1
|
Whim MD. Mouse Adrenal Macrophages Are Associated with Pre- and Postsynaptic Neuronal Elements and Respond to Multiple Neuromodulators. eNeuro 2025; 12:ENEURO.0153-24.2025. [PMID: 39900506 PMCID: PMC11856350 DOI: 10.1523/eneuro.0153-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/21/2024] [Accepted: 01/13/2025] [Indexed: 02/05/2025] Open
Abstract
The adrenal medulla is packed with chromaffin cells, modified postganglionic sympathetic neurons that secrete the catecholamines, epinephrine and norepinephrine, during the fight-or-flight response. Sometimes overlooked is a population of immune cells that also resides within the gland but whose distribution and function are not clear. Here I examine the location of CD45+ hematopoietic cells in the mouse adrenal medulla and show the majority are F4/80+/Lyz2+ macrophages. These cells are present from early postnatal development and widely distributed. Anatomically they are associated with chromaffin cells, found aligned alongside synapsin-IR neuronal varicosities and juxtaposed to CD31-IR blood vessels. Using Lyz2cre-GCaMP6f mice to quantify calcium signaling in macrophages revealed these cells respond directly and indirectly to a wide variety of neuromodulators, including pre- and postganglionic transmitters and systemic hormones. Purinergic agonists, histamine, acetylcholine, and bradykinin rapidly and reversibly increased intracellular calcium. These results are consistent with a substantial resident population of innate immune cells in the adrenal medulla. Their close association with chromaffin cells and the preganglionic input suggests they may regulate sympatho-adrenal activity and thus the strength of the fight-or-flight response.
Collapse
Affiliation(s)
- Matthew D Whim
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, Louisiana 70112
| |
Collapse
|
2
|
Bilyalova A, Bilyalov A, Filatov N, Shagimardanova E, Kiyasov A, Vorontsova M, Gusev O. Non-classical animal models for studying adrenal diseases: advantages, limitations, and implications for research. Lab Anim Res 2024; 40:25. [PMID: 38898483 PMCID: PMC11186145 DOI: 10.1186/s42826-024-00212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The study of adrenal disorders is a key component of scientific research, driven by the complex innervation, unique structure, and essential functions of the adrenal glands. This review explores the use of non-traditional animal models for studying congenital adrenal hyperplasia. It highlights the advantages, limitations, and relevance of these models, including domestic ferrets, dogs, guinea pigs, golden hamsters, pigs, and spiny mice. We provide a detailed analysis of the histological structure, steroidogenesis pathways, and genetic characteristics of these animal models. The morphological and functional similarities between the adrenal glands of spiny mice and humans highlight their potential as an important avenue for future research.
Collapse
Affiliation(s)
- Alina Bilyalova
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Airat Bilyalov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
| | - Nikita Filatov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | - Elena Shagimardanova
- Loginov Moscow Clinical Scientific Center, Moscow, 111123, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia
| | - Andrey Kiyasov
- Institute of fundamental medicine and biology, Kazan Federal University, Kazan, 420008, Russia
| | | | - Oleg Gusev
- Life Improvement by Future Technologies (LIFT) Center, Moscow, 121205, Russia.
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, 113-8421, Japan.
- Endocrinology Research Center, Moscow, 117292, Russia.
| |
Collapse
|
3
|
Kameneva P, Artemov AV, Kastriti ME, Faure L, Olsen TK, Otte J, Erickson A, Semsch B, Andersson ER, Ratz M, Frisén J, Tischler AS, de Krijger RR, Bouderlique T, Akkuratova N, Vorontsova M, Gusev O, Fried K, Sundström E, Mei S, Kogner P, Baryawno N, Kharchenko PV, Adameyko I. Single-cell transcriptomics of human embryos identifies multiple sympathoblast lineages with potential implications for neuroblastoma origin. Nat Genet 2021; 53:694-706. [PMID: 33833454 PMCID: PMC7610777 DOI: 10.1038/s41588-021-00818-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.
Collapse
Affiliation(s)
- Polina Kameneva
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Artem V Artemov
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
- Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Thale K Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Jörg Otte
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alek Erickson
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Bettina Semsch
- Department of Comparative Medicine, Karolinska Institutet, Solna, Sweden
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Michael Ratz
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Karolinska Institutet, Solna, Sweden
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology CS, Utrecht, the Netherlands
- Deptartment of Pathology, University Medical Center Utrecht CX, Utrecht, the Netherlands
| | - Thibault Bouderlique
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Natalia Akkuratova
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Institute of Translational Biomedicine, St. Petersburg University, St. Petersburg, Russia
| | - Maria Vorontsova
- Endocrinology Research Centre, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
- Institute for Regenerative Medicine, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Oleg Gusev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
- RIKEN Innovation Center, RIKEN, Yokohama, Japan
- Center for Life Science Technologies, RIKEN, Yokohama, Japan
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Erik Sundström
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Peter V Kharchenko
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep. PLoS One 2013; 8:e58620. [PMID: 23469286 PMCID: PMC3587603 DOI: 10.1371/journal.pone.0058620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are associated with accumulations of disease specific PrP (PrP(d)) in the central nervous system (CNS) and often the lymphoreticular system (LRS). Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d) in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d) were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d) accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d) from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d) accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d) is at the level of plasma membranes. However, the precise nature of PrP(d)-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d) with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.
Collapse
|
5
|
Ondicova K, Mravec B. Do monoamine-synthesizing cells constitute a complex network of oxygen sensors? Med Hypotheses 2009; 74:547-51. [PMID: 19846259 DOI: 10.1016/j.mehy.2009.09.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 09/23/2009] [Indexed: 11/17/2022]
Abstract
Oxygen represents an essential molecule for organisms. Because of this, sophisticated systems of sensors have evolved to monitor oxygenation of tissues. We propose that monoamine-synthesizing cells represent an important part of this system. It is well known that the carotid body, which contains chromaffin cells, serves as a chemical sensor of blood oxygenation. Similarly, the activity of adrenal medullary chromaffin cells is increased during hypoxia. Moreover, neurons located in the central nervous system containing catecholamines, serotonin, and histamine are also sensitive to hypoxia. On the basis of this common sensitivity of monoamine-synthesizing cells to changes in oxygenation we propose the hypothesis that these cells constitute a widely distributed network of sensors that monitor oxygen levels. The role of monoamine-synthesizing cells in monitoring tissue oxygen supply during both physiological and pathological conditions is also discussed.
Collapse
Affiliation(s)
- K Ondicova
- Faculty of Medicine, Institute of Pathophysiology, Comenius University, Slovak Academy of Sciences, Bratislava, Slovakia
| | | |
Collapse
|
6
|
Díaz-Flores L, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, Borges R. Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiol (Oxf) 2008; 192:145-63. [PMID: 18021326 DOI: 10.1111/j.1748-1716.2007.01811.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article reviews the current status of research about the histogenesis and morphofunctional characteristics of chromaffin cells in the adrenal medulla. First, this study reports the selective migration, transcription and activation factors, and the morphological events of the chromaffin cell precursors during adrenal medulla development. Subsequently, the morphofunctional characteristics of adrenergic and non-adrenergic cells are considered, with particular reference to the characteristics of chromaffin granules and their biological steps, including their formation, traffic (storage, targeting and docking), exocytosis in the strict sense and recapture. Moreover, the relationship of chromaffin cells with other tissue components of the adrenal medulla is also revised, comprising the ganglion cells, sustentacular cells, nerves and connective-vascular tissue.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Pathology and Histology, School of Medicine, La Laguna University, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Rodriguez H, Filippa V, Mohamed F, Dominguez S, Scardapane L. Interaction between chromaffin and sustentacular cells in adrenal medulla of viscacha (Lagostomus maximus maximus). Anat Histol Embryol 2007; 36:182-5. [PMID: 17535349 DOI: 10.1111/j.1439-0264.2006.00732.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
New evidence provides valuable information about the participation of sustentacular cells in chromaffin cell catecholamine secretion. In this process, calcium ions play an important role. It has been shown that there is an intense ionic traffic between both types of cells. Moreover, sustentacular cells take an active part in calcium metabolism, regulating levels of the ion and indirectly, the synthesis and release of catecholamines. This background information encouraged us to study the sustentacular population of Lagostomus adrenal medulla and its morphologic relationship with the chromaffin population. The animals were captured, transported to the animal facilities, anaesthetized and killed. The adrenal gland was processed by immunohistochemistry using antiserum against S-100 (subunit alpha and beta), a specific marker. Through the morphological and immunohistochemical study, it was found that there are sustentacular cells in deferent regions of adrenal medulla, mainly in the basal zone of chromaffin cells, which constitute the glomerular structure around blood capillaries. Cytoplasmic extentions of sustentacular cells penetrate into chromaffin cells and make contact with the basal membrane of the capillary endothelium. The relationship among chromaffin cells, capillaries and sustentacular cells suggests that they may intervene actively in the adrenal medulla metabolism.
Collapse
Affiliation(s)
- H Rodriguez
- Cátedra de Histología y Embriología, Universidad Nacional de San Luis, (5700) San Luis, Argentina
| | | | | | | | | |
Collapse
|
8
|
O'Sullivan KM, Bunn SJ. Phospholipase C isozymes are differentially distributed in the rat adrenal medulla. Neurosci Lett 2006; 396:212-6. [PMID: 16352394 DOI: 10.1016/j.neulet.2005.11.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/14/2005] [Accepted: 11/16/2005] [Indexed: 11/25/2022]
Abstract
Immunohistochemistry has been used to examine the distribution of selected phospholipase C (PLC) isozymes within the adrenal medulla of the rat. PLCbeta isozymes were expressed at moderate levels in the chromaffin cells but more strongly in association with ganglion cell clusters. PLCbeta2 and PLCbeta3 staining of clusters did not overlap suggesting selective PLC isozyme expression in two distinct ganglionic types. The distribution of PLCbeta4 immunoreactivity was very similar to PLCbeta3 with the strongest staining observed in the same cell clusters. Antibodies to PLCbeta1 labelled multiple bands on Western blots and were not therefore used for immunohistochemistry. The chromaffin cells were also immunoreactive for PLCgamma1, although the strongest staining with this antibody was seen in cells surrounding large sinus vessels. PLCdelta1 and PLCdelta2 had quite distinct distributions, with the former selectively localized to an endothelial cell population surrounding the chromaffin cells. This observation was supported by experiments on isolated bovine adrenal medullary cells where PLCdelta1 expression was lost when the cell preparation was enriched for chromaffin cells. Antibodies to PLCdelta2 labelled a network of nerve fibres throughout the medulla and clusters of ganglion cells located primarily at the medullary-cortical boundary. PLCdelta2 immunoreactivity was also present in nerve fibres within the adrenal capsule where it appeared to be co-localized with PLCbeta4 staining.
Collapse
Affiliation(s)
- Kim M O'Sullivan
- Centre for Neuroendocrinology and Department of Anatomy and Structural Biology, School of Medical Sciences, The University of Otago, P.O. Box 913, Dunedin, New Zealand
| | | |
Collapse
|
9
|
Mravec B. A new focus on interoceptive properties of adrenal medulla. Auton Neurosci 2005; 120:10-7. [PMID: 15927540 DOI: 10.1016/j.autneu.2005.04.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 12/18/2022]
Abstract
The adrenal medulla is an important part of the sympathoadrenal system. Chromaffin cells of the adrenal medulla respond to a broad spectrum of stressful situations by releasing epinephrine and norepinephrine. Originally, it was accepted that this response is controlled exclusively by central nervous system structures. However, it was also demonstrated that a surgically denervated adrenal medulla can respond directly by secreting epinephrine and norepinephrine during an imbalance of internal environment (hypoglycemia, asphyxia). Published data had documented the innervation of the adrenal medulla by sensory neurons of spinal dorsal root ganglia. In addition, recent data showed that ganglion cells of the adrenal medulla project ascending axons. These data suggested potential transmission of information from the adrenal medulla to the central nervous system regarding metabolic changes in the blood. This paper presents an overview of possible involvement of adrenal medullary chromaffin cells in the detection of changes in the internal environment and in the transmission of this information to the central nervous system.
Collapse
Affiliation(s)
- Boris Mravec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences and Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| |
Collapse
|
10
|
Springell DA, Powers-Martin K, Phillips JK, Pilowsky PM, Goodchild AK. Phosphorylated extracellular signal-regulated kinase 1/2 immunoreactivity identifies a novel subpopulation of sympathetic preganglionic neurons. Neuroscience 2005; 133:583-90. [PMID: 15885917 DOI: 10.1016/j.neuroscience.2005.02.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 02/15/2005] [Accepted: 02/20/2005] [Indexed: 10/25/2022]
Abstract
Distinct chemical codes are thought to reflect functional specificity in sympathetic preganglionic neurons (SPN). Although a number of chemical candidates have been identified including neurotransmitter-related, calcium-binding and other proteins, signal transduction proteins have been largely neglected. Not only might these chemicals allow discrimination of functionally unique chemical signatures, but they may also identify activated neurons. Immunoreactivity (ir) to phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) was differentially located within the thoracic spinal cord depending upon which of three forms of killing was used: the only exception to this was the intermediolateral cell column (IML) which was consistently, densely labeled. The presence or absence of p-ERK1/2 in SPN (n=17,541) within the IML of the thoraco-lumbar spinal cord was determined in seven rats. SPN were identified on the basis of their location, size and that they contained choline acetyltransferase ir. On average, 58% of SPN contained p-ERK1/2, however, more SPN in both the upper (72%; C8-T4) and lower (78%; T11-L3) thoraco-lumbar spinal cord contained p-ERK1/2-ir than the middle thoracic region (47%; T4-T10). p-ERK1/2-ir was also examined in SPN (n=1895) innervating the adrenal medulla (identified by retrograde tracing using cholera toxin B subunit) combined with localization of neuronal nitric oxide synthase (nNOS) in three rats. On average, 64% of adrenal SPN contain p-ERK1/2-ir, and it was confirmed that all adrenal SPN contain nNOS-ir. It appears that p-ERK1/2-ir SPN, described in this study, have tonically activated receptors that are coupled to intracellular signal transduction pathways that lead to the phosphorylation of ERK1/2.
Collapse
Affiliation(s)
- D A Springell
- Hypertension and Stroke Research Laboratories, Department of Physiology, Institute for Biomedical Research and School of Medical Sciences, University of Sydney, Royal North Shore Hospital, St. Leonards, NSW 2065, Australia
| | | | | | | | | |
Collapse
|
11
|
Young JB, Landsberg L. Synthesis, Storage, and Secretion of Adrenal Medullary Hormones: Physiology and Pathophysiology. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
12
|
Phillips JK, Dubey R, Sesiashvilvi E, Takeda M, Christie DL, Lipski J. Differential expression of the noradrenaline transporter in adrenergic chromaffin cells, ganglion cells and nerve fibres of the rat adrenal medulla. J Chem Neuroanat 2001; 21:95-104. [PMID: 11173223 DOI: 10.1016/s0891-0618(00)00113-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Expression of the noradrenaline transporter (NAT) was identified in various cell and fibre populations of the rat adrenal medulla, examined with immunohistochemistry and confocal microscopy. Immunoreactivity for the catecholamine biosynthetic enzymes tyrosine hydroxylase (TH), aromatic-L-amino-acid decarboxylase (AADC) and dopamine beta-hydroxylase (DBH) was present in all chromaffin cells, while phenylethanolamine N-methyltransferase (PNMT) was used to determine adrenergic chromaffin cell groups. Labelling with NAT antibody was predominantly cytoplasmic and colocalised with PNMT immunoreactivity. Noradrenergic chromaffin cells were not NAT immunoreactive. Additionally, NAT antibody labelling demonstrated clusters of ganglion cells (presumably Type I) and nerve fibres. Expression of TH, AADC, DBH, PNMT and NAT mRNA was examined using reverse transcription-polymerase chain reaction (RT-PCR) from adrenal medulla punches and single chromaffin cells, and results were consistent with those obtained with immunocytochemistry. Chromaffin cells and fibres labelled with antibodies against growth associated protein-43 (GAP-43) were not NAT immunoreactive, while ganglion cells were doubled labelled with the two antibodies. The presence of NAT in adrenergic chromaffin cells, and its absence from noradrenergic cells, suggests that the adrenergic cell type is primarily responsible for uptake of catecholamines in the adrenal medulla.
Collapse
Affiliation(s)
- J K Phillips
- Department of Physiology, School of Medicine, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | |
Collapse
|
13
|
Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 2000; 279:R1763-75. [PMID: 11049860 DOI: 10.1152/ajpregu.2000.279.5.r1763] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain stimulation or activation of certain reflexes can result in differential activation of the two populations of adrenal medullary chromaffin cells: those secreting either epinephrine or norepinephrine, suggesting that they are controlled by different central sympathetic networks. In urethan-chloralose-anesthetized rats, we found that antidromically identified adrenal sympathetic preganglionic neurons (SPNs) were excited by stimulation of the rostral ventrolateral medulla (RVLM) with either a short (mean: 29 ms) or a long (mean: 129 ms) latency. The latter group of adrenal SPNs were remarkably insensitive to baroreceptor reflex activation but strongly activated by the glucopenic agent 2-deoxyglucose (2-DG), indicating their role in regulation of adrenal epinephrine release. In contrast, adrenal SPNs activated by RVLM stimulation at a short latency were completely inhibited by increases in arterial pressure or stimulation of the aortic depressor nerve, were unaffected by 2-DG administration, and are presumed to govern the discharge of adrenal norepinephrine-secreting chromaffin cells. These findings of a functionally distinct preganglionic innervation of epinephrine- and norepinephrine-releasing adrenal chromaffin cells provide a foundation for identifying the different sympathetic networks underlying the differential regulation of epinephrine and norepinephrine secretion from the adrenal medulla in response to physiological challenges and experimental stimuli.
Collapse
Affiliation(s)
- S F Morrison
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
14
|
Aunis D, Langley K. Physiological aspects of exocytosis in chromaffin cells of the adrenal medulla. ACTA PHYSIOLOGICA SCANDINAVICA 1999; 167:89-97. [PMID: 10571543 DOI: 10.1046/j.1365-201x.1999.00580.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adrenal medulla is composed principally of groups of adrenergic and noradrenergic chromaffin cells, with minor populations of small intensely fluorescent cells and ganglionic neurones. Different molecular stimuli evoke distinct secretory events in the gland, involving the release of either adrenaline or noradrenaline together with various neuroactive peptides. The nature of the secretory response can be controlled at a central level or regulated locally within the gland. Specific innervation patterns to the different types of chromaffin cell have been implicated in central regulatory mechanisms, while several explanations for regulating secretion locally have been proposed. The differential distribution of various types of receptors between cell phenotypes, such as muscarinic or nicotinic acetylcholine receptors, histamine receptors, angiotensin receptors and different classes of opiate receptors between the two principal chromaffin cell populations could be involved in local control. In addition exocytosis parameters could be modulated differently in adrenergic and noradrenergic cells by phenotype-specific mechanisms, possibly involving molecules like Growth Associated Protein-43, Synaptosomal Associated Protein-25 isoforms or the p11 annexin subunit. The distribution of the various types of calcium channels is also known to vary between chromaffin cell subtypes. This short review examines possible ways in which specific innervation patterns in the adrenal gland could be programmed and discusses exocytosis mechanisms that could differ between chromaffin cell phenotypes. Data reviewed here suggest that the adrenal medulla should no longer be viewed as a homogeneous entity but as consisting of an ensemble of individual cell subpopulations each with a distinct secretory response that could in part reflect its local history.
Collapse
Affiliation(s)
- D Aunis
- Unité INSERM U-338-Biologie de la Communication Cellulaire, Centre de Neurochimie, 5 rue Blaise Pascal, Strasbourg Cedex, France
| | | |
Collapse
|
15
|
Blottner D. Nitric oxide and target-organ control in the autonomic nervous system: Anatomical distribution, spatiotemporal signaling, and neuroeffector maintenance. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<139::aid-jnr14>3.0.co;2-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Abstract
The formation of adrenocortical zonation occurs in rats during late gestation. Since adult cortical function is modulated by neural mediators, it is possible that the development of differentiated function is dependent on cortical innervation. The goal of this study was to compare the pattern and timing of rodent and ovine adrenal innervation during late organogenesis by staining with antibodies directed against the neuropeptides vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and neuropeptide tyrosine (NPY) and the catecholamine biosynthetic enzyme, tyrosine hydroxylase (TOH). Rat adrenals were collected from fetal days 17-21 (term=21 days) and ovine adrenals from fetal days 101-136 (term=145 days). Adrenals were fixed, cryosectioned at 100 microns and immunostained using Cy3-conjugated secondary antibodies. In both species, staining of VIP, CGRP, NPY and TOH fibers was observed in the capsule and subcapsular layers of the cortex during gestation. In late gestation, VIP- and NPY-positive ganglions cells were observed near the medulla extending processes toward the outer cortex; in ovine adrenals, fibers from ganglion cells appeared to surround nests of outer cortical (presumably, zona glomerulosa) cells. These data show that phenotypically distinct neural elements appear at different stages of adrenocortical development. The presence of neural elements in contact with adrenal cortical cells supports the possibility for neural control of adrenocortical development.
Collapse
Affiliation(s)
- W C Engeland
- Dept. of Surgery, Graduate Program in Neurosicence, Univ. of Minnesota, Minneapolis 55455, USA.
| | | | | |
Collapse
|
17
|
Corness JD, Burbach JP, Hökfelt T. The rat galanin-gene promoter: response to members of the nuclear hormone receptor family, phorbol ester and forskolin. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 47:11-23. [PMID: 9221897 DOI: 10.1016/s0169-328x(97)00004-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have cloned a rat genomic DNA fragment of approximately 12.5 kb. Nine kb of the cloned fragment lie in the 5'-flanking region of the gene and contain the promoter elements, while the remaining 3.5 kb contain the first four complete exons, the first three introns, and part of the fourth intron of the rat galanin gene. We have partially analysed some of the elements within the proximal sequence of this promoter which may influence the transcriptional regulation of the rat galanin gene. The rat galanin-gene promoter contains many regions which share homology with both the human and the bovine galanin genes and certain cis-elements appear to be conserved among the three species. In an attempt to test whether some of these elements are functional in the rat gene, transient transfection studies were carried out in selected cell lines. Estrogen, thyroid hormone and retinoic acid all showed a minimal degree of promoter stimulation when the rat galanin-gene promoter was co-transfected with the appropriate hormone receptors in Neuro 2A cells, while co-transfection of the nuclear orphan receptor ELP1 was able to stimulate transcription of a galanin promoter-driven reporter-gene construct (-374 bp) by 35-fold. The galanin promoter mediated a 3-4-fold induction in response to forskolin or TPA. Deletion of a 5-bp element at -50 bp from the start of transcription was able to greatly reduce the forskolin response but not the TPA response. These results point to several elements that may be targets of transcription factors linked to extracellular stimuli.
Collapse
Affiliation(s)
- J D Corness
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
18
|
Blottner D. Nitric oxide and fibroblast growth factor in autonomic nervous system: short- and long-term messengers in autonomic pathway and target-organ control. Prog Neurobiol 1997; 51:423-38. [PMID: 9106900 DOI: 10.1016/s0301-0082(96)00062-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The freely diffusible messenger nitric oxide (NO), generated by NO synthase (NOS)-containing "nitroxergic" (NO-ergic) neurons, is unique among classical synaptic chemical transmitters because of its "non-specificity", molecular "NO-receptors" (e.g. guanylyl cyclase, iron complexes, nitrosylated proteins or DNA) in target cells, intracellular targeting, regulated biosynthesis, and growth factor/cytokine-dependence. In the nervous system, expression of NOS is particularly intriguing in central and peripheral autonomic pathways and their targets. Here, anatomical and functional links appear to exist between NOS, its associated catalytic NADPH-diaphorase enzyme activity (NOSaD) and fibroblast growth factor-2 (FGF-2), a pleiotropic cytokine with mitogenic actions, suggesting mutual "short- and long-term" actions. Several recent studies performed in the rat sympathoadrenal system, an anatomically and neurochemically well-defined autonomic pathway with target-specific functional units of sympathetic preganglionic neurons (SPNs) in the spinal cord, provide evidence for this hypothesis. The NO and cytokine signals may interact at the level of gene expression, transcription factors, post-transcriptional control or second messenger cross-talk. Thus, unique biological roles of FGF-2 and the NO system are likely to exist in neuroendocrine actions, vasomotory perfusion control as well as in neurotrophic actions in sympathetic innervation of the adrenal gland. In view of their anatomical co-existence, functional interplay and synchronizing effects on neuronal networks, multiple roles are suggested for both "short- and long-term" signalling molecules in neuroendocrine functions and integrated autonomic target organ control.
Collapse
Affiliation(s)
- D Blottner
- Department of Anatomy, Freie Universität Berlin, Germany.
| |
Collapse
|
19
|
Holgert H, Lagercrantz H, Dagerlind A, Hartman BK, Cozzari C, Brimijoin S, Hökfelt T. Effects of immunological sympathectomy on postnatal peptide expression in the rat adrenal medulla. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:88-95. [PMID: 8946057 DOI: 10.1016/s0165-3806(96)00135-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Administration of monoclonal antibodies against acetylcholinesterase (AChE-mabs) to adult rats leads to a selective degeneration of the acetylcholine esterase-(AChE), choline acetyltransferase-(ChAT) and enkephalin-(ENK) positive preganglionic fibres of the splanchnic nerve innervating the adrenal gland. Here we used this approach of immunological sympathectomy, performed at postnatal day 2 (P2), in an attempt to study the development role of the preganglionic fibres in the adrenal medulla in more detail. Analysis was performed at P16 and revealed that the effect of this treatment varied considerably between animals, as judged by the number of remaining AChE-, ChAT- and ENK-positive fibres. The number and intensity especially of ENK fibres in the adrenal medulla correlated negatively with the number and staining intensity of ENK-immunoreactive chromaffin cells, suggesting a 'dose-response' relationship. Thus, the high early postnatal levels of ENK-like immunoreactivity generally persisted in chromaffin cells of adrenals with a successful immunosympathectomy, i.e. in those adrenals that lacked AChE-, ChAT- and ENK-positive nerves. In contrast, calcitonin gene-related peptide-like immunoreactivity in nerves and chromaffin cells was not affected. Large and strongly AChE-positive intra-adrenal ganglion neurones, recently termed type I ganglion neurones, were present also after AChE-mab treatment and had an apparently normal morphology. These results indicate a role for preganglionic fibres in the developmental regulation of ENK in the chromaffin cells. However, these fibres appear less important for the postnatal development of the type I ganglion neurones.
Collapse
Affiliation(s)
- H Holgert
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The postnatal development of intraadrenal ganglion neurons was studied in rat by using indirect immunohistochemistry and in situ hybridization. The large neuropeptide tyrosine (NPY)-expressing ganglion neurons (type I ganglion neurons) matured postnatally, with marked increases in acetylcholinesterase (AChE)-, neurofilament 10 (NF10)-, and tyrosine hydroxylase (TH)-like immunoreactivities (LIs) paralleled by increasing levels of mRNAs encoding NPY, low-affinity neurotrophin receptor (LANR), and tropomyosin kinase receptor (trk). The smaller vasoactive intestinal polypeptide (VIP)-immunoreactive (IR) ganglion neurons (type II ganglion neurons) expressed increasing levels of VIP mRNA postnatally and also contained immunoreactive nitric oxide synthase (NOS) and its mRNA. These type II ganglion neurons appeared to be relatively mature already at postnatal day (P2) and did not express detectable levels of LANR or trk mRNAs. The cell size of both the type I and type II ganglion neurons increased about 2.5-fold postnatally. The type I ganglion neurons formed more densely packed clusters with increasing age, whereas the type II ganglion neurons were spread out in small groups or individually, mainly in the peripheral parts of the medulla, and appeared to fulfill their migration into the medulla and/or to the inner regions of the cortex early postnatally, possibly after establishing contact with their cortical targets. We suggest that the type I ganglion neurons represent sympathetic ganglion neurons of the same origin as the chromaffin cells and that they mature mainly postnatally. The development of the type II (VIP/NOS) ganglion neurons takes place earlier; however, their phenotype remains more uncertain.
Collapse
Affiliation(s)
- H Holgert
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|