1
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Li W, Tiedt S, Lawrence JH, Harrington ME, Musiek ES, Lo EH. Circadian Biology and the Neurovascular Unit. Circ Res 2024; 134:748-769. [PMID: 38484026 DOI: 10.1161/circresaha.124.323514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024]
Abstract
Mammalian physiology and cellular function are subject to significant oscillations over the course of every 24-hour day. It is likely that these daily rhythms will affect function as well as mechanisms of disease in the central nervous system. In this review, we attempt to survey and synthesize emerging studies that investigate how circadian biology may influence the neurovascular unit. We examine how circadian clocks may operate in neural, glial, and vascular compartments, review how circadian mechanisms regulate cell-cell signaling, assess interactions with aging and vascular comorbidities, and finally ask whether and how circadian effects and disruptions in rhythms may influence the risk and progression of pathophysiology in cerebrovascular disease. Overcoming identified challenges and leveraging opportunities for future research might support the development of novel circadian-based treatments for stroke.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| | - Steffen Tiedt
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Institute for Stroke and Dementia Research, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany (S.T.)
| | - Jennifer H Lawrence
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Mary E Harrington
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Neuroscience Program, Smith College, Northampton, MA (M.E.H.)
| | - Erik S Musiek
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
- Department of Neurology, Washington University School of Medicine, St. Louis, MO (J.H.L., E.S.M.)
| | - Eng H Lo
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston (W.L., E.H.L.)
- Consortium International pour la Recherche Circadienne sur l'AVC, Munich, Germany (W.L., S.T., J.H.L., M.E.H., E.S.M., E.H.L.)
| |
Collapse
|
3
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|
4
|
Haraguchi A, Du Y, Shiraishi R, Takahashi Y, Nakamura TJ, Shibata S. Oak extracts modulate circadian rhythms of clock gene expression in vitro and wheel-running activity in mice. Sleep Biol Rhythms 2022; 20:255-266. [PMID: 38469255 PMCID: PMC10899999 DOI: 10.1007/s41105-021-00365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022]
Abstract
Introduction In mammals, the central circadian clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus, which coordinates the circadian rhythm and controls locomotor activity rhythms. In addition to SCN cells, the peripheral tissues and embryonic fibroblasts also have clock genes, such as Per1/2 and Bmal1, which generate the transcriptional-translational feedback loop to produce an approximately 24-h cycle. Aging adversely affects the circadian clock system and locomotor functions. Oak extract has been reported to improve age-related physiological changes. However, no study has examined the effect of oak extract on the circadian clock system. Methods We examined the effects of oak extract and its metabolites (urolithin A [ULT] and ellagic acid [EA]) on clock gene expression rhythms in mouse embryonic fibroblasts (MEFs) and SCN. Furthermore, locomotor activity rhythm was assessed in young and aged mice. Results Chronic treatment with EA and ULT delayed the phase of PER2::LUC rhythms in SCN explants, and ULT prolonged the period of PER2::LUC rhythms in MEFs in a dose-dependent manner and increased the amplitude of PER2::LUC rhythms in MEFs, though only at low concentrations. Acute treatment with ULT affected the phase of PER2::LUC rhythms in MEFs depending on the concentration and timing of the treatment. In addition, oak extract prolonged the activity time of behavioral rhythms in old mice and tended to increase daily wheel-running revolutions in both young and old mice. Conclusions These results suggest that oak extract is a novel modulator of the circadian clock in vitro and in vivo. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-021-00365-2.
Collapse
Affiliation(s)
- Atsushi Haraguchi
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 162-8480 Japan
| | - Yao Du
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 162-8480 Japan
| | - Rena Shiraishi
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571 Japan
| | - Yuki Takahashi
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571 Japan
| | - Takahiro J. Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kawasaki, Kanagawa 214-8571 Japan
| | - Shigenobu Shibata
- Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, Shinjuku, Tokyo, 162-8480 Japan
| |
Collapse
|
5
|
von Gall C. The Effects of Light and the Circadian System on Rhythmic Brain Function. Int J Mol Sci 2022; 23:ijms23052778. [PMID: 35269920 PMCID: PMC8911243 DOI: 10.3390/ijms23052778] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 02/06/2023] Open
Abstract
Life on earth has evolved under the influence of regularly recurring changes in the environment, such as the 24 h light/dark cycle. Consequently, organisms have developed endogenous clocks, generating 24 h (circadian) rhythms that serve to anticipate these rhythmic changes. In addition to these circadian rhythms, which persist in constant conditions and can be entrained to environmental rhythms, light drives rhythmic behavior and brain function, especially in nocturnal laboratory rodents. In recent decades, research has made great advances in the elucidation of the molecular circadian clockwork and circadian light perception. This review summarizes the role of light and the circadian clock in rhythmic brain function, with a focus on the complex interaction between the different components of the mammalian circadian system. Furthermore, chronodisruption as a consequence of light at night, genetic manipulation, and neurodegenerative diseases is briefly discussed.
Collapse
Affiliation(s)
- Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich Heine University, 40225 Dusseldorf, Germany
| |
Collapse
|
6
|
Kaladchibachi S, Negelspach DC, Zeitzer JM, Fernandez FX. Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 228:112389. [PMID: 35086027 DOI: 10.1016/j.jphotobiol.2022.112389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The central pacemaker of flies, rodents, and humans generates less robust circadian output signals across normative aging. It is not well understood how changes in light sensitivity might contribute to this phenomenon. In the present study, we summarize results from an extended data series (n = 5681) showing that the locomotor activity rhythm of aged Drosophila can phase-shift normally to intermittently spaced episodes of bright polychromatic light exposure (600 lx) but that deficits emerge in response to 8, 16, and 120-millisecond flashes of narrowband blue (λm, 452 nm) and green (λm, 525 nm) LED light. For blue, phase-resetting of the activity rhythm of older flies is not as energy efficient as it is in younger flies at the fastest flash-exposures tested (8 milliseconds), suggesting there might be different floors of light duration necessary to incur photohabituation in each age group. For green, the responses of older flies are universally crippled relative to those of younger flies across the slate of protocols we tested. The difference in green flash photosensitivity is one of the most salient age-related phenotypes that has been documented in the circadian phase-shifting literature thus far. These data provide further impetus for investigations on pacemaker aging and how it might relate to changes in the circadian system's responses to particular sequences of light exposure tuned for wavelength, intensity, duration, and tempo.
Collapse
Affiliation(s)
| | | | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences and Stanford Center for Sleep Sciences and Medicine, Stanford University, Stanford, CA, USA; Mental Illness Research, Education and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA; Department of Neurology, University of Arizona, Tucson, AZ, USA; BIO5 and McKnight Brain Research Institutes, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
7
|
Sadria M, Layton AT. Aging affects circadian clock and metabolism and modulates timing of medication. iScience 2021; 24:102245. [PMID: 33796837 PMCID: PMC7995490 DOI: 10.1016/j.isci.2021.102245] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Aging is associated with impairments in the circadian rhythms, and with energy deregulation that affects multiple metabolic pathways. The goal of this study is to unravel the complex interactions among aging, metabolism, and the circadian clock. We seek to identify key factors that inform the liver circadian clock of cellular energy status and to reveal the mechanisms by which variations in food intake may disrupt the clock. To address these questions, we develop a comprehensive mathematical model that represents the circadian pathway in the mouse liver, together with the insulin/IGF-1 pathway, mTORC1, AMPK, NAD+, and the NAD+ -consuming factor SIRT1. The model is age-specific and can simulate the liver of a young mouse or an aged mouse. Simulation results suggest that the reduced NAD+ and SIRT1 bioavailability may explain the shortened circadian period in aged rodents. Importantly, the model identifies the dosing schedules for maximizing the efficacy of anti-aging medications.
Collapse
Affiliation(s)
- Mehrshad Sadria
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Anita T. Layton
- Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacy, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
8
|
Panagiotou M, Michel S, Meijer JH, Deboer T. The aging brain: sleep, the circadian clock and exercise. Biochem Pharmacol 2021; 191:114563. [PMID: 33857490 DOI: 10.1016/j.bcp.2021.114563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/26/2022]
Abstract
Aging is a multifactorial process likely stemming from damage accumulation and/or a decline in maintenance and repair mechanisms in the organisms that eventually determine their lifespan. In our review, we focus on the morphological and functional alterations that the aging brain undergoes affecting sleep and the circadian clock in both human and rodent models. Although both species share mammalian features, differences have been identified on several experimental levels, which we outline in this review. Additionally, we delineate some challenges on the preferred analysis and we suggest that a uniform route is followed so that findings can be smoothly compared. We conclude by discussing potential interventions and highlight the influence of physical exercise as a beneficial lifestyle intervention, and its effect on healthy aging and longevity. We emphasize that even moderate age-matched exercise is able to ameliorate several aging characteristics as far as sleep and circadian rhythms are concerned, independent of the species studied.
Collapse
Affiliation(s)
- M Panagiotou
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands.
| | - S Michel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - J H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| | - T Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
9
|
Abstract
Melanopsin retinal ganglion cells (mRGCs) are the third class of retinal photoreceptors with unique anatomical, electrophysiological, and biological features. There are different mRGC subtypes with differential projections to the brain. These cells contribute to many nonimage-forming functions of the eye, the most relevant being the photoentrainment of circadian rhythms through the projections to the suprachiasmatic nucleus of the hypothalamus. Other relevant biological functions include the regulation of the pupillary light reflex, mood, alertness, and sleep, as well as a possible role in formed vision. The relevance of the mRGC-related pathways in the brain is highlighted by the role that the dysfunction and/or loss of these cells may play in affecting circadian rhythms and sleep in many neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's disease and in aging. Moreover, the occurrence of circadian dysfunction is a known risk factor for dementia. In this chapter, the anatomy, physiology, and functions of these cells as well as their resistance to neurodegeneration in mitochondrial optic neuropathies or their predilection to be lost in other neurodegenerative disorders will be discussed.
Collapse
|
10
|
A high-salt/high fat diet alters circadian locomotor activity and glucocorticoid synthesis in mice. PLoS One 2020; 15:e0233386. [PMID: 32437460 PMCID: PMC7241774 DOI: 10.1371/journal.pone.0233386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 05/03/2020] [Indexed: 12/30/2022] Open
Abstract
Salt is an essential nutrient; however, excessive salt intake is a prominent public health concern worldwide. Various physiological functions are associated with circadian rhythms, and disruption of circadian rhythms is a prominent risk factor for cardiovascular diseases, cancer, and immune disease. Certain nutrients are vital regulators of peripheral circadian clocks. However, the role of a high-fat and high-salt (HFS) diet in the regulation of circadian gene expression is unclear. This study aimed to investigate the effect of an HFS diet on rhythms of locomotor activity, caecum glucocorticoid secretion, and clock gene expression in mice. Mice administered an HFS diet displayed reduced locomotor activity under normal light/dark and constant dark conditions in comparison with those administered a normal diet. The diurnal rhythm of caecum glucocorticoid secretion and the expression levels of glucocorticoid-related genes and clock genes in the adrenal gland were disrupted with an HFS diet. These results suggest that an HFS diet alters locomotor activity, disrupts circadian rhythms of glucocorticoid secretion, and downregulates peripheral adrenal gland circadian clock genes.
Collapse
|
11
|
Buijink MR, Olde Engberink AHO, Wit CB, Almog A, Meijer JH, Rohling JHT, Michel S. Aging Affects the Capacity of Photoperiodic Adaptation Downstream from the Central Molecular Clock. J Biol Rhythms 2020; 35:167-179. [PMID: 31983261 PMCID: PMC7134598 DOI: 10.1177/0748730419900867] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aging impairs circadian clock function, leading to disrupted sleep-wake patterns and a reduced capability to adapt to changes in environmental light conditions. This makes shift work or the changing of time zones challenging for the elderly and, importantly, is associated with the development of age-related diseases. However, it is unclear what levels of the clock machinery are affected by aging, which is relevant for the development of targeted interventions. We found that naturally aged mice of >24 months had a reduced rhythm amplitude in behavior compared with young controls (3-6 months). Moreover, the old animals had a strongly reduced ability to adapt to short photoperiods. Recording PER2::LUC protein expression in the suprachiasmatic nucleus revealed no impairment of the rhythms in PER2 protein under the 3 different photoperiods tested (LD: 8:16, 12:12, and 16:8). Thus, we observed a discrepancy between the behavioral phenotype and the molecular clock, and we conclude that the aging-related deficits emerge downstream of the core molecular clock. Since it is known that aging affects several intracellular and membrane components of the central clock cells, it is likely that an impairment of the interaction between the molecular clock and these components is contributing to the deficits in photoperiod adaptation.
Collapse
Affiliation(s)
- M Renate Buijink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Anneke H O Olde Engberink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Charlotte B Wit
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Assaf Almog
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jos H T Rohling
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
12
|
Rosenberg Y, Doniger T, Harii S, Sinniger F, Levy O. Demystifying Circalunar and Diel Rhythmicity in Acropora digitifera under Constant Dim Light. iScience 2019; 22:477-488. [PMID: 31835172 PMCID: PMC6926284 DOI: 10.1016/j.isci.2019.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 01/09/2023] Open
Abstract
Life on earth has evolved under constant environmental changes; in response to these changes, most organisms have developed an endogenous clock that allows them to anticipate daily and seasonal changes and adapt their biology accordingly. Light cycles synchronize biological rhythms and are controlled by an endogenous clock that is entrained by environmental cues. Light is known to play a key role in the biology of symbiotic corals as they exhibit many biological processes entrained by daily light patterns. In this study, we aimed at determining the effect of constant dim light on coral's perception of diel and monthly cycles. Our results show that under constant dim light corals display a loss of rhythmic processes and constant stimuli by light, which initiates signal transduction that results in an abnormal cell cycle, cell proliferation, and protein synthesis. The results emphasize how constant dim light can mask the biological clock of Acropora digitifera. Light entrains many biological processes governed by the endogenous clock Constant dim light overrides the biological clock of A. digitifera corals Artificial light impacts the processes that allow corals to thrive in our oceans The increase of artificial light in coastal areas is a growing threat to coral reefs
Collapse
Affiliation(s)
- Yael Rosenberg
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel.
| | - Tirza Doniger
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Saki Harii
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Frederic Sinniger
- Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Oren Levy
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
13
|
Yin W, Borniger JC, Wang X, Maguire SM, Munselle ML, Bezner KS, Tesfamariam HM, Garcia AN, Hofmann HA, Nelson RJ, Gore AC. Estradiol treatment improves biological rhythms in a preclinical rat model of menopause. Neurobiol Aging 2019; 83:1-10. [PMID: 31585360 DOI: 10.1016/j.neurobiolaging.2019.08.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/27/2019] [Accepted: 08/30/2019] [Indexed: 01/14/2023]
Abstract
The perimenopausal transition at middle age is often associated with hot flashes and sleep disruptions, metabolic changes, and other symptoms. Whereas the mechanisms for these processes are incompletely understood, both aging (AG) and a loss of ovarian estrogens play contributing roles. Furthermore, the timing of when estradiol (E) treatment should commence and for how long are key clinical questions in the management of symptoms. Using a rat model of surgical menopause, we determined the effects of regimens of E treatment with differing time at onset and duration of treatment on diurnal rhythms of activity and core temperature and on food intake and body weight. Reproductively mature (MAT, ∼4 months) or AG (∼11 months) female rats were ovariectomized, implanted intraperitoneally with a telemetry device, and given either a vehicle (V) or E subcutaneous capsule implantation. Rats were remotely recorded for 10 days per month for 3 (MAT) or 6 (AG) months. To ascertain whether delayed onset of treatment affected rhythms, a subset of AG-V rats had their capsules switched to E at the end of 3 months. Another set of AG-E rats had their capsules removed at 3 months to determine whether beneficial effects of E would persist. Overall, activity and temperature mesor, robustness, and amplitude declined with AG. Compared to V treatment, E-treated rats showed (1) better maintenance of body weight and food intake; (2) higher, more consolidated activity and temperature rhythms; and (3) higher activity and temperature robustness and amplitude. In the AG arm of the study, switching treatment from V to E or E to V quickly reversed these patterns. Thus, the presence of E was the dominant factor in determining stability and amplitude of locomotor activity and temperature rhythms. As a whole, the results show benefits of E treatment, even with a delay, on biological rhythms and physiological functions.
Collapse
Affiliation(s)
- Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Jeremy C Borniger
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Xutong Wang
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Sean M Maguire
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA
| | - Mercedes L Munselle
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Kelsey S Bezner
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Haben M Tesfamariam
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Alexandra N Garcia
- Psychology Department, The University of Texas at Austin, Austin, TX, USA
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Psychology Department, The University of Texas at Austin, Austin, TX, USA; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Hashimoto A, Fujiki S, Nakamura W, Nakamura TJ. Effects of testosterone on circadian rhythmicity in old mice. J Physiol Sci 2019; 69:791-798. [PMID: 31301005 PMCID: PMC10717400 DOI: 10.1007/s12576-019-00695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/06/2019] [Indexed: 11/26/2022]
Abstract
Serum testosterone concentration decreases with age in humans and rodents. Accordingly, old male mice show changes in locomotor activity rhythms: a lengthened free-running period and decreased activity levels among others. To investigate whether testosterone replacement improves the age-related decline in circadian rhythmicity, we examined the effects of testosterone on the circadian rhythms of wheel running activity in old male mice. Intact male C57BL/6J mice (18-22 months old) were subcutaneously implanted with silicone tubes packed with testosterone propionate (TP) or cholesterol. TP treatment significantly decreased the daily wheel running revolutions in a normal light/dark (LD) cycle and in constant darkness (DD), but did not affect the free-running period. The same experiment performed on young male gonadectomized mice (3-5 months old) demonstrated that TP treatment significantly increased activity levels in both LD and DD. These results suggest that testosterone replacement exacerbates the age-related decline in circadian rhythmicity.
Collapse
Affiliation(s)
- Atsuyoshi Hashimoto
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Shingo Fujiki
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan
| | - Wataru Nakamura
- Department of Oral-Chrono Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8588, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Hgashimita, Tama-ku, Kawasaki, Kanagawa, 214-8571, Japan.
| |
Collapse
|
15
|
Hozer C, Pifferi F, Aujard F, Perret M. The Biological Clock in Gray Mouse Lemur: Adaptive, Evolutionary and Aging Considerations in an Emerging Non-human Primate Model. Front Physiol 2019; 10:1033. [PMID: 31447706 PMCID: PMC6696974 DOI: 10.3389/fphys.2019.01033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/26/2019] [Indexed: 01/04/2023] Open
Abstract
Circadian rhythms, which measure time on a scale of 24 h, are genetically generated by the circadian clock, which plays a crucial role in the regulation of almost every physiological and metabolic process in most organisms. This review gathers all the available information about the circadian clock in a small Malagasy primate, the gray mouse lemur (Microcebus murinus), and reports 30 years data from the historical colony at Brunoy (France). Although the mouse lemur has long been seen as a "primitive" species, its clock displays high phenotypic plasticity, allowing perfect adaptation of its biological rhythms to environmental challenges (seasonality, food availability). The alterations of the circadian timing system in M. murinus during aging show many similarities with those in human aging. Comparisons are drawn with other mammalian species (more specifically, with rodents, other non-human primates and humans) to demonstrate that the gray mouse lemur is a good complementary and alternative model for studying the circadian clock and, more broadly, brain aging and pathologies.
Collapse
|
16
|
Lax P, Ortuño-Lizarán I, Maneu V, Vidal-Sanz M, Cuenca N. Photosensitive Melanopsin-Containing Retinal Ganglion Cells in Health and Disease: Implications for Circadian Rhythms. Int J Mol Sci 2019; 20:E3164. [PMID: 31261700 PMCID: PMC6651433 DOI: 10.3390/ijms20133164] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 06/26/2019] [Indexed: 12/23/2022] Open
Abstract
Melanopsin-containing retinal ganglion cells (mRGCs) represent a third class of retinal photoreceptors involved in regulating the pupillary light reflex and circadian photoentrainment, among other things. The functional integrity of the circadian system and melanopsin cells is an essential component of well-being and health, being both impaired in aging and disease. Here we review evidence of melanopsin-expressing cell alterations in aging and neurodegenerative diseases and their correlation with the development of circadian rhythm disorders. In healthy humans, the average density of melanopsin-positive cells falls after age 70, accompanied by age-dependent atrophy of dendritic arborization. In addition to aging, inner and outer retinal diseases also involve progressive deterioration and loss of mRGCs that positively correlates with progressive alterations in circadian rhythms. Among others, mRGC number and plexus complexity are impaired in Parkinson's disease patients; changes that may explain sleep and circadian rhythm disorders in this pathology. The key role of mRGCs in circadian photoentrainment and their loss in age and disease endorse the importance of eye care, even if vision is lost, to preserve melanopsin ganglion cells and their essential functions in the maintenance of an adequate quality of life.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Isabel Ortuño-Lizarán
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Manuel Vidal-Sanz
- Department of Ophthalmology, University of Murcia, 30120 Murcia, Spain
| | - Nicolás Cuenca
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain.
- Multidisciplinary Institute for Environmental Studies "Ramon Margalef", University of Alicante, 03690 Alicante, Spain.
| |
Collapse
|
17
|
Datta S, Samanta D, Tiwary B, Chaudhuri AG, Chakrabarti N. Sex and estrous cycle dependent changes in locomotor activity, anxiety and memory performance in aged mice after exposure of light at night. Behav Brain Res 2019; 365:198-209. [PMID: 30853396 DOI: 10.1016/j.bbr.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Light-at-night (LAN) can affect mammalian behaviour. But, the effects of LAN on aged rodents remain undefined yet. In the present investigation, aged Swiss Albino mice, habituated in regular light-dark cycle, were exposed to bright-light-pulse (1-h) at night on the day of study followed by experimentations for assessment of locomotor activities in the open field, anxiety in the elevated plus maze and short-term memory for novel object recognition (NOR) in the habituated field. Under without-bright-light exposure, (a) aged proestrous females showed greater locomotor activities and less anxiety than in aged diestrous females, (b) aged males showed locomotor activities and anxiety level similar to aged diestrous females and aged proestrous females respectively and (c) all animals failed to retain in object discrimination memory. LAN exposure exhibited the continual failure of such retention of memory while animals showed free and spontaneous exploration with thigmotactic behaviour having no object bias and/or phobia, but time stay in objects by animals altered variably among sexes and stages of estrous cycle. Overall, the LAN caused (a) diminution in locomotor activities, rise in anxiety and failure of memory for recognition of both familiar and novel objects in aged proestrous females, (b) hyperlocomotor activities and reduction in anxiety in both males and diestrous females with the failure of memory for recognition of novel objects only in aged males while diestrous females showed enhanced exploration time to both objects during NOR. Thus, nocturnal behaviour of aged mice varies with sex and estrous cycle and light acts differentially on them.
Collapse
Affiliation(s)
- Siddhartha Datta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India.
| | - Diptaman Samanta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India.
| | - Basant Tiwary
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India.
| | | | - Nilkanta Chakrabarti
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; UGC-CPEPA Centre for "Electro-physiological and Neuro-imaging studies including Mathematical Modelling", University of Calcutta, Kolkata, West Bengal, India; S.N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India.
| |
Collapse
|
18
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
19
|
Liebert A. Emerging Applications of Photobiomodulation Therapy: The Interaction Between Metabolomics and the Microbiome. Photomed Laser Surg 2018; 36:515-517. [PMID: 30234428 DOI: 10.1089/pho.2018.4527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ann Liebert
- Photomolecular Research Lab, Australasian Research Institute , Wahroonga, Australia
| |
Collapse
|
20
|
Biello SM, Bonsall DR, Atkinson LA, Molyneux PC, Harrington ME, Lall GS. Alterations in glutamatergic signaling contribute to the decline of circadian photoentrainment in aged mice. Neurobiol Aging 2018; 66:75-84. [PMID: 29547750 DOI: 10.1016/j.neurobiolaging.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 12/20/2022]
Abstract
Robust physiological circadian rhythms form an integral part of well-being. The aging process has been found to negatively impact systems that drive circadian physiology, typically manifesting as symptoms associated with abnormal/disrupted sleeping patterns. Here, we investigated the age-related decline in light-driven circadian entrainment in male C57BL/6J mice. We compared light-driven resetting of circadian behavioral activity in young (1-2 months) and old (14-18 months) mice and explored alterations in the glutamatergic pathway at the level of the circadian pacemaker, the suprachiasmatic nucleus (SCN). Aged animals showed a significant reduction in sensitivity to behavioral phase resetting by light. We show that this change was through alterations in N-Methyl-D-aspartate (NMDA) signaling at the SCN, where NMDA, a glutamatergic agonist, was less potent in inducing clock resetting. Finally, we show that this shift in NMDA sensitivity was through the reduced SCN expression of this receptor's NR2B subunit. Only in young animals did an NR2B antagonist attenuate behavioral resetting. These results can help target treatments that aim to improve both physiological and behavioral circadian entrainment in aged populations.
Collapse
Affiliation(s)
| | - David R Bonsall
- Medway School of Pharmacy, University of Kent, Chatham, UK; Neuroscience Program, Smith College, Northampton, MA, USA
| | | | | | | | - Gurprit S Lall
- Medway School of Pharmacy, University of Kent, Chatham, UK.
| |
Collapse
|
21
|
Engelberth RCGJ, Silva KDDA, Fiuza FP, Soares JG, Costa MSMO, Lima RRDM, Nascimento ESD, Santos JRD, Cavalcanti JRLP, Cavalcante JS. Retinal, NPY- and 5ht- inputs to the aged suprachiasmatic nucleus in common marmosets (Callithrix jacchus). Neurosci Res 2017; 121:54-59. [PMID: 28288865 DOI: 10.1016/j.neures.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/02/2016] [Accepted: 03/09/2017] [Indexed: 01/08/2023]
Abstract
The circadian timing system (CTS) anticipates optimal physiological patterns in response to environmental fluctuations, such as light-dark cycle. Since age-related disruption of circadian synchronization is linked to several pathological conditions, we characterized alterations of neurochemical constituents and retinal projections to the major pacemaker of CTS, the suprachiasmatic nucleus (SCN), in adult and aged marmosets. We used intraocular injections of neural tracer Cholera toxin b (CTb) to report age-related reductions in CTb, neuropeptide Y and serotonin immunoreactivities. Considering these projections arise in SCN from nuclei that relay environmental information to entrain the circadian clock, we provide important anatomical correlates to age-associated physiological deficits.
Collapse
Affiliation(s)
- Rovena C G J Engelberth
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil.
| | - Kayo D de Azevedo Silva
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Felipe Porto Fiuza
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| | - Joacil Germano Soares
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Miriam S M O Costa
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Ruthnaldo R de Melo Lima
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Expedito Silva do Nascimento
- Laboratory of Neuroanatomy, Morphology Department, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - José R Dos Santos
- Department of Biosciences, Federal University of Sergipe, Itabaiana, Sergipe, Brazil
| | - José R L P Cavalcanti
- Laboratory of Experimental Neurology, Department of Biomedical Sciences, Health Science Center, University of State of Rio Grande do Norte, Mossoró, RN, Brazil
| | - Jeferson S Cavalcante
- Laboratory of Neurochemical Studies, Physiology Department, Biosciences Center, Federal University of Rio Grande do Norte, 59072-970 Natal, RN, Brazil
| |
Collapse
|
22
|
Abstract
Circadian rhythms play an influential role in nearly all aspects of physiology and behavior in the vast majority of species on Earth. The biological clockwork that regulates these rhythms is dynamic over the lifespan: rhythmic activities such as sleep/wake patterns change markedly as we age, and in many cases they become increasingly fragmented. Given that prolonged disruptions of normal rhythms are highly detrimental to health, deeper knowledge of how our biological clocks change with age may create valuable opportunities to improve health and longevity for an aging global population. In this Review, we synthesize key findings from the study of circadian rhythms in later life, identify patterns of change documented to date, and review potential physiological mechanisms that may underlie these changes.
Collapse
|
23
|
Nakamura TJ, Takasu NN, Nakamura W. The suprachiasmatic nucleus: age-related decline in biological rhythms. J Physiol Sci 2016; 66:367-74. [PMID: 26915078 PMCID: PMC10717791 DOI: 10.1007/s12576-016-0439-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Aging is associated with changes in sleep duration and quality, as well as increased rates of pathologic/disordered sleep. While several factors contribute to these changes, emerging research suggests that age-related changes in the mammalian central circadian clock within the suprachiasmatic nucleus (SCN) may be a key factor. Prior work from our group suggests that circadian output from the SCN declines because of aging. Furthermore, we have previously observed age-related infertility in female mice, caused by a mismatch between environmental light-dark cycles and the intrinsic, internal biological clocks. In this review, we address regulatory mechanisms underlying circadian rhythms in mammals and summarize recent literature describing the effects of aging on the circadian system.
Collapse
Affiliation(s)
- Takahiro J Nakamura
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Nana N Takasu
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wataru Nakamura
- Laboratory of Oral Chronobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Deibel SH, Zelinski EL, Keeley RJ, Kovalchuk O, McDonald RJ. Epigenetic alterations in the suprachiasmatic nucleus and hippocampus contribute to age-related cognitive decline. Oncotarget 2016; 6:23181-203. [PMID: 26252151 PMCID: PMC4695111 DOI: 10.18632/oncotarget.4036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/31/1969] [Indexed: 12/16/2022] Open
Abstract
Circadian rhythm dysfunction and cognitive decline, specifically memory loss, frequently accompany natural aging. Circadian rhythms and memory are intertwined, as circadian rhythms influence memory formation and recall in young and old rodents. Although, the precise relationship between circadian rhythms and memory is still largely unknown, it is hypothesized that circadian rhythm disruption, which occurs during aging, contributes to age-associated cognitive decline, specifically memory loss. While there are a variety of mechanisms that could mediate this effect, changes in the epigenome that occur during aging has been proposed as a potential candidate. Interestingly, epigenetic mechanisms, such as DNA methylation and sirtuin1 (SIRT1) are necessary for both circadian rhythms and memory. During aging, similar alterations of epigenetic mechanisms occur in the suprachiasmatic nucleus (SCN) and hippocampus, which are necessary for circadian rhythm generation and memory, respectively. Recently, circadian rhythms have been linked to epigenetic function in the hippocampus, as some of these epigenetic mechanisms oscillate in the hippocampus and are disrupted by clock gene deletion. The current paper will review how circadian rhythms and memory change with age, and will suggest how epigenetic changes in these processes might contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Scott H Deibel
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Erin L Zelinski
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robin J Keeley
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Robert J McDonald
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
25
|
Mattis J, Sehgal A. Circadian Rhythms, Sleep, and Disorders of Aging. Trends Endocrinol Metab 2016; 27:192-203. [PMID: 26947521 PMCID: PMC4808513 DOI: 10.1016/j.tem.2016.02.003] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Sleep-wake cycles are known to be disrupted in people with neurodegenerative disorders. These findings are now supported by data from animal models for some of these disorders, raising the question of whether the disrupted sleep/circadian regulation contributes to the loss of neural function. As circadian rhythms and sleep consolidation also break down with normal aging, changes in these may be part of what makes aging a risk factor for disorders like Alzheimer's disease (AD). Mechanisms underlying the connection between circadian/sleep dysregulation and neurodegeneration remain unclear, but several recent studies provide interesting possibilities. While mechanistic analysis is under way, it is worth considering treatment of circadian/sleep disruption as a means to alleviate symptoms of neurodegenerative disorders.
Collapse
Affiliation(s)
- Joanna Mattis
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Amita Sehgal
- HHMI, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
26
|
Lax P, Esquiva G, Fuentes-Broto L, Segura F, Sánchez-Cano A, Cuenca N, Pinilla I. Age-related changes in photosensitive melanopsin-expressing retinal ganglion cells correlate with circadian rhythm impairments in sighted and blind rats. Chronobiol Int 2016; 33:374-91. [DOI: 10.3109/07420528.2016.1151025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Age-Related Changes in the Circadian System Unmasked by Constant Conditions. eNeuro 2015; 2:eN-NWR-0064-15. [PMID: 26464996 PMCID: PMC4596014 DOI: 10.1523/eneuro.0064-15.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/17/2015] [Accepted: 08/22/2015] [Indexed: 12/14/2022] Open
Abstract
Circadian timing systems, like most physiological processes, cannot escape the effects of aging. With age, humans experience decreased duration and quality of sleep. Aged mice exhibit decreased amplitude and increased fragmentation of the activity rhythm, and lengthened circadian free-running period in both light-dark (LD) and constant dark (DD) conditions. Several studies have shown that aging impacts neural activity rhythms in the central circadian clock in the suprachiasmatic nucleus (SCN). However, evidence for age-related disruption of circadian oscillations of clock genes in the SCN has been equivocal. We hypothesized that daily exposure to LD cycles masks the full impact of aging on molecular rhythms in the SCN. We performed ex vivo bioluminescent imaging of cultured SCN slices of young and aged PER2::luciferase knock-in (PER2::LUC) mice housed under LD or prolonged DD conditions. Under LD conditions, the amplitude of PER2::LUC rhythms differed only slightly between SCN explants from young and aged animals; under DD conditions, the PER2::LUC rhythms of aged animals showed markedly lower amplitudes and longer circadian periods than those of young animals. Recordings of PER2::LUC rhythms in individual SCN cells using an electron multiplying charge-coupled device camera revealed that aged SCN cells showed longer circadian periods and that the rhythms of individual cells rapidly became desynchronized. These data suggest that aging degrades the SCN circadian ensemble, but that recurrent LD cycles mask these effects. We propose that these changes reflect a decline in pacemaker robustness that could increase vulnerability to environmental challenges, and partly explain age-related sleep and circadian disturbances.
Collapse
|
28
|
Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol Behav 2014; 138:75-86. [PMID: 25447482 DOI: 10.1016/j.physbeh.2014.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 01/17/2023]
Abstract
Photic cues influence daily patterns of activity via two complementary mechanisms: (1) entraining the internal circadian clock and (2) directly increasing or decreasing activity, a phenomenon referred to as "masking". The direction of this masking response is dependent on the temporal niche an organism occupies, as nocturnal animals often decrease activity when exposed to light, while the opposite response is more likely to be seen in diurnal animals. Little is known about the neural mechanisms underlying these differences. Here, we examined the masking effects of light on behavior and the activation of several brain regions by that light, in diurnal Arvicanthis niloticus (Nile grass rats) and nocturnal Mus musculus (mice). Each species displayed the expected behavioral response to a 1h pulse of light presented 2h after lights-off, with the diurnal grass rats and nocturnal mice increasing and decreasing their activity, respectively. In grass rats light induced an increase in cFOS in all retinorecipient areas examined, which included the suprachiasmatic nucleus (SCN), the ventral subparaventricular zone (vSPZ), intergeniculate leaflet (IGL), lateral habenula (LH), olivary pretectal nucleus (OPT) and the dorsal lateral geniculate (DLG). In mice, light led to an increase in cFOS in one of these regions (SCN), no change in others (vSPZ, IGL and LH) and a decrease in two (OPT and DLG). In addition, light increased cFOS expression in three arousal-related brain regions (the lateral hypothalamus, dorsal raphe, and locus coeruleus) and in one sleep-promoting region (the ventrolateral preoptic area) in grass rats. In mice, light had no effect on cFOS in these four regions. Taken together, these results highlight several brain regions whose responses to light suggest that they may play a role in masking, and that the possibility that they contribute to species-specific patterns of behavioral responses to light should be explored in future.
Collapse
|
29
|
Kovacic P, Somanathan R. Melatonin and Circadian Rhythm: Aging, Cancer, and Mechanism. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ojpm.2014.47065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Leise TL, Harrington ME, Molyneux PC, Song I, Queenan H, Zimmerman E, Lall GS, Biello SM. Voluntary exercise can strengthen the circadian system in aged mice. AGE (DORDRECHT, NETHERLANDS) 2013; 35:2137-2152. [PMID: 23340916 PMCID: PMC3825002 DOI: 10.1007/s11357-012-9502-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 12/05/2012] [Indexed: 06/01/2023]
Abstract
Consistent daily rhythms are important to healthy aging according to studies linking disrupted circadian rhythms with negative health impacts. We studied the effects of age and exercise on baseline circadian rhythms and on the circadian system's ability to respond to the perturbation induced by an 8 h advance of the light:dark (LD) cycle as a test of the system's robustness. Mice (male, mPer2(luc)/C57BL/6) were studied at one of two ages: 3.5 months (n = 39) and >18 months (n = 72). We examined activity records of these mice under entrained and shifted conditions as well as mPER2::LUC measures ex vivo to assess circadian function in the suprachiasmatic nuclei (SCN) and important target organs. Age was associated with reduced running wheel use, fragmentation of activity, and slowed resetting in both behavioral and molecular measures. Furthermore, we observed that for aged mice, the presence of a running wheel altered the amplitude of the spontaneous firing rate rhythm in the SCN in vitro. Following a shift of the LD cycle, both young and aged mice showed a change in rhythmicity properties of the mPER2::LUC oscillation of the SCN in vitro, and aged mice exhibited longer lasting internal desynchrony. Access to a running wheel alleviated some age-related changes in the circadian system. In an additional experiment, we replicated the effect of the running wheel, comparing behavioral and in vitro results from aged mice housed with or without a running wheel (>21 months, n = 8 per group, all examined 4 days after the shift). The impact of voluntary exercise on circadian rhythm properties in an aged animal is a novel finding and has implications for the health of older people living with environmentally induced circadian disruption.
Collapse
Affiliation(s)
- T. L. Leise
- Mathematics Department, Amherst College, Amherst, MA 01002 USA
| | | | - P. C. Molyneux
- Neuroscience Program, Smith College, Northampton, MA 01063 USA
| | - I. Song
- Neuroscience Program, Smith College, Northampton, MA 01063 USA
| | - H. Queenan
- Neuroscience Program, Smith College, Northampton, MA 01063 USA
| | - E. Zimmerman
- Neuroscience Program, Smith College, Northampton, MA 01063 USA
| | - G. S. Lall
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham, Kent, ME4 4TB UK
| | - S. M. Biello
- School of Psychology, University of Glasgow, Glasgow, G12 8QB Scotland UK
| |
Collapse
|
31
|
Kim SJ, Benloucif S, Reid KJ, Weintraub S, Kennedy N, Wolfe LF, Zee PC. Phase-shifting response to light in older adults. J Physiol 2013; 592:189-202. [PMID: 24144880 DOI: 10.1113/jphysiol.2013.262899] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Age-related changes in circadian rhythms may contribute to the sleep disruption observed in older adults. A reduction in responsiveness to photic stimuli in the circadian timing system has been hypothesized as a possible reason for the advanced circadian phase in older adults. This project compared phase-shifting responses to 2 h of broad-spectrum white light at moderate and high intensities in younger and older adults. Subjects included 29 healthy young (25.1 ± 4.1 years; male to female ratio: 8: 21) and 16 healthy older (66.5 ± 6.0 years; male to female ratio: 5: 11) subjects, who participated in two 4-night and 3-day laboratory stays, separated by at least 3 weeks. Subjects were randomly assigned to one of three different time-points, 8 h before (-8), 3 h before (-3) or 3 h after (+3) the core body temperature minimum (CBTmin) measured on the baseline night. For each condition, subjects were exposed in a randomized order to 2 h light pulses of two intensities (2000 lux and 8000 lux) during the two different laboratory stays. Phase shifts were analysed according to the time of melatonin midpoint on the nights before and after light exposure. Older subjects in this study showed an earlier baseline phase and lower amplitude of melatonin rhythm compared to younger subjects, but there was no evidence of age-related changes in the magnitude or direction of phase shifts of melatonin midpoint in response to 2 h of light at either 2000 lux or 8000 lux. These results indicate that the acute phase-shifting response to moderate- or high-intensity broad spectrum light is not significantly affected by age.
Collapse
Affiliation(s)
- Seong Jae Kim
- S. J. Kim: Abbott Hall, 5th Floor, 710 North Lake Shore Drive, Chicago, IL 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
More than half of the elderly in today's society suffer from sleep disorders with detrimental effects on brain function, behavior, and social life. A major contribution to the regulation of sleep stems from the circadian system. The central circadian clock located in the suprachiasmatic nucleus of the hypothalamus is like other brain regions subject to age-associated changes. Age affects different levels of the clock machinery from molecular rhythms, intracellular messenger, and membrane properties to neuronal network synchronization. While some of the age-sensitive components of the circadian clock, like ion channels and neurotransmitters, have been described, little is known about the underlying mechanisms. In any case, the result is a reduction in the amplitude of the circadian timing signal produced by the suprachiasmatic nucleus, a weakening in the control of peripheral oscillators and a decrease in amplitude and precision of daily rhythms in physiology and behavior. The distortion in temporal organization is thought to be related to a number of serious health problems and promote neurodegeneration. Understanding the mechanisms underlying age-related deficits in circadian clock function will therefore not only benefit rhythm disorders but also alleviate age-associated diseases aggravated by clock dysfunction.
Collapse
Affiliation(s)
- Sahar Farajnia
- 1Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Tanaka M, Yamaguchi E, Takahashi M, Hashimura K, Shibata T, Nakamura W, Nakamura TJ. Effects of age-related dopaminergic neuron loss in the substantia nigra on the circadian rhythms of locomotor activity in mice. Neurosci Res 2012; 74:210-5. [PMID: 23044185 DOI: 10.1016/j.neures.2012.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 11/24/2022]
Abstract
Elderly people often develop sleep and autonomic dysfunctions, which are regulated by circadian rhythm. Recently, we reported on the degradation of neural output from the central circadian clock in the suprachiasmatic nucleus (SCN) with aging. However, it is likely that many other factors contribute to the age-related decline in the functioning of the circadian system. In this study, we examined the effects of dopaminergic neuronal loss in the substantia nigra (SN) on circadian rhythms of mice to assess whether age-related degeneration of the dopamine system influences circadian rhythm. Young male C57BL/6J mice were administered 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a compound that selectively destroys dopaminergic neurons in the SN, and their wheel-running activities were recorded. We observed that MPTP-treated mice lost 43% of their dopaminergic neurons in the SN (on average) and demonstrated longer period of wheel-running activity rhythm in constant darkness compared with control mice. However, all the remaining circadian parameters in the MPTP-treated mice remained constant. Our findings suggest that in addition to SCN output dysfunction, age-related degeneration in the dopamine system of the brain leads to circadian rhythm irregularities.
Collapse
Affiliation(s)
- Makoto Tanaka
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba 290-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Lupi D, Semo M, Foster RG. Impact of age and retinal degeneration on the light input to circadian brain structures. Neurobiol Aging 2012; 33:383-92. [DOI: 10.1016/j.neurobiolaging.2010.03.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 02/02/2010] [Accepted: 03/09/2010] [Indexed: 12/19/2022]
|
35
|
Parry BL, Meliska CJ, Sorenson DL, Martínez LF, López AM, Elliott JA, Hauger RL. Reduced phase-advance of plasma melatonin after bright morning light in the luteal, but not follicular, menstrual cycle phase in premenstrual dysphoric disorder: an extended study. Chronobiol Int 2011; 28:415-24. [PMID: 21721857 DOI: 10.3109/07420528.2011.567365] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The authors previously observed blunted phase-shift responses to morning bright light in women with premenstrual dysphoric disorder (PMDD). The aim of this study was to determine if these findings could be replicated using a higher-intensity, shorter-duration light pulse and to compare these results with the effects of an evening bright-light pulse. In 17 PMDD patients and 14 normal control (NC) subjects, the authors measured plasma melatonin at 30-min intervals from 18:00 to 10:00 h in dim (<30 lux) or dark conditions the night before (Night 1) and after (Night 3) a bright-light pulse (administered on Night 2) in both follicular and luteal menstrual cycle phases. The bright light (either 3000 lux for 6 h or 6000 lux for 3 h) was given either in the morning (AM light), 7 h after the dim light melatonin onset (DLMO) measured the previous month, or in the evening (PM light), 3 h after the DLMO. In the luteal, but not in the follicular, phase, AM light advanced melatonin offset between Night 1 and Night 3 significantly less in PMDD than in NC subjects. The effects of PM light were not significant, nor were there significant effects of the light pulse on melatonin measures of onset, duration, peak, or area under the curve. These findings replicated the authors' previous finding of a blunted phase-shift response to morning bright light in the luteal, but not the follicular, menstrual cycle phase in PMDD compared with NC women, using a brighter (6000 vs. 3000 lux) light pulse for a shorter duration (3 vs. 6 h). As the effect of PM bright light on melatonin phase-shift responses did not differ between groups or significantly alter other melatonin measures, these results suggest that in PMDD there is a luteal-phase subsensitivity or an increased resistance to morning bright-light cues that are critical in synchronizing human biological rhythms. The resulting circadian rhythm malsynchonization may contribute to the occurrence of luteal phase depressive symptoms in women with PMDD.
Collapse
Affiliation(s)
- Barbara L Parry
- The Center for Chronobiology, Department of Psychiatry, University of California, San Diego, La Jolla, California, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
Lax P, Otalora BB, Esquiva G, Rol MDLÁ, Madrid JA, Cuenca N. Circadian dysfunction in P23H rhodopsin transgenic rats: effects of exogenous melatonin. J Pineal Res 2011; 50:183-91. [PMID: 21062354 DOI: 10.1111/j.1600-079x.2010.00827.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study focuses on the effects of retinal degeneration on the circadian patterns of P23H rats, as well as on the effect of exogenous melatonin administration. To this end, the body temperature of P23H and Sprague-Dawley rats was continuously monitored and their retinas examined at different stages of degeneration, by means of histological labeling and electroretinogram recordings. Melatonin (2 mg/kg BW/day) was supplied ad libitum throughout the experiment to a subset of animals. The body temperature recordings from wild-type and mutant animals showed no differences in the periodogram and the pattern of the mean waveform. However, a progressive decrease in the relative amplitude of the rhythm (RA), a decline in the coupling strength of the rhythm to environmental zeitgebers (interdaily stability, IS) and increased rhythm fragmentation (intradaily variability, IV) were observed in P23H rats, when compared to wild-type animals. The P23H animals showed a progressive decrease in light-induced retinal responses until reaching 18 months of age. By this age, all photoreceptors had already disappeared, and no responses were found in the EGRs. Exogenous administration of melatonin improved the visual response of P23H rats. In fact, the maximum b-wave recorded at 14 months of age was significantly higher in melatonin-treated P23H rats than in the control animals. Furthermore, the maximum b-wave recorded for P23H rats at the age of 14 months significantly correlated with RA, IS, and IV. This leads us to conclude that vision loss in P23H rats is correlated with a progressive fragmentation of their circadian patterns. Both effects are partially reversed by melatonin administration.
Collapse
Affiliation(s)
- Pedro Lax
- Department of Physiology, Genetics and Microbiology, University of Alicante, San Vicente del Raspeig, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Agorastos A, Huber CG. The role of melatonin in glaucoma: implications concerning pathophysiological relevance and therapeutic potential. J Pineal Res 2011; 50:1-7. [PMID: 21073517 DOI: 10.1111/j.1600-079x.2010.00816.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glaucoma is a frequent ophthalmologic condition leading to chronic progressive optic neuropathy, which can result in visual impairment and blindness. In addition, glaucoma is associated with a dysregulation of circadian rhythms, as well as with a high incidence of sleep disorders, depression, and anxiety. However, because of their high comorbidity in older age, these conditions have not received much scientific attention and are often undertreated. In the current paper, we review the available literature on the role of melatonergic mechanisms in glaucoma, regulation of circadian rhythms, and depression. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. Recently, there has been evidence for a progressive loss of intrinsically photosensitive retinal ganglion cells (ipRGC) because of oxidative stress in glaucoma. As ipRGC are responsible for the photic transduction to the circadian system and subsequent melatonin secretion, and melatonin is involved in the pathophysiology of circadian desynchronization, sleep disorder, and depression, an impairment of photo-dependent melatonergic signaling may be a common pathway connecting glaucoma with these comorbidities. This fact, as well as the proven retinal neuroprotective role of melatonin, suggests that melatonergic drugs provide a potentially promising treatment strategy supplementing the management of intraocular pressure by pharmacological and surgical measures. Additionally, multidisciplinary treatment focusing on depression and normalization of circadian rhythms might be beneficial for glaucoma patients. Furthermore, glaucoma might be a useful model for studying the pathophysiological interactions between the melatonergic, circadian, and mood systems.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Centre for Psychosocial Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| | | |
Collapse
|
38
|
Auger RR, Boeve BF. Sleep disorders in neurodegenerative diseases other than Parkinson's disease. HANDBOOK OF CLINICAL NEUROLOGY 2011; 99:1011-1050. [PMID: 21056241 DOI: 10.1016/b978-0-444-52007-4.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- R Robert Auger
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| | | |
Collapse
|
39
|
Duncan MJ, Hester JM, Hopper JA, Franklin KM. The effects of aging and chronic fluoxetine treatment on circadian rhythms and suprachiasmatic nucleus expression of neuropeptide genes and 5-HT1B receptors. Eur J Neurosci 2010; 31:1646-54. [PMID: 20525077 DOI: 10.1111/j.1460-9568.2010.07186.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Age-related changes in circadian rhythms, including attenuation of photic phase shifts, are associated with changes in the central pacemaker in the suprachiasmatic nucleus (SCN). Aging decreases expression of mRNA for vasoactive intestinal peptide (VIP), a key neuropeptide for rhythm generation and photic phase shifts, and increases expression of serotonin transporters and 5-HT(1B) receptors, whose activation inhibits these phase shifts. Here we describe studies in hamsters showing that aging decreases SCN expression of mRNA for gastrin-releasing peptide, which also modulates photic phase resetting. Because serotonin innervation trophically supports SCN VIP mRNA expression, and serotonin transporters decrease extracellular serotonin, we predicted that chronic administration of the serotonin-selective reuptake inhibitor, fluoxetine, would attenuate the age-related changes in SCN VIP mRNA expression and 5-HT(1B) receptors. In situ hybridization studies showed that fluoxetine treatment does not alter SCN VIP mRNA expression, in either age group, at zeitgeber time (ZT)6 or 13 (ZT12 corresponds to lights off). However, receptor autoradiographic studies showed that fluoxetine prevents the age-related increase in SCN 5-HT(1B) receptors at ZT6, and decreases SCN 5-HT(1B) receptors in both ages at ZT13. Therefore, aging effects on SCN VIP mRNA and SCN 5-HT(1B) receptors are differentially regulated; the age-related increase in serotonin transporter sites mediates the latter but not the former. The studies also showed that aging and chronic fluoxetine treatment decrease total daily wheel running without altering the phase of the circadian wheel running rhythm, in contrast to previous reports of phase resetting by acute fluoxetine treatment.
Collapse
Affiliation(s)
- Marilyn J Duncan
- Department of Anatomy and Neurobiology, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
41
|
Scheuermaier K, Laffan AM, Duffy JF. Light exposure patterns in healthy older and young adults. J Biol Rhythms 2010; 25:113-22. [PMID: 20348462 DOI: 10.1177/0748730410361916] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aging is associated with an earlier timing of circadian rhythms and a shorter phase angle between wake time and the timing of melatonin secretion or the core body temperature nadir. Light has a phase-dependent effect on the circadian pacemaker, and modifications of habitual light exposure in older people could contribute to a change in the timing of circadian rhythms or in the phase angle of entrainment. In this study, we compare natural light exposure of community-dwelling older and young subjects studied at the same time of year, focusing on the pattern of light exposure across the waking day. We recorded light exposure data for 3 to 8 days from 22 older (aged 66.01 +/- 5.83) and 22 young subjects (aged 23.41 +/- 4.57), living at home on self-selected sleepwake schedules, and matched for time of year. All subjects were from New England (latitude 42.3 degrees N to 43 degrees N). We compared the percentage of the waking day spent by older and young subjects at 4 different light levels (from very dim to very bright). We compared hourly averaged light exposure data in each group according to clock time and with respect to each subject's daily sleepwake times. Although both age groups spent more than half of their waking hours in dim or moderate room light intensity (<100 lux), we found that the older subjects spent a significantly greater percentage of their waking day in the brighter light levels (> or =1000 lux); their hourly averaged light exposure levels were also significantly greater whether we examined the data with respect to absolute clock time, to wake time, or to bed time, and this was true across all seasons. We found that healthy older people were exposed to significantly higher levels of light throughout their waking day than young people. Differences in natural light exposure may contribute to the age-related phase advance of the circadian pacemaker and its later timing relative to the sleepwake cycle. This hypothesis should be explored further in carefully designed prospective studies.
Collapse
Affiliation(s)
- Karine Scheuermaier
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
42
|
|
43
|
Gachon F, Bonnefont X. Circadian clock-coordinated hepatic lipid metabolism: only transcriptional regulation? Aging (Albany NY) 2010; 2:101-6. [PMID: 20354271 PMCID: PMC2850146 DOI: 10.18632/aging.100123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/16/2010] [Indexed: 11/25/2022]
Abstract
By regulating the metabolism of fatty acids, carbohydrates, and xenobiotic, the mammalian circadian clock plays a fundamental role on the liver physiology. At present, it is supposed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level. However, recent evidences suggest that some signaling pathways synchronized by the circadian clock can also influence metabolism at a post-transcriptional level. In this context, we have recently shown that the circadian clock synchronizes the rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock, provokes deregulation of endoplasmic reticulum-localized enzymes, and leads to impaired lipid metabolism. We will describe here the additional pathways synchronized by the clock and discussed the influence of the circadian clock-controlled feeding rhythm on them.
Collapse
Affiliation(s)
- Frédéric Gachon
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, CH-1005, Switzerland.
| | | |
Collapse
|
44
|
Jud C, Chappuis S, Revell VL, Sletten TL, Saaltink DJ, Cajochen C, Skene DJ, Albrecht U. Age-dependent alterations in human PER2 levels after early morning blue light exposure. Chronobiol Int 2010; 26:1462-9. [PMID: 19916842 DOI: 10.3109/07420520903385564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In our modern society, we are exposed to different artificial light sources that could potentially lead to disturbances of circadian rhythms and, hence, represent a risk for health and welfare. Investigating the acute impact of light on clock-gene expression may thus help us to better understand the mechanisms underlying disorders rooted in the circadian system. Here, we show an overall significant reduction in PER2 expression in oral mucosa with aging in the morning, noon, and afternoon. In the afternoon, 10 h after exposure to early morning blue light, PER2 was significantly elevated in the young compared to green light exposure and to older participants. Our findings demonstrate that human buccal samples are a valuable tool for studying clock-gene rhythms and the response of PER2 to light. Additionally, our results indicate that the influence of light on clock-gene expression in humans is altered with age.
Collapse
Affiliation(s)
- Corinne Jud
- Department of Medicine, University of Fribourg, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Biello SM. Circadian clock resetting in the mouse changes with age. AGE (DORDRECHT, NETHERLANDS) 2009; 31:293-303. [PMID: 19557547 PMCID: PMC2813053 DOI: 10.1007/s11357-009-9102-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 06/08/2009] [Indexed: 05/28/2023]
Abstract
The most widely recognised consequence of normal age-related changes in biological timing is the sleep disruption that appears in old age and diminishes the quality of life. These sleep disorders are part of the normal ageing process and consist primarily of increased amounts of wakefulness and reduced amounts of deep sleep. Changes in the amplitude and timing of the sleep-wake cycle appear to represent, at least in part, a loss of effective circadian regulation of sleep. Understanding alterations in the characteristics of stimuli that help to consolidate internal rhythms will lead to recommendations to improve synchronisation in old age. Converging evidence from both human and animal studies indicate that senescence is associated with alterations in the neural structure thought to be primarily responsible for the generation of the circadian oscillation, the suprachiasmatic nuclei (SCN). Work has shown that there are changes in the anatomy, physiology and ability of the clock to reset in response to stimuli with age. Therefore it is possible that at least some of the observed age-related changes in sleep and circadian timing could be mediated at the level of the SCN. The SCN contain a circadian clock whose activity can be recorded in vitro for several days. We have tested the response of the circadian clock to a number of neurochemicals that reset the clock in a manner similar to light, including glutamate, N-methyl-D-aspartate (NMDA), gastrin-releasing peptide (GRP) and histamine (HA). In addition, we have also tested agents which phase shift in a pattern similar to behavioural 'non-photic' signals, including neuropeptide Y (NPY), serotonin (5HT) and gamma-aminobutyric acid (GABA). These were tested on the circadian clock in young and older mice (approximately 4 and 15 months old). We found deficits in the response to specific neurochemicals but not to others in our older mice. These results indicate that some changes seen in the responsiveness of the circadian clock to light with age may be mediated at the level of the SCN. Further, the responsiveness of the circadian clock with age is attenuated to some, but not all stimuli. This suggests that not all clock stimuli lose their effectiveness with age, and that it may be possible to compensate for deficits in clock performance by enhancing the strength of those stimulus pathways which are intact.
Collapse
|
47
|
Bentivoglio M, Deng XH, Nygård M, Sadki A, Kristensson K. The aging suprachiasmatic nucleus and cytokines: functional, molecular, and cellular changes in rodents. Chronobiol Int 2009; 23:437-49. [PMID: 16687317 DOI: 10.1080/07420520500545797] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aging process brings about a switch to a low-grade chronic inflammatory condition in the periphery and brain, a condition which may prime brain cells, including those of the hypothalamic suprachiasmatic nucleus (SCN). Little information is available, however, on the responses of the SCN to neuroinflammation and immune-related challenges, and such responses have not been hitherto investigated during aging. We here provide an overview of these issues and summarize data we obtained in the study of the SCN of young and aged mice. In particular, we analyzed: i) the electrophysiological properties of the SCN core (the retino-recipient region) in tissue slices; ii) expression and day/night variation of transcripts encoding the receptors for the cytokines interferon-gamma and tumor necrosis factor-alpha, as well as the expression of transcripts encoding the proteins "suppressors of cytokine signaling" SOCS1 and SOCS3, by means of quantitative real-time polymerase chain reaction; levels of mRNAs were correlated with neuronal activation, revealed by Fos induction, elicited in the SCN by intracerebroventricular injections of a mixture of interferon-gamma and tumor necrosis factor-alpha during the daytime and nighttime; and iii) response of astrocytes and microglia in the SCN to the same paradigm of cytokine administration. Marked changes of all the above-mentioned parameters were found in the aged SCN, indicating that the circadian pacemaker is a target of the aging process. In addition, the findings indicate that neurons and glial cells of the biological clock are sensitive to inflammatory signals, and that the response to such signals is altered during senescence.
Collapse
Affiliation(s)
- Marina Bentivoglio
- Department of Morphological and Biomedical Sciences, University of Verona, Italy.
| | | | | | | | | |
Collapse
|
48
|
Jean-Louis G, Zizi F, Lazzaro DR, Wolintz AH. Circadian rhythm dysfunction in glaucoma: A hypothesis. J Circadian Rhythms 2008; 6:1. [PMID: 18186932 PMCID: PMC2249578 DOI: 10.1186/1740-3391-6-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 01/10/2008] [Indexed: 01/08/2023] Open
Abstract
The absence of circadian zeitgebers in the social environment causes circadian misalignment, which is often associated with sleep disturbances. Circadian misalignment, defined as a mismatch between the sleep-wake cycle and the timing of the circadian system, can occur either because of inadequate exposure to the light-dark cycle, the most important synchronizer of the circadian system, or reduction in light transmission resulting from ophthalmic diseases (e.g., senile miosis, cataract, diabetic retinopathy, macular degeneration, retinitis pigmentosa, and glaucoma). We propose that glaucoma may be the primary ocular disease that directly compromises photic input to the circadian time-keeping system because of inherent ganglion cell death. Glaucomatous damage to the ganglion cell layer might be particularly harmful to melanopsin. According to histologic and circadian data, a subset of intrinsically photoresponsive retinal ganglion cells, expressing melanopsin and cryptochromes, entrain the endogenous circadian system via transduction of photic input to the thalamus, projecting either to the suprachiasmatic nucleus or the lateral geniculate nucleus. Glaucoma provides a unique opportunity to explore whether in fact light transmission to the circadian system is compromised as a result of ganglion cell loss.
Collapse
Affiliation(s)
- Girardin Jean-Louis
- Department of Ophthalmology, SUNY Downstate Medical Center, New York, USA
- Sleep Disorders Center, Department of Neurology, SUNY Downstate Medical Center, New York, USA
- Brooklyn Research Foundation on Minority Health, Kingsbrook Jewish Medical Center, New York, USA
- Brooklyn Center for Health Disparities, SUNY Downstate Medical Center, New York, USA
| | - Ferdinand Zizi
- Department of Ophthalmology, SUNY Downstate Medical Center, New York, USA
- Sleep Disorders Center, Department of Neurology, SUNY Downstate Medical Center, New York, USA
- Brooklyn Research Foundation on Minority Health, Kingsbrook Jewish Medical Center, New York, USA
- Brooklyn Center for Health Disparities, SUNY Downstate Medical Center, New York, USA
| | - Douglas R Lazzaro
- Department of Ophthalmology, SUNY Downstate Medical Center, New York, USA
| | - Arthur H Wolintz
- Department of Ophthalmology, SUNY Downstate Medical Center, New York, USA
| |
Collapse
|
49
|
Aujard F, Cayetanot F, Terrien J, Van Someren EJW. Attenuated effect of increased daylength on activity rhythm in the old mouse lemur, a non-human primate. Exp Gerontol 2007; 42:1079-87. [PMID: 17931812 DOI: 10.1016/j.exger.2007.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Revised: 08/16/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Adaptation of physiological and behavioral functions to seasonal changes in daylength is of major relevance for optimal fitness and survival. Because aging is characterized by changes in biological rhythms, it may be hypothesized that old animals fall short of showing a full adaptation to prolonged changes in the duration of daily light exposure, as naturally occurring in relation to season in younger individuals. To test this hypothesis, we analyzed changes in the patterns of daily locomotor activity and body temperature rhythms of young and old mouse lemurs (Microcebus murinus, Primates) exposed to short and long daylengths. The effect of an increase in the duration of daily light exposure was attenuated in old animals, as compared to younger lemurs. Although some age-related differences in the locomotor activity rhythm could be seen under exposure to short daylength, they were predominant under long daylength. Some mechanisms allowing adaptation to changing daylength thus seem to be impaired at old age. Changes in coupling of circadian oscillators to the light-dark cycle and disturbances in the physiological responses to change in light duration should be further investigated.
Collapse
Affiliation(s)
- Fabienne Aujard
- Adaptive Mechanisms and Evolution, UMR CNRS/MNHN 7179, 1 avenue du petit Château, 91800 Brunoy, France.
| | | | | | | |
Collapse
|
50
|
Pardon MC. Stress and ageing interactions: A paradox in the context of shared etiological and physiopathological processes. ACTA ACUST UNITED AC 2007; 54:251-73. [PMID: 17408561 DOI: 10.1016/j.brainresrev.2007.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2007] [Revised: 02/15/2007] [Accepted: 02/22/2007] [Indexed: 12/18/2022]
Abstract
Gerontology has made considerable progress in the understanding of the mechanisms underlying the ageing process and age-related neurodegenerative disorders. However, ways to improve quality of life in the elderly remain to be elucidated. It is now clear that stress and the ageing process share a number of underlying mechanisms bound in a very close, if not indissociable, relationship. The ageing process is regulated by the factors underlying the ability to adjust to stress, whilst stress has an influence on the life span and the quality of ageing. In addition, the ability to cope with stress in adulthood predicts life expectancy and quality of life at senescence. The ageing process and stress also share several common mechanisms, particularly in relation to the energy factor. Stress consumes energy and ageing may be considered as a cost of the energy expended to deal with the stressors to which the body is exposed throughout its lifetime. This suggests that the ageing process is associated with and/or a consequence of a long-lasting activation of the major stress responsive systems. However, despite common features, the interaction between stress and the ageing process gives rise to some paradoxes. Stress can either diminish or exacerbate the ageing process just as the ageing process can worsen or counter the effects of stress. There has been little attempt to understand how ageing and stress might interact to promote "successful" or pathological ageing. A key factor in this respect is the individual's ability to adapt to stress. Viewed from this angle, the quality of life of aged subjects may be improved through therapy designed to improve the tolerance to stress.
Collapse
Affiliation(s)
- Marie-Christine Pardon
- Institute of Neuroscience, School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|