1
|
Al-Ahmad AJ, Pervaiz I, Karamyan VT. Neurolysin substrates bradykinin, neurotensin and substance P enhance brain microvascular permeability in a human in vitro model. J Neuroendocrinol 2021; 33:e12931. [PMID: 33506602 PMCID: PMC8166215 DOI: 10.1111/jne.12931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/31/2022]
Abstract
Increased brain microvascular permeability and disruption of blood-brain barrier (BBB) function are among hallmarks of several acute neurodegenerative disorders, including stroke. Numerous studies suggest the involvement of bradykinin (BK), neurotensin (NT) and substance P (SP) in BBB impairment and oedema formation after stroke; however, there is paucity of data in regard to the direct effects of these peptides on the brain microvascular endothelial cells (BMECs) and BBB. The present study aimed to evaluate the direct effects of BK, NT and SP on the permeability of BBB in an in vitro model based on human induced pluripotent stem cell (iPSC)-derived BMECs. Our data indicate that all three peptides increase BBB permeability in a concentration-dependent manner in an in vitro model formed from two different iPSC lines (CTR90F and CTR65M) and widely used hCMEC/D3 human BMECs. The combination of BK, NT and SP at a sub-effective concentration also resulted in increased BBB permeability in the iPSC-derived model indicating potentiation of their action. Furthermore, we observed abrogation of BK, NT and SP effects with pretreatment of pharmacological blockers targeting their specific receptors. Additional mechanistic studies indicate that the short-term effects of these peptides are not mediated through alteration of tight-junction proteins claudin-5 and occludin, but likely involve redistribution of F-actin and secretion of vascular endothelial growth factor. This is the first experimental study to document the increased permeability of the BBB in response to direct action of NT in an in vitro model. In addition, our study confirms the expected but not well-documented, direct effect of SP on BBB permeability and adds to the well-recognised actions of BK on BBB. Lastly, we demonstrate that peptidase neurolysin can neutralise the effects of these peptides on BBB, suggesting potential therapeutic implications.
Collapse
Affiliation(s)
- Abraham J Al-Ahmad
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Iqra Pervaiz
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences and Center for Blood Brain Barrier Research, School of Pharmacy, TTUHSC, Amarillo, TX, USA
| |
Collapse
|
2
|
Lorente L, Martín MM, Pérez-Cejas A, González-Rivero AF, Argueso M, Ramos L, Solé-Violán J, Cáceres JJ, Jiménez A, García-Marín V. High serum substance P levels and mortality after malignant middle cerebral artery infarction. J Crit Care 2020; 57:1-4. [PMID: 31991332 DOI: 10.1016/j.jcrc.2020.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 10/25/2022]
Abstract
PURPOSE Previously our team found higher serum substance P concentrations at day 1 of a malignant middle cerebral artery infarction (MMCAI) in non-surviving than in surviving patients. Thus, the objective of this study was to determine whether serum substance P levels during the first week of MMCAI could predict mortality. METHODS We included patients with MMCAI defined as computed tomography findings of acute infarction in at least of 50% of the territory and Glasgow Coma Scale ≤8. We determined serum concentrations of substance P on days 1, 4 and 8 of MMCAI. Thirty-day mortality was the study end-point. RESULTS Serum substance P concentrations at days 1 (p < .001), 4 (p < .001), and 8 (p = .001) of MMCAI in non-surviving (n = 34) were higher than in surviving patients (n = 34). Receiver operating characteristic analyses showed that serum substance P concentrations at days 1, 4, and 8 of MMCAI had an area under curve (95% confidence intervals) to predict 30-day mortality of 0.77 (0.66-0.87; p < .001), 0.82 (0.69-0.91; p < .001) and 0.85 (0.72-0.94; p < .001) respectively. CONCLUSIONS The two new findings of our study are that non-surviving MMCAI patients showed higher serum substance P levels at day 1, 4 and 8 than surviving, and that those levels could predict 30-day mortality.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora de Candelaria, Crta del Rosario s/n, Santa Cruz de Tenerife 38010, Spain
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Tenerife, Spain
| | - Agustín F González-Rivero
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez n°17-19, Valencia 46004, Spain
| | - Luis Ramos
- Intensive Care Unit, Hospital General de La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES, Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Juan J Cáceres
- Intensive Care Unit, Hospital Insular, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Alejandro Jiménez
- Research Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain
| | - Victor García-Marín
- Department of Neurosurgery, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, 38320 Santa Cruz de Tenerife, Spain
| |
Collapse
|
3
|
Lorente L, Martín MM, Almeida T, Pérez-Cejas A, Ramos L, Argueso M, Riaño-Ruiz M, Solé-Violán J, Hernández M. Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke. Int J Mol Sci 2016; 17:E991. [PMID: 27338372 PMCID: PMC4926519 DOI: 10.3390/ijms17060991] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/07/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541-18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife 38320, Spain.
| | - María M Martín
- Intensive Care Unit, Hospital Universitario Nuestra Señora Candelaria, Crta Rosario s/n, Santa Cruz Tenerife 38010, Spain.
| | - Teresa Almeida
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife 38071, Spain.
| | - Antonia Pérez-Cejas
- Laboratory Department, Hospital Universitario de Canarias, Ofra, s/n. La Laguna, Tenerife 38320, Spain.
| | - Luis Ramos
- Intensive Care Unit, Hospital General La Palma, Buenavista de Arriba s/n, Breña Alta, La Palma 38713, Spain.
| | - Mónica Argueso
- Intensive Care Unit, Hospital Clínico Universitario de Valencia, Avda. Blasco Ibáñez nº17-19, Valencia 46004, Spain.
| | - Marta Riaño-Ruiz
- Servicio de Bioquímica Clínica, Complejo Hospitalario Universitario Insular Materno-Infantil, Plaza Dr. Pasteur s/n, Las Palmas de Gran Canaria 35016, Spain.
| | - Jordi Solé-Violán
- Intensive Care Unit, Hospital Universitario Dr. Negrín, CIBERES. Barranco de la Ballena s/n, Las Palmas de Gran Canaria 35010, Spain.
| | - Mariano Hernández
- Unidad de Genética, Instituto de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Campus de Anchieta, Avda. Astrofísico Francisco Sánchez s/n, La Laguna, Tenerife 38071, Spain.
| |
Collapse
|
4
|
Serum Levels of Substance P and Mortality in Patients with a Severe Acute Ischemic Stroke. Int J Mol Sci 2016. [PMID: 27338372 DOI: 10.3390/ijms170609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Substance P (SP), a member of tachykinin family, is involved in the inflammation of the central nervous system and in the appearance of cerebral edema. Higher serum levels of SP have been found in 18 patients with cerebral ischemia compared with healthy controls. The aim of our multi-center study was to analyze the possible association between serum levels of SP and mortality in ischemic stroke patients. We included patients with malignant middle cerebral artery infarction (MMCAI) and a Glasgow Coma Scale (GCS) lower than 9. Non-surviving patients at 30 days (n = 31) had higher serum concentrations of SP levels at diagnosis of severe MMCAI than survivors (n = 30) (p < 0.001). We found in multiple regression an association between serum concentrations of SP higher than 362 pg/mL and mortality at 30 days (Odds Ratio = 5.33; 95% confidence interval = 1.541-18.470; p = 0.008) after controlling for age and GCS. Thus, the major novel finding of our study was the association between serum levels of SP and mortality in patients suffering from severe acute ischemic stroke.
Collapse
|
5
|
Vinogradova LV, Vinogradov VY, Kuznetsova GD. Unilateral cortical spreading depression is an early marker of audiogenic kindling in awake rats. Epilepsy Res 2006; 71:64-75. [PMID: 16806830 DOI: 10.1016/j.eplepsyres.2006.05.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 05/22/2006] [Accepted: 05/22/2006] [Indexed: 10/24/2022]
Abstract
Spreading depression (SD), a self-propagating wave of reversible cellular depolarization, is thought to play an important role in brain pathophysiology. SD and seizures are closely related events but little is known about involvement of SD in chronic epileptogenesis. Here we show that cortical SD is the first and highly reproducible manifestation of audiogenic kindling induced by repeated sound stimulation of WAG/Rij rats with genetic audiogenic and absence epilepsy. Repetition of sound-induced running seizures in freely moving rats led to an appearance and gradual intensification of post-running facial and forelimb clonic convulsions coupled with afterdischarge in the fronto-parietal cortex. Before the development of these traditional manifestations of audiogenic kindling, an unilateral cortical SD wave began to be triggered by audiogenic seizures. Once cortical SD appeared, it became a permanent component of subsequent seizures. SD was always recorded in the hemisphere ipsilateral to the running direction. Only at the late stages of audiogenic kindling SD developed bilaterally. To estimate the contribution of SD in postictal effects of audiogenic seizures, we compared cortical activity after seizures induced SD or not. It was found that only seizures with cortical SD were followed by postictal suppression of spontaneous spike-wave discharges displayed by WAG/Rij rats. The results show that (1) cortical SD is readily triggered by brief sensory-induced seizures in awake animals; (2) SD may be responsible for postictal changes in cortical activity; (3) unilateral initiation of SD suggests asymmetrical recruitment of the cortex into seizure network during audiogenic kindling.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Street 5a, Moscow 117485, Russia.
| | | | | |
Collapse
|
6
|
Zhao XY, Ling YL, Li YG, Meng AH, Xing HY. Cholecystokinin octapeptide improves cardiac function by activating cholecystokinin octapeptide receptor in endotoxic shock rats. World J Gastroenterol 2005; 11:3405-10. [PMID: 15948246 PMCID: PMC4315995 DOI: 10.3748/wjg.v11.i22.3405] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the effect of sulfated cholecystokinin octapeptide (sCCK-8) on cardiac functions and its receptor mechanism in endotoxic shock (ES) rats.
METHODS: The changes of the mean arterial pressure (MAP), heart rate (HR), the left ventricular pressure (LVP) and the maximal/minimum rate of LVP (±LVdp/dtmax)) were measured by using physiological record instrument in eight groups of rats. The expression of cholecystokinin-A receptor (CCK-AR) and cholecystokinin-B receptor (CCK-BR) mRNA of myocardium in ES rats was examined by reverse transcription polymerase chain reaction (RT-PCR).
RESULTS: (1) Low doses of sCCK-8 (0.4 μg/kg) caused tachycardia (441±27, normal control 391±22 s/min) and slight increase in MAP, LVP and ±LVdp/dtmax (16.96±1.79, 18.21±1.69 and +768.85±31.28/-565.04±27.71 kPa, respectively, all P<0.01), while medium doses (4.0 μg/kg) and high doses of sCCK-8 (40 μg/kg) elicited bradycardia and marked increase in MAP, LVP and ±LVdp/dtmax (17.29±1.63, 19.46±2.57 and +831.46±22.57/-606.08 ±31.32; 17.46±1.08, 19.83±2.91 and +914.52±35.95/-639.15±30.23 kPa, respectively, all P<0.01). Proglumide (1.0 mg/kg), a nonselective antagonist of CCK-receptor (CCK-R), significantly inhibited the pressor effects of sCCK-8 (15.96±1.38, 17.36±0.66 and +748.18±19.29/-512.12±14.39 kPa, respectively, all P<0.01), whilst reversing the bradycardiac responses. (2) High doses of LPS (8 mg/kg) elicited marked decrease in MAP, LVP and ±LVdp/dtmax. (7.16±0.59, 7.6±0.68 and +298.01±25.52/-166.96±19.25 kPa, respectively, all P<0.01). Pretreatment with sCCK-8 (40 μg/kg) could reverse the decline of cardiac functions (10.71±0.45, 11.7±1.26 and +446.04±67.18/-347.90±36.98 kPa, respectively, all P<0.01), while proglumide could cause further decline of cardiac function in ES rats (4.71±0.67, 5.58±1.25 and +226.48±15.84/-142.83±20.23 kPa, respectively, all P<0.01). (3) CCK-A/BR mRNAs were expressed in myocardium of control rats. Gene expression of CCK-AR and CCK-BR significantly increased in myocardium of ES rats. The increase of CCK-AR mRNA induced by LPS began at 0.5 h, peaked at 2 h, kept a high level at 6 h and declined at 12 h, respectively. Similar to CCK-AR mRNA, the expression of CCK-BR mRNA peaked at 2 h and kept a high level at 6 h, but it did not change at the first 0.5 h and was stable at a high level at 12 h.
CONCLUSION: The above results indicate that endogenous and exogenous sCCK-8 may significantly improve cardiac function and intractable hypotension of ES rats, which was likely related to high expression of CCK-A/BR in myocardium induced by LPS.
Collapse
Affiliation(s)
- Xiao-Yun Zhao
- The First Affiliated Hospital of Shantou University Medical College, Shantou 515031, Guangdong Province, China.
| | | | | | | | | |
Collapse
|
7
|
Wiggins AK, Shen PJ, Gundlach AL. Atrial natriuretic peptide expression is increased in rat cerebral cortex following spreading depression: possible contribution to sd-induced neuroprotection. Neuroscience 2003; 118:715-26. [PMID: 12710979 DOI: 10.1016/s0306-4522(03)00006-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cortical spreading depression (CSD) is characterised by slowly propagating waves of cellular depolarization and depression and involves transient changes in blood flow, ion balance and metabolism. In cerebral ischaemia, peri-infarct CSD-like depolarization potentiates infarct growth, whereas preconditioning with a CSD episode protects against subsequent ischaemic insult. Thus, many of the long-lasting molecular changes that occur in CSD-affected tissue are presumed to be part of a 'neuroprotective cascade.' 3',5'-Cyclic guanosine monophosphate (cGMP) has been shown to be a neuroprotective mediator and the nitric oxide system, which increases cGMP production by soluble guanylate cyclase, is up-regulated by CSD. Atrial and C-type natriuretic peptide (ANP/CNP) are present in cerebral cortex and their actions are mediated via particulate guanylate cyclase receptors and cGMP production. Therefore, in further efforts to characterise the role of cGMP-related systems in CSD and neuroprotection, this study investigated possible changes in cortical natriuretic peptide expression following acute, unilateral CSD in rats. Using in situ hybridisation, significant 20-80% increases in ANP mRNA were detected in layers II and VI of ipsilateral cortex at 6 h and 1-14 days after CSD. Ipsilateral cortical levels were again equivalent to control contralateral values after 28 days. Assessment of cortical concentrations of ANP immunoreactivity by radioimmunoassay revealed a significant 57% increase at 7 days after CSD. Despite using a sensitive signal-amplification protocol, authentic ANP-like immunostaining was readily detected in subcortical nerve fibres, but was not reliably detected in normal or CSD-affected neocortex, suggesting the presence of very low levels, and/or active or differential processing of the peptide. Cortical CNP mRNA levels are not altered by CSD, indicating the specificity of the observed effects.Overall, these novel findings demonstrate a prolonged increase in cortical ANP expression after an acute episode of CSD. The overlap between the described time course of CSD-induced protection against ischaemic insult and demonstrated increases in ANP levels, suggest that ANP (like nitric oxide) may contribute to CSD-induced neuroprotection, via effects on cGMP production and other signal-transduction pathways.
Collapse
Affiliation(s)
- A K Wiggins
- Howard Florey Institute of Experimental Physiology and Medicine, Department of Medicine, Austin and Repatriation Medical Centre, The University of Melbourne, Victoria 3010, Australia
| | | | | |
Collapse
|
8
|
Owens NC, Sartor DM, Verberne AJ. Medial prefrontal cortex depressor response: role of the solitary tract nucleus in the rat. Neuroscience 1999; 89:1331-46. [PMID: 10362318 DOI: 10.1016/s0306-4522(98)00389-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The depressor response elicited by unilateral low intensity electrical stimulation of the rat ventral medial prefrontal cortex may be mediated by a connection with the solitary tract nucleus. We tested this hypothesis by (i) examining the influence of medial prefrontal cortex stimulation on the induction of Fos-like immunoreactivity in neurons in the medulla oblongata, and (ii) by testing the effect of inhibition of solitary tract nucleus neurons on the medial prefrontal cortex stimulation-evoked depressor response. Depressor responses (>10 mmHg) were elicited by electrical stimulation of the medial prefrontal cortex every minute for 1 h ('Stimulated' group). Control animals were treated identically but did not receive electrical stimulation ('Unstimulated' group). Neurons exhibiting Fos-like immunoreactivity were abundant at the stimulation site which included the infralimbic area, and dorsal peduncular cortex. Medullary Fos-like immunoreactivity observed in the 'Stimulated' and 'Unstimulated' groups exceeded levels observed in untreated rats and was detected in the rostral, caudal and intermediate areas of the ventrolateral medulla, and the commissural, intermediate, medial and lateral regions of the solitary tract nucleus, as well as the medial vestibular nucleus, and the dorsal motor nucleus of the vagus. The number of neurons displaying Fos-like immunoreactivity in the ipsilateral solitary tract nucleus and caudal ventrolateral medulla of the 'Stimulated' group was found to be significantly elevated compared to the contralateral side (P<0.05), and the 'Unstimulated' group bilaterally. Inhibition of solitary tract nucleus neurons using bilateral injections of the GABA(A) receptor agonist muscimol (44 pmol/25 nl) inhibited the sympathetic vasomotor baroreflex and attenuated the depressor and sympathoinhibitory response to medial prefrontal cortex stimulation by 62% and 65%, respectively. These findings suggest that the projection from the medial prefrontal cortex to the solitary tract nucleus is excitatory and support the hypothesis that the depressor response elicited by medial prefrontal cortex stimulation is mediated, in part, by a cortico-solitary projection which activates the intramedullary baroreflex pathway.
Collapse
Affiliation(s)
- N C Owens
- Department of Medicine, Austin and Repatriation Medical Centre, University of Melbourne, Heidelberg, Victoria, Australia
| | | | | |
Collapse
|
9
|
Arabia AM, Shen PJ, Gundlach AL. Increased striatal proenkephalin mRNA subsequent to production of spreading depression in rat cerebral cortex: activation of corticostriatal pathways? BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 61:195-202. [PMID: 9795215 DOI: 10.1016/s0169-328x(98)00189-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cortical Spreading Depression (CSD) is a slowly propagating wave of depolarization and negative interstitial DC potential, that when induced in the rat brain extends across the entire homolateral hemisphere. Despite evidence that CSD does not penetrate into subcortical regions, neurochemical changes in areas anatomically connected to cortex have been reported. In this study in situ hybridization histochemistry was used to examine the levels of cholecystokinin (CCK), proenkephalin (ENK) and prodynorphin (DYN) mRNA in cortex and forebrain basal ganglia following KCl-induced CSD. Unilateral CSD was induced by topical application of 3 M KCl ( approximately 10 microliter) onto the right parietal cortex for 10 min and rats were then killed 1-6 h and 1-28 days later. CCK mRNA levels were increased (P<0.01) in the ipsilateral neocortex 3 h after CSD (13% above levels in contralateral side), reached a peak at 2 days ( approximately 70%) and were still elevated at 7 (30%) but not, 14 or 28 days later. Unilateral CSD also produced a rapid and sustained increase (P<0.05) in ENK mRNA in ipsilateral piriform cortex (from 3 h to 2 days; 70-250% above contralateral), and a delayed increase in caudate putamen and olfactory tubercle at 1 and 2 days ( approximately 25% in both regions), but levels were again equivalent to control at 7 days and beyond. In contrast, no marked changes in neocortical ENK mRNA, or DYN mRNA in both cortex and basal ganglia, were observed under these conditions. These findings demonstrate that CSD has specific, rapid and long-lasting effects on neuropeptide expression in neocortex and subcortical areas. CSD-induced changes in mesostriatal ENK mRNA are proposed to reflect synaptic activation of local neurons via cortical afferent projections.
Collapse
Affiliation(s)
- A M Arabia
- The University of Melbourne, Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, 3084, Australia
| | | | | |
Collapse
|
10
|
Shen PJ, Gundlach AL. Differential increases in chromogranins, but not synapsin I, in cortical neurons following spreading depression: implications for functional roles and transmitter peptide release. Eur J Neurosci 1998; 10:2217-30. [PMID: 9749750 DOI: 10.1046/j.1460-9568.1998.00231.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Experimental damage of cerebral cortex induces a slow-moving depolarization and subsequent depression of activity called cortical spreading depression (CSD) which is associated with various ionic, metabolic and genomic changes. Chromogranins are a family of water-soluble acidic proteins with a widespread distribution in secretory, large dense-core vesicles of neurons. We have earlier reported that secretogranin II (SgII) mRNA is increased in cerebral cortex hours after a unilateral craniotomy which would have induced CSD. To investigate further the regulation of chromogranin systems and the nature of genomic and biochemical changes produced by CSD, this study examined the temporal changes in chromogranin A (CgA), chromogranin B (CgB) and SgII mRNAs and CgB and SgII immunoreactivity (IR) in cerebral cortex and hippocampus following unilateral KCl-induced CSD. For comparison, the levels of mRNA for synapsin I, a protein present in small synaptic vesicles was also examined. Rats were killed at various times after 10 min or 2 h of CSD and levels of chromogranins mRNAs were determined by semiquantitative in situ hybridization histochemistry, while changes in corresponding peptide products were detected by immunohistochemistry. CSD increased both SgII and CgB mRNA levels in ipsilateral cortex--levels of SgII mRNA were significantly (P < 0.01) increased at 1-6 h after CSD (165-225% of levels in contralateral cortex), but were not significantly above control values at later time points. Increased expression of CgB mRNA was delayed and prolonged compared with SgII and was significantly (P < 0.05) increased between 3 and 24 h (120-145%) after CSD, peaked at 2 days (180%), and was still elevated at 1 week (130%) compared with contralateral cortex. No alteration in CgA mRNA was observed in the ipsilateral cortex of the same animals across the entire time-course except for an increase in piriform cortex at 1-2 days. In contrast, levels of synapsin I mRNA in affected cortex were identical to those in contralateral cortex and cortex in sham-operated rats, at all times after CSD. Levels of chromogranin (SN-IR and PE-11-IR) were also increased in ipsilateral cortex following CSD. A strong increase in SN-IR in neuronal cell bodies and fibres was observed at 12 h and a moderate increase in PE-11-IR was observed 24-72 h after CSD. These results demonstrate that chromogranin transcripts and gene products are differentially regulated by neuronal depolarization/depression occurring during CSD and suggest that these chromogranin proteins may have differing functional roles in peptide transmitter release and distinct effects on neuronal function in rat brain.
Collapse
Affiliation(s)
- P J Shen
- The University of Melbourne, Department of Medicine, Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | |
Collapse
|
11
|
Abounader R, Hamel E. Associations between neuropeptide Y nerve terminals and intraparenchymal microvessels in rat and human cerebral cortex. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971124)388:3<444::aid-cne7>3.0.co;2-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|