1
|
Dietrich-Muszalska A, Bartosz G, Sadowska-Bartosz I. The Role of Nitric Oxide and Nitrosative Stress in Schizophrenia. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/978-1-4939-0440-2_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
2
|
Harvey BH, Retief R, Korff A, Wegener G. Increased hippocampal nitric oxide synthase activity and stress responsiveness after imipramine discontinuation: role of 5HT 2A/C-receptors. Metab Brain Dis 2006; 21:211-20. [PMID: 16865538 DOI: 10.1007/s11011-006-9018-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 08/25/2005] [Indexed: 10/24/2022]
Abstract
Chronic depressive illness may cause shrinkage of the hippocampus with stress-induced release of glutamate and nitric oxide possibly causally linked to this pathology. Poor antidepressant compliance may contribute to this pathology as well as to long term morbidity. However, antidepressant withdrawal-associated symptoms in depressed patients often reflect hyperserotonergia. The effect of chronic imipramine (IMI; 15 mg/kg/d ip x 3wks) treatment and withdrawal on swim stress responsiveness was studied in Sprague-Dawley rats together with assay of hippocampal NO synthase (NOS) activity. The dependence of any biobehavioral changes following IMI withdrawal on 5HT(2A/C) receptor-mediated events was studied using the 5HT(2A/C) receptor antagonist, ritanserin (RIT; 4 mg/kg/day ip x 7 days), administered alone or during IMI withdrawal. IMI significantly inhibited the situational stress response to forced swimming while also significantly decreasing NOS activity. IMI withdrawal was associated with a significant increase in swim immobility together with a significant increase in NOS activity compared to both control and IMI-treated groups. RIT re-established the anti-immobility effects and reversed NOS hyper-function during IMI withdrawal, although alone it increased NOS activity. Antidepressant discontinuation therefore increases stress responsiveness together with disinhibition of hippocampal NOS through a mechanism involving 5HT(2A/C) receptor activation. The resulting increased nitrergic activity may have significant implications for depressive illness and its treatment.
Collapse
Affiliation(s)
- Brian H Harvey
- School of Pharmacy Pharmacology, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa.
| | | | | | | |
Collapse
|
3
|
Marcoli M, Maura G, Cervetto C, Giacomini C, Oliveri D, Candiani S, Pestarino M. Nitric oxide-evoked cGMP production in Purkinje cells in rat cerebellum: an immunocytochemical and pharmacological study. Neurochem Int 2006; 49:683-90. [PMID: 16904241 DOI: 10.1016/j.neuint.2006.06.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/18/2006] [Accepted: 06/12/2006] [Indexed: 10/24/2022]
Abstract
The cerebellar cells that account for glutamate-dependent cyclic GMP (cGMP) production, involving activation of the ionotropic glutamate receptors/nitric oxide synthase/soluble guanylyl cyclase pathway, are not fully established. In the present paper we have searched for the localisation of the cGMP response to the nitric oxide (NO) donor S-nitroso-penicillamine (SNAP 1muM), expected to generate local NO concentrations in the low nanomolar physiological range and evoking a cGMP response dependent on glutamate release and on the consequent activation of ionotropic glutamate NMDA/non-NMDA receptors, in cerebellar slices from adult rat. We have found that low concentration of exogenous NO evoked cGMP accumulation in Purkinje cells in an ionotropic glutamate receptor-dependent and tetrodotoxin-sensitive manner. Such immunocytochemical localisation appears consistent with functional evidence for physiologically relevant glutamate-dependent cGMP production in Purkinje cells in rat cerebellar cortex.
Collapse
Affiliation(s)
- Manuela Marcoli
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, 16148 Genova, Italy
| | | | | | | | | | | | | |
Collapse
|
4
|
Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, Maura G. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Neurochem Int 2006; 49:12-9. [PMID: 16469416 DOI: 10.1016/j.neuint.2005.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/05/2005] [Accepted: 12/19/2005] [Indexed: 11/22/2022]
Abstract
We previously reported that pre- and postsynaptic 5-hydroxytryptamine (5-HT) receptors effectively control glutamatergic transmission in adult rat cerebellum. To investigate where 5-HT acts in the glutamate ionotropic receptors/nitric oxide/guanosine 3',5'-cyclic monophosphate (cGMP) pathway, in the present study 5-HT modulation of the cGMP response to the nitric oxide donor S-nitroso-penicillamine (SNAP) was studied in adult rat cerebellar slices. While cGMP elevation produced by high-micromolar SNAP was insensitive to 5-HT, 1 microM SNAP, expected to release nitric oxide in the low-nanomolar concentration range, elicited cGMP production and endogenous glutamate release both of which could be prevented by activating presynaptic 5-HT1D receptors. Released nitric oxide appeared responsible for cGMP production and glutamate release evoked by 1 microM SNAP, as both the effects were mimicked by the structurally unrelated nitric oxide donor 2-(N,N-diethylamino)-diazenolate-2-oxide (0.1 microM). Dependency of the 1 microM SNAP-evoked release of glutamate on external Ca2+, sensitivity to presynaptic release-regulating receptors and dependency on ionotropic glutamate receptor functioning, suggest that nitric oxide stimulates exocytotic-like, activity-dependent glutamate release. Activation of ionotropic glutamate receptors/nitric oxide synthase/guanylyl cyclase pathway by endogenously released glutamate was involved in the cGMP response to 1 microM SNAP, as blockade of NMDA/non-NMDA receptors, nitric oxide synthase or guanylyl cyclase, abolished the cGMP response. To conclude, in adult rat cerebellar slices low-nanomolar exogenous nitric oxide could facilitate glutamate exocytotic-like release possibly from parallel fibers that subsequently activated the glutamate ionotropic receptors/nitric oxide/cGMP pathway. Presynaptic 5-HT1D receptors could regulate the nitric oxide-evoked release of glutamate and subsequent cGMP production.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Viale Cembrano 4, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
5
|
|
6
|
Raiteri L, Raiteri M, Bonanno G. Coexistence and function of different neurotransmitter transporters in the plasma membrane of CNS neurons. Prog Neurobiol 2002; 68:287-309. [PMID: 12498989 DOI: 10.1016/s0301-0082(02)00059-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transporters able to recapture released neurotransmitters into neurons can no longer be considered as cell-specific neuronal markers. In fact, colocalization on one nerve terminal of transporters able to selectively recapture the released endogenously synthesized transmitter (homotransporters) and of transporters that can selectively take up transmitters/modulators originating from neighboring structures (heterotransporters) has been demonstrated to occur on several families of nerve terminals. Activation of heterotransporters often increases the release of the transmitter stored in the terminals on which the heterotransporters are localized. The release caused by heterotransporter activation takes place through multiple mechanisms including exocytosis, either dependent on external Ca(2+) or on Ca(2+) mobilized from intraterminal stores, and homotransporter reversal. Homocarrier-mediated release elicited by heterocarrier activation represents a clear case of transporter-transporter interaction. Although the functional significance of transporter coexpression on one nerve terminal remains to be established, it may in some instances reflect cotransmission. In other cases, heterotransporters may mediate modulation of basal transmitter release in addition to the modulation of the evoked release brought about by presynaptic heteroreceptors. Heterotransporters are also increasingly reported to exist on neuronal soma/dendrites. With the exception of EAAT4, the glutamate transporter/chloride channel situated on GABAergic Purkinje cells in the cerebellum, the functions of somatodendritic heterocarriers is not understood.
Collapse
Affiliation(s)
- Luca Raiteri
- Department of Experimental Medicine, Pharmacology and Toxicology Section, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
7
|
Del Angel-Meza AR, Ramírez-Cortés L, Olvera-Cortés E, Pérez-Vega MI, González-Burgos I. A tryptophan-deficient corn-based diet induces plastic responses in cerebellar cortex cells of rat offspring. Int J Dev Neurosci 2001; 19:447-53. [PMID: 11378304 DOI: 10.1016/s0736-5748(01)00004-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Sprague-Dawley male rats, fed with a tryptophan-deficient and 8% protein corn-based diet were compared with a group of animals fed with 8% protein alone, and with a group fed with Chow Purina containing 23% protein. Retardation of Bergmann glial cell maturation and a concomitant retardation in granule cell migration were observed in the corn-fed group at 21 days. At 30 days of age, the dendrites of granule cells of both hypoproteic and corn-fed groups were larger than those of the Chow-fed animals. At 60 days of age, dendritic arborization of Purkinje cells was more profuse in both the hypoproteic and corn-fed rats compared with the Chow-fed group. This retardation in granule cell migration could be partially due to Bergmann glial cell immaturity. Consequently, several plastic and maybe compensatory events in both granule and Purkinje cells could have occurred, due to tryptophan deficiency resulting from the corn-based diet.
Collapse
Affiliation(s)
- A R Del Angel-Meza
- Laboratorio de Nutrición Experimental, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Jal., Guadalajara, Mexico
| | | | | | | | | |
Collapse
|
8
|
Dieudonné S. Serotonergic neuromodulation in the cerebellar cortex: cellular, synaptic, and molecular basis. Neuroscientist 2001; 7:207-19. [PMID: 11499400 DOI: 10.1177/107385840100700306] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cerebellum, like most sensorimotor areas of the brain, receives a serotonergic innervation from neurons of the reticular formation. It is well established that local application of serotonin modulates the firing rate of cerebellar Purkinje cells in vivo and in vitro, but the mechanisms by which serotonin affects the cerebellar function are still poorly understood. Whereas interactions between serotonin, glutamate, and GABA have been reported to increase or decrease the firing frequency of Purkinje cells, there is little evidence for a modulation of excitatory and inhibitory synapses by serotonin in the cerebellar cortex. Changes in the intrinsic electrical properties of Purkinje cells upon application of serotonin have also been reported, but their impact on Purkinje cell firing is unclear. The recent finding that serotonin specifically modulates the activity of Lugaro cells, a class of inhibitory interneurons of the cerebellar cortex, offers new insights on the action of this neuromodulator. The peculiar axonal projection and specific interneuronal targets of the Lugaro cells suggest that the action of serotonin might occur upstream of Purkinje cells through a resetting of the computational properties of the cerebellar cortex. Understanding the mechanisms of the serotonergic modulation of the cerebellar cortex is of clinical relevance, as abnormal serotonin metabolism has been observed in animal models and pathological cases of motor disorders involving the cerebellum, and as chronic intravenous administration of L-5-hydroxytryptophan (5-HTP), a precursor of serotonin, was the first treatment shown to improve significantly cerebellar symptoms.
Collapse
Affiliation(s)
- S Dieudonné
- Department of Biology, Ecole Normale Superieure, Paris, France.
| |
Collapse
|
9
|
Maura G, Marcoli M, Pepicelli O, Rosu C, Viola C, Raiteri M. Serotonin inhibition of the NMDA receptor/nitric oxide/cyclic GMP pathway in human neocortex slices: involvement of 5-HT(2C) and 5-HT(1A) receptors. Br J Pharmacol 2000; 130:1853-8. [PMID: 10952674 PMCID: PMC1572268 DOI: 10.1038/sj.bjp.0703510] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The NMDA receptor/nitric oxide (NO)/cyclic GMP pathway and its modulation by 5-hydroxytryptamine (5-HT) was studied in slices of neocortical samples obtained from patients undergoing neurosurgery. The cyclic GMP elevation produced by 100 microM NMDA was blocked by 100 microM of the NO synthase inhibitor N(G)-nitro-L-arginine (L-NOARG) or by 10 microM of the soluble guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-alpha] quinoxaline-1-one (ODQ). The NMDA effect was prevented by 5-HT or by the 5-HT(2) agonist (+/-)-1-(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane ((+/-)-DOI; EC(50)=22 nM). The (+/-)-DOI inhibition was insensitive to the 5-HT(2A) receptor antagonist MDL 100907 or the 5-HT(2B) antagonist rauwolscine; it was largely prevented by 1 microM of the non-selective 5-HT(2C) antagonists mesulergine (5-HT(2A,B,C)), ketanserin (5-HT(2A,C)) or SB 200646A (5-HT(2B,C)); it was completely abolished by 0.1 microM of the selective 5-HT(2C) receptor antagonist SB 242084. The NMDA-induced cyclic GMP elevation also was potently inhibited by the selective 5-HT(2C) agonist RO 60-0175 and by the antidepressant trazodone, both added at 1 microM, in an SB 242084-sensitive manner. Finally, the 5-HT(1A) agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT; 1 microM) inhibited the NMDA-evoked cyclic GMP response, an effect blocked by the selective 5-HT(1A) receptor antagonist WAY 100635. In conclusion, the NMDA receptor/NO/cyclic GMP pathway in human neocortex slices can be potently inhibited by activation of 5-HT(2C) or 5-HT(1A) receptors.
Collapse
Affiliation(s)
- G Maura
- Dipartimento di Medicina Sperimentale, Sezione di Farmacologia e Tossicologia, Università di Genova, Viale Cembrano 4, 16148 Genova, Italy.
| | | | | | | | | | | |
Collapse
|
10
|
D'Souza DN, Harlan RE, Garcia MM. Sexual dimorphism in the response to N-methyl-D-aspartate receptor antagonists and morphine on behavior and c-Fos induction in the rat brain. Neuroscience 1999; 93:1539-47. [PMID: 10501478 DOI: 10.1016/s0306-4522(99)00229-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
It has been suggested that there are sex differences in the neural response to drugs of abuse. Previous studies have shown that, upon administration of morphine, the immediate early gene c-Fos is induced in the striatum, nucleus accumbens and cortex of the rat brain. This induction of c-Fos is reduced by administration of the N-methyl-D-aspartate receptor antagonist dizocilpine maleate. However, in studies using immunocytochemistry, we found that the pattern of this expression differed markedly between the sexes. In male rats treated with morphine (10 mg/kg, s.c.) and killed 2 h later, there was an induction of c-Fos in the dorsomedial caudate-putamen, the nucleus accumbens and in the intralaminar nuclei of the thalamus. Administration of dizocilpine maleate (0.2 mg/kg, i.p.; 30 min before morphine) partially blocked the response in the caudate-putamen, but not in the thalamus. In females, morphine induced c-Fos in the caudate-putamen, but with more inter-animal variability than in males. In the midline intralaminar thalamic nuclei, female rats showed less induction than males. In male rats, dizocilpine maleate alone caused negligible induction of c-Fos, whereas in female rats, it caused a large induction in the rhomboid, reuniens and central medial nuclei of the thalamus, and in the cortex. Whereas dizocilpine maleate partially blocked the morphine-induced c-Fos expression in the caudate-putamen of males, it completely blocked this response in females. With dizocilpine maleate alone, there was little or no effect on behavior in male rats, whereas in female rats, it caused head bobbing, thrashing, hyperactivity and uncoordinated movements. These behavioral sex differences were not seen on treatment of rats with the competitive N-methyl-D-aspartate receptor antagonist 2R,4R,5S-2-amino-4,5-(1,2-cyclohexyl)-7-phosphoheptanoic acid (NPC-17742; 10 mg/kg, i.p.) and this drug did not induce c-Fos expression in either sex. In the caudate-putamen, morphine-induced c-Fos expression was significantly reduced by NPC-17742 (30 min before morphine) in males and completely blocked in females. These results suggest that the responses to both morphine and N-methyl-D-aspartate receptor antagonists differ between the sexes and emphasize that glutamate is involved in morphine-induced immediate early gene expression in the brain. These studies thus have important implications for gender differences in drug addiction.
Collapse
Affiliation(s)
- D N D'Souza
- Department of Anatomy, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | | | | |
Collapse
|
11
|
Simultaneous voltammetric measurement of nitrite ion, dopamine, serotonin with ascorbic acid on the GRC electrode. Electrochim Acta 1999. [DOI: 10.1016/s0013-4686(99)00087-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Mies G. Neuroprotective effect of sumatriptan, a 5-HT1D receptor agonist, in focal cerebral ischemia of rat brain. J Stroke Cerebrovasc Dis 1998; 7:242-9. [PMID: 17895091 DOI: 10.1016/s1052-3057(98)80033-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 02/04/1998] [Indexed: 11/18/2022] Open
Abstract
The effect of the 5-HT(1D) receptor agonist sumatriptan on the volume of ischemic injury was studied in rats subjected to permanent middle cerebral artery (MCA) occlusion. Sumatriptan (2 mg/kg) was administered intravenously 5 minutes after MCA occlusion and the ischemic injury volume was determined 3 hours after MCA occlusion using regional adenosine-5'-triphosphate imaging. In addition, electroencephalographic activity, direct current (DC) potential and cortical blood flow (CBF) was monitored throughout the experiment. In untreated animals, MCA occlusion resulted in a decline in penumbral CBF to 43.3%+/-7.6% of control, 21 spreading depression (SD)-like DC shifts with an average integrated depolarization negativity of 320.2+/-297.4 (mVxmin) and an ATP depletion volume of 61.8+/-22.9 mm(3) (mean+/-SD). Three hours after MCA occlusion in sumatriptan-treated animals, penumbral CBF recovered to 63.5%+/-12.6% of control (P<.05), only 13 SD-like shifts were detected (P<.05) with a significantly reduced integrated depolarization negativity of 104.7+/-98.4 (mVxmin) (P<.05), and the volume of ATP depletion decreased to 16.6+/-12.3 mm(3) (P<.01). However, no significant neuroprotective effect was observed for the caudate nucleus (untreated, 19.7+/-16.5 mm(3); treated, 7.9+/-8.5 mm(3)). The reduction in the volume of ischemic injury in sumatriptantreated animals is explained by both the improvement of blood flow and the inhibition of SD-like shifts leading to an amelioration of the misrelationship between the depolarization-related energy demand and flow-dependent substrate delivery.
Collapse
Affiliation(s)
- G Mies
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Gleueler Strasse 50, Lindenthal, Germany
| |
Collapse
|
13
|
Maura G, Marcoli M, Tortarolo M, Andrioli GC, Raiteri M. Glutamate release in human cerebral cortex and its modulation by 5-hydroxytryptamine acting at h 5-HT1D receptors. Br J Pharmacol 1998; 123:45-50. [PMID: 9484853 PMCID: PMC1565139 DOI: 10.1038/sj.bjp.0701581] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The release of glutamic acid and its modulation by 5-hydroxytryptamine (5-HT) in the human brain has been investigated in synaptosomal preparations from fresh neocortical samples obtained from patients undergoing neurosurgery to reach deeply sited tumours. 2. The Ca2+-dependent K+ (15 mM)-evoked overflow of glutamate was inhibited by 5-HT in a concentration-dependent manner (EC50 = 2.9 nM; maximal effect approximately 50%). The inhibition caused by 5-HT was antagonized by the 5-HT1/5-HT2 receptor antagonist methiothepin. The 5-HT1B/5-HT1D receptor agonist sumatriptan mimicked 5-HT (EC50 = 6.4 nM; maximal effect approximately 50%); the effect of sumatriptan was also methiothepin-sensitive. Selective 5-HT1A receptor antagonists could not prevent the inhibition of glutamate release by 5-HT. 3. The 5-HT1B/5-HT1D receptor ligand GR 127935 and the 5-HT2C/5-HT1B/5-HT1D receptor ligand metergoline were unable to prevent the 5-HT effect; instead they inhibited glutamate release, their effects being abolished by methiothepin. Some 5-HT1A receptor antagonists also displayed intrinsic agonist activity. 4. The effect of sumatriptan was prevented by ketanserin, a drug known to display much higher affinity for recombinant h 5-HT1D than for h 5-HT1B receptors. 5. We propose that neocortical glutamatergic nerve terminals in human brain cortex possess release-inhibiting presynaptic heteroreceptors that appear to belong to the h 5-HT1D subtype.
Collapse
Affiliation(s)
- G Maura
- Institute of Pharmacology and Toxicology, University of Genova, Italy
| | | | | | | | | |
Collapse
|
14
|
Fedele E, Conti A, Raiteri M. The glutamate receptor/NO/cyclic GMP pathway in the hippocampus of freely moving rats: modulation by cyclothiazide, interaction with GABA and the behavioural consequences. Neuropharmacology 1997; 36:1393-403. [PMID: 9423927 DOI: 10.1016/s0028-3908(97)00112-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.
Collapse
Affiliation(s)
- E Fedele
- Institute of Pharmacology and Pharmacognosy, University of Genova, Italy
| | | | | |
Collapse
|
15
|
Abstract
Nitric oxide (NO) has been suggested to play a crucial role in the regulation of lordosis behavior via stimulation of guanylyl cyclase to synthesize cyclic GMP. Whalen and Lauber (1986, Neurosci. Biobehav. Rev. 10, 47-53) hypothesized that hormones and pharmacological agents known to facilitate lordosis in estrogen-primed rodents act through cyclic GMP. The compound 1H-[1,2, 4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) has been shown to selectively inhibit NO-stimulated cyclic GMP production. In the present study, we investigated the effects of ODQ on lordosis behavior. Female rats were implanted with a guide cannula aimed at the lateral or third ventricles by stereotaxic surgery, and their ovaries were bilaterally removed. Five days later, animals were injected subcutaneously with 2 microg estradiol benzoate at 48 and 24 hr, and 200 microg progesterone 4 hr before behavioral testing. ODQ or vehicle (1 microl) was administered at the time of progesterone treatment or 20 min before lordosis testing. ODQ significantly decreased lordosis quotients and the quality of lordosis at both intervals of drug infusion. Locomotor activities, measured by line crossing and rearing, were not affected by ODQ. ODQ also inhibited cyclic GMP accumulation in response to NMDA stimulation in hypothalamic and cerebellar slices in vitro. We conclude that cyclic GMP produced by NO generation is an important modulator of female rat sexual behavior.
Collapse
Affiliation(s)
- H P Chu
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
16
|
Jockers R, Petit L, Lacroix I, de Coppet P, Barrett P, Morgan PJ, Guardiola B, Delagrange P, Marullo S, Strosberg AD. Novel isoforms of Mel1c melatonin receptors modulating intracellular cyclic guanosine 3',5'-monophosphate levels. Mol Endocrinol 1997; 11:1070-81. [PMID: 9212055 DOI: 10.1210/mend.11.8.9964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Two cDNAs encoding novel isoforms of Xenopus laevis melatonin receptors were cloned using PCR primers specific for the X. laevis-melanophore Mel1c melatonin receptor described in a recent publication. The novel isoforms were highly homologous to the described frog Mel1c cDNA, although the C-terminal tail of both was shorter by 65 amino acid residues. Nucleotide sequences of these novel isoforms, called Mel1c(alpha) and Mel1c(beta), differed from each other by only 35 nucleotides and six amino acid residues. Studies on several animals of various Xenopus species indicate that Mel1c(alpha) and Mel1c(beta) receptors may correspond to allelic variants of the same locus. Studies on cells transfected with both receptor cDNAs showed the expression of high-affinity 2-[125I]iodomelatonin binding sites. Agonist stimulation of Mel1c(alpha) receptor was associated with the inhibition of cAMP accumulation stimulated by forskolin (IC50 approximately 10(-10) M) in HeLa, Ltk-, and human embryonic kidney 293 (HEK 293) cells. Mel1c(beta) receptor modulated cAMP in HeLa and HEK 293 cells but not in Ltk- cells. Both receptors inhibited, in a dose-dependent manner, cGMP accumulation in all three cell lines incubated with a phosphodiesterase inhibitor. This effect was localized upstream of soluble guanylyl cyclase and was blocked by pertussis toxin treatment. However, IC50 values (approximately 10(-10) M for Mel1c(beta) and 10(-9) to 10(-7) M for Mel1c(alpha)) and maximal inhibition levels showed that Mel1c(alpha) receptors are much less efficiently coupled to the cGMP pathway. Coupling differences may be explained by the fact that five of the six amino acid substitutions between Mel1c(alpha) and Mel1c(beta) receptors are located within cytoplasmic regions potentially involved in signal transduction. The existence of coupling differences is in agreement with the observation that expression of both receptors is evolutionally conserved in native tissue. In conclusion, two novel, potentially allelic, isoforms of Xenopus Mel1c melatonin receptors display identical ligand-binding characteristics, but different potencies in modulating cAMP and cGMP levels through G(i)/G(o)-dependent pathways. Furthermore, to our knowledge, this study provides the first data on the modulation of intracellular cGMP levels by cloned melatonin receptors.
Collapse
Affiliation(s)
- R Jockers
- CNRS-UPR 0415 and Université Paris VII, Institut Cochin de GénétiqueMoléculaire, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kitzman PH, Bishop GA. The physiological effects of serotonin on spontaneous and amino acid-induced activation of cerebellar nuclear cells: an in vivo study in the cat. PROGRESS IN BRAIN RESEARCH 1997; 114:209-23. [PMID: 9193146 DOI: 10.1016/s0079-6123(08)63366-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well established that cerebellar efferents originate from neurons located within the cerebellar nuclei. Neurons within these nuclei receive excitatory inputs derived from the axons that arise from cells in several different regions of the brainstem and spinal cord, some of which continue on to terminate as mossy fibers and climbing fibers in the cerebellar cortex. GABA-induced inhibition in the nuclei is derived primarily from Purkinje cells located in the overlying cortex and possibly from axonal collaterals of a population of small, GABAergic nuclear neurons. In addition, a third chemically defined system of afferents that contain the monoamine serotonin forms a dense plexus of fibers throughout the cat's cerebellar nuclei. The intent of this study is to determine the physiological effects of serotonin on the spontaneous activity of cerebellar nuclear cells as well as that induced by application of the excitatory amino acids glutamate and aspartate in an adult in vivo preparation. Iontophoretic application of serotonin in anesthetized preparations suppresses both spontaneous and excitatory amino acid induced activity. In addition, interactions between serotonin and the amino acid analogs quisqualate and NMDA were analyzed; 5HT suppresses the excitatory responses of neurons to both analogs. However, there is a stronger suppressive effect on quisqualate-induced excitation as compared to that elicited by NMDA. In addition to modulating the effects of the excitatory amino acids, serotonin also potentiates the inhibitory effects of GABA. However, the effect was greatest if the neuron was initially preconditioned with GABA. In summary, serotonin acts to suppress amino acid induced activity in cerebellar nuclear neurons and to enhance gABA-mediated inhibition. The net effect is a decrease in nuclear cell activity and consequently in cerebellar output.
Collapse
Affiliation(s)
- P H Kitzman
- Dept. of Cell Biology, Neurobiology, Anatomy, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
18
|
Fedele E, Jin Y, Varnier G, Raiteri M. In vivo microdialysis study of a specific inhibitor of soluble guanylyl cyclase on the glutamate receptor/nitric oxide/cyclic GMP pathway. Br J Pharmacol 1996; 119:590-4. [PMID: 8894183 PMCID: PMC1915716 DOI: 10.1111/j.1476-5381.1996.tb15713.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
1. Nitric oxide (NO) is known to stimulate soluble guanylyl cyclase, thereby eliciting an elevation of guanosine 3':5'-cyclic monophosphate (cyclic GMP) in target cells. Recently, a selective inhibitor of soluble guanylyl cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), has been identified and characterized in vitro. We have investigated the in vivo effects of ODQ on the glutamate receptor/NO/ cyclic GMP pathway by monitoring extracellular cyclic GMP during microdialysis of the cerebellum or the hippocampus of freely-moving adult rats. 2. Intracerebellar administration of ODQ (1-100 microM) via the microdialysis probe inhibited, in a concentration-dependent manner, the basal extracellular level of cyclic GMP. The maximal inhibition, measured after a 20 min perfusion with 100 microM ODQ, amounted to 80% and persisted unchanged as long as ODQ was perfused. When ODQ was removed from the perfusion stream after 20 min, the levels of cyclic GMP started to recover, suggesting reversibility of guanylyl cyclase inhibition by ODQ. 3. The cyclic GMP response evoked in the cerebellum by NMDA (200 microM) or by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA; 100 microM) was largely attenuated by 100 microM ODQ. The pattern of the inhibition curves suggests competition for guanylyl cyclase between ODQ and the NO generated by NMDA or AMPA receptor activation. 4. ODQ (100 microM) prevented the elevation of extracellular cyclic GMP levels provoked by intracerebellar infusion of the NO generator S-nitroso-N-acetylpenicillamine (SNAP; 1 mM). The inhibition of the SNAP effect was rapidly relieved when ODQ was removed from the perfusion fluid. However, ODQ (100 microM) was unable to affect the cyclic GMP response elicited by 5 mM SNAP, in keeping with the proposed idea that ODQ binds to the "NO receptor' in a reversible and competitive manner. 5. Infusion of ODQ (10, 100 or 300 microM) into the hippocampus of freely-moving rats diminished the basal extracellular level of cyclic GMP. The maximal inhibition amounted to 50% and was produced by 100 microM ODQ. 6. The cyclic GMP response observed when 1 mM SNAP was perfused in the hippocampus, similar in percentage terms to that seen in cerebellum, was dramatically reduced during co-infusion of 100 microM ODQ. 7. ODQ appears to act in vivo as a selective, reversible and possibly competitive inhibitor of the soluble guanylyl cyclase targeted by NO. This enzyme may generate most (about 80%) of the cyclic GMP found under basal conditions in the extracellular space of the cerebellum. In the hippocampus, about 50% of the basal cyclic GMP does not seem to originate from the ODQ-sensitive soluble guanylyl cyclase.
Collapse
Affiliation(s)
- E Fedele
- Istituto di Farmacologia e Farmacognosia, Università di Genova, Italy
| | | | | | | |
Collapse
|