1
|
Roberts BM, Lopes EF, Cragg SJ. Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells 2021; 10:709. [PMID: 33806845 PMCID: PMC8004767 DOI: 10.3390/cells10030709] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
Striatal dopamine (DA) release is critical for motivated actions and reinforcement learning, and is locally influenced at the level of DA axons by other striatal neurotransmitters. Here, we review a wealth of historical and more recently refined evidence indicating that DA output is inhibited by striatal γ-aminobutyric acid (GABA) acting via GABAA and GABAB receptors. We review evidence supporting the localisation of GABAA and GABAB receptors to DA axons, as well as the identity of the striatal sources of GABA that likely contribute to GABAergic modulation of DA release. We discuss emerging data outlining the mechanisms through which GABAA and GABAB receptors inhibit the amplitude as well as modulate the short-term plasticity of DA release. Furthermore, we highlight recent data showing that DA release is governed by plasma membrane GABA uptake transporters on striatal astrocytes, which determine ambient striatal GABA tone and, by extension, the tonic inhibition of DA release. Finally, we discuss how the regulation of striatal GABA-DA interactions represents an axis for dysfunction in psychomotor disorders associated with dysregulated DA signalling, including Parkinson's disease, and could be a novel therapeutic target for drugs to modify striatal DA output.
Collapse
Affiliation(s)
| | | | - Stephanie J. Cragg
- Department of Physiology, Anatomy and Genetics, Centre for Integrative Neuroscience and Oxford Parkinson’s Disease Centre, University of Oxford, Oxford OX1 3PT, UK
| |
Collapse
|
2
|
Aliane V, Pérez S, Deniau JM, Kemel ML. Raclopride or high-frequency stimulation of the subthalamic nucleus stops cocaine-induced motor stereotypy and restores related alterations in prefrontal basal ganglia circuits. Eur J Neurosci 2012; 36:3235-45. [PMID: 22845853 DOI: 10.1111/j.1460-9568.2012.08245.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits.
Collapse
|
3
|
Regional and cell-type-specific effects of DAMGO on striatal D1 and D2 dopamine receptor-expressing medium-sized spiny neurons. ASN Neuro 2012; 4:AN20110063. [PMID: 22273000 PMCID: PMC3297119 DOI: 10.1042/an20110063] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The striatum can be divided into the DLS (dorsolateral striatum) and the VMS (ventromedial striatum), which includes NAcC (nucleus accumbens core) and NAcS (nucleus accumbens shell). Here, we examined differences in electrophysiological properties of MSSNs (medium-sized spiny neurons) based on their location, expression of DA (dopamine) D1/D2 receptors and responses to the μ-opioid receptor agonist, DAMGO {[D-Ala2-MePhe4-Gly(ol)5]enkephalin}. The main differences in morphological and biophysical membrane properties occurred among striatal sub-regions. MSSNs in the DLS were larger, had higher membrane capacitances and lower Rin (input resistances) compared with cells in the VMS. RMPs (resting membrane potentials) were similar among regions except for D2 cells in the NAcC, which displayed a significantly more depolarized RMP. In contrast, differences in frequency of spontaneous excitatory synaptic inputs were more prominent between cell types, with D2 cells receiving significantly more excitatory inputs than D1 cells, particularly in the VMS. Inhibitory inputs were not different between D1 and D2 cells. However, MSSNs in the VMS received more inhibitory inputs than those in the DLS. Acute application of DAMGO reduced the frequency of spontaneous excitatory and inhibitory postsynaptic currents, but the effect was greater in the VMS, in particular in the NAcS, where excitatory currents from D2 cells and inhibitory currents from D1 cells were inhibited by the largest amount. DAMGO also increased cellular excitability in the VMS, as shown by reduced threshold for evoking APs (action potentials). Together the present findings help elucidate the regional and cell-type-specific substrate of opioid actions in the striatum and point to the VMS as a critical mediator of DAMGO effects.
Collapse
Key Words
- ACSF, artificial cerebrospinal fluid
- AHP, after hyperpolarization
- AP, action potential
- AP-5, dl-2-amino-5-phosphonovaleric acid
- BIC, bicuculline
- CNQX, 6-cyano-7-nitroquinoxaline-2,3-dione
- CsMeth, Cs-methanesulfonate
- D1/D2 receptors
- DA, dopamine
- DAMGO, [d-Ala2-MePhe4-Gly(ol)5]enkephalin
- DLS, dorsolateral striatum
- EGFP, enhanced green fluorescent protein
- EPSC, excitatory postsynaptic current
- IPSC, inhibitory postsynaptic current
- KGluc, K-gluconate
- MSSN, medium-sized spiny neuron
- NAcC, nucleus accumbens core
- NAcS, nucleus accumbens shell
- RMP, resting membrane potential
- Rin, input resistance
- TBST, TBS containing 0.1% Tween 20
- TTX, tetrodotoxin
- UCLA, University of California at Los Angeles
- VMS, ventromedial striatum
- VTA, ventral tegmental area
- electrophysiology
- mEPSC, miniature EPSC
- mIPSC, miniature IPSC
- nucleus accumbens
- opioid receptors
- sEPSC, spontaneous EPSC
- sIPSC, spontaneous IPSC
- striatum
Collapse
|
4
|
Balla A, Nattini ME, Sershen H, Lajtha A, Dunlop DS, Javitt DC. GABAB/NMDA receptor interaction in the regulation of extracellular dopamine levels in rodent prefrontal cortex and striatum. Neuropharmacology 2009; 56:915-21. [PMID: 19371582 DOI: 10.1016/j.neuropharm.2009.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 12/16/2008] [Accepted: 01/28/2009] [Indexed: 02/02/2023]
Abstract
Deficits in N-methyl-D-aspartate receptor (NMDAR)-mediated neurotransmission may underlie dopaminergic hyperactivity in schizophrenia. Dysregulation of the GABAergic system has also been implicated. In this study we investigated a role for GABA(B) receptors as an intermediate step in the pathway leading from NMDAR stimulation to DA regulation. Since glycine (GLY) has been found to ameliorate treatment resistant negative symptoms in schizophrenia, we treated a group of rats with 16% GLY food for 2 weeks. DA levels in prefrontal cortex (PFC) and striatum (STR) were assessed by dual-probe microdialysis and HPLC-EC in freely moving rats. Infusion of the GABA(B) receptor agonists SKF97541 and baclofen into PFC and STR significantly reduced basal DA, an effect that was reversed by the antagonist, CGP52432. In PFC, GABA(B) agonists also reduced AMPH-induced DA release following treatment with either 1 or 5 mg/kg AMPH. Similar effects were seen following subchronic glycine treatment in the absence, but not presence of CGP52432 during 5 mg/kg AMPH treatment. In STR SKF97541 decreased only the 1 mg/kg AMPH-induced DA release. Subchronic GLY treatment in STR leads to a significant reduction in basal DA levels, but did not affect AMPH (5 mg/kg)-induced release. Our findings support a model in which NMDA/glycine-site agonists modulate DA release in part through presynaptic GABA(B) receptors on DA terminals, with both GABA(B) ligands and GLY significantly modulating AMPH-induced DA release. Both sites, therefore, may represent appropriate targets for drug development in schizophrenia and substance abuse disorders.
Collapse
Affiliation(s)
- Andrea Balla
- Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
5
|
A Role for Adenosine A1 Receptors in GABA and NMDA-Receptor Mediated Modulation of Dopamine Release: Studies Using Fast Cyclic Voltammetry. SENSORS 2008; 8:5516-5534. [PMID: 27873828 PMCID: PMC3705518 DOI: 10.3390/s8095516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/01/2008] [Accepted: 09/02/2008] [Indexed: 11/17/2022]
Abstract
In the striatum many neurotransmitters including GABA, glutamate, acetylcholine, dopamine, nitric oxide and adenosine interact to regulate synaptic transmission. Dopamine release in the striatum is regulated by a number of pre- and post-synaptic receptors including adenosine. We have recently shown using isolated rat striatal slices, and the technique of fast cyclic voltammetry, that adenosine A1 receptor-mediated inhibition of dopamine release is modulated by dopamine D1 receptors. In the present study we have investigated the influence of NMDA and GABA receptor activation on the modulation of electrically stimulated dopamine release by adenosine. Application of the adenosine A1 receptor agonist, N6-cyclopentyladenosine (CPA), concentration-dependently inhibited dopamine release to a maxiumum of 50%. Perfusion of the glutamate receptor agonist, NMDA, in low magnesium, caused a rapid and concentration-dependent inhibition of dopamine release. Prior perfusion with the adenosine A1 receptor antagonist, DPCPX, significantly reduced the effect of 5 μM and 10 μM NMDA on dopamine release. The GABAA receptor agonist, isoguvacine, had a significant concentration-dependent inhibitory effect on dopamine release which was reversed by prior application of the GABAA receptor antagonist, picrotoxin, but not DPCPX. Finally inhibition of dopamine release by CPA (1μM) was significantly enhanced by prior perfusion with picrotoxin. These data demonstrate an important role for GABA, NMDA and adenosine in the modulation of dopamine release.
Collapse
|
6
|
David HN, Ansseau M, Abraini JH. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. ACTA ACUST UNITED AC 2005; 50:336-60. [PMID: 16278019 DOI: 10.1016/j.brainresrev.2005.09.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 09/10/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022]
Abstract
Functional interactions between dopaminergic neurotransmission and glutamatergic neurotransmission are well known to play a crucial integrative role in the striatum, the major input structure of the basal ganglia now widely recognized to contribute to the control of motor activity and movements but also to the processing of cognitive and limbic functions. However, the nature of these interactions is still a matter of debate and controversy. This review (1) summarizes anatomical data on the distribution of dopaminergic and glutamatergic receptors in the striatum-accumbens complex, (2) focuses on the dopamine-glutamate interactions in the modulation of each other's release in the striatum-accumbens complex, and (3) examines the dopamine-glutamate interactions in the entire striatum involved in the control of locomotor activity. The effects of dopaminergic and glutamatergic receptor selective agonists and antagonists on dopamine and glutamate release as well on motor responses are analyzed in the entire striatum, by reviewing both in vitro and in vivo data. Regarding in vivo data, only findings from focal injections studies in the nucleus accumbens or the caudate-putamen of "intact" animals are reviewed. Altogether, the available data demonstrate that dopamine and glutamate do not uniformly interact to modulate each others' release and postsynaptic modulation of striatal output neurons. Depending on the receptor subtypes involved, interactions between dopaminergic and glutamatergic transmission vary as a multiple and complex combination of tonic, phasic, facilitatory, and inhibitory properties.
Collapse
Affiliation(s)
- Hélène N David
- Unité de Psychologie Médicale, CHU Sart-Tilman, B 4000 Liège, Belgium.
| | | | | |
Collapse
|
7
|
Whitehead KJ, Rose S, Jenner P. Halothane anesthesia affects NMDA-stimulated cholinergic and GABAergic modulation of striatal dopamine efflux and metabolism in the rat in vivo. Neurochem Res 2004; 29:835-42. [PMID: 15098949 DOI: 10.1023/b:nere.0000018858.64265.e9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microdialysis of the striatum of halothane-anesthetized rats was used to study the participation of local cholinergic and GABAergic neurotransmission in NMDA receptor-modulated striatal dopamine release and metabolism. Reverse dialysis.of NMDA (1 mM) evoked a 10-fold increase in dopamine efflux and reduced DOPAC and HVA to > 20% of basal values. The effect of NMDA on dopamine efflux was abolished by atropine (10 microM) but unaffected by (+)-bicuculline (50 microM). NMDA-induced decrease in DOPAC (but not HVA) efflux was potentiated by atropine, whereas (+)-bicuculline attenuated the decrease in DOPAC and HVA. Compared to our previous studies in unanesthetised rats, our data suggest that halothane anesthesia alters the balance between NMDA-stimulated cholinergic and GABAergic influences on striatal dopamine release and metabolism. Differential sensitivity to halothane of NMDA receptors expressed by the neurones mediating these modulatory influences, or loss of specific NMDA receptor populations through voltage-dependent Mg2+ block under anesthesia, could underlie these observations.
Collapse
Affiliation(s)
- K J Whitehead
- Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's King's and St. Thomas's School of Biomedical Sciences, King's College, Guy's Campus, London, United Kingdom.
| | | | | |
Collapse
|
8
|
Jabourian M, Bourgoin S, Pérez S, Godeheu G, Glowinski J, Kemel ML. Mu opioid control of the N-methyl-D-aspartate-evoked release of [3H]-acetylcholine in the limbic territory of the rat striatum in vitro: diurnal variations and implication of a dopamine link. Neuroscience 2004; 123:733-42. [PMID: 14706785 DOI: 10.1016/j.neuroscience.2003.10.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Using an in vitro microsuperfusion procedure, the release of newly synthesized [(3)H]-acetylcholine (ACh), evoked by N-methyl-D-aspartate (NMDA) receptor stimulation, was investigated in striosome-enriched areas and matrix of the rat striatum. The role of micro-opioid receptors, activated by endogenously released enkephalin, on the NMDA-evoked release of ACh was studied using the selective micro-opioid receptor antagonist, beta-funaltrexamine. Experiments were performed 2 (morning) or 8 (afternoon) h after light onset, in either the presence or absence (alpha-methyl-p-tyrosine, an inhibitor of dopamine synthesis) of dopaminergic transmission. As expected, based on the presence of micro-opioid receptors in striosomes, beta-funaltrexamine (0.1 nM, 10 nM and 1 microM) enhanced the NMDA (1 mM+10 microM D-serine)-evoked release of ACh in striosome-enriched areas but not in the matrix. Interestingly, these responses were significantly more pronounced in afternoon than in morning experiments. In the presence of alpha-methyl-p-tyrosine, the NMDA-evoked release of ACh was increased with similar amplitude in morning and afternoon experiments. However, in this condition (without dopamine transmission), the facilitatory effects of beta-funaltrexamine on the NMDA-evoked release of ACh were suppressed totally in the morning and only partially in the afternoon. The selective micro-opiate agonist, [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (1 microM, coapplied with NMDA), was without effect on the NMDA-evoked release of ACh but abolished both dopamine-dependent (morning) and dopamine-independent (afternoon) responses of beta-funaltrexamine (10 nM and 1 microM).Therefore, in the limbic territory of the striatum enriched in striosomes, the micro-opioid-inhibitory regulation of ACh release follows diurnal rhythms. While dopamine is required for this regulation in the morning and the afternoon, an additional dopamine-independent process is present only in the afternoon.
Collapse
Affiliation(s)
- M Jabourian
- INSERM U114, Collège de France, 11 place Marcelin Berthelot, 75231, Cedex 05, Paris, France.
| | | | | | | | | | | |
Collapse
|
9
|
Hernández LF, Segovia G, Mora F. Effects of activation of NMDA and AMPA glutamate receptors on the extracellular concentrations of dopamine, acetylcholine, and GABA in striatum of the awake rat: a microdialysis study. Neurochem Res 2004; 28:1819-27. [PMID: 14649723 DOI: 10.1023/a:1026115607216] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of activation of the AMPA and NMDA ionotropic glutamate receptors on the extracellular concentration of dopamine, acetylcholine, (ACh) and GABA in striatum of the awake rat was investigated. Also the levels of DOPAC, HVA, and choline (Ch) were included in this study. Seven to eight days after stereotaxical implantation of a guide-cannulae assembly, microdialysis experiments were performed. The dopamine and ACh content of samples were measured by HPLC coupled to electrochemical detection. GABA was measured using fluorometric detection. Perfusion of AMPA (1, 20, 100 microM) produced a dose-related increase of dopamine and a dose-related decrease of DOPAC and HVA. AMPA 100 microM decreased extracellular concentrations of ACh and increased the extracellular concentration of Ch and GABA. Perfusion of NMDA 500 microM increased the concentration of dopamine and decreased DOPAC and HVA. Also, NMDA 100 microM decreased DOPAC. NMDA 500 microM decreased the extracellular concentrations of ACh and increased the concentrations of Ch and GABA. Perfusion of the AMPA/kainate-antagonist DNQX (100 microM) blocked the effects of AMPA (100 microM) on dopamine, DOPAC, HVA, ACh, and GABA concentrations. Perfusion of the NMDA-antagonist CPP (100 microM) blocked the effects of NMDA 500 microM on dopamine, DOPAC, HVA, ACh, Ch, and GABA concentrations. These results suggest an interaction between glutamate-dopamine-ACh-GABA in striatum of the awake rat.
Collapse
Affiliation(s)
- L F Hernández
- Department of Physiology, Faculty of Medicine, University Complutense, Madrid, Spain
| | | | | |
Collapse
|
10
|
Whitehead KJ, Rose S, Jenner P. Involvement of intrinsic cholinergic and GABAergic innervation in the effect of NMDA on striatal dopamine efflux and metabolism as assessed by microdialysis studies in freely moving rats. Eur J Neurosci 2001; 14:851-60. [PMID: 11576189 DOI: 10.1046/j.0953-816x.2001.01702.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microdialysis perfusion was used to study the participation of striatal cholinergic and gamma-aminobutyric acid-ergic (GABAergic) neurotransmission in basal and N-methyl-D-aspartate (NMDA) receptor-modulated dopamine release and metabolism in the striatum of the freely moving rat. Reverse dialysis of atropine (1-50 microM) induced a concentration-related increase in dopamine efflux and decrease in 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) efflux. (+)-Bicuculline (10-100 microM) similarly increased dopamine efflux, but was without consistent effect on metabolite efflux. Reverse dialysis of NMDA (1 mM) evoked an approximately twofold increase in dopamine efflux and decreased DOPAC and HVA efflux to 30-40% of basal levels. The effect of NMDA on dopamine efflux was completely abolished by coadministration of tetrodotoxin (TTX; 1 microM) or atropine (10 microM), and markedly potentiated (approximately fourfold) by coadministration of (+)-bicuculline (50 microM). The NMDA-induced decrease in dopamine metabolite efflux was inhibited by coadministration of TTX or (+)-bicuculline, but was unaffected by atropine. Our data suggest that dopamine release in the striatum is subject to both cholinergic and GABAergic tonic inhibitory mechanisms mediated through muscarinic and GABAA receptors, respectively. Furthermore, NMDA-stimulated dopamine release also involves obligatory cholinergic facilitation and an inhibitory GABAergic component mediated through these respective receptors.
Collapse
Affiliation(s)
- K J Whitehead
- Neurodegenerative Diseases Research Centre, Hodgkin Building, Guy's, King's and St Thomas's School of Biomedical Sciences, King's College, Guy's Campus, London SE1 1UL, UK.
| | | | | |
Collapse
|
11
|
Hyperfunction of dopaminergic and serotonergic neuronal systems in mice lacking the NMDA receptor epsilon1 subunit. J Neurosci 2001. [PMID: 11160454 DOI: 10.1523/jneurosci.21-02-00750.2001] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
NMDA receptors, an ionotropic subtype of glutamate receptors (GluRs) forming high Ca(2+)-permeable cation channels, are composed by assembly of the GluRzeta subunit (NR1) with any one of four GluRepsilon subunits (GluRepsilon1-4; NR2A-D). In the present study, we investigated neuronal functions in mice lacking the GluRepsilon1 subunit. GluRepsilon1 mutant mice exhibited a malfunction of NMDA receptors, as evidenced by alterations of [(3)H]MK-801 binding as well as (45)Ca(2+) uptake through the NMDA receptors. A postmortem brain analysis revealed that both dopamine and serotonin metabolism were increased in the frontal cortex and striatum of GluRepsilon1 mutant mice. The NMDA-stimulated [(3)H]dopamine release from the striatum was increased, whereas [(3)H]GABA release was markedly diminished in GluRepsilon1 mutant mice. When (+)bicuculline, a GABA(A) receptor antagonist, was added to the superfusion buffer, NMDA-stimulated [(3)H]dopamine release was significantly increased in wild-type, but not in the mutant mice. GluRepsilon1 mutant mice exhibited an increased spontaneous locomotor activity in a novel environment and an impairment of latent learning in a water-finding task. Hyperlocomotion in GluRepsilon1 mutant mice was attenuated by treatment with haloperidol and risperidone, both of which are clinically used antipsychotic drugs, at doses that had no effect in wild-type mice. These findings provide evidence that NMDA receptors are involved in the regulation of behavior through the modulation of dopaminergic and serotonergic neuronal systems. In addition, our findings suggest that GluRepsilon1 mutant mice are useful as an animal model of psychosis that is associated with NMDA receptor malfunction and hyperfunction of dopaminergic and serotonergic neuronal systems.
Collapse
|
12
|
Segovia G, Mora F. Involvement of NMDA and AMPA/kainate receptors in the effects of endogenous glutamate on extracellular concentrations of dopamine and GABA in the nucleus accumbens of the awake rat. Brain Res Bull 2001; 54:153-7. [PMID: 11275404 DOI: 10.1016/s0361-9230(00)00432-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We have investigated the effects of perfusion of the N-methyl-D-aspartate (NMDA) receptor antagonist 3-((R)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) and the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid (AMPA)/kainate receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX) on the endogenous glutamate-evoked changes of extracellular dopamine and alpha-aminobutyric acid (GABA) in the nucleus accumbens of the awake rat. Local infusion of the glutamate uptake inhibitor L-trans-pyrrolidine-2,4-dicarboxilic acid in the nucleus accumbens produced an increase in extracellular concentrations of glutamate, dopamine, and GABA. At the dose of 4 mM, the increase of extracellular glutamate, dopamine, and GABA were 3.73 +/- 0.46 microM (n = 8; p < 0.001), 4.70 +/- 0.92 nM (n = 6; p < 0.001) and 0.36 +/- 0.08 microM (n = 8; p < 0.001), respectively. Perfusion of the NMDA-receptor antagonist CPP attenuated the increases of dopamine by 90% (n = 5; p < 0.001), but enhanced the increases of GABA by 70% (n = 7; p < 0.01). Perfusion of the AMPA-receptor antagonist DNQX did not attenuate the increases of GABA. These results suggest a differential mediation of ionotropic glutamatergic receptors in the actions of endogenous glutamate on extracellular concentration of dopamine and GABA.
Collapse
Affiliation(s)
- G Segovia
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain
| | | |
Collapse
|
13
|
Javitt DC, Sershen H, Hashim A, Lajtha A. Inhibition of striatal dopamine release by glycine and glycyldodecylamide. Brain Res Bull 2000; 52:213-6. [PMID: 10822163 DOI: 10.1016/s0361-9230(00)00258-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phencyclidine (PCP) and other N-methyl-D-aspartate (NMDA) antagonists induce schizophrenia-like symptoms in humans. In rodents, PCP induces a syndrome of stereotypies and hyperactivity that is accompanied by stimulation of striatal dopamine release. Glycine and other NMDA agonists reverse PCP-induced behaviors in rodents and ameliorate PCP psychosis-like symptoms of schizophrenia in clinical trials. Glycine levels in vivo are regulated by the actions of glycine (GLYT1) transporters. The present study investigates effects of glycine and the prototypic glycine transport inhibitor glycyldodecylamide (GDA) on striatal dopamine release in vitro using a mouse striatal assay. Glycine and GDA significantly inhibit NMDA-induced striatal dopamine release, consistent with their ability to enhance local striatal inhibitory neurotransmission in vitro and to reverse PCP-induced hyperactivity in vivo.
Collapse
Affiliation(s)
- D C Javitt
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
14
|
Rodríguez JJ, Doherty MD, Pickel VM. N-methyl-D-aspartate (NMDA) receptors in the ventral tegmental area: subcellular distribution and colocalization with 5-hydroxytryptamine(2A) receptors. J Neurosci Res 2000; 60:202-11. [PMID: 10740225 DOI: 10.1002/(sici)1097-4547(20000415)60:2<202::aid-jnr9>3.0.co;2-j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype have been implicated in behavioral sensitization to psychostimulants and in psychotic behaviors involving excitation of ventral tegmental area (VTA) dopaminergic neurons. Antagonists of serotonin (5-hydroxytryptamine, 5-HT) receptors of the 5-HT(2A) subtype are potent antipsychotics that attenuate these NMDA-evoked responses. We examined the electron microscopic immunocytochemical localization of antisera against the NMDA R1 subunit (NMDAR1) and 5-HT(2A) receptors to determine potential sites for their dual activation in the rat paranigral and parabrachial VTA subdivisions that are distinguished, in part, by their respective striatolimbic and cortical projections. In both regions, NMDAR1 immunoreactivity was localized mainly to the cytoplasm of somata and dendrites, and was only occasionally seen near or within excitatory-type asymmetric synapses. Many of the NMDAR1-labeled somata and dendrites also expressed 5-HT(2A) receptors, having a similar, but largely non-overlapping, neuronal distribution. The mean area density of NMDAR1 and dually labeled dendritic profiles was significantly greater in the paranigral than in the parabrachial VTA. NMDAR1 was also present in small axons showing a similar regional difference in area density. No regional difference in area density was seen in dendrites or small axons containing only 5-HT(2A) receptors. Our results indicate that NMDA and 5-HT(2A) receptors in the VTA are transiently expressed on synaptic plasma membranes of single neurons showing widespread cytoplasmic distributions of each of the receptors. They also suggest a major role for NMDA receptors in modulating the output of paranigral neurons and the release of transmitters from axons passing through this region.
Collapse
Affiliation(s)
- J J Rodríguez
- Division of Neurobiology, Department of Neurology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | |
Collapse
|
15
|
Blanchet F, Gauchy C, Pérez S, Soubrié P, Glowinski J, Kemel ML. Control by GABA and tachykinins of the evoked release of acetylcholine in striatal compartments under different modalities of NMDA receptor stimulation. Brain Res 2000; 853:142-50. [PMID: 10627318 DOI: 10.1016/s0006-8993(99)02305-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The contribution of endogenously released dopamine, GABA and its co-transmitters, substance P (SP) and neurokinin A (NKA), to the control of the evoked release of acetylcholine was investigated in vitro in the striosomes and the matrix of the rat striatum under various modalities of NMDA receptor stimulation (NMDA 50 microM or 1 mM without or with 10 microM D-serine). Sulpiride, bicuculline, SR140333 and SR48968, the antagonists of D(2), GABA A, NK(1) and NK(2) tachykinin receptors, respectively, were used for this purpose. (1) In both striatal compartments, the dopamine-mediated inhibitory regulation of the evoked release of acetylcholine only occurred when D-serine was co-applied with 50 microM or 1 mM NMDA. (2) In striosomes, the dopamine-dependent inhibitory effects of SP and NKA on the evoked release of acetylcholine only occurred when D-serine was co-applied with 50 microM or 1 mM NMDA. (3) A similar inhibitory regulation by NKA, but not SP, was found in the matrix when 1 mM NMDA was co-applied with D-serine. (4) In contrast, the dopamine-dependent facilitatory effect of GABA on the evoked release of acetylcholine did not require added D-serine and was more important with 1 mM than 50 microM NMDA. In the presence of D-serine, and depending on the NMDA concentration, the facilitatory regulation of GABA was reduced (matrix) or suppressed (striosomes). This latter effect was partially restored in the presence of SR48968. Therefore, the dopamine-dependent inhibitory effects of tachykinins on the evoked release of acetylcholine only occurred when NMDA receptors were stimulated in the presence of saturating concentrations of D-serine.
Collapse
Affiliation(s)
- F Blanchet
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, 11 place Marcelin Berthelot, Paris, France
| | | | | | | | | | | |
Collapse
|
16
|
Reiser M, Poeggel G, Schnabel R, Schröder H, Braun K. Effect of social experience on dopamine-stimulated adenylyl cyclase activity and G protein composition in chick forebrain. J Neurochem 1999; 73:1293-9. [PMID: 10461924 DOI: 10.1046/j.1471-4159.1999.0731293.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The stimulation of adenylyl cyclase (AC) by dopamine was investigated in membrane fractions of the forebrain areas mediorostral neostriatum/hyperstriatum ventrale (MNH) and lobus parolfactorius (LPO) of 8-day-old domestic chicks that had been raised under different social conditions: group A, socially isolated; group B, imprinted on an acoustic stimulus; group C, trained but nonimprinted; and group D, reared in small groups. Only in the brain of the socially experienced groups could cyclic AMP (cAMP) synthesis be stimulated by dopamine, but not in the socially isolated animals (group A). Ligand binding studies of dopamine D1- and D2-type receptors in membrane fractions did not reveal differences between socially experienced and isolated animals. Forskolin stimulation of total AC in MNH and LPO membrane fractions revealed a significantly enhanced AC stimulation in the socially reared but not in the imprinted group compared with isolated controls. Stimulation of AC by the G protein activator guanylylimidodiphosphate was significantly increased in the MNH and the LPO of socially reared chicks compared with isolated control animals. These results suggest that early postnatal social experience modulates the rate of cAMP synthesis and that these lasting changes are not due to changes of dopamine receptors but are related to increased AC activities and to increased sensitivity of Gs protein.
Collapse
Affiliation(s)
- M Reiser
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
17
|
Abarca J, Bustos G. Differential regulation of glutamate, aspartate and gamma-amino-butyrate release by N-methyl-D-aspartate receptors in rat striatum after partial and extensive lesions to the nigro-striatal dopamine pathway. Neurochem Int 1999; 35:19-33. [PMID: 10403427 DOI: 10.1016/s0197-0186(99)00029-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The in vivo microdialysis methodology was used to assess the effect of N-methyl-D-aspartate (NMDA) receptor ligands on glutamate (GLU), aspartate (ASP) and gamma-aminobutyrate (GABA) extracellular levels in the striatum of anaesthetized rats, after damage to the dopamine (DA) nigrostriatal pathway by injections of different doses of 6-hydroxydopamine (6-OH-DA) seven days earlier. The 6-OH-DA treated rats were divided into two groups, corresponding to animals with 20-80% (partial) and 85-99% (extensive) striatal DA tissue depletion, respectively. In rats with partial DA depletion, the striatal extracellular ASP levels significantly increased after intrastriatal dialysis perfusion with MK-801 (100 microM), an antagonist of NMDA receptors. In addition, a change in the pattern of local NMDA (500 microM)- induced efflux of ASP was observed in the striatum of these rats. However, in these partially DA-depleted striata no changes were found in basal extracellular levels of GLU, ASP and GABA or in NMDA- and MK-801-mediated effluxes of GLU and GABA relative to striata from sham rats. In contrast, rats with extensive striatal DA depletion exhibited a significant increase in ASP and GABA extracellular striatal levels, after intrastriatal dialysis perfusion with NMDA. In addition, the MK-801-mediated stimulation of extracellular ASP levels was accentuated along with the appearance of a MK-801 mediated increase in extracellular striatal GLU. Finally, basal extracellular levels of ASP, but not of GLU and GABA, were found to increase in extensive DA-depleted striata when compared to sham and partially DA-depleted striata. Thus, a differential regulation of basal and NMDA receptor-mediated release of transmitter amino acids occur seven days after partial and extensive DA-depleted striatum by 6-OH-DA-induced lesions of the nigrostriatal DA pathway. These findings may have implications as regards the participation of NMDA receptors in the compensatory mechanisms associated with the progress of Parkinson's disease, as well as in the treatment of this neurological disorder.
Collapse
Affiliation(s)
- J Abarca
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Catholic University of Chile, Santiago
| | | |
Collapse
|
18
|
L'hirondel M, Chéramy A, Artaud F, Godeheu G, Glowinski J. Contribution of endogenously formed arachidonic acid in the presynaptic facilitatory effects of NMDA and carbachol on dopamine release in the mouse striatum. Eur J Neurosci 1999; 11:1292-300. [PMID: 10103124 DOI: 10.1046/j.1460-9568.1999.00534.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Arachidonic acid stimulated the release of [3H]-dopamine from striatal microdiscs in a concentration-dependent and partially calcium-dependent manner. Inhibitors of cytosolic and membrane-bound phospholipase A2 were used to determine whether endogenously formed arachidonic acid also contributes to the release of [3H]-DA (previously taken up in tissues or endogenously synthesized from [3H]-tyrosine) evoked by N-methyl-d-aspartate (NMDA) and carbachol alone or in combination. In the presence of magnesium, carbachol was found to remove the magnesium block of NMDA receptors and to facilitate the NMDA-evoked release of [3H]-DA from striatal microdiscs and synaptosomes. In addition, in the absence of magnesium, synergistic responses were induced by both agonists on microdiscs but not on synaptosomes. Responses induced by NMDA, carbachol or both agonists on microdiscs were reduced by phospholipase A2 inhibitors, the most striking effects being observed with mepacrine. Mepacrine was also shown to reduce the oxotremorine, but neither the nicotine- nor the potassium-evoked release of [3H]-DA. Tetrodotoxin decreased the release of [3H]-DA evoked by the co-application of NMDA and carbachol on microdiscs, but mepacrine still decreased this tetrodotoxin-resistant response. Similarly, mepacrine still decreased the release of [3H]-DA evoked by NMDA and carbachol on synaptosomes. Altogether, these results indicate that arachidonic acid which is formed in striatal neurons, and to a lesser extent in DA fibres, under stimulation of NMDA and muscarinic receptors, partially contributes to the presynaptic facilitation of DA release evoked by NMDA and carbachol.
Collapse
|
19
|
Blanchet F, Gauchy C, Perez S, Glowinski J, Kemel ML. Role of arachidonic acid in the regulation of the NMDA-evoked release of acetylcholine in striatal compartments. Synapse 1999; 31:140-50. [PMID: 10024011 DOI: 10.1002/(sici)1098-2396(199902)31:2<140::aid-syn7>3.0.co;2-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The role of endogenously released arachidonic acid in the control of the NMDA (50 microM)-evoked release of [3H]-acetylcholine previously formed from [3H]-choline was investigated in striosome-enriched areas and in the matrix of the rat striatum using a microsuperfusion procedure in vitro. Experiments were performed with either mepacrine (0.2 microM) or bovine serum albumin (BSA, 0.02%) which inhibits phospholipase A2 activity or binds endogenously released arachidonic acid, respectively. Both treatments similarly reduce the NMDA-evoked release of [3H]-acetylcholine, this effect being more pronounced in striosomes than in the matrix. These reductions result from a facilitation of dopamine release, since they were not observed in the presence of (-)sulpiride, the D2 dopamine receptor antagonist. Moreover, the superfusion with BSA was shown to enhance the release of [3H]-dopamine (formed from [3H]-tyrosine), this effect being of larger amplitude in striosomes than in the matrix. In control conditions, due to the blockade of the presynaptic inhibitory effect of GABA on dopamine release, bicuculline (GABA(A) receptor antagonist) reduces the NMDA-evoked release of [3H]-acetylcholine in both striatal compartments. Bicuculline was no longer effective following superfusions with either mepacrine or BSA, suggesting that these treatments eliminate the GABAergic presynaptic inhibitory control on dopamine transmission and thus lead to the dopamine-mediated inhibition of [3H]-acetylcholine release. These results indicate that arachidonic acid endogenously formed under weak stimulation of NMDA receptors contributes to the regulation of the evoked release of [3H]-acetylcholine by facilitating GABAergic transmission and that this process is more important in striosomes than in the matrix.
Collapse
Affiliation(s)
- F Blanchet
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris.
| | | | | | | | | |
Collapse
|
20
|
Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L. Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 1998; 33:383-97. [PMID: 9874089 DOI: 10.1016/s0197-0186(98)00052-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dopaminergic and glutamatergic transmissions have long been known to interact at multiple levels in the basal ganglia to modulate motor and cognitive functions. One important aspect of their interactions is represented by the reciprocal modulation of release. This topic has been the object of interest since the late 70's, particularly in the striatum and in midbrain dopaminergic areas (substantia nigra and ventral tegmental area). Analysis of glutamate-dopamine interactions in the control of each other's release is complicated by the fact that both glutamate and dopamine act on multiple receptor subtypes which can exert different effects. Therefore, glutamatergic modulation of dopamine release has been reviewed by analyzing the effects of glutamatergic selective receptor agonists and antagonists in the striatum (both motor and limbic portions) and in midbrain dopaminergic areas, as revealed by in vitro (slices, cell cultures, synaptosomes) and in vivo (push-pull, microdialysis and voltammetry techniques) experimental approaches. The same approach has been followed for dopaminergic modulation of glutamate release. The facilitatory nature of glutamate modulating both presynaptic and dendritic dopamine release has clearly emerged from in vitro studies. However, evidence is presented that, at least in the striatum and in the nucleus accumbens of awake rats, glutamate-mediated inhibitory effects may also occur. In vitro and in vivo experiments in the striatum and midbrain dopaminergic areas mainly depict dopamine as an inhibitory modulator of glutamate release. However, in vivo studies reporting dopamine D1 receptor mediated facilitatory effects are also considered. Therefore, the general notion that glutamate and dopamine act oppositely to regulate each other's release, is only partly supported by the available data. Conversely, the nature of the interaction between the two neurotransmitters seems to vary depending on the experimental approach, the brain area considered and the subtype of receptor involved.
Collapse
Affiliation(s)
- M Morari
- Department of Experimental and Clinical Medicine, University of Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
Blanchet F, Gauchy C, Perez S, Soubrié P, Glowinski J, Kemel ML. Distinct modifications by neurokinin1 (SR140333) and neurokinin2 (SR48968) tachykinin receptor antagonists of the N-methyl-D-aspartate-evoked release of acetylcholine in striosomes and matrix of the rat striatum. Neuroscience 1998; 85:1025-36. [PMID: 9681943 DOI: 10.1016/s0306-4522(97)00610-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of SR140333 and SR48968 (neurokinin1 and neurokinin2 tachykinin receptor antagonists, respectively) on the N-methyl-D-aspartate-evoked release of [3H]acetylcholine (previously formed from [3H]choline) were investigated in striosome-enriched areas and in the matrix of the rat striatum using an in vitro microsuperfusion method. In both striatal compartments, SR140333 and SR48968 did not modify the 50 microM N-methyl-D-aspartate-evoked release of [3H]acetylcholine. However, in low concentrations, both SR140333 (0.1 microM to 1 pM) and SR48968 (0.1 microM to 0.1 nM) markedly enhanced the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked release of [3H]acetylcholine in striosome-enriched areas. These responses were dopamine-dependent since they were not observed any more following the local blockade of D2 receptors by sulpiride or of dopamine synthesis by alpha-methyl-p-tyrosine. A dopamine-dependent disinhibitory effect (of lower amplitude) on the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked release of [3H]acetylcholine was also induced by SR48968 (0.1 microM to 0.1 nM) (but not by SR140333) in the matrix. In addition, in the matrix, as shown only in the presence of alpha-methyl-p-tyrosine, both SR140333 and SR48968 reduced the 1 mM N-methyl-D-aspartate (+10 microM D-serine)-evoked response and these non-dopamine-mediated inhibitory effects only occurred at the highest tested concentration (0.1 microM) of the antagonists. Indicating the specificity of these responses, the effects of SR140333 were reproduced by RP67580, another neurokinin1 receptor antagonist and, as expected from previous binding studies, corresponding SR140333 and SR48968 enantiomers were without effect. These results suggest that under potent stimulation of N-methyl-D-aspartate receptors, endogenously released substance P and neurokinin A (or related tachykinins) regulate differently the N-methyl-D-aspartate-evoked release of [3H]acetylcholine in striosomes and in the matrix. The inhibitory effects of these tachykinins on the evoked release of [3H]acetylcholine are mediated by dopamine. On the contrary, their facilitatory responses are only observed in the matrix under blockade of dopamine transmission.
Collapse
Affiliation(s)
- F Blanchet
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris
| | | | | | | | | | | |
Collapse
|
22
|
Andrés ME, Gysling K, Bustos G. Differential regulation of dopamine release by N-methyl-D-aspartate receptors in rat striatum after partial and extreme lesions of the nigro-striatal pathway. Brain Res 1998; 797:255-66. [PMID: 9666143 DOI: 10.1016/s0006-8993(98)00381-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The participation of N-methyl-d-aspartate (NMDA) receptors on dopamine (DA) efflux in the striatum of anaesthetized rats, which had their DA nigrostriatal pathway previously lesioned with different doses of 6-hydroxydopamine (6-OH-DA), was assessed by in vivo microdialysis methodology. In addition, the in vivo basal DA and dihydroxy-phenyl-acetic acid (DOPAC) effluxes and the effect of local K+-depolarization on DA release were also evaluated in the striatum of these 6-OH-DA treated rats. Lesioned rats were divided in three groups corresponding to animals with 25-75%, 75-95% and >95% of striatum tissue DA depletion, respectively. Striatal DA tissue depletion between 25-75% occurred in parallel with a 30% reduction in DA extracellular levels, with a moderate 10% increase in basal fractional DA efflux, and with no statistical changes in the fractional DA efflux induced by NMDA (500 microM) receptor stimulation by reverse dialysis. Rats with higher DA tissue depletion (between 75-95%) exhibited a 60% reduction in DA extracellular levels in the striatum and this reduction occurred in parallel with a modest rise in basal fractional DA efflux, but with a striking decrease in the NMDA-induced fractional DA efflux. In rats with extreme or >95% of striatal DA tissue depletion, basal fractional DA efflux in the striatum increased quite substantially along with a recovery in the ability of NMDA receptor stimulation to induce fractional DA release. The >95% striatal DA-depleted rats also exhibited a significant decrease in tissue and extracellular DOPAC/DA ratio when compared to sham and partially DA-depleted rats. In contrast to the previous results, fractional DA efflux induced by reverse dialysis with K+ (40 mM) remained the same in the striatum of sham and all groups of DA-tissue depleted rats. The present findings suggest the existence of at least three features associated to the regulation of basal and NMDA-induced extracellular levels of DA in the striatum of rats as a function of striatal tissue DA depletion produced by 6-OH-DA. They also support the view that a differential regulation of basal and NMDA-induced DA extracellular levels occur in partial and extreme DA-depleted striatum after 6-OH-DA treatment. Such findings may have implications as regard to the participation of the NMDA receptor in the compensatory mechanisms associated to the progress of Parkinson's disease, as well as in the therapeutic treatment of this neurological disorder.
Collapse
Affiliation(s)
- M E Andrés
- Laboratory of Biochemical Pharmacology, Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Alameda 340, PO Box 114-D, Santiago, Chile
| | | | | |
Collapse
|
23
|
White NM, Hiroi N. Preferential localization of self-stimulation sites in striosomes/patches in the rat striatum. Proc Natl Acad Sci U S A 1998; 95:6486-91. [PMID: 9600993 PMCID: PMC27819 DOI: 10.1073/pnas.95.11.6486] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/1997] [Indexed: 02/07/2023] Open
Abstract
Histological sections of the mammalian striatum reveal a "matrix" that is histochemically distinguishable from patches, or "striosomes". The latter are cross sections of a compartment that consists primarily of tube-shaped structures radiating through the matrix. As a test of the hypothesis that the function of the striosome/patch compartment includes the mediation of behaviors related to reward, the present study examined electrical self-stimulation of the caudoputamen in rats with electrodes in either of the two compartments. Rats acquired and maintained bar-pressing responses that were contingent on stimulation through electrodes making contact with striosomes/patches more reliably than animals with electrodes terminating exclusively in the matrix. The results provide in vivo evidence that the striosome/patch compartment is functionally differentiated from the matrix compartment: Stimulation centered in or around the striosome/patch compartment but not in the matrix led to rapid acquisition of a new behavior.
Collapse
Affiliation(s)
- N M White
- Department of Psychology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Quebec, Canada H3A 1B1.
| | | |
Collapse
|
24
|
Blanchet F, Kemel ML, Gauchy C, Desban M, Perez S, Glowinski J. N-methyl-D-aspartate-evoked release of [3H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA. Neuroscience 1997; 81:113-27. [PMID: 9300405 DOI: 10.1016/s0306-4522(97)00198-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The N-methyl-D-aspartate-evoked release of [3H]acetylcholine previously formed from [3H]choline was estimated in striosome- (identified by [3H]naloxone binding) or matrix-enriched areas of the rat striatum using an in vitro microsuperfusion procedure. Experiments were performed in either the absence or the presence of dopaminergic and/or GABAergic receptor antagonists. Although the cell bodies of the cholinergic interneurons were mainly found in the matrix, in the absence of magnesium, N-methyl-D-aspartate (50 microM) stimulated the release of [3H]acetylcholine in both striatal compartments. These responses were blocked by either magnesium, dizocilpine maleate, 7-chlorokynurenate or tetrodotoxin. N-Methyl-D-aspartate responses were concentration-dependent, but the 1 mM N-methyl-D-aspartate response was higher in striosomes than in the matrix. The co-application of D-serine (10 microM) enhanced the 10 microM N-methyl-D-aspartate response in both compartments, but reduced those induced by 1 mM N-methyl-D-aspartate, this reduction being higher in striosomes. The blockade of dopaminergic transmission with the D2 and D1 dopaminergic receptor antagonists, (-)-sulpiride (1 microM) and SCH23390 (1 microM), was without effect on the 50 microM N-methyl-D-aspartate-evoked release of [3H]acetylcholine, but markedly enhanced the 1 mM N-methyl-D-aspartate+D-serine-evoked response in striosomes and to a lesser extent in the matrix. Disinhibitory responses of similar amplitude were observed not only in striosomes but also in the matrix when (-)-sulpiride was used alone, while SCH23390 alone enhanced the 1 mM N-methyl-D-aspartate+D-serine response only in striosomes and to a lower extent than (-)-sulpiride. These results indicate that D2 receptors are mainly involved in the inhibitory effect of dopamine on the 1 mM N-methyl-D-aspartate+D-serine-evoked release of [3H]acetylcholine. They also show that the stimulation of D1 receptors can either reduce (striosomes) or enhance (matrix) this response, since in the latter case the effect induced by the combined application of the D1 and D2 receptor antagonists was smaller than that observed with the D2 receptor antagonist alone. Indicating that released GABA facilitates N-methyl-D-aspartate responses, the blockade of GABAA receptors with bicuculline (5 microM) reduced the 50 microM N-methyl-D-aspartate-evoked release of [3H]acetylcholine in both striatal compartments and the 1 mM N-methyl-D-aspartate+D-serine response in the matrix. These effects result from an inhibition by GABA of the evoked release of dopamine, since the reducing effects of bicuculline on N-methyl-D-aspartate responses were not observed under the complete blockade of dopaminergic transmission by the D1 and D2 receptor antagonists. Further demonstrating a facilitatory role of GABA in the control of N-methyl-D-aspartate-evoked release of [3H]acetylcholine, in the presence of bicuculline, (-)-sulpiride and SCH23390 alone or in combination enhanced, in both compartments, the responses induced not only by 1 mM N-methyl-D-aspartate+D-serine, but also by 50 microM N-methyl-D-aspartate.
Collapse
Affiliation(s)
- F Blanchet
- INSERM U114, Collège de France, Paris, France
| | | | | | | | | | | |
Collapse
|
25
|
Gruen RJ, Wenberg K, Selim M, Friedhoff AJ, Bradberry CW. Novelty-associated locomotion: correlation with cortical and sub-cortical GABAA receptor binding. Eur J Pharmacol 1996; 309:115-20. [PMID: 8874129 DOI: 10.1016/0014-2999(96)00332-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present study was designed to determine whether variability in GABA (eta-aminobutyric acid)A receptor binding in cortical and subcortical brain regions was correlated with locomotor activity in a novel environment. Twenty four animals were rated for locomotor activity in a novel circular runway. Eight days later, locomotor activity was assessed following 1.5 mg/kg amphetamine sulfate (i.p.). After four to six days, animals were killed and samples were pooled in groups of four animals ranked according to novely locomotor score, and specific binding of the GABAA receptor antagonist [2-(3'-carboxy-2'-propyl)-3-amino-6-p-methoxy phenylpyridazinium bromide] ([3H]SR95531) was determined. Significant negative correlations were seen between specific ([3H]SR95531) binding and novelty induced locomotion in the cingulate and prefrontal cortices, and in the ventral pallidum. A near-significant negative correlation was seen in the striatum. Correlation coefficients between locomotion scores in the novel environment and specific [3H]SR95531 binding were: cingulate cortex, R = -0.91, P = 0.012; prefrontal cortex, R = -0.85, P = 0.032; ventral pallidum, R = -0.85, P = 0.030; striatum, R = -0.73, P = 0.097; and nucleus accumbens, R = -0.09, P = 0.85. The positive correlation between novelty- and amphetamine-induced locomotion was also quite high (R = 0.95, P = 0.004). These results are discussed in terms of their relevance to potential biochemical correlates of drug abuse vulnerability.
Collapse
Affiliation(s)
- R J Gruen
- Department of Psychology, New York University, New York, USA
| | | | | | | | | |
Collapse
|
26
|
Gauchy C, Desban M, Glowinski J, Kemel ML. Distinct regulations by septide and the neurokinin-1 tachykinin receptor agonist [pro9]substance P of the N-methyl-D-aspartate-evoked release of dopamine in striosome- and matrix-enriched areas of the rat striatum. Neuroscience 1996; 73:929-39. [PMID: 8809812 DOI: 10.1016/0306-4522(96)00099-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of septide (a short substance P C-terminal analogue) and of the neurokinin-1 receptor agonist [Pro9]substance P on the N-methyl-D-aspartate (50 microM)-evoked release of [3H]dopamine (continuously synthesized from [3H]tyrosine) were investigated in the absence or the presence of the selective neurokinin-1 receptor antagonist RP 67580 in selected striosome- and matrix-enriched areas of the rat striatum. Experiments were performed in vitro using a microsuperfusion procedure described previously. At a concentration of 0.1 microM, septide and [Pro9]substance P stimulated the spontaneous release of [3H]dopamine in striosome-enriched areas similarly. However, in this compartment, these peptides induced larger and opposite effects on the N-methyl-D-aspartate (50 microM)-evoked release of [3H]dopamine (estimated in the absence of magnesium). Indeed, septide markedly enhanced the N-methyl-D-aspartate response, while [Pro9]substance P largely reduced the N-methyl-D-aspartate-evoked release of [3H]dopamine. Septide also enhanced the N-methyl-D-aspartate response in the matrix, but [Pro9]substance P was without effect. When used alone, at 0.1 or 1 microM, RP 67580 reduced by about 33% the N-methyl-D-aspartate-evoked release of [3H]dopamine in striosome-enriched areas. In contrast, in the matrix, the N-methyl-D-aspartate response was enhanced in the presence of a low concentration of the antagonist, while the higher concentration was ineffective. In striosomes, the reducing effect of [Pro9]substance P and the enhancing action of septide on the N-methyl-D-aspartate response were respectively blocked in the presence of low and high concentrations of RP 67580, while the stimulatory effect of septide on the N-methyl-D-aspartate response in the matrix was prevented with both concentrations of the neurokinin-1 receptor antagonist. Finally, the co-application of [Pro9]substance P (0.1 microM) with septide (0.1 microM) abolished the enhancing effect of septide on the N-methyl-D-aspartate-evoked release of [3H]dopamine in both striatal compartments. Altogether, these results suggest that substance P and eventually one of its metabolites, substance P(6-11) or another endogenous tachykinin released under the action of N-methyl-D-aspartate, contribute to the regulation of [3H]dopamine release in both striatal compartments. They also extend previous observations which allowed us to demonstrate that the local circuits contributing to the presynaptic regulation of [3H]dopamine release differ in striosome- and matrix-enriched areas. Furthermore, in agreement with observations made in some peripheral tissues, the present results support the existence of "septide-sensitive" tachykinin receptors in the rat striatum or alternatively of septide sensitive sites on tachykinin neurokinin-1 receptors distinct from those sensitive to neurokinin-1 receptor agonists, coupled to distinct transducing systems, and thus leading to biological responses which differ from those evoked by neurokinin-1 receptor agonists.
Collapse
Affiliation(s)
- C Gauchy
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris, France
| | | | | | | |
Collapse
|
27
|
Ferraro L, Tanganelli S, O'Connor WT, Antonelli T, Rambert F, Fuxe K. The vigilance promoting drug modafinil increases dopamine release in the rat nucleus accumbens via the involvement of a local GABAergic mechanism. Eur J Pharmacol 1996; 306:33-9. [PMID: 8813612 DOI: 10.1016/0014-2999(96)00182-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The present in vivo microdialysis study demonstrated that the subcutaneous injection of modafinil (diphenyl-methyl-sulfinyl-2-acetamide) in doses of 30-300 mg/kg dose dependently increased dopamine release from the intermediate level of the nucleus accumbens along the rostro-caudal axis of the halothane anaesthetized rat. The effect of modafinil in a dose of 100 mg/kg was counteracted by the local perfusion in the nucleus accumbens with the GABAB receptor antagonist phaclofen (beta-p-chlorophenyl-gamma-aminopropyl-phosphonic acid) (50 microM), the GABAA agonist muscimol (3-hydroxy-5-aminomethyl-isoxazolol) (10 microM) and the neuronal GABA reuptake inhibitor SKF89976A (4,4-diphenyl-3-butenyl-nipecotic acid) (0.1 microM), whereas it was increased by the GABAB receptor agonist (-)-baclofen [beta-(p-chlorophenyl-gamma-aminobutyric acid)] (10 microM). In addition, the modafinil-induced increase of dopamine release was associated with a significant reduction of accumbens GABA release. These results suggest that the dopamine releasing action of modafinil in the rat nucleus accumbens is secondary to its ability to reduce local GABAergic transmission, which leads to a reduction of GABAA receptor signaling on the dopamine terminals.
Collapse
Affiliation(s)
- L Ferraro
- Institute of Pharmacology, University of Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Morari M, O'Connor WT, Ungerstedt U, Bianchi C, Fuxe K. Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat--II. Evidence for striatal N-methyl-D-aspartate receptor regulation of striatonigral GABAergic transmission and motor function. Neuroscience 1996; 72:89-97. [PMID: 8730708 DOI: 10.1016/0306-4522(95)00556-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study we used the dual probe approach to investigate striatal N-methyl-D-aspartate receptor regulation of GABA release from the substantia nigra pars reticulata of the awake, freely moving rat. One microdialysis probe of concentric design was implanted in the dorsolateral striatum and another in the ipsilateral substantia nigra pars reticulata. Perfusion with N-methyl-D-aspartate (100 microM) in the dorsolateral striatum decreased local dopamine release (-25%) and increased both glutamate (+40%) and GABA (+35%) release. Moreover, perfusion with N-methyl-D-aspartate (100 microM) in the dorsolateral striatum increased GABA release (+20%) in the substantia nigra pars reticulata. Perfusion with the lower (10 microM) N-methyl-D-aspartate concentration in the dorsolateral striatum did not affect striatal dopamine, glutamate and GABA release or nigral GABA release. Intrastriatal perfusion with the N-methyl-D-aspartate receptor antagonist dizocilpine maleate (10 microM), at a dose which by itself did not affect basal striatal or nigral neurotransmitter levels, prevented the effects of striatal perfusion with N-methyl-D-aspartate on both striatal and nigral neurotransmitter release. Intrastriatal dizocilpine maleate was also perfused concurrently with intranigral tetrodotoxin (10 microM) (see accompanying paper). Intrastriatal perfusion with dizocilpine maleate prevented the tetrodotoxin-induced rise in both striatal and nigral GABA levels and profoundly reduced the tetrodotoxin-induced contralateral turning. In addition, intrastriatal dizocilpine maleate delayed the increase in striatal glutamate release evoked by intranigral tetrodotoxin without affecting the associated decrease in striatal dopamine release. The present study demonstrates that N-methyl-D-aspartate receptors in the dorsolateral striatum regulate GABA release in the substantia nigra pars reticulata of the awake rat and provides evidence that this regulation plays a key role in motor function.
Collapse
Affiliation(s)
- M Morari
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Nankai M, Fage D, Carter C. Striatal NMDA receptor subtypes: the pharmacology of N-methyl-D-aspartate-evoked dopamine, gamma-aminobutyric acid, acetylcholine and spermidine release. Eur J Pharmacol 1995; 286:61-70. [PMID: 8566152 DOI: 10.1016/0014-2999(95)00429-o] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have examined the inhibitory potencies of MK 801, memantine, dextromethorphan, Mg2+ and of strychnine-insensitive glycine site antagonists on the N-methyl-D-aspartate (NMDA)-evoked (300 microM) release of [14C]acetylcholine and [3H]spermidine or [14C] gamma-aminobutyric acid [14C]GABA and [3H]dopamine from rat striatal slices. MK 801, dextromethorphan and all glycine antagonists examined (7-chlorokynurenate, L-689,560 ((+/-)-trans-2-carboxy-5,7-dichlorotetrahydroquinoline-4-phenylure a), 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dichloroquinoxaline-2,3-dione (DNQX), and (+)-HA966 ((3-amino-1-hydroxypyrrolidin-2-one) more potently inhibited NMDA-evoked dopamine and GABA release than acetylcholine and spermidine release by a factor of 3-21. MgCl2, which does not inhibit NMDA-evoked spermidine release, and memantine which only weakly antagonised NMDA-evoked spermidine release, inhibited NMDA-evoked dopamine, acetylcholine and GABA release with similar potencies. No pharmacological differences were observed between NMDA-evoked dopamine and GABA release. These findings extend those suggesting that NMDA-evoked acetylcholine and spermidine release are mediated by different NMDA receptor subtypes in the striatum and suggest a third native subtype with a distinct pharmacology that regulates striatal dopamine and GABA release.
Collapse
Affiliation(s)
- M Nankai
- Synthélabo Recherche, Rueil-Malmaison, France
| | | | | |
Collapse
|
30
|
Porras A, Mora F. Dopamine--glutamate--GABA interactions and ageing: studies in the striatum of the conscious rat. Eur J Neurosci 1995; 7:2183-8. [PMID: 8563968 DOI: 10.1111/j.1460-9568.1995.tb00640.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of apomorphine, a D1-D2 dopamine receptor agonist, on the extracellular concentrations of glutamate and GABA were investigated in the striatum of young, middle-aged and aged rats. In vivo intracerebral perfusions were undertaken in the conscious rat using a concentric push-pull cannula system. Amino acid concentrations in samples were determined by HPLC with fluorometric detection. Apomorphine produced a concentration-related rise in striatal glutamate and GABA concentrations in young rats. Maximal increases were obtained at 20 microM apomorphine, and concentrations reached 184 and 191% of the basal value for glutamate and GABA respectively. Apomorphine failed to produce similar increases in glutamate concentration in middle-aged and aged rats. Apomorphine, at 10 microM, also failed to produce an increase in GABA concentration in the aged rats. However, at 20 microM apomorphine produced increases in GABA concentration in middle-aged and aged rats similar to those produced in young rats. These data are indicative of a change in threshold for GABA release induced by dopamine receptor stimulation in the aged rat. These results indicate that an interaction among dopamine, glutamate and GABA exists in the striatum of the rat, and that this type of interaction deteriorates with age.
Collapse
Affiliation(s)
- A Porras
- Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Spain
| | | |
Collapse
|
31
|
Desban M, Gauchy C, Glowinski J, Kemel ML. Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compartment of the cat caudate nucleus. J Comp Neurol 1995; 352:117-33. [PMID: 7536221 DOI: 10.1002/cne.903520109] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The topographical organization of the striatonigral projection was investigated in the cat by comparing the localization and the intensity of labelling of retrogradely labelled cells in the caudate nucleus following one or multiple injections of horseradish peroxidase-wheat germ agglutinin into the center or along the rostrocaudal axis of the substantia nigra pars reticulata. Second, the localizations of retrogradely labelled striatopallidal neurons and of clusters of aggregated striatonigral neurons (as outlined by the transport of 14C-material) were compared in cats that received four horseradish peroxidase-wheat germ agglutinin injections into the internal segment of the globus pallidus and three nigral injections of 14C-amino acids into the substantia nigra pars reticulata. Two types of striatonigral neurons located predominantly within the matrix compartment were identified: poorly collateralized aggregated cells distributed in clusters and more numerous collateralized cells distributed outside the clusters. In addition, two cell types were distinguished within each cluster of aggregated neurons. Those innervating the center of the substantia nigra pars reticulata were observed after a single nigral injection of the tracer, whereas those projecting to distinct sites of the substantia nigra pars reticulata along a rostrocaudal axis were observed only after multiple injections. Striatal neurons innervating the internal segment of the globus pallidus were heterogeneously distributed predominantly within the matrix but outside the clusters of aggregated striatonigral neurons. Together, these results provide further evidence for the heterogeneity of the matrix and for the complexity of matrix striatonigral connections that send both diverging and converging signals to the substantia nigra pars reticulata.
Collapse
Affiliation(s)
- M Desban
- Chaire de Neuropharmacologie, INSERM U114, Collège de France, Paris
| | | | | | | |
Collapse
|
32
|
Chéramy A, Desce JM, Godeheu G, Glowinski J. Presynaptic control of dopamine synthesis and release by excitatory amino acids in rat striatal synaptosomes. Neurochem Int 1994; 25:145-54. [PMID: 7994195 DOI: 10.1016/0197-0186(94)90033-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Purified striatal synaptosomes were continuously superfused with L,3,5[3H]tyrosine in order to estimate the synthesis ([3H]water) and release of newly formed [3H]dopamine. In the presence of magnesium, L-glutamate, D,L-alpha-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) and kainate, but not N-methyl-D-aspartate (NMDA) and 1-aminocyclopentane-1S,3R-dicarboxylate (t-ACPD), stimulated the release of [3H]dopamine, in a dose-dependent manner. When magnesium was omitted or in the presence of AMPA, NMDA also increased the release of [3H]dopamine. The effects of AMPA and kainate were competitively inhibited by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 6,7-dinitro-quinoxaline-2,3-dione (DNQX), whereas those of NMDA were reduced by 2-amino-5-phosphonovalerate (APV) or (+)-5-methyl-10,11-dihydro-5-H-dibenzo(a,d)cyclo-hepten-5,10-imine maleate (MK801). The stimulation of [3H]dopamine release by a high concentration of glutamate resulted from the concomitant activation of AMPA and NMDA receptors since this effect was potentiated by glycine and reduced by 2-amino-5-phosphonovalerate or MK801. This reduction was almost complete in the combined presence of DNQX and MK801. Surprisingly, glutamate and NMDA (in the absence of magnesium) reduced the efflux of [3H]water. The reduction of [3H]dopamine synthesis was blocked by 2-amino-5-phosphonovalerate indicating the involvement of NMDA receptors. Neither AMPA nor kainate affected dopamine synthesis. The inhibition of [3H]dopamine synthesis resulting from the stimulation of NMDA receptors was prevented when synaptosomes were continuously superfused with adenosine deaminase and quinpirole, a combined treatment known to markedly reduce the phosphorylation of tyrosine hydroxylase by cAMP-dependent protein kinase. The opposite effects of a high concentration of glutamate on [3H]dopamine synthesis and release were mimicked by ionomycin. As a working hypothesis, it is proposed that the NMDA-triggered calcium influx could lead to a reduction of tyrosine hydroxylase phosphorylation, possibly through an activation of calcineurin.
Collapse
Affiliation(s)
- A Chéramy
- INSERM U 114, Collège de France, Chaire de Neuropharmacologie, Paris, France
| | | | | | | |
Collapse
|
33
|
Krebs MO, Kemel ML, Gauchy C, Desban M, Glowinski J. Does bicuculline antagonize NMDA receptors? Further evidence in the rat striatum. Brain Res 1994; 634:345-8. [PMID: 8131085 DOI: 10.1016/0006-8993(94)91941-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In two areas of the rat striatum, the in vitro N-methyl-D-aspartate (NMDA, 50 microM)-evoked release of [3H]dopamine was studied in the presence of bicuculline (5 and 50 microM), an antagonist of GABAA receptors. The responses observed with the higher concentration (50 microM) is compatible with an antagonistic activity of bicuculline on NMDA receptor, as recently reported by Wright and Nowak.
Collapse
Affiliation(s)
- M O Krebs
- Chaire de Neuropharmacologie, INSERM U114, Collège de France 11, Paris
| | | | | | | | | |
Collapse
|