1
|
Aroniadou-Anderjaska V, Figueiredo TH, De Araujo Furtado M, Pidoplichko VI, Lumley LA, Braga MFM. Alterations in GABA A receptor-mediated inhibition triggered by status epilepticus and their role in epileptogenesis and increased anxiety. Neurobiol Dis 2024; 200:106633. [PMID: 39117119 DOI: 10.1016/j.nbd.2024.106633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
The triggers of status epilepticus (SE) in non-epileptic patients can vary widely, from idiopathic causes to exposure to chemoconvulsants. Regardless of its etiology, prolonged SE can cause significant brain damage, commonly resulting in the development of epilepsy, which is often accompanied by increased anxiety. GABAA receptor (GABAAR)-mediated inhibition has a central role among the mechanisms underlying brain damage and the ensuing epilepsy and anxiety. During SE, calcium influx primarily via ionotropic glutamate receptors activates signaling cascades which trigger a rapid internalization of synaptic GABAARs; this weakens inhibition, exacerbating seizures and excitotoxicity. GABAergic interneurons are more susceptible to excitotoxic death than principal neurons. During the latent period of epileptogenesis, the aberrant reorganization in synaptic interactions that follow interneuronal loss in injured brain regions, leads to the formation of hyperexcitable, seizurogenic neuronal circuits, along with disturbances in brain oscillatory rhythms. Reduction in the spontaneous, rhythmic "bursts" of IPSCs in basolateral amygdala neurons is likely to play a central role in anxiogenesis. Protecting interneurons during SE is key to preventing both epilepsy and anxiety. Antiglutamatergic treatments, including antagonism of calcium-permeable AMPA receptors, can be expected to control seizures and reduce excitotoxicity not only by directly suppressing hyperexcitation, but also by counteracting the internalization of synaptic GABAARs. Benzodiazepines, as delayed treatment of SE, have low efficacy due to the reduction and dispersion of their targets (the synaptic GABAARs), but also because themselves contribute to further reduction of available GABAARs at the synapse; furthermore, benzodiazepines may be completely ineffective in the immature brain.
Collapse
Affiliation(s)
- Vassiliki Aroniadou-Anderjaska
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Marcio De Araujo Furtado
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Volodymyr I Pidoplichko
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| | - Lucille A Lumley
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen, Proving Ground, MD, USA.
| | - Maria F M Braga
- Department of Anatomy, Physiology, and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA; Department of Psychiatry, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
2
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|
3
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Neuronal Transmembrane Chloride Transport Has a Time-Dependent Influence on Survival of Hippocampal Cultures to Oxygen-Glucose Deprivation. Brain Sci 2019; 9:brainsci9120360. [PMID: 31817665 PMCID: PMC6955658 DOI: 10.3390/brainsci9120360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Neuronal ischemia results in chloride gradient alterations which impact the excitatory–inhibitory balance, volume regulation, and neuronal survival. Thus, the Na+/K+/Cl− co-transporter (NKCC1), the K+/ Cl− co-transporter (KCC2), and the gamma-aminobutyric acid A (GABAA) receptor may represent therapeutic targets in stroke, but a time-dependent effect on neuronal viability could influence the outcome. We, therefore, successively blocked NKCC1, KCC2, and GABAA (with bumetanide, DIOA, and gabazine, respectively) or activated GABAA (with isoguvacine) either during or after oxygen-glucose deprivation (OGD). Primary hippocampal cultures were exposed to a 2-h OGD or sham normoxia treatment, and viability was determined using the resazurin assay. Neuronal viability was significantly reduced after OGD, and was further decreased by DIOA treatment applied during OGD (p < 0.01) and by gabazine applied after OGD (p < 0.05). Bumetanide treatment during OGD increased viability (p < 0.05), while isoguvacine applied either during or after OGD did not influence viability. Our data suggests that NKCC1 and KCC2 function has an important impact on neuronal viability during the acute ischemic episode, while the GABAA receptor plays a role during the subsequent recovery period. These findings suggest that pharmacological modulation of transmembrane chloride transport could be a promising approach during stroke and highlight the importance of the timing of treatment application in relation to ischemia-reoxygenation.
Collapse
|
5
|
Khanegheini A, Meftahi GH, Zarrindast MR, Afarinesh MR, Sahraei H, Jahromi GP, Shahyad S. Involvement of CA1 GABAA Receptors in Ketamine-Induced Impairment of Spatial and Non-Spatial Novelty Detection in Mice. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mele M, Costa RO, Duarte CB. Alterations in GABA A-Receptor Trafficking and Synaptic Dysfunction in Brain Disorders. Front Cell Neurosci 2019; 13:77. [PMID: 30899215 PMCID: PMC6416223 DOI: 10.3389/fncel.2019.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/15/2019] [Indexed: 12/12/2022] Open
Abstract
GABAA receptors (GABAAR) are the major players in fast inhibitory neurotransmission in the central nervous system (CNS). Regulation of GABAAR trafficking and the control of their surface expression play important roles in the modulation of the strength of synaptic inhibition. Different pieces of evidence show that alterations in the surface distribution of GABAAR and dysregulation of their turnover impair the activity of inhibitory synapses. A diminished efficacy of inhibitory neurotransmission affects the excitatory/inhibitory balance and is a common feature of various disorders of the CNS characterized by an increased excitability of neuronal networks. The synaptic pool of GABAAR is mainly controlled through regulation of internalization, recycling and lateral diffusion of the receptors. Under physiological condition these mechanisms are finely coordinated to define the strength of GABAergic synapses. In this review article, we focus on the alteration in GABAAR trafficking with an impact on the function of inhibitory synapses in various disorders of the CNS. In particular we discuss how similar molecular mechanisms affecting the synaptic distribution of GABAAR and consequently the excitatory/inhibitory balance may be associated with a wide diversity of pathologies of the CNS, from psychiatric disorders to acute alterations leading to neuronal death. A better understanding of the cellular and molecular mechanisms that contribute to the impairment of GABAergic neurotransmission in these disorders, in particular the alterations in GABAAR trafficking and surface distribution, may lead to the identification of new pharmacological targets and to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Miranda Mele
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
7
|
LaCorte S. How chronic administration of benzodiazepines leads to unexplained chronic illnesses: A hypothesis. Med Hypotheses 2018; 118:59-67. [PMID: 30037616 DOI: 10.1016/j.mehy.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/15/2022]
Abstract
It is thought that an ill defined biochemical cascade may lead to protracted withdrawal symptoms subsequent to discontinuance of routine use of benzodiazepine class drugs and establish chronic illness in some patients. In this review, published findings are presented that support the novel concept that withdrawal from benzodiazepine class drugs can trigger elevated and sustained levels of a potent oxidant called peroxynitrite via potentiation of the L-type voltage-gated calcium channels, and in the later stages of withdrawal, via excessive N-methyl-D-aspartate receptor activity, as well. Potentiation of L-type voltage-gated calcium channels and excessive N-methyl-D-aspartate receptor activity both result in calcium influx into the cell that triggers nitric oxide synthesis. In pathophysiological conditions, such increased nitric oxide synthesis leads to peroxynitrite formation. The downstream effects of peroxynitrite formation that may occur during withdrawal ultimately lead to further peroxynitrite production in a system of overlapping vicious cycles collectively referred to as the NO/ONOO(-) cycle. Once triggered, the elements of the NO/ONOO(-) cycle perpetuate pathophysiology, perhaps including reduced GABAA receptor functioning, that may explain protracted withdrawal associated symptoms while the vicious cycle nature of the NO/ONOO(-) cycle may explain how withdrawal becomes a chronic state. Suboptimal levels of tetrahydrobiopterin may be one risk factor for the development of the protracted withdrawal syndrome as this will lead to partial nitric oxide uncoupling and resultant peroxynitrite formation. Nitric oxide uncoupling results in superoxide production as calcium-dependent nitric oxide synthases attempt to produce nitric oxide in response to L-type voltage-gated calcium channel-mediated calcium influx that is known to occur during withdrawal. The combination of nitric oxide and superoxide produced, as when partial uncoupling occurs, react together in a very rapid, diffusion limited reaction to form peroxynitrite and thereby trigger the NO/ONOO(-) cycle. The NO/ONOO(-) cycle may explain the nature of the protracted withdrawal syndrome and the related constellation of symptoms that are also common in other illnesses characterized as NO/ONOO(-) disorders such as myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia.
Collapse
Affiliation(s)
- S LaCorte
- Benzodiazepine Information Coalition, 1042 Fort Union Blvd. Suite 1030, Midvale, UT 84047, United States.
| |
Collapse
|
8
|
Additive effect of BLA GABAA receptor mechanism and (+)-MK-801 on memory retention deficit, an isobologram analysis. Pharmacol Biochem Behav 2016; 143:57-64. [DOI: 10.1016/j.pbb.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/21/2022]
|
9
|
Kouvaros S, Papatheodoropoulos C. Major dorsoventral differences in the modulation of the local CA1 hippocampal network by NMDA, mGlu5, adenosine A2A and cannabinoid CB1 receptors. Neuroscience 2016; 317:47-64. [PMID: 26762803 DOI: 10.1016/j.neuroscience.2015.12.059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/23/2015] [Accepted: 12/30/2015] [Indexed: 11/29/2022]
Abstract
Recent research points to diversification in the local neuronal circuitry between dorsal (DH) and ventral (VH) hippocampus that may be involved in the large-scale functional segregation along the long axis of the hippocampus. Here, using CA1 field recordings from rat hippocampal slices, we show that activation of N-methyl-d-aspartate receptors (NMDARs) reduced excitatory transmission more in VH than in DH, with an adenosine A1 receptor-independent mechanism, and reduced inhibition and enhanced postsynaptic excitability only in DH. Strikingly, co-activation of metabotropic glutamate receptor-5 (mGluR5) with NMDAR, by CHPG and NMDA respectively, strongly potentiated the effects of NMDAR in DH but had not any potentiating effect in VH. Furthermore, the synergistic actions in DH were occluded by blockade of adenosine A2A receptors (A2ARs) by their antagonist ZM 241385 demonstrating a tonic action of these receptors in DH. Exogenous activation of A2ARs by 4-[2-[[6-amino-9-(N-ethyl-β-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS 21680) did not change the effects of mGluR5-NMDAR co-activation in either hippocampal pole. Importantly, blockade of cannabinoid CB1 receptors (CB1Rs) by their antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-4-morpholinyl-1H-pyrazole-3-carboxamide (AM 281) restricted the synergistic actions of mGluR5-NMDARs on excitatory synaptic transmission and postsynaptic excitability and abolished their effect on inhibition. Furthermore, AM 281 increased the excitatory transmission only in DH indicating that CB1Rs were tonically active in DH but not VH. Removing the magnesium ions from the perfusion medium neither stimulated the interaction between mGluR5 and NMDAR in VH nor augmented the synergy of the two receptors in DH. These findings show that the NMDAR-dependent modulation of fundamental parameters of the local neuronal network, by mGluR5, A2AR and CB1R, markedly differs between DH and VH. We propose that the higher modulatory role of A2AR and mGluR5, in combination with the role of CB1Rs, provide DH with higher functional flexibility of its NMDARs, compared with VH.
Collapse
Affiliation(s)
- S Kouvaros
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece
| | - C Papatheodoropoulos
- Laboratory of Physiology, Department of Medicine, School of Health Sciences, University of Patras, 26504 Rion, Greece.
| |
Collapse
|
10
|
Sarantis K, Tsiamaki E, Kouvaros S, Papatheodoropoulos C, Angelatou F. Adenosine A₂A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem 2015; 135:714-26. [PMID: 26303340 DOI: 10.1111/jnc.13291] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022]
Abstract
A great body of evidence points toward a functional interaction between metabotropic glutamate 5 receptors (mGluR5) and NMDA receptors (NMDAR) that enhances synaptic plasticity and cognition. However, the molecular mechanism underlying this interaction remains unclear. Here, we show that co-activation of mGluR5 and NMDAR in hippocampal slices synergistically leads to a robust phosphorylation of NR2B (Tyr1472), which is Src kinase dependent and is enabled by endogenous adenosine acting on A2A receptors. As it is well known, NR2B (Tyr1472) phosphorylation anchors NR2B-containing NMDARs to the surface of post-synaptic membranes, preventing their internalization. This is supported by our electrophysiological experiments showing that co-activation of mGluR5 and NMDARs robustly enhances NMDAR-dependent neuronal excitability recorded in CA1 hippocampal region, which temporally coincides with the robust increase in NR2B (Tyr1472) phosphorylation, depends on Src kinases and is also permitted by A2A receptors. Thus, we strongly suggest that NR2B (Tyr1472) phosphorylation constitutes, at least to some extent, the molecular mechanism underlying the mGluR5-mediated enhancement of NMDAR-dependent responses, which is modulated by A2A receptors. A better understanding of the molecular basis of mGluR5/NMDAR interaction would elucidate their role in synaptic plasticity processes as well as in pathological conditions. We propose the following molecular mechanism by which metabotropic Glutamate Receptor 5 (mGluR5) potentiate ionotropic Glutamate N-Methyl-D-Aspartate Receptor (NMDAR) responses in rat hippocampus. Co-activation of mGLUR5/NMDAR activates Src kinases, leading to NR2B(Tyr1472) phosphorylation, which anchors NR2B-containing NMDAR to the plasma membrane, thus inducing a robust increase in the NMDA-dependent excitability. Interestingly, adenosine A2A receptors license the mGluR5-induced NR2B(Tyr1472) phosphorylation.
Collapse
Affiliation(s)
| | - Eirini Tsiamaki
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | - Stylianos Kouvaros
- Physiology Department, Medical School, University of Patras, Patras, Greece
| | | | - Fevronia Angelatou
- Physiology Department, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
11
|
Joshi S, Rajasekaran K, Hawk KM, Brar J, Ross BM, Tran CA, Chester SJ, Goodkin HP. Phosphatase inhibition prevents the activity-dependent trafficking of GABAA receptors during status epilepticus in the young animal. Epilepsia 2015; 56:1355-65. [PMID: 26248944 DOI: 10.1111/epi.13098] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2015] [Indexed: 01/12/2023]
Abstract
OBJECTIVES To determine if the activity-dependent trafficking of γ2 subunit-containing γ-aminobutyric acid type A receptors (GABAA Rs) that has been observed in older animals and posited to contribute to benzodiazepine pharmacoresistance during status epilepticus (SE) is age-dependent, and to evaluate whether blockade of protein phosphatases can inhibit or reverse the activity-dependent plasticity of these receptors. METHODS The efficacy and potency of diazepam 0.2-10 mg/kg administered 3 or 60 min after the onset of a lithium/pilocarpine-induced seizure in postnatal day 15-16 rats was evaluated using video-electroencephalography (EEG) recordings. The surface expression of γ2 subunit-containing GABAA Rs was assessed using a biotinylation assay, and GABAA R-mediated miniature inhibitory postsynaptic currents (mIPSCs) were recorded using whole-cell patch-clamp recording techniques from dentate granule cells in hippocampal slices acutely obtained 60 min after seizure onset (SE-treated). The effect of the protein phosphatase inhibitors FK506 and okadaic acid (OA) on the surface expression of these receptors was determined in organotypic slice cultures exposed to high potassium and N-methyl-d-aspartate (NMDA) or in SE-treated slices. RESULTS Diazepam terminated seizures of 3 min but not 60 min duration, even at the highest dose. In the SE-treated slices, the surface expression of γ2 subunit-containing GABAA Rs was reduced and the amplitude of the mIPSCs was diminished. Inhibition of protein phosphatases prevented the activity-induced reduction of the γ2 subunit-containing GABAA Rs in organotypic slice cultures. Furthermore, treatment of SE-treated slices with FK506 or OA restored the surface expression of the γ2 subunit-containing GABAA Rs and the mIPSC amplitude. SIGNIFICANCE This study demonstrates that the plasticity of γ2 subunit-containing GABAA Rs associated with the development of benzodiazepine resistance in young and adult animals is similar. The findings of this study suggest that the mechanisms regulating the activity-dependent trafficking of GABAA Rs during SE can be targeted to develop novel adjunctive therapy for the treatment of benzodiazepine-refractory SE.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Karthik Rajasekaran
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Kyle M Hawk
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Jasmit Brar
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Brittany M Ross
- Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Christine A Tran
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Stephen J Chester
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| | - Howard P Goodkin
- Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, U.S.A.,Department of Pediatrics, University of Virginia Health System, Charlottesville, Virginia, U.S.A
| |
Collapse
|
12
|
Aiba I, Shuttleworth CW. Characterization of inhibitory GABA-A receptor activation during spreading depolarization in brain slice. PLoS One 2014; 9:e110849. [PMID: 25338191 PMCID: PMC4206427 DOI: 10.1371/journal.pone.0110849] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/24/2014] [Indexed: 12/28/2022] Open
Abstract
Spreading depolarization (SD) is a slowly propagating wave of near complete depolarizations of neurons and glia. Previous studies have reported large GABA releases during SD, but there is limited understanding of how GABA release and receptor activation are regulated and influence the propagating SD wavefront, as well as an excitatory phase immediately following the passage of SD. The present study characterized GABA-A type receptor (GABAAR) currents during SD generated by KCl microinjection in acute hippocampal slices from adult mice. Spontaneous GABAAR-mediated currents (sIPSCs) were initially enhanced, and were followed by a large outward current at the wavefront. sIPSC were then transiently supressed during the late SD phase, resulting in a significant reduction of the sIPSC/sEPSC ratio. The large outward current generated during SD was eliminated by the GABAAR antagonist gabazine, but the channel potentiator/agonist propofol failed to potentiate the current, likely because of a ceiling effect. Extracellular Cl− decreases recorded during SD were reduced by the antagonist but were not increased by the potentiator. Together with effects of GABAAR modulators on SD propagation rate, these results demonstrate a significant inhibitory role of the initial GABAAR activation and suggest that intracellular Cl− loading is insufficient to generate excitatory GABAAR responses during SD propagation. These results provide a mechanistic explanation for facilitating effects of GABAAR antagonists, and the lack of inhibitory effect of GABAAR potentiators on SD propagation. In addition, selective suppression of GABA transmission in the late SD period and the lack of effect of GABAA modulators on the duration of SD suggests that GABA modulation may not be effective approach to protect neurons during the vulnerable phase of SD.
Collapse
Affiliation(s)
- Isamu Aiba
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
| | - C. William Shuttleworth
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
13
|
Singh AM, Neva JL, Staines WR. Acute exercise enhances the response to paired associative stimulation-induced plasticity in the primary motor cortex. Exp Brain Res 2014; 232:3675-85. [PMID: 25096384 DOI: 10.1007/s00221-014-4049-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 07/17/2014] [Indexed: 02/08/2023]
Abstract
There is evidence that a single session of aerobic exercise can modulate intracortical inhibition. While decreases in inhibition appear to be a necessary precursor to the induction of long-term potentiation (LTP)-like plasticity, it is not known whether aerobic exercise can enhance the response to LTP induction. We investigated whether the addition of a preceding bout of exercise would modulate the response to paired associative stimulation (PAS) of the upper limb. It was hypothesized that exercise would enhance motor cortical (M1) excitability following PAS compared to a session of PAS alone. Ten healthy individuals underwent a control session involving PAS alone and an exercise session where PAS was preceded by 20 min of moderate-intensity stationary biking. PAS involved 180 pairs of stimuli (right median nerve, left M1) delivered at 0.1 Hz to the right abductor pollicis brevis representation. Excitability changes were measured by the area under a stimulus-response curve, and intracortical circuits were probed by testing short-interval intracortical inhibition (SICI), long-interval intracortical inhibition and intracortical facilitation. Two-way ANOVAs were conducted to compare excitability changes between sessions. PAS-induced increases in M1 excitability were enhanced in the exercise session (p < 0.026). In addition, SICI was differentially modulated between the two sessions, with greater decreases in SICI observed immediately after PAS when it was preceded by the exercise session (p < 0.03). Aerobic exercise enhances the effectiveness of PAS and may be a useful adjunct to traditional therapies and interventions that aim to promote neuroplasticity in cortical networks.
Collapse
Affiliation(s)
- Amaya M Singh
- Department of Kinesiology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | | | | |
Collapse
|
14
|
Involvement of the CA1 GABAA receptors in MK-801-induced anxiolytic-like effects. Behav Pharmacol 2014; 25:197-205. [DOI: 10.1097/fbp.0000000000000037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Myint AM, Kim YK. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:304-13. [PMID: 24184687 DOI: 10.1016/j.pnpbp.2013.08.008] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 08/08/2013] [Accepted: 08/17/2013] [Indexed: 12/16/2022]
Abstract
The involvement of immune system activation in the pathophysiology of certain psychiatric disorders is well documented. Inflammatory molecules such as pro-inflammatory cytokines could enhance the activity of the indoleamine 2,3-dioxygenase (IDO) enzyme which is the first rate-limiting enzyme of the tryptophan degradation pathway, the kynurenine pathway. The increased tryptophan degradation could induce serotonin depletion and depressive mood. On the other hand, the downstream metabolites from this pathway, such as 3-hydroxykynurenine, quinolinic acid and kynurenic acid, are neuroactive metabolites which can modulate several neurotransmissions, such as glutamatergic, GABAergic, dopaminergic and noradrenergic neurotransmissions, which in turn induce changes in neuronal-glial network and neuropsychiatric consequences. In this issue, we have revised the previous 'neurodegeneration hypothesis,' which explained the involvement of cytokines and IDO pathway interaction in depression, with a further extended view related to the network beyond IDO, the network between immune molecules, tryptophan metabolites and different neurotransmitters, in depression and other major psychiatric disorders such as schizophrenia, bipolar disorder and childhood psychiatric disorders.
Collapse
Affiliation(s)
- Aye-Mu Myint
- Psychiatric Hospital, Ludwig Maximilian University, Nussbaumstrasse 7; D-80336 Munich, Germany; School for Mental Health and Neuroscience, Maastricht University, The Netherlands.
| | | |
Collapse
|
16
|
Biomarkers of cognitive dysfunction in traumatic brain injury. J Neural Transm (Vienna) 2013; 121:79-90. [DOI: 10.1007/s00702-013-1078-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 07/30/2013] [Indexed: 12/11/2022]
|
17
|
Meunier S, Russmann H, Shamim E, Lamy JC, Hallett M. Plasticity of cortical inhibition in dystonia is impaired after motor learning and paired-associative stimulation. Eur J Neurosci 2012; 35:975-86. [PMID: 22429246 DOI: 10.1111/j.1460-9568.2012.08034.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Artificial induction of plasticity by paired associative stimulation (PAS) in healthy volunteers (HV) demonstrates Hebbian-like plasticity in selected inhibitory networks as well as excitatory networks. In a group of 17 patients with focal hand dystonia and a group of 19 HV, we evaluated how PAS and the learning of a simple motor task influence the circuits supporting long-interval intracortical inhibition (LICI, reflecting activity of GABA(B) interneurons) and long-latency afferent inhibition (LAI, reflecting activity of somatosensory inputs to the motor cortex). In HV, PAS and motor learning induced long-term potentiation (LTP)-like plasticity of excitatory networks and a lasting decrease of LAI and LICI in the motor representation of the targeted or trained muscle. The better the motor performance, the larger was the decrease of LAI. Although motor performance in the patient group was similar to that of the control group, LAI did not decrease during the motor learning as it did in the control group. In contrast, LICI was normally modulated. In patients the results after PAS did not match those obtained after motor learning: LAI was paradoxically increased and LICI did not exhibit any change. In the normal situation, decreased excitability in inhibitory circuits after induction of LTP-like plasticity may help to shape the cortical maps according to the new sensorimotor task. In patients, the abnormal or absent modulation of afferent and intracortical long-interval inhibition might indicate maladaptive plasticity that possibly contributes to the difficulty that they have to learn a new sensorimotor task.
Collapse
Affiliation(s)
- Sabine Meunier
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
18
|
Chisari M, Zorumski CF, Mennerick S. Cross talk between synaptic receptors mediates NMDA-induced suppression of inhibition. J Neurophysiol 2012; 107:2532-40. [PMID: 22279196 DOI: 10.1152/jn.01145.2011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Past research has shown that calcium influx through NMDA receptors (NMDARs) depresses GABA(A) currents. We examined upstream triggers of this suppression, including involvement of target synaptic GABA(A) receptors and the NMDARs triggering suppression. In hippocampal neurons, conditioning with 20 μM NMDA for 20 s caused 50% suppression of GABA responses. The suppression was delayed by ≈ 60 s following NMDA application and persisted for at least 5 min following conditioning. Pharmacology experiments suggested a shift in both the sensitivity to GABA and a loss of functional receptors. NMDA conditioning strongly suppressed inhibitory postsynaptic currents and speeded decay kinetics. Synaptic NMDAR conditioning was necessary to suppress GABA current in pyramidal neurons; extrasynaptic NMDAR activation did not suppress, even when matched to synaptic activation. We found no evidence that specific synaptic NMDAR subunits mediate depression of GABA responses. Although physical colocalization of glutamate and GABA(A) receptors is mostly likely in extrasynaptic regions, our evidence suggests that NMDAR-induced suppression of GABA responsiveness prominently affects precise, moment-to-moment signaling from synaptic receptors to synaptic receptors.
Collapse
Affiliation(s)
- Mariangela Chisari
- Department of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Box 8134, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
19
|
Cong D, Tang Z, Li L, Huang Y, Wang J, Chen L. Cross-talk between NMDA and GABAA receptors in cultured neurons of the rat inferior colliculus. SCIENCE CHINA-LIFE SCIENCES 2011; 54:560-6. [DOI: 10.1007/s11427-011-4178-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
|
20
|
Shrivastava AN, Triller A, Sieghart W. GABA(A) Receptors: Post-Synaptic Co-Localization and Cross-Talk with Other Receptors. Front Cell Neurosci 2011; 5:7. [PMID: 21734865 PMCID: PMC3123775 DOI: 10.3389/fncel.2011.00007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 06/06/2011] [Indexed: 11/14/2022] Open
Abstract
γ-Aminobutyric acid type A receptors (GABAARs) are the major inhibitory neurotransmitter receptors in the central nervous system, and importantly contribute to the functional regulation of the nervous system. Several studies in the last few decades have convincingly shown that GABA can be co-localized with other neurotransmitters in the same synapse, and can be co-released with these neurotransmitters either from the same vesicles or from different vesicle pools. The co-released transmitters may act on post-synaptically co-localized receptors resulting in a simultaneous activation of both receptors. Most of the studies investigating such co-activation observed a reduced efficacy of GABA for activating GABAARs and thus, a reduced inhibition of the post-synaptic neuron. Similarly, in several cases activation of GABAARs has been reported to suppress the response of the associated receptors. Such a receptor cross-talk is either mediated via a direct coupling between the two receptors or via the activation of intracellular signaling pathways and is used for fine tuning of inhibition in the nervous system. Recently, it was demonstrated that a direct interaction of different receptors might already occur in intracellular compartments and might also be used to specifically target the receptors to the cell membrane. In this article, we provide an overview on such cross-talks between GABAARs and several other neurotransmitter receptors and briefly discuss their possible physiological and clinical importance.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna Vienna, Austria
| | | | | |
Collapse
|
21
|
Salah A, Perkins KL. Persistent ictal-like activity in rat entorhinal/perirhinal cortex following washout of 4-aminopyridine. Epilepsy Res 2011; 94:163-76. [PMID: 21353480 DOI: 10.1016/j.eplepsyres.2011.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 01/25/2011] [Accepted: 01/26/2011] [Indexed: 11/27/2022]
Abstract
Application of 4-aminopyridine (4-AP, 100μM) in a solution containing 0.6mM Mg(2+) and 1.2mM Ca(2+) to hippocampal-entorhinal-perirhinal slices of adult rat brain induced ictal-like epileptiform activity in entorhinal and perirhinal cortices as revealed by electrophysiological field potential recordings. The ictal-like activity persisted after washing out the 4-AP. This persistence indicated that a change had occurred in the slice so that it was now "epileptic" in the absence of the convulsant 4-AP. Induction of persistent ictal-like activity was dependent upon the concentration of divalent cations during 4-AP exposure; that is, although 4-AP caused ictal-like activity in approximately half the slices in solution containing 1.6mM Mg(2+) and 2.0mM Ca(2+), this ictal-like activity did not persist upon washout of the 4-AP. Expression of the persistent ictal-like epileptiform activity required ionotropic glutamate-mediated synaptic transmission: application of the AMPA/kainate receptor antagonist NBQX after 4-AP washout reduced persistent ictal-like activity, and the combined application of NBQX and the NMDA receptor antagonist d-AP5 completely blocked it. In order to investigate the mechanism of induction of persistent ictal-like activity, several agents were applied before the introduction of 4-AP. Application of d-AP5 did not block the onset of ictal-like activity upon introduction of 4-AP but did prevent the persistence of the ictal-like activity upon washout of the 4-AP. In contrast, induction of persistent ictal-like activity was not prevented by simultaneous application of the group I metabotropic glutamate receptor (mGluR) antagonists LY 367385 and MPEP or by application of the protein synthesis inhibitor cycloheximide. In conclusion, we have characterized a new in vitro model of epileptogenesis in which induction of ictal-like activity is dependent upon NMDA receptor activation but not upon group I mGluR activation or protein synthesis.
Collapse
Affiliation(s)
- Alejandro Salah
- Program in Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| | - Katherine L Perkins
- Program in Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Department of Physiology and Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States; Robert F. Furchgott Center for Neural and Behavioral Science, State University of New York, Downstate Medical Center, Brooklyn, NY 11203, United States
| |
Collapse
|
22
|
Gibson CJ, Meyer RC, Hamm RJ. Traumatic brain injury and the effects of diazepam, diltiazem, and MK-801 on GABA-A receptor subunit expression in rat hippocampus. J Biomed Sci 2010; 17:38. [PMID: 20482789 PMCID: PMC2893123 DOI: 10.1186/1423-0127-17-38] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Background Excitatory amino acid release and subsequent biochemical cascades following traumatic brain injury (TBI) have been well documented, especially glutamate-related excitotoxicity. The effects of TBI on the essential functions of inhibitory GABA-A receptors, however, are poorly understood. Methods We used Western blot procedures to test whether in vivo TBI in rat altered the protein expression of hippocampal GABA-A receptor subunits α1, α2, α3, α5, β3, and γ2 at 3 h, 6 h, 24 h, and 7 days post-injuy. We then used pre-injury injections of MK-801 to block calcium influx through the NMDA receptor, diltiazem to block L-type voltage-gated calcium influx, or diazepam to enhance chloride conductance, and re-examined the protein expressions of α1, α2, α3, and γ2, all of which were altered by TBI in the first study and all of which are important constituents in benzodiazepine-sensitive GABA-A receptors. Results Western blot analysis revealed no injury-induced alterations in protein expression for GABA-A receptor α2 or α5 subunits at any time point post-injury. Significant time-dependent changes in α1, α3, β3, and γ2 protein expression. The pattern of alterations to GABA-A subunits was nearly identical after diltiazem and diazepam treatment, and MK-801 normalized expression of all subunits 24 hours post-TBI. Conclusions These studies are the first to demonstrate that GABA-A receptor subunit expression is altered by TBI in vivo, and these alterations may be driven by calcium-mediated cascades in hippocampal neurons. Changes in GABA-A receptors in the hippocampus after TBI may have far-reaching consequences considering their essential importance in maintaining inhibitory balance and their extensive impact on neuronal function.
Collapse
Affiliation(s)
- Cynthia J Gibson
- Department of Psychology, Washington College, Chestertown, MD 21620, USA.
| | | | | |
Collapse
|
23
|
Zhang W, Mifflin S. Plasticity of GABAergic mechanisms within the nucleus of the solitary tract in hypertension. Hypertension 2010; 55:201-6. [PMID: 20048192 DOI: 10.1161/hypertensionaha.109.146407] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Weirong Zhang
- Department of Integrative Physiology and the Cardiovascular Research Institute, The University of North Texas Health Science Center, Fort Worth, Tex 76107-2699, USA
| | | |
Collapse
|
24
|
Saito S, Okada A, Ouwa T, Kato A, Akagi M, Kamei C. Interaction between Hippocampal .GAMMA.-Aminobutyric AcidA and N-Methyl-D-aspartate Receptors in the Retention of Spatial Working Memory in Rats. Biol Pharm Bull 2010; 33:439-43. [DOI: 10.1248/bpb.33.439] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shunsuke Saito
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Akiko Okada
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Takako Ouwa
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Akane Kato
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| | - Masaaki Akagi
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Chiaki Kamei
- Department of Medicinal Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences
| |
Collapse
|
25
|
GABAA receptor inhibition does not affect mGluR-dependent LTD at hippocampal Schaffer collateral-CA1 synapses. Neurosci Lett 2009; 467:20-5. [DOI: 10.1016/j.neulet.2009.09.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/07/2009] [Accepted: 09/27/2009] [Indexed: 11/23/2022]
|
26
|
Houston CM, He Q, Smart TG. CaMKII phosphorylation of the GABA(A) receptor: receptor subtype- and synapse-specific modulation. J Physiol 2009; 587:2115-25. [PMID: 19332484 PMCID: PMC2697286 DOI: 10.1113/jphysiol.2009.171603] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 03/25/2009] [Indexed: 01/05/2023] Open
Abstract
As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABA(A) receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca(2+) ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), can target the GABA(A) receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABA(A) receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABA(A) receptors in a synapse-specific context.
Collapse
Affiliation(s)
- Catriona M Houston
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | |
Collapse
|
27
|
Russmann H, Lamy JC, Shamim EA, Meunier S, Hallett M. Associative plasticity in intracortical inhibitory circuits in human motor cortex. Clin Neurophysiol 2009; 120:1204-12. [PMID: 19435676 DOI: 10.1016/j.clinph.2009.04.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/09/2009] [Accepted: 04/14/2009] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Paired associative stimulation (PAS) is a transcranial magnetic stimulation technique inducing Hebbian-like synaptic plasticity in the human motor cortex (M1). PAS is produced by repetitive pairing of a peripheral nerve shock and a transcranial magnetic stimulus (TMS). Its effect is assessed by a change in size of a motor evoked response (MEP). MEP size results from excitatory and inhibitory influences exerted on cortical pyramidal cells, but no robust effects on inhibitory networks have been demonstrated so far. METHOD In 38 healthy volunteers, we assessed whether a PAS intervention influences three intracortical inhibitory circuits: short (SICI) and long (LICI) intracortical inhibitions reflecting activity of GABA(A) and GABA(B) interneurons, respectively, and long afferent inhibition (LAI) reflecting activity of somatosensory inputs. RESULTS After PAS, MEP sizes, LICI and LAI levels were significantly changed while changes of SICI were inconsistent. The changes in LICI and LAI lasted 45 min after PAS. Their direction depended on the delay between the arrival time of the afferent volley at the cortex and the TMS-induced cortical activation during the PAS. CONCLUSIONS PAS influences inhibitory circuits in M1. SIGNIFICANCE PAS paradigms can demonstrate Hebbian-like plasticity at selected inhibitory networks as well as excitatory networks.
Collapse
Affiliation(s)
- Heike Russmann
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
It is proposed that a reduced surface expression of GABA(A) receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABAR beta2/3 and gamma2 subunits was reduced, whereas that of the delta subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the gamma2 subunit, but not the delta subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the gamma2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency.
Collapse
|
29
|
Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM. Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. J Neurosci 2007; 27:5683-93. [PMID: 17522313 PMCID: PMC2889598 DOI: 10.1523/jneurosci.1732-07.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homopentameric alpha7 nicotinic receptors have a high affinity for acetylcholine (ACh), are permeable to Ca2+ ions, and are abundant in hippocampal interneurons. Although nicotinic agonists evoke inward currents and Ca2+ transients in stratum radiatum interneurons, the role of endogenous ACh in modulating synaptic integration by interneurons is incompletely understood. Many cholinergic axonal varicosities do not have postsynaptic specializations, but alpha7 receptors frequently occur close to synaptic GABA(A) receptors. These observations raise the possibility that alpha7 nicotinic receptors activated by ACh released from cholinergic axons modulate GABAergic transmission in interneurons. We show that agonists of alpha7 receptors profoundly depress GABAergic IPSCs recorded in stratum radiatum interneurons in the CA1 region of the hippocampus. This depression is accompanied by a small increase in GABA release. Alpha7 nicotinic receptor agonists also depress GABA- or muscimol-evoked currents in interneurons, indicating that the major effect is a postsynaptic modulation of GABA(A) receptors. The depression of GABA-evoked currents is abolished by chelating Ca2+ in the recorded interneuron and attenuated by inhibitors of PKC. We also show that stimuli designed to release endogenous ACh from cholinergic axons evoke an alpha7 receptor-dependent heterosynaptic depression of GABAergic IPSCs in interneurons. This heterosynaptic modulation is amplified by blocking cholinesterases. These results reveal a novel mechanism by which cholinergic neurons modulate information processing in the hippocampus.
Collapse
Affiliation(s)
- Nicolas Wanaverbecq
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Alexey Semyanov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Ivan Pavlov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Matthew C. Walker
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Dimitri M. Kullmann
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| |
Collapse
|
30
|
Bailey SJ, Ravier MA, Rutter GA. Glucose-dependent regulation of gamma-aminobutyric acid (GABA A) receptor expression in mouse pancreatic islet alpha-cells. Diabetes 2007; 56:320-7. [PMID: 17259375 DOI: 10.2337/db06-0712] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism(s) by which glucose regulates glucagon secretion both acutely and in the longer term remain unclear. Added to isolated mouse islets in the presence of 0.5 mmol/l glucose, gamma-aminobutyric acid (GABA) inhibited glucagon release to a similar extent (46%) as 10 mmol/l glucose (55%), and the selective GABA(A) receptor (GABA(A)R) antagonist SR95531 substantially reversed the inhibition of glucagon release by high glucose. GABA(A)R alpha4, beta3, and gamma2 subunit mRNAs were detected in mouse islets and clonal alphaTC1-9 cells, and immunocytochemistry confirmed the presence of GABA(A)Rs at the plasma membrane of primary alpha-cells. Glucose dose-dependently increased GABA(A)R expression in both islets and alphaTC1-9 cells such that mRNA levels at 16 mmol/l glucose were approximately 3.0-fold (alpha4), 2.0-fold (beta3), or 1.5-fold (gamma2) higher than at basal glucose concentrations (2.5 or 1.0 mmol/l, respectively). These effects were mimicked by depolarizing concentrations of K(+) and reversed by the L-type Ca(2+) channel blocker nimodipine. We conclude that 1) release of GABA from neighboring beta-cells contributes substantially to the acute inhibition of glucagon secretion from mouse islets by glucose and 2) that changes in GABA(A)R expression, mediated by changes in intracellular free Ca(2+) concentration, may modulate this response in the long term.
Collapse
Affiliation(s)
- Sarah J Bailey
- Henry Wellcome Laboratories for Integrated Cell Signaling, and Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, UK.
| | | | | |
Collapse
|
31
|
Oomura Y, Hori N, Shiraishi T, Fukunaga K, Takeda H, Tsuji M, Matsumiya T, Ishibashi M, Aou S, Li XL, Kohno D, Uramura K, Sougawa H, Yada T, Wayner MJ, Sasaki K. Leptin facilitates learning and memory performance and enhances hippocampal CA1 long-term potentiation and CaMK II phosphorylation in rats. Peptides 2006; 27:2738-49. [PMID: 16914228 DOI: 10.1016/j.peptides.2006.07.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Revised: 07/02/2006] [Accepted: 07/06/2006] [Indexed: 11/22/2022]
Abstract
Leptin, an adipocytokine encoded by an obesity gene and expressed in adipose tissue, affects feeding behavior, thermogenesis, and neuroendocrine status via leptin receptors distributed in the brain, especially in the hypothalamus. Leptin may also modulate the synaptic plasticity and behavioral performance related to learning and memory since: leptin receptors are found in the hippocampus, and both leptin and its receptor share structural and functional similarities with the interleukin-6 family of cytokines that modulate long-term potentiation (LTP) in the hippocampus. We therefore examined the effect of leptin on (1) behavioral performance in emotional and spatial learning tasks, (2) LTP at Schaffer collateral-CA1 synapses, (3) presynaptic and postsynaptic activities in hippocampal CA1 neurons, (4) the intracellular Ca(2+) concentration ([Ca(2+)](i)) in CA1 neurons, and (5) the activity of Ca(2+)/calmodulin protein kinase II (CaMK II) in the hippocampal CA1 tissue that exhibits LTP. Intravenous injection of 5 and/or 50mug/kg, but not of 500mug/kg leptin, facilitated behavioral performance in passive avoidance and Morris water-maze tasks. Bath application of 10(-12)M leptin in slice experiments enhanced LTP and increased the presynaptic transmitter release, whereas 10(-10)M leptin suppressed LTP and reduced the postsynaptic receptor sensitivity to N-methyl-d-aspartic acid. The increase in the [Ca(2+)](i) induced by 10(-10)M leptin was two times greater than that induced by 10(-12)M leptin. In addition, the facilitation (10(-12)M) and suppression (10(-10)M) of LTP by leptin was closely associated with an increase and decrease in Ca(2+)-independent activity of CaMK II. Our results show that leptin not only affects hypothalamic functions (such as feeding, thermogenesis, and neuroendocrine status), but also modulates higher nervous functions, such as the behavioral performance related to learning and memory and hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Y Oomura
- Department of Physiology, Faculty of Medicine, Kyushu University at Fukuoka, Fukuoka 812-0054, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Status epilepticus is a neurological emergency that results in mortality and neurological morbidity. It has been postulated that the reduction of inhibitory transmission during status epilepticus results from a rapid modification of GABA(A) receptors. However, the mechanism(s) that contributes to this modification has not been elucidated. We report, using an in vitro model of status epilepticus combined with electrophysiological and cellular imaging techniques, that prolonged epileptiform bursting results in a reduction of GABA-mediated synaptic inhibition. Furthermore, we found that constitutive internalization of GABA(A) receptors is rapid and accelerated by the increased neuronal activity associated with seizures. Inhibition of neuronal activity reduced the rate of internalization. These findings suggest that the rate of GABA(A) receptor internalization is regulated by neuronal activity and its acceleration contributes to the reduction of inhibitory transmission observed during prolonged seizures.
Collapse
|
33
|
|
34
|
Taketo M, Matsuda H, Yoshioka T. Calcium-independent inhibition of GABA(A) current by caffeine in hippocampal slices. Brain Res 2004; 1016:229-39. [PMID: 15246859 DOI: 10.1016/j.brainres.2004.05.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2004] [Indexed: 10/26/2022]
Abstract
Although inhibitory postsynaptic currents (IPSCs) mediated by GABA(A) receptor is thought to be affected by intracellular calcium ion concentration ([Ca2+]i), origin or route of [Ca2+]i increment has not been well elucidated. Reports on the effect of [Ca2+]i elevation on GABA(A)ergic IPSCs per se are also controversial. In this study, effects of caffeine and several other [Ca2+]i-mobilizing drugs were examined on the IPSCs in acute slices of rat hippocampus. Using the patch clamp recording method, spontaneous and evoked currents were recorded from CA3 neurons. Caffeine strongly inhibited both extra-synaptic and synaptic GABAergic IPSCs, regardless of the presence or absence of extracellular Ca2+. This inhibition was not relieved by the intracellular application of EGTA or 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA). This inhibition by caffeine was not prevented by preequilibration with caffeine. Ca2+ store depletion caused by thapsigargin or repetitive stimulation by caffeine could not prevent the inhibition. Moreover, ruthenium red and ryanodine could not overcome the inhibition. On the contrary, GABA(A)ergic currents were not inhibited by stimulation with several Ca2+-mobilizing agonists. Forskolin could not mimic the effect of caffeine on the IPSC, and caffeine inhibited the IPSC in the presence of adenosine. These results suggest that intracellular Ca2+ mobilization through ryanodine-sensitive store stimulation does not significantly affect GABAergic IPSCs, and most of the inhibitory effect of caffeine is independent of [Ca2+]i elevation under the present experimental conditions.
Collapse
Affiliation(s)
- M Taketo
- Department of Physiology 1, Faculty of Medicine, Kansai Medical University, 10-15 Fumizono-cho Moriguchi, Osaka 570-8506, Japan.
| | | | | |
Collapse
|
35
|
Allen NJ, Rossi DJ, Attwell D. Sequential release of GABA by exocytosis and reversed uptake leads to neuronal swelling in simulated ischemia of hippocampal slices. J Neurosci 2004; 24:3837-49. [PMID: 15084665 PMCID: PMC6729351 DOI: 10.1523/jneurosci.5539-03.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GABA release during cerebral energy deprivation (produced by anoxia or ischemia) has been suggested either to be neuroprotective, because GABA will hyperpolarize neurons and reduce release of excitotoxic glutamate, or to be neurotoxic, because activation of GABA(A) receptors facilitates Cl- entry into neurons and consequent cell swelling. We have used the GABA(A) receptors of hippocampal area CA1 pyramidal cells to sense the rise of [GABA](o) occurring in simulated ischemia. Ischemia evoked, after several minutes, a large depolarization to approximately -20 mV. Before this "anoxic depolarization," there was an increase in GABA release by exocytosis (spontaneous IPSCs). After the anoxic depolarization, there was a much larger, sustained release of GABA that was not affected by blocking action potentials, vesicular release, or the glial GABA transporter GAT-3 but was inhibited by blocking the neuronal GABA transporter GAT-1. Blocking GABA(A) receptors resulted in a more positive anoxic depolarization but decreased cell swelling at the time of the anoxic depolarization. The influence of GABA(A) receptors diminished in prolonged ischemia because glutamate release evoked by the anoxic depolarization inhibited GABA(A) receptor function by causing calcium entry through NMDA receptors. These data show that ischemia releases GABA initially by exocytosis and then by reversal of GAT-1 transporters and that the resulting Cl- influx through GABA(A) receptor channels causes potentially neurotoxic cell swelling.
Collapse
Affiliation(s)
- Nicola J Allen
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
36
|
Wei J, Zhang M, Zhu Y, Wang JH. Ca2+–calmodulin signalling pathway up-regulates GABA synaptic transmission through cytoskeleton-mediated mechanisms. Neuroscience 2004; 127:637-47. [PMID: 15283963 DOI: 10.1016/j.neuroscience.2004.05.056] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2004] [Indexed: 11/22/2022]
Abstract
We investigated the role of calcium (Ca(2+))/calmodulin (CaM) signaling pathways in modulating GABA synaptic transmission at CA1 pyramidal neurons in hippocampal slices. Whole-cell pipettes were used to record type A GABA receptor (GABA(A)R)-gated inhibitory postsynaptic currents (IPSCs) and to perfuse intracellularly modulators in the presence of glutamate receptor antagonists. GABA(A)R-gated IPSCs were enhanced by the postsynaptic infusions of adenophostin (1 microM), a potent agonist of inositol-1,4,5-triphosphate receptor (IP(3)R) that induces Ca(2+) release. The enhancement was blocked by co-infusing either 1,2-bis(2-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (10 mM) or CaM-binding peptide (100 microM). Moreover, the postsynaptic infusion of Ca(2+)-CaM (40/10 microM) enhanced both evoked and spontaneous GABA(A)R-gated IPSCs. The enhancement was attenuated by co-infusing 100 microM CaM-KII(281-301), an autoinhibitory peptide of CaM-dependent protein kinases. These results indicate that postsynaptic Ca(2+)-CaM signaling pathways essentially enhance GABAergic synaptic transmission. In the investigation of synaptic targets for the enhancement, we found that IP(3)R agonist-enhanced GABA(A)R-gated IPSCs were attenuated by co-infusing colchicine (30 microM), vincristine (3 microM) or cytochalasin D (1 microM) that inhibits tubulin or actin polymerization, implying that actin filament and microtubules are involved. We conclude that postsynaptic Ca(2+)-CaM signaling pathways strengthen the function of GABAergic synapses via a cytoskeleton-mediated mechanism, probably the recruitment of receptors in the postsynaptic membrane.
Collapse
Affiliation(s)
- J Wei
- The Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
37
|
Patenaude C, Chapman CA, Bertrand S, Congar P, Lacaille JC. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J Physiol 2003; 553:155-67. [PMID: 12963794 PMCID: PMC2343476 DOI: 10.1113/jphysiol.2003.049015] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Repetitive stimulation of Schaffer collaterals induces activity-dependent changes in the strength of polysynaptic inhibitory postsynaptic potentials (IPSPs) in hippocampal CA1 pyramidal neurons that are dependent on stimulation parameters. In the present study, we investigated the effects of two stimulation patterns, theta-burst stimulation (TBS) and 100 Hz tetani, on pharmacologically isolated monosynaptic GABAergic responses in adult CA1 pyramidal cells. Tetanization with 100 Hz trains transiently depressed both early and late IPSPs, whereas TBS induced long-term potentiation (LTP) of early IPSPs that lasted at least 30 min. Mechanisms mediating this TBS-induced potentiation were examined using whole-cell recordings. The paired-pulse ratio of monosynaptic inhibitory postsynaptic currents (IPSCs) was not affected during LTP, suggesting that presynaptic changes in GABA release are not involved in the potentiation. Bath application of the GABAB receptor antagonist CGP55845 or the group I/II metabotropic glutamate receptor antagonist E4-CPG inhibited IPSC potentiation. Preventing postsynaptic G-protein activation or Ca2+ rise by postsynaptic injection of GDP-beta-S or BAPTA, respectively, abolished LTP, indicating a G-protein- and Ca2+-dependent induction in this LTP. Finally during paired-recordings, activation of individual interneurons by intracellular TBS elicited solely short-term increases in average unitary IPSCs in pyramidal cells. These results indicate that a stimulation paradigm mimicking the endogenous theta rhythm activates cooperative postsynaptic mechanisms dependent on GABABR, mGluR, G-proteins and intracellular Ca2+, which lead to a sustained potentiation of GABAA synaptic transmission in pyramidal cells. GABAergic synapses may therefore contribute to functional synaptic plasticity in adult hippocampus.
Collapse
Affiliation(s)
- Christian Patenaude
- Centre de Recherche en Sciences Neurologiques et Département de Physiologie, Université de Montréal, Montréal, Québec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
38
|
Sil'kis IG. A possible mechanism for the effect of neuromodulators and modifiable inhibition on long-term potentiation and depression of the excitatory inputs to hippocampal principal cells. ACTA ACUST UNITED AC 2003; 33:529-41. [PMID: 14552546 DOI: 10.1023/a:1023960402109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A postsynaptic mechanism for the influences of various neuromodulators and modifiable disynaptic inhibition on long-term potentiation and depression of the excitatory inputs to granule and pyramidal neurons in the hippocampus is described. According to this mechanism, facilitation of the induction of long-term depression/potentiation at the excitatory input to the inhibitory interneuron induced by the action of a neuromodulator on a receptor bound to a G(i/0)/(Gs or G(q/11)) protein can lead to decreases/increases in GABA release, weakening/strengthening of the inhibitory action on the target cell, and improvement in the conditions for induction of long-term potentiation/depression of the excitatory input to this cell. In the absence of inhibition, the same neuromodulator, activating the same type of receptors on the target cell, would facilitate induction of long-term depression/potentiation in that cell. The resultant effect of the action of the neuromodulator on the target cell depends on the ratio of the "strengths" of the excitatory and inhibitory inputs to the cell, on the presence on the interneuron and the target cell of the same or different types of receptors sensitive to this neurumodulator, and on the concentration of the neurumodulator, because of its different affinities for the receptors through which its differently directed effects on postsynaptic processes are mediated. Predictions based on this mechanism are in agreement with known experimental data.
Collapse
Affiliation(s)
- I G Sil'kis
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow
| |
Collapse
|
39
|
Li Y, Wu LJ, Legendre P, Xu TL. Asymmetric cross-inhibition between GABAA and glycine receptors in rat spinal dorsal horn neurons. J Biol Chem 2003; 278:38637-45. [PMID: 12885784 DOI: 10.1074/jbc.m303735200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Presynaptic nerve terminals of inhibitory synapses in the dorsal horn of the spinal cord and brain stem can release both GABA and glycine, leading to coactivation of postsynaptic GABAA and glycine receptors. In the present study we have analyzed functional interactions between GABAA and glycine receptors in acutely dissociated neurons from rat sacral dorsal commissural nucleus. Although the application of GABA and glycine activates pharmacologically distinct receptors, the current induced by a simultaneous application of these two transmitters was less than the sum of currents induced by applying two transmitters separately. Sequential application of glycine and GABA revealed that the GABA-evoked current is more affected by glycine than glycine-evoked responses by GABA. Activation of glycine receptors decreased the amplitude and accelerated the rate of desensitization of GABA-induced currents. This asymmetric cross-inhibition is reversible, dependent on the agonist concentration applied, but independent of both membrane potential and intracellular calcium concentration or changes in the chloride equilibrium potential. During sequential applications, the asymmetric cross-inhibition was prevented by selective GABAA or glycine receptor antagonists, suggesting that occupation of binding sites did not suffice to induce glycine and GABAA receptors functional interaction, and receptor channel activation is required. Furthermore, inhibition of phosphatase 2B, but not phosphatase 1 or 2A, prevented GABAA receptor inhibition by glycine receptor activation, whereas inhibition of phosphorylation pathways rendered cross-talk irreversible. Taken together, our results demonstrated that there is an asymmetric cross-inhibition between glycine and GABAA receptors and that a selective modulation of the state of phosphorylation of GABAA receptor and/or mediator proteins underlies the asymmetry in the cross-inhibition.
Collapse
Affiliation(s)
- Yong Li
- Department of Neurobiology and Biophysics, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
40
|
Park YK, Shim ES, Oh JI, Kim JH, Chung YG. Adenosine-mediated synaptic depression and EPSP/spike dissociation following high potassium-induced depolarization in rat hippocampal slices. Brain Res 2003; 975:237-43. [PMID: 12763613 DOI: 10.1016/s0006-8993(03)02628-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simultaneous recordings of orthodromic PS, fEPSP and antidromic PS revealed EPSP/spike (E-S) dissociation, indicating a conversion of input/output relations from early and brief excitability to a late and prolonged depression during the recovery from depolarization induced by high levels of potassium. E-S potentiation was partially attenuated by pre-treating the slices with BAPTA-AM and lidocaine and totally eliminated by a submaximal concentration of muscimol. The time lag for recovery was decreased by the GABA(A) antagonist and completely eliminated by the A(1) antagonist. From these observations, we conclude that Ca(2+) dependent inhibitory suppression is the main cause of a brief period of E-S potentiation, and accumulation of adenosine is the mechanism responsible for prolonged depression of synaptic transmission
Collapse
Affiliation(s)
- Youn-Kwan Park
- Department of Neurosurgery, Korea University Guro Hospital, 80 Guro-dong, Guro-ku, Seoul 152-703, South Korea.
| | | | | | | | | |
Collapse
|
41
|
Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produces long-term depression at CA1 inhibitory synapses. J Neurosci 2003. [PMID: 12574411 DOI: 10.1523/jneurosci.23-03-00826.2003] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) is an activity-dependent weakening of synaptic efficacy at individual inhibitory synapses, a possible cellular model of learning and memory. Here, we show that the induction of LTD of inhibitory transmission recruits activated calcineurin (CaN) to dephosphorylate type-A GABA receptor (GABA(A)Rs) via the direct binding of CaN catalytic domain to the second intracellular domain of the GABA(A)R-gamma(2) subunits. Prevention of the CaN-GABA(A) receptor complex formation by expression of an autoinhibitory domain of CaN in the hippocampus of transgenic mice blocks the induction of LTD. Conversely, genetic expression of the CaN catalytic domain in the hippocampus depresses inhibitory synaptic responses, occluding LTD. Thus, an activity-dependent physical and functional interaction between CaN and GABA(A) receptors is both necessary and sufficient for inducing LTD at CA1 individual inhibitory synapses.
Collapse
|
42
|
Li XL, Aou S, Oomura Y, Hori N, Fukunaga K, Hori T. Impairment of long-term potentiation and spatial memory in leptin receptor-deficient rodents. Neuroscience 2002; 113:607-15. [PMID: 12150780 DOI: 10.1016/s0306-4522(02)00162-8] [Citation(s) in RCA: 338] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Leptin is well known to be involved in the control of feeding, reproduction and neuroendocrine functions through its action on the hypothalamus. However, leptin receptors are found in brain regions other than the hypothalamus (including the hippocampus and cerebral cortex) suggesting extrahypothalamic functions. We investigated hippocampal long-term potentiation (LTP) and long-term depression (LTD), and the spatial-memory function in two leptin receptor-deficient rodents (Zucker rats and db/db mice). In brain slices, the CA1 hippocampal region of both strains showed impairments of LTP and LTD; leptin (10(-12) M) did not improve these impairments in either strain. These strains also showed lower basal levels of Ca(2+)/calmodulin-dependent protein kinase II activity in the CA1 region than the respective controls, and the levels did not respond to tetanic stimulation. These strains also showed impaired spatial memory in the Morris water-maze test (i.e. longer swim-path lengths during training sessions and less frequent crossings of the platform's original location in the probe test. From these results we suggest that the leptin receptor-deficient animals show impaired LTP in CA1 and poor spatial memory due, at least in part, to a deficiency in leptin receptors in the hippocampus.
Collapse
Affiliation(s)
- X-L Li
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University 60, 812-8582, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
43
|
Kim Y, Oh S. Changes of GABA(A) receptor binding and subunit mRNA level in rat brain by infusion of NOS inhibitor. Brain Res 2002; 952:246-56. [PMID: 12376186 DOI: 10.1016/s0006-8993(02)03248-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we have investigated the effects of prolonged inhibition of nitric oxide synthase (NOS) by infusion of NOS inhibitor, L-nitroarginine, to examine the pentobarbital-induced sleep, modulation of GABA(A) receptor binding, and GABA(A) receptor subunit mRNA level in rat brain. Pre-treatment with L-nitroarginine 30 min before pentobarbital treatment (60 mg/kg, i.p.) significantly increased the duration of sleep in rats. However, the duration of pentobarbital-induced sleep was shortened by the prolonged infusion of L-nitroarginine into ventricle. We have investigated the effect of NOS inhibitor on GABA(A) receptor binding characteristics in discrete areas of brain regions by using autoradiographic and in situ hybridization techniques. Rats were infused with L-nitroarginine (10, 100 pmol/10 microl/h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps. The levels of [(3)H]muscimol and [(3)H]flunitrazepam binding were markedly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, there was no change in the level of [(35)S]TBPS binding. The levels of beta2-subunit were elevated in the cortex, brainstem, and cerebellar granule layers. By contrast, the levels of beta3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in L-nitroarginine-infused rats. Following L-nitroarginine treatment, the levels of alpha6- and delta-subunits which were strictly localized to the cerebellum, were not changed in the cerebellar granule layer. These results show that the prolonged inhibition of NOS by L-nitroarginine-infusion markedly elevates [(3)H]muscimol and [(3)H]flunitrazepam binding throughout the brain, and alters GABA(A) receptor subunit mRNA levels in different directions. Chronic inhibition of NO generation has differential effects on the various expressions of GABA(A) receptor subunits. These suggest the involvement of different regulatory mechanisms for the NO-induced expression of GABA(A) receptor.
Collapse
Affiliation(s)
- Younghwa Kim
- Department of Anatomy, College of Medicine, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
44
|
Churn SB, Rana A, Lee K, Parsons JT, De Blas A, Delorenzo RJ. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding. J Neurochem 2002; 82:1065-76. [PMID: 12358754 DOI: 10.1046/j.1471-4159.2002.01032.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.
Collapse
Affiliation(s)
- Severn B Churn
- Department of Neurology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Brandon N, Jovanovic J, Moss S. Multiple roles of protein kinases in the modulation of gamma-aminobutyric acid(A) receptor function and cell surface expression. Pharmacol Ther 2002; 94:113-22. [PMID: 12191597 DOI: 10.1016/s0163-7258(02)00175-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
gamma-Aminobutyric acid(A) (GABA(A)) receptors are ligand-gated ion channels that mediate the majority of fast synaptic inhibition in the brain and that are also important drug targets for benzodiazepines, barbiturates, and neurosteriods. These receptors are pentameric hetero-oligomers that can be assembled from 7 subunit classes with multiple members: alpha(1-6), beta(1-3), gamma(1-3), delta, epsilon, theta, and pi. Most receptor subtypes in the brain, however, are believed to be composed of alpha-, beta-, and gamma-subunits. Modifications of GABA(A) receptor function are continually implicated in a range of pathologies, including epilepsy, anxiety, insomnia, and substance abuse. Moreover, changes in the efficacy of synaptic inhibition mediated by GABA(A) receptors are believed to be play central roles in certain forms of synaptic plasticity, including rebound potentiation in the cerebellum, and hippocampal long-term potentiation. Given the critical role that GABA(A) receptors play as mediators of synaptic transmission, it is of fundamental importance to understand the endogenous mechanisms used by neurones to control the function of these receptors. This review will focus on the dynamic regulation of GABA(A) receptor phosphorylation state and channel function as mechanisms involved in determining the efficacy of synaptic inhibition. In addition, the possible role of GABA(A) receptor phosphorylation in controlling receptor internalization and recycling will also be explored.
Collapse
Affiliation(s)
- Nicholas Brandon
- The MRC Laboratory of Molecular Cell Biology and Department of Pharmacology, University College London, Gordon Street, WC1E 6BT, London, UK
| | | | | |
Collapse
|
46
|
Kim HS, Choi HS, Lee SY, Oh S. Changes of GABA(A) receptor binding and subunit mRNA level in rat brain by infusion of subtoxic dose of MK-801. Brain Res 2000; 880:28-37. [PMID: 11032987 DOI: 10.1016/s0006-8993(00)02687-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, we have investigated the effects of prolonged inhibition of NMDA receptor by infusion of subtoxic dose of MK-801 to examine the modulation of GABA(A) receptor binding and GABA(A) receptor subunit mRNA level in rat brain. It has been reported that NMDA-selective glutamate receptor stimulation alters GABA(A) receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunit. However, we have investigated the effect of NMDA antagonist, MK-801, on GABA(A) receptor binding characteristics in discrete brain regions by using autoradiographic and in situ hybridization techniques. The GABA(A) receptor bindings were analyzed by quantitative autoradiography using [3H]muscimol, [3H]flunitrazepam, and [35S]TBPS in rat brain slices. Rats were infused with MK-801 (1 pmol/10 microl per h, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2 ML). The levels of [3H]muscimol binding were highly elevated in almost all of brain regions including cortex, caudate putamen, thalamus, hippocampus, and cerebellum. However, the [3H]flunitrazepam binding and [35S]TBPS binding were increased only in specific regions; the former level was increased in parts of the cortex, thalamus, and hippocampus, while the latter binding sites were only slightly elevated in parts of thalamus. The levels of beta2-subunit were elevated in the frontal cortex, thalamus, hippocampus, brainstem, and cerebellar granule layers while the levels of beta3-subunit were significantly decreased in the cortex, hippocampus, and cerebellar granule layers in MK-801-infused rats. The levels of alpha6- and delta-subunits, which are highly localized in the cerebellum, were increased in the cerebellar granule layer after MK-801 treatment. These results show that the prolonged suppression of NMDA receptor function by MK-801-infusion strongly elevates [3H]muscimol binding throughout the brain, increases regional [3H]flunitrazepam and [35S]TBPS binding, and alters GABA(A) receptor subunit mRNA levels in different directions. The chronic MK-801 treatment has differential effect on various GABA(A) receptor subunits, which suggests involvement of differential regulatory mechanisms in interaction of NMDA receptor with the GABA receptors.
Collapse
Affiliation(s)
- H S Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 361-763, Chungbuk, South Korea
| | | | | | | |
Collapse
|
47
|
Adamec RE. Evidence that NMDA-dependent limbic neural plasticity in the right hemisphere mediates pharmacological stressor (FG-7142)-induced lasting increases in anxiety-like behavior: study 3--the effects on amygdala efferent physiology of block of NMDA receptors prior to injection of FG-7142 and its relationship to behavioral change. J Psychopharmacol 2000; 12:227-38. [PMID: 10958248 DOI: 10.1177/026988119801200301] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The findings of this study support the hypothesis that N-methyl-D-aspartate (NMDA) receptors mediate the initiation of long-term potentiation (LTP) and behavioral changes induced by the anxiogenic beta-carboline, FG-7142. Unlike previous work, this study examined the effects of FG-7142 on LTP of amygdala efferents in both hemispheres. 7-amino-phosphono-heptanoic acid (AP7), a competitive NMDA receptor blocker, given prior to administration of FG-7142, prevented LTP in amygdala efferent transmission to the medial hypothalamus and periacqueductal gray (PAG). When given FG-7142 alone, cats showed lasting behavioral changes accompanied by LTP in all pathways studied. Duration of LTP, and its relationship to behavioral change, depended on the pathway and the hemisphere of the pathway. Correlation and covariance analyses indicate that LTP in the left amygdalo-ventromedial hypothalamic pathway mediates initiation, but not maintenance, of increased defensiveness. This finding replicates previous work. A new finding is that increased local excitability in the right basal amygdala (reduced threshold for evoked response), and LTP in the right amygdalo-PAG pathway, may be important for maintenance of increases in defensive behavior. Furthermore, the effects of flumazenil, a benzodiazepine receptor antagonist, on behavior and physiology single out the importance of right amygdalo-PAG LTP as a critical mediator of increased defensiveness. Flumazenil reversed the increase in defensiveness produced by FG-7142 in a drug-dependent manner as described in Adamec (1998a). Moreover, flumazenil reversed LTP only in the right amygdalo-PAG pathway. The findings of the present study suggest that response to FG-7142 may be a useful model of the effects of traumatic stressors on limbic system function in anxiety, especially in view of the recent data in humans implicating right hemispheric function in persisting negative affective states.
Collapse
Affiliation(s)
- R E Adamec
- Department of Psychology, Memorial University, St. John's, Newfoundland, Canada.
| |
Collapse
|
48
|
Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. CURRENT TOPICS IN CELLULAR REGULATION 2000; 36:237-95. [PMID: 10842755 DOI: 10.1016/s0070-2137(01)80011-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- J Aramburu
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
49
|
Shew T, Yip S, Sastry BR. Mechanisms involved in tetanus-induced potentiation of fast IPSCs in rat hippocampal CA1 neurons. J Neurophysiol 2000; 83:3388-401. [PMID: 10848557 DOI: 10.1152/jn.2000.83.6.3388] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study, possible mechanisms involved in the tetanus-induced potentiation of gamma-aminobutyric acid-A (GABA-A) receptor-mediated inhibitory postsynaptic currents (IPSCs) were investigated using the whole cell voltage-clamp technique on CA1 neurons in rat hippocampal slices. Stimulations (100 Hz) of the stratum radiatum, while voltage-clamping the membrane potential of neurons, induces a long-term potentiation (LTP) of evoked fast IPSCs while increasing the number but not the amplitude of spontaneous IPSCs (sIPSCs). The potentiation of fast IPSCs was input specific. During the period of IPSC potentiation, postsynaptic responses produced by 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol hydrochloride and baclofen, GABA-A and GABA-B agonists respectively, were not significantly different from control. CGP 36742, a GABA-B antagonist, blocked the induction of tetanus-induced potentiation of evoked and spontaneous IPSCs, while GTPgammaS, an activator of G proteins, substitution for GTP in the postsynaptic recording electrode did not occlude potentiation. Since GABA-B receptors work through G proteins, our results suggest that pre- but not postsynaptic GABA-B receptors are involved in the potentiation of fast IPSCs. A tetanus delivered when GABA-A responses were completely blocked by bicuculline suggests that GABA-A receptor activation during tetanus is not essential for the induction of potentiation. Rp-cAMPs, an antagonist of protein kinase A (PKA) activation, blocks the induction of potentiation of fast IPSCs. Forskolin, an activator of PKA, increases baseline evoked IPSCs as well as the number of sIPSCs, and a tetanic stimulation during this enhancement uncovers a long-term depression of the evoked IPSC. Sulfhydryl alkylating agents, N-ethylmaleimide and p-chloromercuribenzoic acid, which have been found to presynaptically increase GABA release and have been suggested to have effects on proteins involved in transmitter release processes occurring in nerve terminals, occlude tetanus-induced potentiation of evoked and spontaneous IPSCs. Taken together our results suggest that LTP of IPSCs originates from a presynaptic site and that GABA-B receptor activation, cyclic AMP/PKA activation and sulfhydryl-alkylation are involved. Plasticity of IPSCs as observed in this study would have significant implications for network behavior in the hippocampus.
Collapse
Affiliation(s)
- T Shew
- Neuroscience Research Laboratory, Department of Pharmacology and Therapeutics, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
50
|
Minier F, Laschet JJ, Evrard B, Bureau MH. Endogenous phosphorylation of the GABA(A) receptor protein is counteracted by a membrane-associated phosphatase. Neurochem Int 2000; 36:499-506. [PMID: 10762086 DOI: 10.1016/s0197-0186(99)00158-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Incubation of bovine brain membranes with [gamma-33P]ATP phosphorylated mainly a 51-kDa band. Electrophoretic co-migration was observed for 33P- and [3H]flunitrazepam-labeled bands in both membrane fractions and in affinity-purified GABA(A) receptor (GABAA-R) preparations. An alpha-subunit monoclonal antibody adsorbed most of the radiolabeled-band, suggesting that the labeled-membrane polypeptide corresponds to the GABA(A)-R alpha1-subunit, which is the only GABA(A)-R subunit with a molecular weight of 51 kDa. The phosphorylation rate was much faster in membranes than in purified receptor. Dephosphorylation was detected in membranes only. The membrane-bound phosphatase was potently inhibited by vanadate and Zn2+>>Mn2+ , but was insensitive to okadaic acid (a phosphatase 1, 2 and 2B inhibitor), cyclosporin (specific calcineurin inhibitor) and phosphatase-1 inhibitor. Endogenous kinase was activated by divalent cations including calcium (Mg2- > Mn2+ > Ca2+), whilst dephosphorylation did not require the presence of Ca2+ ions. This suggests that at least one membrane-bound phosphatase counteracts the endogenous phosphorylation of the GABA(A)-R: the lack of dephosphorylation in the purified receptor preparation indicates that, in contrast to the endogenous kinase, no phosphatase is closely associated with the receptor protein complex.
Collapse
Affiliation(s)
- F Minier
- Laboratory of Neurosciences, University of Rennes-1, France.
| | | | | | | |
Collapse
|