In the present study, we have elaborated a realistic compartment model of a primary afferent from the coxobasipodite chordotonal organ of the crayfish based on anatomical and electrophysiological data. The model was used to test the validity of shunting and sodium channel inactivation hypotheses to account for presynaptic inhibition. Previous studies had demonstrated that GABA activates chloride channels located on the main branch close to the first branching point. We therefore focused the analysis on the effect of GABA synapses on the propagation of action potentials in the first axonal branch. Given the large diameters of the sensory axons in the region in which PADs were likely to be produced and recorded, the model indicates that a relatively large increase in chloride conductance (up to 300 nS) is needed to significantly reduce the amplitude of sensory spikes. The role of the spatial organization of GABA synapses in the sensory arborization was analyzed, demonstrating that the most effective location for GABA synapses is in the area of transition from active to passive conduction. This transition is likely to occur on the main branch a few hundred micrometers distal to the first branching point. As a result of this spatial organization, antidromic spikes generated by large-amplitude PADs are prevented from propagating distally.
Collapse
|
9
|
Abstract
The mode of operation of synaptic transmission has been primarily worked out at the vertebrate neuromuscular junction, thus providing a framework for the interpretation of studies at central synapses. However, differences have been found between the two systems, and a coherent model is still lacking for central synapses. Research in this area revolves around several questions. (1) Is the variability of quantal amplitudes determined pre- or postsynaptically? (2) What is the occupancy of postsynaptic receptors following the release of a synaptic vesicle? And (3) does multivesicular release occur at single release sites following one presynaptic action potential? To answer these questions, it is essential to investigate synaptic processes at the level of single release sites. This is technically difficult because of the complex morphology and small dimensions of central synapses. Nevertheless significant advances have been made in the past few years.
Collapse
Affiliation(s)
- C Auger
- Department of Physiology, University College London, London, UK.
| | | |
Collapse
|
10
|
Kirischuk S, Veselovsky N, Grantyn R. Relationship between presynaptic calcium transients and postsynaptic currents at single gamma-aminobutyric acid (GABA)ergic boutons. Proc Natl Acad Sci U S A 1999; 96:7520-5. [PMID: 10377447 PMCID: PMC22118 DOI: 10.1073/pnas.96.13.7520] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Postsynaptic responses to stereotyped activation of single axons are known to fluctuate, but the origin of synaptic variability in the vertebrate central nervous system is still unclear. To test the hypothesis that fluctuations of inhibitory postsynaptic currents reflect variations in presynaptic Ca2+ concentration, we examined single GABAergic axodendritic contacts in low-density cultures. Collicular neurons from rat embryos were loaded with the Ca2+ indicator Oregon Green 488 BAPTA-1. Presynaptic axon terminals were visualized by staining with the styryl dye RH414. Under the condition of action potential block, RH414-labeled boutons were activated selectively by current pulses applied through a fine-tipped glass pipette. Short (1- to 3-ms) depolarization of isolated boutons resulted in stimulus-locked changes of presynaptic Ca2+ concentration ([Ca2+]pre) and in evoked inhibitory postsynaptic currents (eIPSCs). Varying the strength of the stimulating currents produced a wide amplitude range of both presynaptic fluorescence transients (up to 220% of the resting value) and postsynaptic conductance changes (up to 2-3 nS). It was found that average eIPSCs displayed an approximately third-power dependency on [Ca2+]pre. Transmitter release retained its probabilistic character throughout the range of observed [Ca2+]pre values. In any tested single bouton, maximal eIPSCs occurred in association with the largest [Ca2+]pre transients, but failures were present at any [Ca2+]pre. The increase of maximal eIPSC amplitudes in connection with higher [Ca2+]pre supports the hypothesis that GABAergic boutons have the capacity to regulate synaptic strength by changing the number of simultaneously released vesicles.
Collapse
Affiliation(s)
- S Kirischuk
- Arbeitsgruppe Entwicklungsphysiologie, Institut für Physiologie, Medizinische Fakultät (Charité) der Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | | | | |
Collapse
|
11
|
Wall MJ, Usowicz MM. Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse. Nat Neurosci 1998; 1:675-82. [PMID: 10196583 DOI: 10.1038/3677] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In many studies of central synaptic transmission, the quantal properties of miniature synaptic events do not match those derived from synaptic events evoked by action potentials. Here we show that at mossy fiber-granule cell (MF-gc) synapses of mature cerebellum, evoked excitatory postsynaptic currents (EPSCs) are multiquantal, and their amplitudes vary in discrete steps, whereas miniature (m)EPSCs are monoquantal or multiquantal with quantal parameters identical to those of the EPSCs. In contrast, at immature MF-gc synapses, EPSCs are multiquantal, but their amplitudes do not vary in discrete steps, whereas most mEPSCs seem to be monoquantal with a broad and skewed amplitude distribution. The results demonstrate that quantal variance decreases during synaptic development. They also directly confirm the quantal hypothesis of neurotransmission at a mature brain synapse.
Collapse
Affiliation(s)
- M J Wall
- Department of Pharmacology, University of Bristol, UK
| | | |
Collapse
|
12
|
Behrends JC, ten Bruggencate G. Changes in quantal size distributions upon experimental variations in the probability of release at striatal inhibitory synapses. J Neurophysiol 1998; 79:2999-3011. [PMID: 9636103 DOI: 10.1152/jn.1998.79.6.2999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Postsynaptic inhibitory gamma-aminobutyric acid-A (GABAA)-receptor-mediated current responses were measured using simultaneous pre- and postsynaptic whole cell recordings in primary cell cultures of rat striatum. Substitution of Sr2+ for extracellular Ca2+ strongly desynchronized the inhibitory postsynaptic currents (IPSCs), resulting in a succession of asynchronous IPSCs (asIPSCs). The rise times and decay time constants of individual evoked asIPSCs were not significantly different from those of miniature IPSCs that are the result of spontaneous vesicular release of GABA. Thus asIPSCs reflect quantal transmission at the individual contacts made by one presynaptic neuron on the recorded postsynaptic cell. Increasing the concentration of Sr2+ from 2 to 10 mM and decreasing that of Mg2+ from 5 to 1 mM produced an increase in the frequency of asIPSCs consistent with an enhancement of the mean probability of release (Pr). At the same time the amplitude distribution of asIPSCs was shifted toward larger values, whereas responses to exogenously applied GABA on average were slightly decreased in amplitude. Application of the GABAB-receptor agonist baclofen (3-10 microM) strongly reduced the frequency of asIPSC, consistent with a decrease in Pr, and led to a shift of the amplitude distribution toward smaller values. Baclofen had no effect on responses to exogenously applied GABA. In summary, our data suggest that at striatal inhibitory connections the weight of single contacts may be controlled presynaptically by variation in the amount of transmitter released.
Collapse
Affiliation(s)
- J C Behrends
- Department of Physiology, Universität München, 80336 Munich, Germany
| | | |
Collapse
|
13
|
Kruk PJ, Korn H, Faber DS. The effects of geometrical parameters on synaptic transmission: a Monte Carlo simulation study. Biophys J 1997; 73:2874-90. [PMID: 9414202 PMCID: PMC1181193 DOI: 10.1016/s0006-3495(97)78316-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Monte Carlo simulations of transmitter diffusion and its interactions with postsynaptic receptors have been used to study properties of quantal responses at central synapses. Fast synaptic responses characteristic of those recorded at glycinergic junctions on the teleost Mauthner cell (time to peak approximately 0.3-0.4 ms and decay time constant approximately 3-6 ms) served as the initial reference, and smaller contacts with fewer postsynaptic receptors were also modeled. Consistent with experimental findings, diffusion, simulated using a random walk algorithm and assuming a diffusion coefficient of 0.5-1.0 x 10(-5) cm2 s(-1), was sufficiently fast to account for transmitter removal from the synaptic cleft. Transmitter-receptor interactions were modeled as a two-step binding process, with the double-bound state having opened and closed conformations. Addition of a third binding step only slightly decreased response amplitude but significantly slowed both its rising and decay phases. The model allowed us to assess the sources of response variability and the likelihood of postsynaptic saturation as functions of multiple kinetic and spatial parameters. The method of nonstationary fluctuation analysis, typically used to estimate the number of functional channels at a synapse and single channel current, proved unreliable, presumably because the receptors in the postsynaptic matrix are not uniformly exposed to the same profile of transmitter concentration. Thus, the time course of the probability of channel opening most likely varies among receptors. Finally, possible substrates for phenomena of synaptic plasticity, such as long-term potentiation, were explored, including the diameter of the contact zone, defined by the region of pre- and postsynaptic apposition, the number and distribution of the receptors, and the degree of vesicle filling. Surprisingly, response amplitude is quite sensitive to the size of the receptor-free annulus surrounding the receptor cluster, such that expansion of the contact zone could produce an appreciable increase in quantal size, normally attributed to either the presence of more receptors or the release of more transmitter molecules.
Collapse
Affiliation(s)
- P J Kruk
- Department of Neurobiology and Anatomy, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | |
Collapse
|
14
|
Zhou FM, Hablitz JJ. Metabotropic glutamate receptor enhancement of spontaneous IPSCs in neocortical interneurons. J Neurophysiol 1997; 78:2287-95. [PMID: 9356382 DOI: 10.1152/jn.1997.78.5.2287] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metabotropic glutamate receptor enhancement of spontaneous IPSCs in neocortical interneurons. J. Neurophysiol. 78: 2287-2295, 1997. Using neocortical layer I neurons as a model for GABAergic interneurons, we have studied gamma-aminobutyric acid-A (GABAA) receptor-mediated spontaneous inhibitory postsynaptic currents (IPSCs) and modulation by metabotropic glutamate receptors (mGluRs). In the presence of 0.5 mu M tetrodotoxin (TTX) and ionotropic glutamate receptor antagonists and under symmetrical Cl- conditions, the mean amplitude of miniature IPSCs (mIPSCs) was approximately 50 pA at a holding potential of -70 mV with individual events ranging from 10 to 400 pA. Averaged mIPSCs had a 10-90% rise time of approximately 0.6 ms. The decay was double exponential. The fast component had a time constant of approximately 4 ms and comprised approximately 40% of the total amplitude. The slow component had a time constant of approximately 22 ms. The frequency of spontaneous IPSCs (sIPSCs), recorded in the absence of TTX, was increased by bath application of the mGluR agonist 1S,3R-1-aminocyclopentane-1, 3-dicarboxylic acid (ACPD; 10-100 mu M) or the group I mGluR selective agonist quisqualic acid (Quis; 0.5-1 mu M). Under identical conditions, mIPSCs were not affected. The kinetics of sIPSCs and mIPSCs were not altered by ACPD or Quis. Quis (1 mu M) induced an inward current of approximately 70 pA at a holding potential of -70 mV, whereas ACPD (40-200 mu M) induced a smaller inward current. This current was linear over the voltage range -70 to +30 mV and reversed polarity near 0 mV. In current-clamp recordings, both Quis and ACPD induced a depolarization and action potential firing in layer I and deeper layer interneurons. We conclude that neocortical layer I neurons receive GABAA receptor-mediated inhibitory synaptic inputs. Activation of mGluRs, possibly mGluR1 and/or mGluR5, causes an enhancement of inhibitory synaptic transmission by directly depolarizing corticalGABAergic interneurons through the opening of nonselective cation channels.
Collapse
Affiliation(s)
- F M Zhou
- Department of Neurobiology, University of Alabama at Birmingham, Alabama 35294, USA
| | | |
Collapse
|
15
|
Triller A, Rostaing P, Korn H, Legendre P. Morphofunctional evidence for mature synaptic contacts on the Mauthner cell of 52-hour-old zebrafish larvae. Neuroscience 1997; 80:133-45. [PMID: 9252227 DOI: 10.1016/s0306-4522(97)00092-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In a previous study, miniature inhibitory synaptic events recorded in the Mauthner cell of the 52-hour-old zebrafish larvae (Brachydanio rerio) were found to be mainly glycinergic. Their amplitude distribution was not Gaussian and it was proposed that their large amplitude variation might reflect the activation of immature synapses. However, ultrastructural studies of the synaptic contacts over the M-cell soma of 52 h larvae described here, revealed that numerous synaptic contacts on this neuron are already mature at this developmental stage and that most of them already contain a single active zone. As in the adult goldfish, immunohistochemistry indicates the presence of both glycine- and GABA-immunoreactive boutons which establish synaptic contacts. We also found that, in addition to the predominant glycinergic postsynaptic inhibitory currents, some postsynaptic currents are also GABAergic since they are specifically inhibited by bicuculline (20 microM). GABAergic miniature events (time to peak close to 0.8 ms and decay time-constant close to 45 ms) were only detected in the presence of 11.5 mM [KCl]o. Their amplitude distributions were well fitted by one, or at most two, Gaussian curves. Outside-out recordings showed one class of GABA receptors with a main conductance state of 23 pS. This indicates that the smallest GABAergic miniature inhibitory synaptic events correspond to the opening of 14-20 chloride channels Pre- and postsynaptic factors which contribute to the predominance of glycinergic synaptic currents over GABAergic ones in untreated preparations and to the striking differences between their frequencies and their respective amplitude distribution histograms are discussed with reference to the morphological characteristics of the mature synaptic endings impinging on this still developing neuron.
Collapse
Affiliation(s)
- A Triller
- CJF 94-10 INSERM, Ecole Normale Supérieure, Paris, France
| | | | | | | |
Collapse
|
16
|
Bolshakov VY, Golan H, Kandel ER, Siegelbaum SA. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 1997; 19:635-51. [PMID: 9331354 DOI: 10.1016/s0896-6273(00)80377-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-term potentiation at CA3-CA1 hippocampal synapses exhibits an early phase and a late phase, which can be distinguished by their underlying molecular mechanisms. Unlike the early phase, the late phase is dependent on both cAMP and protein synthesis. Quantal analysis of unitary synaptic transmission between a single presynaptic CA3 neuron and a single postsynaptic CA1 neuron suggests that, under certain conditions, the early phase of LTP involves an increase in the probability of release of a single quantum of transmitter from a single presynaptic release site, with no change in the number of quanta that are released or in postsynaptic sensitivity to transmitter. Here, we show that the cAMP-induced late phase of LTP involves an increase in the number of quanta released in response to a single presynaptic action potential, possibly due to an increase in the number of sites of synaptic transmission between a single CA3 and a single CA1 neuron.
Collapse
Affiliation(s)
- V Y Bolshakov
- Department of Pharmacology, Howard Hughes Medical Institute, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
17
|
Mize RR, Butler GD. The distribution of the GABA(A) beta2,beta3 subunit receptor in the cat superior colliculus using antibody immunocytochemistry. Neuroscience 1997; 79:1121-35. [PMID: 9219971 DOI: 10.1016/s0306-4522(96)00667-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GABA-containing synaptic terminals in the cat superior colliculus include two varieties of presynaptic dendrite and at least one type of axon terminal with flattened vesicles. These anatomically distinct synaptic profiles probably also mediate different types of inhibition. Whether they are associated with different types of GABA receptor is unknown and one objective of the present paper. We used the antibody mAb 62-361 directed against the beta2,beta3 subunits of the GABA(A) receptor complex to determine whether the distribution of this receptor subunit is specific to one or more types of GABA-containing synapse. At the light microscope level, beta2,beta3 immunoreactivity was densely distributed within the neuropil of the zonal and superficial gray layers, and more lightly within the optic, intermediate, and deep gray layers. No cell bodies were labelled by the antibody in the zonal and superficial gray layers, but numerous cells contained internalized cytoplasmic immunoreactivity in the optic, intermediate gray, and deeper layers. At the ultrastructural level, synaptic sites opposite axon terminals that contained flattened synaptic vesicles (F profiles) were often beta2,beta3 immunoreactive, while postsynaptic sites opposite presynaptic dendrites (PSD profiles) were never immunoreactive. The label at F profiles usually filled the synaptic cleft and coated the postsynaptic plasma membrane. Some membrane-associated label was also found at non-synaptic sites. We conclude that this receptor subunit is selectively associated with flattened vesicle axon terminals and not with presynaptic dendrites, a result which supports evidence that those terminal types mediate different types of inhibition.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy and the Neuroscience Center, Louisiana State University Medical Center, New Orleans, USA
| | | |
Collapse
|
18
|
Characterization of functional GABAergic synapses formed between rat hypothalamic neurons and pituitary intermediate lobe cells in coculture: Ca2+ dependence of spontaneous IPSCs. J Neurosci 1996. [PMID: 8756416 DOI: 10.1523/jneurosci.16-16-04835.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rat hypothalamic neurons and endocrine cells from the intermediate lobe of the pituitary were grown in dissociated coculture. Neurons positively stained with an antibody against glutamate decarboxylase established apparent contacts with the alpha-melanocyte-stimulating hormone-positive endocrine cells. These sites of contact were intensely labeled with an antibody against the synaptic protein synapsin I and displayed ultrastructural features characteristic of synapses. Using patch-clamp recordings, we have demonstrated that these contacts correspond to functional GABAergic synapses. The synaptic currents were blocked reversibly by bicuculline (5 microM) and SR95531 (5 microM), two competitive antagonists of the GABAA receptor. At a holding potential of -60 mV, spontaneously occurring IPSCs (s-IPSCs) had small amplitudes (10-100 pA), whereas electrically evoked IPSCs (ee-IPSCs) had amplitudes up to 1 nA. The rise times of both types of IPSCs were fast ( < or = 1 msec), and their decaying phases were fitted in most cases with a single exponential function (time constant 50 msec). The amplitude distribution of s-IPSCs did not reveal clear, equally spaced peaks and was little affected by tetrodotoxin, suggesting that most s-IPSCs were miniature IPSCs. Reduction of extracellular calcium concentration to 0.3 mM induced a marked decrease in s-IPSC frequency and revealed a single amplitude peak at 10 pA, suggesting that a single quantum of GABA activates 8-10 GABAA channels. Thus, our preparation might be an interesting model to study different aspects of synapse formation between a central neuron and its target as well as the fundamental mechanisms of synaptic transmission at central synapses.
Collapse
|
19
|
Mize RR, Banfro FT, Scheiner CA. Pre- and postnatal expression of amino acid neurotransmitters, calcium binding proteins, and nitric oxide synthase in the developing superior colliculus. PROGRESS IN BRAIN RESEARCH 1996; 108:313-32. [PMID: 8979811 DOI: 10.1016/s0079-6123(08)62549-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons within the superior colliculus (SC) contain a variety of neurochemicals, including the amino acid neurotransmitters GABA and glutamate, the calcium binding proteins calbindin and parvalbumin, and the neuromodulator nitric oxide. We have examined the development of expression of these substances using antibody immunocytochemistry. These results are summarized in Fig. 10. GABA and calbindin are expressed very early in development, at a time when cells are still dividing and migrating from the subventricular zone. The expression of both GABA and CB is maximal at around E40-46, the age at which these cells have just established their adult lamination and extrinsic afferents have begun to grow into the tectum. GABA and CB likely play diverse roles during this stage of development, including the regulation of intracellular calcium during cell migration and neurite outgrowth. Glutamate is expressed somewhat later in development while parvalbumin immunoreactivity does not appear until shortly after birth. These two substances continue to increase in density throughout the period of postnatal growth, at a time when synapse formation and evoked electrical activity are beginning to develop. Both PV and glutamate may be involved in one or both of these activity-dependent processes. Nitric oxide synthase (NOS) is expressed at different times in different cell groups. NOS appears very early in prenatal development in cells within the SVZ and in the deep gray layer of SC. On the other hands, cells within the intermediate gray layer of SC do not express NOS until shortly before birth. The igl cells that express NOS at this age are clustered neurons similar to those that project to the CFR in the adult. NOS expression occurs in these cells at precisely the time when axons begin to form patches that innervate these clusters. Based upon this temporal correlation, we hypothesize that nitric oxide may regulate synapse formation in this cell group.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | | | |
Collapse
|
20
|
Abstract
Spontaneous synaptic potentials were identified at the motor endplate 40 years ago. These were shown to possess amplitudes that could be described by a Gaussian distribution as could the amplitudes of evoked synaptic potentials under conditions of very low probability for secretion. As these Gaussians were identical, the idea of a unit or quantum of transmission was conceived. The failure to obtain similar Gaussian distributions for both spontaneous and low-probability evoked potentials during development of endplates indicated that a unit of transmission was not operating. However both the spontaneous and very low-probability evoked potentials could each be described by mixtures of Gaussians indicating a subunit of transmission might be operative. There are no ganglionic or central synapses at which comparisons have been made between spontaneous and low-probability evoked potentials that show each can be described by a Gaussian distribution, let alone that these are the same indicating a unit of transmission as originally conceived. There is some evidence that mixtures of Gaussians can be used to describe both spontaneous and very low-probability evoked synaptic potential amplitudes, opening up the possibility for a subunit of transmission at these synapses. The vesicle hypothesis, that the quantum of transmission at the endplate is due to the exocytosis of the contents of a synaptic vesicle, was also enunciated nearly 40 years ago. The existence of subunits of transmission has required reconsideration of this hypothesis. Three alternatives are considered: in one, the calcium-transient hypothesis, the subunit of secretion is due to the release of calcium from one of several calcium stores in the nerve terminal, so that several subunits are released when a number of these calcium stores are engaged in a regenerative response to the terminal action potential; a second alternative, the mediatophore hypothesis, is that a subunit of secretion occurs when a single transmitter transport protein channels transmitter across the terminal membrane, several such mediatophore proteins acting in concert then give multiple subunit release; finally, there is the vesicle fusion-pore hypothesis, in which individual transient openings of a fusion-pore channel joining a synaptic vesicle to the terminal membrane are responsible for secretion of a transmitter subunit, with multiple transients giving several subunits. Perhaps we will have distinguished between these possibilities before the quantal hypothesis is 50 years old.
Collapse
Affiliation(s)
- M R Bennett
- Department of Physiology F13, University of Sydney, N.S.W., Australia
| |
Collapse
|
21
|
Welsh DK, Logothetis DE, Meister M, Reppert SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 1995; 14:697-706. [PMID: 7718233 DOI: 10.1016/0896-6273(95)90214-7] [Citation(s) in RCA: 1036] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Within the mammalian hypothalamus, the suprachiasmatic nucleus (SCN) contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms. By culturing cells from neonatal rat SCN on fixed microelectrode arrays, we have been able to record spontaneous action potentials from individual SCN neurons for days or weeks, revealing prominent circadian rhythms in firing rate. Despite abundant functional synapses, circadian rhythms expressed by neurons in the same culture are not synchronized. After reversible blockade of neuronal firing lasting 2.5 days, circadian firing rhythms re-emerge with unaltered phases. These data suggest that the SCN contains a large population of autonomous, single-cell circadian oscillators, and that synapses formed in vitro are neither necessary for operation of these oscillators nor sufficient for synchronizing them.
Collapse
Affiliation(s)
- D K Welsh
- Laboratory of Developmental Chronobiology, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | |
Collapse
|
22
|
Bähring R, Standhardt H, Martelli EA, Grantyn R. GABA-activated chloride currents of postnatal mouse retinal ganglion cells are blocked by acetylcholine and acetylcarnitine: how specific are ion channels in immature neurons? Eur J Neurosci 1994; 6:1089-99. [PMID: 7952289 DOI: 10.1111/j.1460-9568.1994.tb00606.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The goal of this study was to clarify pharmacological properties of GABAA receptors in cells of the mouse retinal ganglion cell layer in situ. Spontaneous synaptic currents and responses to exogenous GABA were recorded from individual neurons in retinal whole mounts (postnatal days 1-3) or retinal stripe preparations (postnatal days 4-6). Drugs were applied by a fast local superfusion system. Current responses were measured with the patch-clamp technique in the whole-cell configuration. All cells responded to exogenous GABA (average EC50 and Hill coefficient: 16.7 microM and 0.95 respectively) and generated GABAergic synaptic currents in response to elevated KCl. GABA-induced currents of retinal ganglion cells were blocked by bicuculline, picrotoxin and Zn2+, as well as strychnine, and increased by pentobarbital, clonazepam and 3 alpha-hydroxy-5 alpha-pregnan-20-one. In some retinal ganglion cells GABA caused an increase in the frequency of spontaneous synaptic currents, which points to a partially depolarizing action of this traditionally inhibitory neurotransmitter in the neural retina. Our major observation is that acetylcholine and acetylcarnitine blocked or reduced GABAergic inhibitory postsynaptic currents and responses to exogenous GABA. This effect was seen in only a fraction of retinal ganglion cells and occurred in both the undesensitized and the desensitized state of the GABAA receptor. The block was voltage-independent and persisted during coapplication with the nicotinic and muscarinic acetylcholine receptor antagonists D-tubocurarine and atropine. In contrast to GABA-activated Cl- currents, glycine-activated Cl- currents remained unaffected by acetylcholine and acetylcarnitine.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Bähring
- Department of Neurophysiology, Max Planck Institute for Psychiatry, Martinsried, FRG
| | | | | | | |
Collapse
|
23
|
Abstract
In the past year, important advances have been made in the understanding of quantal neurotransmission at central synapses. These include new statistical tests for the significance of quantal peaks in synaptic amplitude histograms, greater understanding of possible sources of quantal variance, and new attempts to undertake a rigorous quantal analysis of neurotransmission.
Collapse
Affiliation(s)
- J M Bekkers
- Division of Neuroscience, John Curtin School of Medical Research, Canberra, Australia
| |
Collapse
|
24
|
Abstract
Long-term potentiation (LTP) is a lasting (hours, days) increase in electrical responses after brief (seconds) high-frequency activation of monosynaptic pathways. It represents a popular model to study mechanisms of learning and memory. There is a general agreement on mechanisms of LTP induction, at least for LTP in hippocampal area CA1. However, a controversy exists about mechanisms of LTP maintenance: there is evidence for both pre- and postsynaptic locations of LTP mechanisms. Publications on statistical (quantal) analysis of fluctuations of excitatory postsynaptic potentials in hippocampal and some other structures are reviewed. The analysis suggests two independent mechanisms for LTP maintenance during the first hour. They are termed LTPm and LTPv and are expressed as changes in the mean number of transmitter quanta or quantal content (m) and changes in the effect of one quantum or quantal size (v), respectively. The increased number of transmitter quanta per presynaptic impulse (LTPm) can account for the many-fold increase in synaptic efficacy during LTP, especially when initially "silent" connections increase their release probabilities (p). The increase in the number of effective release sites is considered to be secondary to the increase in p. Appearance of new subsynaptic receptors, which can produce an apparent increase in m, is not excluded. The additional mechanism (LTPv) can account for an essential part of potentiation when the LTP magnitude is relatively small (< 60% increase over pretetanic amplitude). Experiments with paired-pulse facilitation support postsynaptic mechanisms for quantization and for LTPv. Intriguing problems for future statistical analysis of quantal synaptic mechanisms for behavioral memory and conditioning are understanding the different mechanisms for induction of LTPm and LTPv, and their contribution to the maintenance of LTP during post-tetanic periods of > 1 hour.
Collapse
Affiliation(s)
- L L Voronin
- Department of Neuronal Mechanisms of Plasticity, Russian Academy of Medical Sciences, Moscow
| |
Collapse
|
25
|
Stricker C, Field AC, Redman S. Probabilistic secretion of quanta at excitatory synapses on CA1 pyramidal neurons. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1994; 29:323-40. [PMID: 7848719 DOI: 10.1016/s1040-7952(06)80023-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C Stricker
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra
| | | | | |
Collapse
|
26
|
Jonas P, Major G, Sakmann B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J Physiol 1993; 472:615-63. [PMID: 7908327 PMCID: PMC1160505 DOI: 10.1113/jphysiol.1993.sp019965] [Citation(s) in RCA: 545] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
1. Excitatory postsynaptic currents (EPSCs) were recorded in CA3 pyramidal cells of hippocampal slices of 15- to 24-day-old rats (22 degrees C) using the whole-cell configuration of the patch clamp technique. 2. Composite EPSCs were evoked by extracellular stimulation of the mossy fibre tract. Using the selective blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D-2-amino-5-phosphonopentanoic acid (APV), a major alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor-mediated component and a minor NMDA receptor-mediated component with slower time course were distinguished. For the AMPA/kainate receptor-mediated component, the peak current-voltage (I-V) relation was linear, with a reversal potential close to 0 mV. The half-maximal blocking concentration of CNQX was 353 nM. 3. Unitary EPSCs of the mossy fibre terminal (MF)-CA3 pyramidal cell synapse were evoked at membrane potentials of -70 to -90 mV by low-intensity extracellular stimulation of granule cell somata using fine-tipped pipettes. The EPSC peak amplitude as a function of stimulus intensity showed all-or-none behaviour. The region of low threshold was restricted to a few micrometres. This suggests that extracellular stimulation was focal, and that the stimulus-evoked EPSCs were unitary. 4. Latency and rise time histograms of EPSCs evoked by granule cell stimulation showed narrow unimodal distributions within each experiment. The mean latency was 4.2 +/- 1.0 ms, and the mean 20-80% rise time was 0.6 +/- 0.1 ms (23 cells). When fitted within the range 0.7 ms to 20 ms after the peak, the decay of the EPSCs with the fastest rise (rise time 0.5 ms or less) could be described by a single exponential function; the mean time constant was in the range 3.0-6.6 ms with a mean of 4.8 ms (8 cells). 5. Peak amplitudes of the EPSCs evoked by suprathreshold granule cell stimulation fluctuated between trials. The apparent EPSC peak conductance in normal extracellular solution (2 mM Ca2+, 1 mM Mg2+), excluding failures, was 1 nS. Reducing the Ca2+ concentration and increasing the Mg2+ concentration reduced the mean peak amplitude in a concentration-dependent manner. 6. Peaks in EPSC peak amplitude distributions were apparent in low Ca2+ and high Mg2+. Using the criteria of equidistance and the presence of peaks and dips in the autocorrelation function, five of nine EPSC peak amplitude distributions were judged to be quantal.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- P Jonas
- Max-Planck-Institut für Medizinische Forschung, Abteilung Zellphysiologie, Heidelberg, Germany
| | | | | |
Collapse
|
27
|
Voronin LL. On the quantal analysis of hippocampal long-term potentiation and related phenomena of synaptic plasticity. Neuroscience 1993; 56:275-304. [PMID: 8247261 DOI: 10.1016/0306-4522(93)90332-a] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- L L Voronin
- Brain Research Institute, Russian Academy of Medical Sciences, Moscow
| |
Collapse
|
28
|
Rörig B, Grantyn R. Glutamatergic and GABAergic synaptic currents in ganglion cells from isolated retinae of pigmented rats during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 74:98-110. [PMID: 8104743 DOI: 10.1016/0165-3806(93)90088-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study was aimed at characterizing the earliest phases of synaptogenesis in the mammalian retina. Spontaneous activity of ganglion cells in the isolated superfused retina was used as an indicator for the functionality of synaptic connections. Retinal ganglion neurons (RGNs) were identified by location of their somata in the ganglion cell layer (GCL) and by their ability to generate large (> 500 pA) voltage-activated sodium currents. Spontaneous spiking was found in many RGNs prior to cell perfusion. Between postnatal day (P) 1 and 18, a total of 195 RGNs was tested for light-induced currents, conductance changes in response to exogenous glutamate (Glu) and gamma-aminobutyric acid (GABA), and depolarizing or hyperpolarizing synaptic activity. The vast majority of the material was derived from RGNs at day P5. Whole-cell ion currents were always sampled at somatic sites, using either conventional or perforated patch whole-cell recordings. On day P5, 5% of tested RGNs (n = 73) were already responsive to light stimulation. A higher percentage of cells (23%, n = 187) generated spontaneous depolarizing currents that were regarded as glutamatergic excitatory postsynaptic currents (EPSCs), since (1) they were blocked by Glu antagonists, (2) they conformed to the Na+/Cs+ equilibrium potential, (3) and they displayed a time course characteristic of glutamatergic EPSCs. The mean EPSC amplitude was 19.0 pA (S.D. 11.83 pA). Amplitude distributions were fitted by multiple Gaussian equations rendering a quantal size of 6.6 to 9.1 pA at a holding voltage (Vh) of -70 mV (driving force about 70 mV). Spontaneous EPSCs were never observed under condition of Ca(2+)-free solutions, but they persisted in the presence of tetrodotoxin. Bath application of quisqualate (500 microM) consistently increased EPSC frequencies. In contrast to the relatively high percentage of RGNs generating spontaneous EPSCs, very few RGNs at P5 (3%, n = 187) displayed inhibitory postsynaptic currents (IPSCs), although by that time all tested RGNs (n = 14) were responsive to both exogenous Glu and GABA. These results indicate that in the postnatal rat retina development of excitatory synapses precedes the maturation of inhibitory afferents. Excitatory inputs to RGNs were to some extent functional before the animals opened their eyes. Glutamatergic synaptic activity may, thus, play an important role in shaping visual connections in the absence of visual experience.
Collapse
Affiliation(s)
- B Rörig
- Department of Neurophysiology, Max Planck Institute for Psychiatry, Martinsried, FRG
| | | |
Collapse
|
29
|
Abstract
The gamma-aminobutyric acid(A) (GABAA) receptor is a ligand-gated ionophore involved in synaptic inhibition. Biochemical and molecular biological studies indicate that considerable receptor heterogeneity exists, but physiological differences between inhibitory GABAA synaptic responses have not been identified in the brain. The present report describes two anatomically segregated GABAA-mediated synaptic currents in the hippocampal CA1 region that have distinct physiological, pharmacological, and functional properties. GABAA,fast enters at or near the cell body, decays rapidly (3-8 ms), is blocked by furosemide, and rapidly curtails the excitatory response. GABAA,slow enters far from the cell body, decays slowly (30-70 ms), is not blocked by furosemide, and underlies the conventionally recognized early inhibitory postsynaptic potential. The receptors producing these responses may represent subtypes of the GABAA receptor.
Collapse
Affiliation(s)
- R A Pearce
- Department of Anesthesiology, University of Wisconsin, Madison 53706
| |
Collapse
|
30
|
Kraszewski K, Grantyn R. Development of GABAergic connections in vitro: increasing efficacy of synaptic transmission is not accompanied by changes in miniature currents. JOURNAL OF NEUROBIOLOGY 1992; 23:766-81. [PMID: 1331318 DOI: 10.1002/neu.480230613] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of inhibitory synaptic transmission was studied using a dissociated cell culture from the superior colliculus of neonatal rat. Patch-clamp recordings in the whole-cell configuration were performed to measure evoked (single-cell-activated) inhibitory postsynaptic currents (IPSCs), miniature IPSCs and current responses to maximal concentrations of exogenous gamma-aminobutyric acid (GABA). Over a period of 3 weeks in vitro (DIV3-24), the fraction of synaptically coupled neurons raised from 0% to 76%. Evoked IPSCs were first observed at DIV5. They had an average amplitude of 33.9 pA during the first week (n = 13) and 129.7 pA during the fourth week (n = 48). This increase by a factor of 3.8 represents a significant rise in the efficacy of GABAergic transmission during in vitro development. However, no developmental change has been observed in the average amplitudes of miniature somatic IPSCs. The latter remained at an average level of about 9 pA (symmetrical chloride concentration and a driving force of 68 mV). No increase was found also in whole-cell current densities induced by saturating concentrations of exogenous GABA. Our results suggest that under the given conditions, synapse maturation was primarily the result of presynaptic sprouting. This conclusion is further supported by bouton counts in immunostained collicular cultures, where the number of axosomatic and axodendritic GABAergic contacts per neuron increased from 0.54 and 0.37, respectively, at DIV3, to 13.84 and greater than 23.1, at DIV24. The overall density of GABAergic neurons decreased during this period from about 41,000/cm2 to 15,600 cm2, indicating that a growing number of contacts is formed by a declining number of presynaptic neurons.
Collapse
Affiliation(s)
- K Kraszewski
- Department of Neurophysiology, Max-Planck-Institute for Psychiatry, Martinsried, Germany
| | | |
Collapse
|