1
|
Follmer AH, Poulos TL. Application of the Linear Interaction Energy Method to Nitric Oxide Synthase Structure-Based Inhibitor Design. J Chem Inf Model 2024; 64:8586-8594. [PMID: 39509139 DOI: 10.1021/acs.jcim.4c01156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The overproduction of nitric oxide by neuronal nitric oxide synthase (nNOS) is associated with several neuropathological conditions. As a result, inhibition of nNOS is a desirable therapeutic goal while avoiding the inhibition of endothelial NOS (eNOS) given its essential role in maintaining cardiovascular tone. Designing inhibitors with high specificity for nNOS over eNOS is challenging given the close similarity in the active site structure of all mammalian NOS isoforms. Computational methods like free energy perturbation (FEP) and thermodynamic integration (TI) offer attractive avenues for rational drug design, but application of these methods to NOS is hindered by several challenges, including proper handling of highly charged inhibitors with diverse structures as well as computational expense. To address these issues, we present a simplified approach combining continuum dielectric generalized born (GB) solvent models with linear interaction energy (LIE) calculations. Our method demonstrates excellent agreement with experimental data for charged inhibitors targeting mammalian NOS isoforms (mNOS). Our results highlight the utility of the GB-LIE method as a promising tool for screening NOS inhibitors and potentially other protein targets with charged active sites and diverse inhibitor structures.
Collapse
Affiliation(s)
- Alec H Follmer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Thomas L Poulos
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California 92697-3900, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|
2
|
Qiu F, Liu Y, Liu Z. The Role of Protein S-Nitrosylation in Mitochondrial Quality Control in Central Nervous System Diseases. Aging Dis 2024:AD.2024.0099. [PMID: 38739938 DOI: 10.14336/ad.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/25/2024] [Indexed: 05/16/2024] Open
Abstract
S-Nitrosylation is a reversible covalent post-translational modification. Under physiological conditions, S-nitrosylation plays a dynamic role in a wide range of biological processes by regulating the function of substrate proteins. Like other post-translational modifications, S-nitrosylation can affect protein conformation, activity, localization, aggregation, and protein interactions. Aberrant S-nitrosylation can lead to protein misfolding, mitochondrial fragmentation, synaptic damage, and autophagy. Mitochondria are essential organelles in energy production, metabolite biosynthesis, cell death, and immune responses, among other processes. Mitochondrial dysfunction can result in cell death and has been implicated in the development of many human diseases. Recent evidence suggests that S-nitrosylation and mitochondrial dysfunction are important modulators of the progression of several diseases. In this review, we highlight recent findings regarding the aberrant S- nitrosylation of mitochondrial proteins that regulate mitochondrial biosynthesis, fission and fusion, and autophagy. Specifically, we discuss the mechanisms by which S-nitrosylated mitochondrial proteins exercise mitochondrial quality control under pathological conditions, thereby influencing disease. A better understanding of these pathological events may provide novel therapeutic targets to mitigate the development of neurological diseases.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiheng Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
McGarry A, Hunter K, Gaughan J, Auinger P, Ferraro TN, Pradhan B, Ferrucci L, Egan JM, Moaddel R. An exploratory metabolomic comparison of participants with fast or absent functional progression from 2CARE, a randomized, double-blind clinical trial in Huntington's disease. Sci Rep 2024; 14:1101. [PMID: 38212353 PMCID: PMC10784537 DOI: 10.1038/s41598-023-50553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024] Open
Abstract
Huntington's disease (HD) is increasingly recognized for diverse pathology outside of the nervous system. To describe the biology of HD in relation to functional progression, we previously analyzed the plasma and CSF metabolome in a cross-sectional study of participants who had various degrees of functional impairment. Here, we carried out an exploratory study in plasma from HD individuals over a 3-year time frame to assess whether differences exist between those with fast or absent clinical progression. There were more differences in circulating metabolite levels for fast progressors compared to absent progressors (111 vs 20, nominal p < 0.05). All metabolite changes in faster progressors were decreases, whereas some metabolite concentrations increased in absent progressors. Many of the metabolite levels that decreased in the fast progressors were higher at Screening compared to absent progressors but ended up lower by Year 3. Changes in faster progression suggest greater oxidative stress and inflammation (kynurenine, diacylglycerides, cysteine), disturbances in nitric oxide and urea metabolism (arginine, citrulline, ornithine, GABR), lower polyamines (putrescine and spermine), elevated glucose, and deficient AMPK signaling. Metabolomic differences between fast and absent progressors suggest the possibility of predicting functional decline in HD, and possibly delaying it with interventions to augment arginine, polyamines, and glucose regulation.
Collapse
Affiliation(s)
- Andrew McGarry
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA.
| | - Krystal Hunter
- Department of Medicine, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - John Gaughan
- Department of Neurology, Cooper University Hospital and Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Peggy Auinger
- Department of Neurology, Center for Health and Technology, University of Rochester, Rochester, NY, USA
| | - Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Basant Pradhan
- Department of Psychiatry, Cooper Medical School at Rowan University, Camden, NJ, USA
| | - Luigi Ferrucci
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Josephine M Egan
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD, 21224, USA.
| |
Collapse
|
4
|
Vasu D, Do HT, Li H, Hardy CD, Awasthi A, Poulos TL, Silverman RB. Potent, Selective, and Membrane Permeable 2-Amino-4-Substituted Pyridine-Based Neuronal Nitric Oxide Synthase Inhibitors. J Med Chem 2023; 66:9934-9953. [PMID: 37433128 PMCID: PMC10824152 DOI: 10.1021/acs.jmedchem.3c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
A series of potent, selective, and highly permeable human neuronal nitric oxide synthase inhibitors (hnNOS), based on a difluorobenzene ring linked to a 2-aminopyridine scaffold with different functionalities at the 4-position, is reported. In our efforts to develop novel nNOS inhibitors for the treatment of neurodegenerative diseases, we discovered 17, which showed excellent potency toward both rat (Ki 15 nM) and human nNOS (Ki 19 nM), with 1075-fold selectivity over human eNOS and 115-fold selectivity over human iNOS. 17 also showed excellent permeability (Pe = 13.7 × 10-6 cm s-1), a low efflux ratio (ER 0.48), along with good metabolic stability in mouse and human liver microsomes, with half-lives of 29 and >60 min, respectively. X-ray cocrystal structures of inhibitors bound with three NOS enzymes, namely, rat nNOS, human nNOS, and human eNOS, revealed detailed structure-activity relationships for the observed potency, selectivity, and permeability properties of the inhibitors.
Collapse
Affiliation(s)
- Dhananjayan Vasu
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Ha T. Do
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Christine D. Hardy
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Amardeep Awasthi
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
5
|
Deng Y, Wang H, Joni M, Sekhri R, Reiner A. Progression of basal ganglia pathology in heterozygous Q175 knock-in Huntington's disease mice. J Comp Neurol 2021; 529:1327-1371. [PMID: 32869871 PMCID: PMC8049038 DOI: 10.1002/cne.25023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 12/29/2022]
Abstract
We used behavioral testing and morphological methods to detail the progression of basal ganglia neuron type-specific pathology and the deficits stemming from them in male heterozygous Q175 mice, compared to age-matched WT males. A rotarod deficit was not present in Q175 mice until 18 months, but increased open field turn rate (reflecting hyperkinesia) and open field anxiety were evident at 6 months. No loss of striatal neurons was seen out to 18 months, but ENK+ and DARPP32+ striatal perikarya were fewer by 6 months, due to diminished expression, with further decline by 18 months. No reduction in SP+ striatal perikarya or striatal interneurons was seen in Q175 mice at 18 months, but cholinergic interneurons showed dendrite attenuation by 6 months. Despite reduced ENK expression in indirect pathway striatal perikarya, ENK-immunostained terminals in globus pallidus externus (GPe) were more abundant at 6 months and remained so out to 18 months. Similarly, SP-immunostained terminals from striatal direct pathway neurons were more abundant in globus pallidus internus and substantia nigra at 6 months and remained so at 18 months. FoxP2+ arkypallidal GPe neurons and subthalamic nucleus neurons were lost by 18 months but not prototypical PARV+ GPe neurons or dopaminergic nigral neurons. Our results show that striatal projection neuron abnormalities and behavioral abnormalities reflecting them develop between 2 and 6 months of age in Q175 male heterozygotes, indicating early effects of the HD mutation. The striatal pathologies resemble those in human HD, but are less severe at 18 months than even in premanifest HD.
Collapse
Affiliation(s)
- Yunping Deng
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Hongbing Wang
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Marion Joni
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Radhika Sekhri
- Department of PathologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Anton Reiner
- Department of Anatomy and NeurobiologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTennesseeUSA
| |
Collapse
|
6
|
Ghavami A, Olsen M, Kwan M, Beltran J, Shea J, Ramboz S, Duan W, Lavery D, Howland D, Park LC. Transcriptional Assessment of Striatal mRNAs as Valid Biomarkers of Disease Progression in Three Mouse Models of Huntington's Disease. J Huntingtons Dis 2021; 9:13-31. [PMID: 32007959 DOI: 10.3233/jhd-190389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is a progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral, and motor decline. The primary site of neuron loss in HD is the striatal part of the basal ganglia, with GABAergic medium size spiny neurons (MSNs) being nearly completely lost in advanced HD. OBJECTIVE Based on the hypothesis that mutant huntingtin (mHTT) protein injures neurons via transcriptional dysregulation, we set out to establish a transcriptional profile of HD disease progression in the well characterized transgenic mouse model, R6/2, and two Knock-in models (KI); zQ175KI (expressing mutant mouse/human chimeric Htt protein) and HdhQ200 HET KI (carrying one allele of expanded mouse CAG repeats). METHODS In this study, we used quantitative PCR (qPCR) to evaluate striatal mRNA levels of markers of neurotransmission, neuroinflammation, and energy metabolism. RESULTS After analyzing and comparing transcripts from pre-symptomatic and symptomatic stages, markers expressed in the basal ganglia MSNs, which are typically involved in maintaining normal neurotransmission, showed a genotype-specific decrease in mRNA expression in a pattern consistent with human studies. In contrast, transcripts associated with neuroinflammation and energy metabolism were mostly unaffected in these animal models of HD. CONCLUSION Our results show that transcripts linked to neurotransmission are significantly reduced and are consistent with disease progression in both zQ175KI and R6/2 transgenic mouse models.
Collapse
Affiliation(s)
| | | | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | | | - Wenzhen Duan
- Department of Psychiatry and Behavioral Sciences, Division of Neurobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel Lavery
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| | - David Howland
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| | - Larry C Park
- CHDI Management/CHDI Foundation, Inc, Princeton, NJ, USA
| |
Collapse
|
7
|
Cross-sectional analysis of plasma and CSF metabolomic markers in Huntington's disease for participants of varying functional disability: a pilot study. Sci Rep 2020; 10:20490. [PMID: 33235276 PMCID: PMC7686309 DOI: 10.1038/s41598-020-77526-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/04/2020] [Indexed: 01/24/2023] Open
Abstract
Huntington’s Disease (HD) is a progressive, fatal neurodegenerative condition. While generally considered for its devastating neurological phenotype, disturbances in other organ systems and metabolic pathways outside the brain have attracted attention for possible relevance to HD pathology, potential as therapeutic targets, or use as biomarkers of progression. In addition, it is not established how metabolic changes in the HD brain correlate to progression across the full spectrum of early to late-stage disease. In this pilot study, we sought to explore the metabolic profile across manifest HD from early to advanced clinical staging through metabolomic analysis by mass spectrometry in plasma and cerebrospinal fluid (CSF). With disease progression, we observed nominally significant increases in plasma arginine, citrulline, and glycine, with decreases in total and d-serine, cholesterol esters, diacylglycerides, triacylglycerides, phosphatidylcholines, phosphatidylethanolamines, and sphingomyelins. In CSF, worsening disease was associated with nominally significant increases in NAD+, arginine, saturated long chain free fatty acids, diacylglycerides, triacylglycerides, and sphingomyelins. Notably, diacylglycerides and triacylglyceride species associated with clinical progression were different between plasma and CSF, suggesting different metabolic preferences for these compartments. Increasing NAD+ levels strongly correlating with disease progression was an unexpected finding. Our data suggest that defects in the urea cycle, glycine, and serine metabolism may be underrecognized in the progression HD pathology, and merit further study for possible therapeutic relevance.
Collapse
|
8
|
Chakroborty S, Manfredsson FP, Dec AM, Campbell PW, Stutzmann GE, Beaumont V, West AR. Phosphodiesterase 9A Inhibition Facilitates Corticostriatal Transmission in Wild-Type and Transgenic Rats That Model Huntington's Disease. Front Neurosci 2020; 14:466. [PMID: 32581668 PMCID: PMC7283904 DOI: 10.3389/fnins.2020.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) results from abnormal expansion in CAG trinucleotide repeats within the HD gene, a mutation which leads to degeneration of striatal medium-sized spiny neurons (MSNs), deficits in corticostriatal transmission, and loss of motor control. Recent studies also indicate that metabolism of cyclic nucleotides by phosphodiesterases (PDEs) is dysregulated in striatal networks in a manner linked to deficits in corticostriatal transmission. The current study assessed cortically-evoked firing in electrophysiologically-identified MSNs and fast-spiking interneurons (FSIs) in aged (9-11 months old) wild-type (WT) and BACHD transgenic rats (TG5) treated with vehicle or the selective PDE9A inhibitor PF-04447943. WT and TG5 rats were anesthetized with urethane and single-unit activity was isolated during low frequency electrical stimulation of the ipsilateral motor cortex. Compared to WT controls, MSNs recorded in TG5 animals exhibited decreased spike probability during cortical stimulation delivered at low to moderate stimulation intensities. Moreover, large increases in onset latency of cortically-evoked spikes and decreases in spike probability were observed in FSIs recorded in TG5 animals. Acute systemic administration of the PDE9A inhibitor PF-04447943 significantly decreased the onset latency of cortically-evoked spikes in MSNs recorded in WT and TG5 rats. PDE9A inhibition also increased the proportion of MSNs responding to cortical stimulation and reversed deficits in spike probability observed in TG5 rats. As PDE9A is a cGMP specific enzyme, drugs such as PF-04447943 which act to facilitate striatal cGMP signaling and glutamatergic corticostriatal transmission could be useful therapeutic agents for restoring striatal function and alleviating motor and cognitive symptoms associated with HD.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Alexander M Dec
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Peter W Campbell
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
9
|
Wang D, Zhang D, Lindeman SV, Rathore R. Calix[4]arene-Based Bis(Nitric Oxide) Complexes: Synthesis, Physical Properties, and Structural Characterization. Chem Asian J 2019; 14:542-546. [PMID: 30549456 DOI: 10.1002/asia.201801683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/12/2018] [Indexed: 11/08/2022]
Abstract
Calix[4]arene-based molecules hold great promise as candidate sensors and storage materials for nitric oxide (NO), owing to their unprecedented binding affinity for NO. However, the structure of calix[4]arene is complicated by the availability of four possible conformers: 1,3-alternate, 1,2-alternate, cone, and partial cone (paco). Whilst complexes of NO with several of these conformers have previously been established, the 1,2-alternate conformer complex, that is, [1,2-alter⋅NO]+ , has not been previously reported. Herein, we determine the crystal structure of the NO complex with the 1,2-alternate conformer for the first time. In addition, we have also found that the 1,2-alternate and 1,3-alternate conformers can combine with two NO molecules to form stable bis(nitric oxide) complexes. These new complexes, which exhibit remarkable binding capacity for the construction of NO-storage molecules, were characterized by using X-ray crystallography and NMR, IR, and UV/Vis spectroscopy. These findings will extend our understanding of the interactions between nitric oxide and cofacially and non-cofacially arrayed aromatic rings, and we expect them to aid in the design and development of new supramolecular sensors and storage materials for NO with high capacity and efficacy.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - Depeng Zhang
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201-1881, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, WI, 53201-1881, USA
| |
Collapse
|
10
|
Padovan-Neto FE, Jurkowski L, Murray C, Stutzmann GE, Kwan M, Ghavami A, Beaumont V, Park LC, West AR. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease. Nitric Oxide 2018; 83:40-50. [PMID: 30528913 DOI: 10.1016/j.niox.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Lauren Jurkowski
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Conor Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
11
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
12
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
13
|
Cardinale A, Fusco FR. Inhibition of phosphodiesterases as a strategy to achieve neuroprotection in Huntington's disease. CNS Neurosci Ther 2018; 24:319-328. [PMID: 29500937 DOI: 10.1111/cns.12834] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/08/2018] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative condition, due to a mutation in the IT15 gene encoding for huntingtin. Currently, disease-modifying therapy is not available for HD, and only symptomatic drugs are administered for the management of symptoms. In the last few years, preclinical and clinical studies have indicated that pharmacological strategies aimed at inhibiting cyclic nucleotide phosphodiesterase (PDEs) may develop into a novel therapeutic approach in neurodegenerative disorders. PDEs are a family of enzymes that hydrolyze cyclic nucleotides into monophosphate isoforms. Cyclic nucleotides are second messengers that transduce the signal of hormones and neurotransmitters in many physiological processes, such as protein kinase cascades and synaptic transmission. An alteration in their balance results in the dysregulation of different biological mechanisms (transcriptional dysregulation, immune cell activation, inflammatory mechanisms, and regeneration) that are involved in neurological diseases. In this review, we discuss the action of phosphodiesterase inhibitors and their role as therapeutic agents in HD.
Collapse
Affiliation(s)
| | - Francesca R Fusco
- Laboratory of Neuroanatomy, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
14
|
Puigdellívol M, Saavedra A, Pérez-Navarro E. Cognitive dysfunction in Huntington's disease: mechanisms and therapeutic strategies beyond BDNF. Brain Pathol 2018; 26:752-771. [PMID: 27529673 DOI: 10.1111/bpa.12432] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/08/2016] [Indexed: 12/15/2022] Open
Abstract
One of the main focuses in Huntington's disease (HD) research, as well as in most neurodegenerative diseases, is the development of new therapeutic strategies, as currently there is no treatment to delay or prevent the progression of the disease. Neuronal dysfunction and neuronal death in HD are caused by a combination of interrelated pathogenic processes that lead to motor, cognitive and psychiatric symptoms. Understanding how mutant huntingtin impacts on a plethora of cellular functions could help to identify new molecular targets. Although HD has been classically classified as a neurodegenerative disease affecting voluntary movement, lately cognitive dysfunction is receiving increased attention as it is very invalidating for patients. Thus, an ambitious goal in HD research is to find altered molecular mechanisms that contribute to cognitive decline. In this review, we have focused on those findings related to corticostriatal and hippocampal cognitive dysfunction in HD, as well as on the underlying molecular mechanisms, which constitute potential therapeutic targets. These include alterations in synaptic plasticity, transcriptional machinery and neurotrophic and neurotransmitter signaling.
Collapse
Affiliation(s)
- Mar Puigdellívol
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ana Saavedra
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Esther Pérez-Navarro
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Catalonia, Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red (CIBER) sobre Enfermedades Neurodegenerativas (CIBERNED), Spain.,Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| |
Collapse
|
15
|
Harada A, Suzuki K, Kimura H. TAK-063, a Novel Phosphodiesterase 10A Inhibitor, Protects from Striatal Neurodegeneration and Ameliorates Behavioral Deficits in the R6/2 Mouse Model of Huntington's Disease. J Pharmacol Exp Ther 2017; 360:75-83. [PMID: 27811172 DOI: 10.1124/jpet.116.237388] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/28/2016] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is characterized by progressive loss of striatal medium spiny neurons (MSNs) that constitute direct and indirect pathways: the indirect pathway MSNs is more vulnerable than the direct pathway MSNs. Impairment of cAMP/cGMP signaling by mutant huntingtin is hypothesized as the molecular mechanism underlying degeneration of MSNs. Phosphodiesterase 10A (PDE10A) is selectively expressed in MSNs and degrades both cAMP and cGMP; thus, PDE10A inhibition can restore impaired cAMP/cGMP signaling. Compared with other PDE10A inhibitors, a novel PDE10A inhibitor 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (TAK-063) showed comparable activation of the indirect pathway MSNs, whereas it produced partial activation of the direct pathway MSNs by its faster off-rate property. In this study, we report the effects of TAK-063 on striatal neurodegeneration and behavioral deficits in the R6/2 mouse model of HD. TAK-063 at 0.5 or 5 mg/kg/day was orally administrated from 4.5-5 to 12 weeks of age, and the effects of TAK-063 were characterized over this period. Repeated treatment with TAK-063 suppressed the reduction of brain-derived neurotrophic factor levels, prevented striatal neurodegeneration, and suppressed increase in seizure frequency, but did not prevent the suppression of body weight gain. As for motor deficits, TAK-063 suppressed the development of clasping behavior and motor dysfunctions, including decreased motor activity in the open field, but did not improve the impairment in motor coordination on the rotarod. Regarding cognitive functions, TAK-063 improved deficits in procedural learning, but was ineffective for deficits in contextual memory. These results suggest that TAK-063 reduces striatal neurodegeneration and ameliorates behavioral deficits in R6/2 mice.
Collapse
Affiliation(s)
- Akina Harada
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Kazunori Suzuki
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
16
|
Santos-Lobato BLD, Del-Bel E, Pittella JEH, Tumas V. Cytoarchitecture of nitrergic neurons in the human striatum and subthalamic nucleus. Brain Res Bull 2016; 124:129-35. [PMID: 27060610 DOI: 10.1016/j.brainresbull.2016.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a gaseous molecule that modulates several physiological processes, including signal transmission in the central nervous system. There is evidence supporting NO as a major neurotransmitter involved in motor and emotion/behavior control. We investigated the distribution and morphology of nitrergic neurons in the two main input structures of the basal ganglia of human brain: the striatum and subthalamic nucleus. METHODS We studied samples of striatum (caudate and putamen) and subthalamic nucleus of 20 human brains from subjects without neurological/psychiatric diseases. The tissues were stained by histochemistry for nicotinamide adenine dinucleotide phosphate diaphorase activity and by immunohistochemistry for neuronal NO synthase (nNOS). Subsequently, we analyzed the nitrergic neuronal profile and its morphometric parameters. RESULTS Our data corroborate that approximately 2% of neurons in striatum express nNOS and these exhibited morphology characteristic of interneurons. Posterior regions of the striatum have a higher nitrergic neuronal profile than anterior regions of this nucleus suggesting an anteroposterior gradient of nitrergic neurons. Posterior limbic-associated areas of the striatum have a higher nitrergic neuronal profile compared to other functional subdivisions. Also, approximately 90% of neurons in the subthalamic nucleus express nNOS. CONCLUSIONS A remarkable presence of nitrergic neurons in the human striatum and subthalamic nucleus suggests that NO may play a critical role in the physiology of these nuclei.
Collapse
Affiliation(s)
- Bruno Lopes Dos Santos-Lobato
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| | - Elaine Del-Bel
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Morphology, Physiology and Basic Pathology, Ribeirão Preto Dentistry School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| | - José Eymard Homem Pittella
- Department of Pathology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | - Vitor Tumas
- Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil; Center for Research Support on Applied Neuroscience (NAPNA-USP), Brazil.
| |
Collapse
|
17
|
Chayah M, Camacho ME, Carrión MD, Gallo MA, Romero M, Duarte J. N,N′-Disubstituted thiourea and urea derivatives: design, synthesis, docking studies and biological evaluation against nitric oxide synthase. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00477b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
N,N′-Disubstituted thioureas and ureas as nNOS and iNOS inhibitors were synthesized. Thiourea 4g was the best inhibitor without eNOS inhibition.
Collapse
Affiliation(s)
- Mariem Chayah
- Departamento de Química Farmacéutica y Orgánica
- Facultad de Farmacia
- Universidad de Granada
- Spain
| | - M. Encarnación Camacho
- Departamento de Química Farmacéutica y Orgánica
- Facultad de Farmacia
- Universidad de Granada
- Spain
| | - M. Dora Carrión
- Departamento de Química Farmacéutica y Orgánica
- Facultad de Farmacia
- Universidad de Granada
- Spain
| | - Miguel A. Gallo
- Departamento de Química Farmacéutica y Orgánica
- Facultad de Farmacia
- Universidad de Granada
- Spain
| | - Miguel Romero
- Departamento de Farmacología
- Facultad de Farmacia
- Universidad de Granada
- Spain
| | - Juan Duarte
- Departamento de Farmacología
- Facultad de Farmacia
- Universidad de Granada
- Spain
| |
Collapse
|
18
|
Hollingsworth SA, Holden JK, Li H, Poulos TL. Elucidating nitric oxide synthase domain interactions by molecular dynamics. Protein Sci 2015; 25:374-82. [PMID: 26448477 PMCID: PMC4815339 DOI: 10.1002/pro.2824] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/25/2015] [Accepted: 10/04/2015] [Indexed: 12/19/2022]
Abstract
Nitric oxide synthase (NOS) is a multidomain enzyme that catalyzes the production of nitric oxide (NO) by oxidizing L-Arg to NO and L-citrulline. NO production requires multiple interdomain electron transfer steps between the flavin mononucleotide (FMN) and heme domain. Specifically, NADPH-derived electrons are transferred to the heme-containing oxygenase domain via the flavin adenine dinucleotide (FAD) and FMN containing reductase domains. While crystal structures are available for both the reductase and oxygenase domains of NOS, to date there is no atomic level structural information on domain interactions required for the final FMN-to-heme electron transfer step. Here, we evaluate a model of this final electron transfer step for the heme-FMN-calmodulin NOS complex based on the recent biophysical studies using a 105-ns molecular dynamics trajectory. The resulting equilibrated complex structure is very stable and provides a detailed prediction of interdomain contacts required for stabilizing the NOS output state. The resulting equilibrated complex model agrees well with previous experimental work and provides a detailed working model of the final NOS electron transfer step required for NO biosynthesis.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697.,Department of Chemistry, University of California, Irvine, California, 92697.,Department of Pharmaceutical Sciences, University of California, Irvine, California, 92697
| | - Jeffrey K Holden
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697.,Department of Chemistry, University of California, Irvine, California, 92697.,Department of Pharmaceutical Sciences, University of California, Irvine, California, 92697
| | - Huiying Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697.,Department of Chemistry, University of California, Irvine, California, 92697.,Department of Pharmaceutical Sciences, University of California, Irvine, California, 92697
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California, 92697.,Department of Chemistry, University of California, Irvine, California, 92697.,Department of Pharmaceutical Sciences, University of California, Irvine, California, 92697
| |
Collapse
|
19
|
Kang S, Li H, Tang W, Martásek P, Roman LJ, Poulos TL, Silverman RB. 2-Aminopyridines with a Truncated Side Chain To Improve Human Neuronal Nitric Oxide Synthase Inhibitory Potency and Selectivity. J Med Chem 2015; 58:5548-60. [PMID: 26120733 PMCID: PMC4514563 DOI: 10.1021/acs.jmedchem.5b00573] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have analyzed a recently obtained crystal structure of human neuronal nitric oxide synthase (nNOS) and then designed and synthesized several 2-aminopyridine derivatives containing a truncated side chain to avoid the hydrophobic pocket that differentiates human and rat nNOS in an attempt to explore alternative binding poses along the substrate access channel of human nNOS. Introduction of an N-methylethane-1,2-diamine side chain and conformational constraints such as benzonitrile and pyridine as the middle aromatic linker were sufficient to increase human and rat nNOS binding affinity and inducible and endothelial NOS selectivity. We found that 14b is a potent inhibitor; the binding modes with human and rat nNOS are unexpected, inducing side chain rotamer changes in Gln478 (rat) at the top of the active site. Compound 19c exhibits Ki values of 24 and 55 nM for rat and human nNOS, respectively, with 153-fold iNOS and 1040-fold eNOS selectivity. 19c has 18% oral bioavailability.
Collapse
Affiliation(s)
- Soosung Kang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- New Drug Development Center, DGMIF, 80 Cheombok-ro, Dae-gu, Korea
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Wei Tang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pavel Martásek
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
| | - Linda J. Roman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
20
|
Tang W, Li H, Doud EH, Chen Y, Choing S, Plaza C, Kelleher NL, Poulos TL, Silverman RB. Mechanism of Inactivation of Neuronal Nitric Oxide Synthase by (S)-2-Amino-5-(2-(methylthio)acetimidamido)pentanoic Acid. J Am Chem Soc 2015; 137:5980-9. [PMID: 25874809 PMCID: PMC4431946 DOI: 10.1021/jacs.5b01202] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitric oxide synthase (NOS) catalyzes the conversion of l-arginine to l-citrulline and the second messenger nitric oxide. Three mechanistic pathways are proposed for the inactivation of neuronal NOS (nNOS) by (S)-2-amino-5-(2-(methylthio)acetimidamido)pentanoic acid (1): sulfide oxidation, oxidative dethiolation, and oxidative demethylation. Four possible intermediates were synthesized. All compounds were assayed with nNOS, their IC50, KI, and kinact values were obtained, and their crystal structures were determined. The identification and characterization of the products formed during inactivation provide evidence for the details of the inactivation mechanism. On the basis of these studies, the most probable mechanism for the inactivation of nNOS involves oxidative demethylation with the resulting thiol coordinating to the cofactor heme iron. Although nNOS is a heme-containing enzyme, this is the first example of a NOS that catalyzes an S-demethylation reaction; the novel mechanism of inactivation described here could be applied to the design of inactivators of other heme-dependent enzymes.
Collapse
Affiliation(s)
- Wei Tang
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697-3900, United States
| | - Emma H. Doud
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Yunqiu Chen
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Stephanie Choing
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Carla Plaza
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697-3900, United States
| | - Neil L. Kelleher
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Proteomics Center of Excellence, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
21
|
Chayah M, Carrión MD, Gallo MA, Jiménez R, Duarte J, Camacho ME. Development of urea and thiourea kynurenamine derivatives: synthesis, molecular modeling, and biological evaluation as nitric oxide synthase inhibitors. ChemMedChem 2015; 10:874-82. [PMID: 25801086 DOI: 10.1002/cmdc.201500007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Indexed: 01/07/2023]
Abstract
Herein we describe the synthesis of a new family of kynurenamine derivatives with a urea or thiourea moiety, together with their in vitro biological evaluation as inhibitors of both neuronal and inducible nitric oxide synthases (nNOS and iNOS, respectively), enzymes responsible for the biogenesis of NO. These compounds were synthesized from a 5-substituted-2-nitrophenyl vinyl ketone scaffold in a five-step procedure with moderate to high chemical yields. In general, the assayed compounds show greater inhibition of iNOS than of nNOS, with 1-[3-(2-amino-5-chlorophenyl)-3-oxopropyl]-3-ethylurea (compound 5 n) being the most potent iNOS inhibitor in the series and the most iNOS/nNOS-selective compound. In this regard, we performed molecular modeling studies to propose a binding mode for this family of compounds to both enzymes and, thereby, to elucidate the differential molecular features that could explain the observed selectivity between iNOS and nNOS.
Collapse
Affiliation(s)
- Mariem Chayah
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada (Spain)
| | | | | | | | | | | |
Collapse
|
22
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
23
|
Jing Q, Li H, Roman LJ, Martásek P, Poulos TL, Silverman RB. Combination of chiral linkers with thiophenecarboximidamide heads to improve the selectivity of inhibitors of neuronal nitric oxide synthase. Bioorg Med Chem Lett 2014; 24:4504-4510. [PMID: 25149509 PMCID: PMC4204799 DOI: 10.1016/j.bmcl.2014.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/18/2022]
Abstract
To develop potent and selective nNOS inhibitors, a new series of double-headed molecules with chiral linkers that derive from natural amino acid derivatives have been designed and synthesized. The new structures integrate a thiophenecarboximidamide head with two types of chiral linkers, presenting easy synthesis and good inhibitory properties. Inhibitor (S)-9b exhibits a potency of 14.7 nM against nNOS and is 1134 and 322-fold more selective for nNOS over eNOS and iNOS, respectively. Crystal structures show that the additional binding between the aminomethyl moiety of 9b and propionate A on the heme and tetrahydrobiopterin (H4B) in nNOS, but not eNOS, contributes to its high selectivity. This work demonstrates the advantage of integrating known structures into structure optimization, and it should be possible to more readily develop compounds that incorporate bioavailability with these advanced features. Moreover, this integrative strategy is a general approach in new drug discovery.
Collapse
Affiliation(s)
- Qing Jing
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | - Huiying Li
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Pharmaceutical Chemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA
| | - Linda J Roman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78384-7760, USA
| | - Pavel Martásek
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78384-7760, USA; Department of Pediatrics and Center for Applied Genomics, 1st School of Medicine, Charles University, Prague, Czech Republic
| | - Thomas L Poulos
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA; Department of Pharmaceutical Chemistry, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA.
| | - Richard B Silverman
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Department of Molecular Biosciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA; Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA.
| |
Collapse
|
24
|
Kang S, Tang W, Li H, Chreifi G, Martásek P, Roman LJ, Poulos TL, Silverman RB. Nitric oxide synthase inhibitors that interact with both heme propionate and tetrahydrobiopterin show high isoform selectivity. J Med Chem 2014; 57:4382-96. [PMID: 24758147 PMCID: PMC4032192 DOI: 10.1021/jm5004182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Indexed: 01/05/2023]
Abstract
Overproduction of NO by nNOS is implicated in the pathogenesis of diverse neuronal disorders. Since NO signaling is involved in diverse physiological functions, selective inhibition of nNOS over other isoforms is essential to minimize side effects. A series of α-amino functionalized aminopyridine derivatives (3-8) were designed to probe the structure-activity relationship between ligand, heme propionate, and H4B. Compound 8R was identified as the most potent and selective molecule of this study, exhibiting a Ki of 24 nM for nNOS, with 273-fold and 2822-fold selectivity against iNOS and eNOS, respectively. Although crystal structures of 8R complexed with nNOS and eNOS revealed a similar binding mode, the selectivity stems from the distinct electrostatic environments in two isoforms that result in much lower inhibitor binding free energy in nNOS than in eNOS. These findings provide a basis for further development of simple, but even more selective and potent, nNOS inhibitors.
Collapse
Affiliation(s)
- Soosung Kang
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Wei Tang
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Huiying Li
- Departments
of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and
Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Georges Chreifi
- Departments
of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and
Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Pavel Martásek
- Department
of Biochemistry, University of Texas Health
Science Center, San Antonio, Texas 78384-7760, United States
| | - Linda J. Roman
- Department
of Biochemistry, University of Texas Health
Science Center, San Antonio, Texas 78384-7760, United States
| | - Thomas L. Poulos
- Departments
of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and
Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry of Life
Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
25
|
Cinelli MA, Li H, Chreifi G, Martásek P, Roman LJ, Poulos TL, Silverman RB. Simplified 2-aminoquinoline-based scaffold for potent and selective neuronal nitric oxide synthase inhibition. J Med Chem 2014; 57:1513-30. [PMID: 24472039 PMCID: PMC3954451 DOI: 10.1021/jm401838x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
![]()
Since high levels of nitric oxide
(NO) are implicated in neurodegenerative
disorders, inhibition of the neuronal isoform of nitric oxide synthase
(nNOS) and reduction of NO levels are therapeutically desirable. Nonetheless,
many nNOS inhibitors mimic l-arginine and are poorly bioavailable.
2-Aminoquinoline-based scaffolds were designed with the hope that
they could (a) mimic aminopyridines as potent, isoform-selective arginine
isosteres and (b) possess chemical properties more conducive to oral
bioavailability and CNS penetration. A series of these compounds was
synthesized and assayed against purified nNOS enzymes, endothelial
NOS (eNOS), and inducible NOS (iNOS). Several compounds built on a
7-substituted 2-aminoquinoline core are potent and isoform-selective;
X-ray crystallography indicates that aminoquinolines exert inhibitory
effects by mimicking substrate interactions with the conserved active
site glutamate residue. The most potent and selective compounds, 7 and 15, were tested in a Caco-2 assay and showed
good permeability and low efflux, suggesting high potential for oral
bioavailability.
Collapse
Affiliation(s)
- Maris A Cinelli
- Departments of Chemistry and Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Jing Q, Li H, Roman LJ, Martásek P, Poulos TL, Silverman RB. An Accessible Chiral Linker to Enhance Potency and Selectivity of Neuronal Nitric Oxide Synthase Inhibitors. ACS Med Chem Lett 2014; 5:56-60. [PMID: 24660051 DOI: 10.1021/ml400381s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The three important mammalian isozymes of nitric oxide synthase (NOS) are neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Inhibitors of nNOS show promise as treatments for neurodegenerative diseases. Eight easily-synthesized compounds containing either one (20a,b) or two (9a-d; 15a,b) 2-amino-4-methylpyridine groups with a chiral pyrrolidine linker were designed as selective nNOS inhibitors. Inhibitor 9c is the best of these compounds, having a potency of 9.7 nM and dual selectivity of 693 and 295 against eNOS and iNOS, respectively. Crystal structures of nNOS complexed with either 9a or 9c show a double-headed binding mode, where each 2-aminopyridine head group interacts with either a nNOS active site Glu residue or a heme propionate. In addition, the pyrrolidine nitrogen of 9c contributes additional hydrogen bonds to the heme propionate, resulting in a unique binding orientation. In contrast, the lack of hydrogen bonds from the pyrrolidine of 9a to the heme propionate allows the inhibitor to adopt two different binding orientations. Both 9a and 9c bind to eNOS in a single-headed mode, which is the structural basis for the isozyme selectivity.
Collapse
Affiliation(s)
- Qing Jing
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry
of Life Processes Institute, Center for Molecular Innovation and Drug
Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Huiying Li
- Departments
of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and
Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Linda J. Roman
- Department
of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
| | - Pavel Martásek
- Department
of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760, United States
- Department
of Pediatrics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas L. Poulos
- Departments
of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and
Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Richard B. Silverman
- Department
of Chemistry, Department of Molecular Biosciences, Chemistry
of Life Processes Institute, Center for Molecular Innovation and Drug
Discovery, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
27
|
Review: Modulation of striatal neuron activity by cyclic nucleotide signaling and phosphodiesterase inhibition. ACTA ACUST UNITED AC 2013; 3:137-146. [PMID: 24490129 DOI: 10.1016/j.baga.2013.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclic nucleotides cAMP and cGMP are common signaling molecules synthesized in neurons following the activation of adenylyl or guanylyl cyclase. In the striatum, the synthesis and degradation of cAMP and cGMP is highly regulated as these second messengers have potent effects on the activity of striatonigral and striatopallidal neurons. This review will summarize the literature on cyclic nucleotide signaling in the striatum with a particular focus on the impact of cAMP and cGMP on the membrane excitability of striatal medium-sized spiny output neurons (MSNs). The effects of non-selective and selective phosphodiesterase (PDE) inhibitors on membrane activity and synaptic plasticity of MSNs will also be reviewed. Lastly, this review will discuss the implications of the effects PDE modulation on electrophysiological activity of striatal MSNs as it relates to the treatment of neurological disorders such as Huntington's and Parkinson's disease.
Collapse
|
28
|
Bard J, Wall MD, Lazari O, Arjomand J, Munoz-Sanjuan I. Advances in huntington disease drug discovery: novel approaches to model disease phenotypes. ACTA ACUST UNITED AC 2013; 19:191-204. [PMID: 24196395 DOI: 10.1177/1087057113510320] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Huntington disease is a monogenic, autosomal dominant, progressive neurodegenerative disorder caused by a trinucleotide CAG repeat expansion in exon 1 of the huntingtin (HTT) gene; age of onset of clinical symptoms inversely correlates with expanded CAG repeat length. HD leads to extensive degeneration of the basal ganglia, hypothalamic nuclei, and selected cortical areas, and a wide range of molecular mechanisms have been implicated in disease pathology in animal or cellular models expressing mutated HTT (mHTT) proteins, either full-length or amino-terminal fragments. However, HD cellular models that recapitulate the slow progression of the disease have not been available due to the toxicity of overexpressed exogenous mHTT or to limitations with using primary cells for long-term studies. Most investigations of the effects of mHTT relied on cytotoxicity or aggregation end points in heterologous systems or in primary embryonic neuroglial cultures derived from HD mouse models. More innovative approaches are currently under active investigation, including screening using electrophysiological endpoints, as well as the recent use of primary blood mononuclear cells and of human embryonic stem cells derived from a variety of HD research participants. Here we describe how these cellular systems are being used to investigate HD biology as well as to identify mechanisms with therapeutic potential.
Collapse
Affiliation(s)
- Jonathan Bard
- 1CHDI Management/CHDI Foundation, Princeton, NJ, and Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
29
|
Regulation of hippocampal cGMP levels as a candidate to treat cognitive deficits in Huntington's disease. PLoS One 2013; 8:e73664. [PMID: 24040016 PMCID: PMC3764028 DOI: 10.1371/journal.pone.0073664] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/19/2013] [Indexed: 01/05/2023] Open
Abstract
Huntington’s disease (HD) patients and mouse models show learning and memory impairment associated with hippocampal dysfunction. The neuronal nitric oxide synthase/3',5'-cyclic guanosine monophosphate (nNOS/cGMP) pathway is implicated in synaptic plasticity, and in learning and memory processes. Here, we examined the nNOS/cGMP pathway in the hippocampus of HD mice to determine whether it can be a good therapeutic target for cognitive improvement in HD. We analyzed hippocampal nNOS and phosphodiesterase (PDE) 5 and 9 levels in R6/1 mice, and cGMP levels in the hippocampus of R6/1, R6/2 and HdhQ7/Q111 mice, and of HD patients. We also investigated whether sildenafil, a PDE5 inhibitor, could improve cognitive deficits in R6/1 mice. We found that hippocampal cGMP levels were 3-fold lower in 12-week-old R6/1 mice, when they show deficits in object recognition memory and in passive avoidance learning. Consistent with hippocampal cGMP levels, nNOS levels were down-regulated, while there were no changes in the levels of PDE5 and PDE9 in R6/1 mice. A single intraperitoneal injection of sildenafil (3 mg/Kg) immediately after training increased cGMP levels, and improved memory in R6/1 mice, as assessed by using the novel object recognition and the passive avoidance test. Importantly, cGMP levels were also reduced in R6/2 mouse and human HD hippocampus. Therefore, the regulation of hippocampal cGMP levels can be a suitable treatment for cognitive impairment in HD.
Collapse
|
30
|
Jing Q, Li H, Chreifi G, Roman LJ, Martásek P, Poulos TL, Silverman RB. Chiral linkers to improve selectivity of double-headed neuronal nitric oxide synthase inhibitors. Bioorg Med Chem Lett 2013; 23:5674-9. [PMID: 23993333 DOI: 10.1016/j.bmcl.2013.08.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022]
Abstract
To develop potent and selective nNOS inhibitors, new double-headed molecules with chiral linkers that derive from natural amino acids or their derivatives have been designed. The new structures contain two ether bonds, which greatly simplifies the synthesis and accelerates structure optimization. Inhibitor (R)-6b exhibits a potency of 32nM against nNOS and is 475 and 244 more selective for nNOS over eNOS and iNOS, respectively. Crystal structures show that the additional binding between the aminomethyl moiety of 6b and the two heme propionates in nNOS, but not eNOS, is the structural basis for its high selectivity. This work demonstrates the importance of stereochemistry in this class of molecules, which significantly influences the potency and selectivity of the inhibitors. The structure-activity information gathered here provides a guide for future structure optimization.
Collapse
Affiliation(s)
- Qing Jing
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, and Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
In search of potent and selective inhibitors of neuronal nitric oxide synthase with more simple structures. Bioorg Med Chem 2013; 21:5323-31. [PMID: 23867386 DOI: 10.1016/j.bmc.2013.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/06/2013] [Indexed: 11/24/2022]
Abstract
In certain neurodegenerative diseases damaging levels of nitric oxide (NO) are produced by neuronal nitric oxide synthase (nNOS). It, therefore, is important to develop inhibitors selective for nNOS that do not interfere with other NOS isoforms, especially endothelial NOS (eNOS), which is critical for proper functioning of the cardiovascular system. While we have been successful in developing potent and isoform-selective inhibitors, such as lead compounds 1 and 2, the ease of synthesis and bioavailability have been problematic. Here we describe a new series of compounds including crystal structures of NOS-inhibitor complexes that integrate the advantages of easy synthesis and good biological properties compared to the lead compounds. These results provide the basis for additional structure-activity relationship (SAR) studies to guide further improvement of isozyme selective inhibitors.
Collapse
|
32
|
Calabresi P, Di Filippo M. A pathophysiological link between dystonia, striatal interneurons and neuropeptide Y. Brain 2013; 136:1341-4. [DOI: 10.1093/brain/awt096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Cyclopropyl- and methyl-containing inhibitors of neuronal nitric oxide synthase. Bioorg Med Chem 2012; 21:1333-43. [PMID: 23352768 DOI: 10.1016/j.bmc.2012.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/24/2022]
Abstract
Inhibitors of neuronal nitric oxide synthase have been proposed as therapeutics for the treatment of different types of neurological disorders. On the basis of a cis-3,4-pyrrolidine scaffold, a series of trans-cyclopropyl- and methyl-containing nNOS inhibitors have been synthesized. The insertion of a rigid electron-withdrawing cyclopropyl ring decreases the basicity of the adjacent amino group, which resulted in decreased inhibitory activity of these inhibitors compared to the parent compound. Nonetheless, three of them exhibited double-digit nanomolar inhibition with high nNOS selectivity on the basis of in vitro enzyme assays. Crystal structures of nNOS and eNOS with these inhibitors bound provide a basis for detailed structure-activity relationship (SAR) studies. The conclusions from these studies will be used as a guide in the future development of selective NOS inhibitors.
Collapse
|
34
|
Bowles KR, Brooks SP, Dunnett SB, Jones L. Gene expression and behaviour in mouse models of HD. Brain Res Bull 2012; 88:276-84. [PMID: 21854837 DOI: 10.1016/j.brainresbull.2011.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 07/31/2011] [Indexed: 01/09/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disease, resulting in expansion of the CAG repeat in exon 1 of the HTT gene. The resulting mutant huntingtin protein has been implicated in the disruption of a variety of cellular functions, including transcription. Mouse models of HD have been central to the development of our understanding of gene expression changes in this disease, and are now beginning to elucidate the relationship between gene expression and behaviour. Here, we review current mouse models of HD and their characterisation in terms of gene expression. In addition, we look at how this can inform behaviours observed in mouse models of disease. The relationship between gene expression and behaviour in mouse models of HD is important, as this will further our knowledge of disease progression and its underlying molecular events, highlight new treatment targets, and potentially provide new biomarkers for therapeutic trials.
Collapse
Affiliation(s)
- K R Bowles
- Department of Psychological Medicine, MRC centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Wales, UK
| | | | | | | |
Collapse
|
35
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
36
|
1,3,4-Thiadiazole derivatives as selective inhibitors of iNOS versus nNOS: Synthesis and structure-activity dependence. Eur J Med Chem 2012; 50:129-39. [DOI: 10.1016/j.ejmech.2012.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/18/2022]
|
37
|
Labby KJ, Xue F, Kraus JM, Ji H, Mataka J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. Intramolecular hydrogen bonding: a potential strategy for more bioavailable inhibitors of neuronal nitric oxide synthase. Bioorg Med Chem 2012; 20:2435-43. [PMID: 22370337 DOI: 10.1016/j.bmc.2012.01.037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/18/2012] [Accepted: 01/22/2012] [Indexed: 11/15/2022]
Abstract
Selective neuronal nitric oxide synthase (nNOS) inhibitors have therapeutic applications in the treatment of numerous neurodegenerative diseases. Here we report the synthesis and evaluation of a series of inhibitors designed to have increased cell membrane permeability via intramolecular hydrogen bonding. Their potencies were examined in both purified enzyme and cell-based assays; a comparison of these results demonstrates that two of the new inhibitors display significantly increased membrane permeability over previous analogs. NMR spectroscopy provides evidence of intramolecular hydrogen bonding under physiological conditions in two of the inhibitors. Crystal structures of the inhibitors in the nNOS active site confirm the predicted non-intramolecular hydrogen bonded binding mode. Intramolecular hydrogen bonding may be an effective approach for increasing cell membrane permeability without affecting target protein binding.
Collapse
Affiliation(s)
- Kristin Jansen Labby
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Xue F, Kraus JM, Labby KJ, Ji H, Mataka J, Xia G, Li H, Delker SL, Roman LJ, Martásek P, Poulos TL, Silverman RB. Improved synthesis of chiral pyrrolidine inhibitors and their binding properties to neuronal nitric oxide synthase. J Med Chem 2011; 54:6399-403. [PMID: 21809851 PMCID: PMC3174355 DOI: 10.1021/jm200411j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We report an efficient synthetic route to chiral pyrrolidine inhibitors of neuronal nitric oxide synthase (nNOS) and crystal structures of the inhibitors bound to nNOS and to endothelial NOS. The new route enables versatile structure-activity relationship studies on the pyrrolidine-based scaffold, which can be beneficial for further development of nNOS inhibitors. The X-ray crystal structures of five new fluorine-containing inhibitors bound to nNOS provide insights into the effect of the fluorine atoms on binding.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - James M. Kraus
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Kristin Jansen Labby
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Haitao Ji
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Jan Mataka
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Guoyao Xia
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Silvia L. Delker
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Linda J. Roman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760
| | - Pavel Martásek
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760
- Department of Pediatrics and Center for Applied Genomics, 1st School of Medicine, Charles University, Prague, Czech Republic
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
39
|
Xue F, Fang J, Delker SL, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. Symmetric double-headed aminopyridines, a novel strategy for potent and membrane-permeable inhibitors of neuronal nitric oxide synthase. J Med Chem 2011; 54:2039-48. [PMID: 21410186 DOI: 10.1021/jm101071n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report novel neuronal nitric oxide synthase (nNOS) inhibitors based on a symmetric double-headed aminopyridine scaffold. The inhibitors were designed from crystal structures of leads 1 and 2 (Delker, S. L.; Ji, H.; Li, H.; Jamal, J.; Fang, J.; Xue, F.; Silverman, R. B.; Poulos, T. L. Unexpected binding modes of nitric oxide synthase inhibitors effective in the prevention of cerebral palsy . J. Am. Chem. Soc. 2010, 132, 5437-5442) and synthesized using a highly efficient route. The best inhibitor, 3j, showed low nanomolar inhibitory potency and modest isoform selectivity. It also exhibited enhanced membrane permeability. Inhibitor 3j binds to both the substrate site and the pterin site in nNOS but only to the substrate site in eNOS. These compounds provide a basis for further development of novel, potent, isoform selective, and bioavailable inhibitors for nNOS.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Reiner A, Dragatsis I, Dietrich P. Genetics and neuropathology of Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:325-72. [PMID: 21907094 PMCID: PMC4458347 DOI: 10.1016/b978-0-12-381328-2.00014-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & Neurobiology, The University of Tennessee Health Science Center, 855 Monroe Ave. Memphis, TN 38163, USA
| | | | | |
Collapse
|
41
|
Jones L, Hughes A. Pathogenic mechanisms in Huntington's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 98:373-418. [PMID: 21907095 DOI: 10.1016/b978-0-12-381328-2.00015-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant, progressive neurodegenerative disorder presenting in midlife. Multiple pathogenic mechanisms which hypothesise how the expanded CAG repeat causes manifest disease have been suggested since the mutation was first detected. These mechanisms include events that operate at both the gene and protein levels. It has been proposed that somatic instability of the CAG repeat could underlie the striatal-specific pathology observed in HD, although how this occurs and what consequences this has in the disease state remain unknown. The form in which the Htt protein exists within the cell has been extensively studied in terms of both its role in aggregate formation and its cellular processing. Protein-protein interactions, post-translational modifications and protein cleavage have all been suggested to contribute to HD pathogenesis. The potential downstream effects of the mutant Htt protein are also noted here. In particular, the adverse effect of the mutant Htt protein on cellular protein degradation, subcellular transport and transcription are explored, and its role in energy metabolism and excitotoxicity investigated. Elucidating the mechanisms at work in HD pathogenesis and determining when they occur in relation to disease is an important step in the pathway to therapeutic interventions.
Collapse
Affiliation(s)
- Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, UK
| | | |
Collapse
|
42
|
Xue F, Li H, Fang J, Roman LJ, Martásek P, Poulos TL, Silverman RB. Peripheral but crucial: a hydrophobic pocket (Tyr(706), Leu(337), and Met(336)) for potent and selective inhibition of neuronal nitric oxide synthase. Bioorg Med Chem Lett 2010; 20:6258-61. [PMID: 20833542 PMCID: PMC2952696 DOI: 10.1016/j.bmcl.2010.08.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
Abstract
Selective inhibition of the neuronal isoform of nitric oxide synthase (nNOS) over endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) has become a promising strategy for the discovery of new therapeutic agents for neurodegenerative diseases. However, because of the high sequence homology of different isozymes in the substrate binding pocket, developing inhibitors with both potency and excellent isoform selectivity remains a challenging problem. Herein, we report the evaluation of a recently discovered peripheral hydrophobic pocket (Tyr(706), Leu(337), and Met(336)) that opens up upon inhibitor binding and its potential in designing potent and selective nNOS inhibitors using three compounds, 2a, 2b, and 3. Crystal structure results show that inhibitors 2a and 3 adopted the same binding mode as lead compound 1. We also found that hydrophobic interactions between the 4-methyl group of the aminopyridine ring of these compounds with the side chain of Met(336), as well as the π-π stacking interaction between the pyridinyl motif and the side chain of Tyr(706) are important for the high potency and selectivity of these nNOS inhibitors.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, , 847-491-5653
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900, , 949-824-7020
| | - Jianguo Fang
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, , 847-491-5653
| | - Linda J. Roman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760
| | - Pavel Martásek
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78384-7760
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900, , 949-824-7020
| | - Richard B. Silverman
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208-3113, , 847-491-5653
| |
Collapse
|
43
|
Xue F, Li H, Delker SL, Fang J, Martásek P, Roman LJ, Poulos TL, Silverman RB. Potent, highly selective, and orally bioavailable gem-difluorinated monocationic inhibitors of neuronal nitric oxide synthase. J Am Chem Soc 2010; 132:14229-38. [PMID: 20843082 PMCID: PMC2956604 DOI: 10.1021/ja106175q] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In our efforts to discover neuronal isoform selective nitric oxide synthase (NOS) inhibitors, we have developed a series of compounds containing a pyrrolidine ring with two stereogenic centers. The enantiomerically pure compounds, (S,S) versus (R,R), exhibited two different binding orientations, with (R,R) inhibitors showing much better potency and selectivity. To improve the bioavailability of these inhibitors, we have introduced a CF(2) moiety geminal to an amino group in the long tail of one of these inhibitors, which reduced its basicity, resulting in compounds with monocationic character under physiological pH conditions. Biological evaluations have led to a nNOS inhibitor with a K(i) of 36 nM and high selectivity for nNOS over eNOS (3800-fold) and iNOS (1400-fold). MM-PBSA calculations indicated that the low pK(a) NH is, at least, partially protonated when bound to the active site. A comparison of rat oral bioavailability of the difluorinated compound to the parent molecule shows 22% for the difluorinated compound versus essentially no oral bioavailability for the parent compound. This indicates that the goal of this research to make compounds with only one protonated nitrogen atom at physiological pH to allow for membrane permeability, but which can become protonated when bound to NOS, has been accomplished.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Silvia L. Delker
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Jianguo Fang
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| | - Pavel Martásek
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
- Department of Pediatrics and Center for Applied Genomics, 1 School of Medicine, Charles University, Prague, Czech Republic
| | - Linda J. Roman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Richard B. Silverman
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113
| |
Collapse
|
44
|
Xue F, Huang J, Ji H, Fang J, Li H, Martásek P, Roman LJ, Poulos TL, Silverman RB. Structure-based design, synthesis, and biological evaluation of lipophilic-tailed monocationic inhibitors of neuronal nitric oxide synthase. Bioorg Med Chem 2010; 18:6526-37. [PMID: 20673724 PMCID: PMC2925225 DOI: 10.1016/j.bmc.2010.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/16/2023]
Abstract
Selective inhibitors of neuronal nitric oxide synthase (nNOS) have the potential to develop into new neurodegenerative therapeutics. Recently, we described the discovery of novel nNOS inhibitors (1a and 1b) based on a cis-pyrrolidine pharmacophore. These compounds and related ones were found to have poor blood-brain barrier permeability, presumably because of the basic nitrogens in the molecule. Here, a series of monocationic compounds was designed on the basis of docking experiments using the crystal structures of 1a,b bound to nNOS. These compounds were synthesized and evaluated for their ability to inhibit neuronal nitric oxide synthase. Despite the excellent overlap of these compounds with 1a,b bound to nNOS, they exhibited low potency. This is because they bound in the nNOS active site in the normal orientation rather than the expected flipped orientation used in the computer modeling. The biphenyl or phenoxyphenyl tail is disordered and does not form good protein-ligand interactions. These studies demonstrate the importance of the size and rigidity of the side chain tail and the second basic amino group for nNOS binding efficiency and the importance of the hydrophobic tail for conformational orientation in the active site of nNOS.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3113
| | - Jinwen Huang
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3113
| | - Haitao Ji
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3113
| | - Jianguo Fang
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3113
| | - Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Pavel Martásek
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
- Department of Pediatrics and Center for Applied Genomics, 1 School of Medicine, Charles University, Prague, Czech Republic
| | - Linda J. Roman
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Chemistry, and Chemistry, University of California, Irvine, California 92697-3900
| | - Richard B. Silverman
- Department of Chemistry, Department of Biochemistry, Molecular Biology, and Cell Biology, Center for Molecular Innovation and Drug Discovery, and Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208-3113
| |
Collapse
|
45
|
Dowie MJ, Scotter EL, Molinari E, Glass M. The therapeutic potential of G-protein coupled receptors in Huntington's disease. Pharmacol Ther 2010; 128:305-23. [PMID: 20708032 DOI: 10.1016/j.pharmthera.2010.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 07/14/2010] [Indexed: 01/29/2023]
Abstract
Huntington's disease is a late-onset autosomal dominant inherited neurodegenerative disease characterised by increased symptom severity over time and ultimately premature death. An expanded CAG repeat sequence in the huntingtin gene leads to a polyglutamine expansion in the expressed protein, resulting in complex dysfunctions including cellular excitotoxicity and transcriptional dysregulation. Symptoms include cognitive deficits, psychiatric changes and a movement disorder often referred to as Huntington's chorea, which involves characteristic involuntary dance-like writhing movements. Neuropathologically Huntington's disease is characterised by neuronal dysfunction and death in the striatum and cortex with an overall decrease in cerebral volume (Ho et al., 2001). Neuronal dysfunction begins prior to symptom presentation, and cells of particular vulnerability include the striatal medium spiny neurons. Huntington's is a devastating disease for patients and their families and there is currently no cure, or even an effective therapy for disease symptoms. G-protein coupled receptors are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many neurological diseases. This review will highlight the potential of G-protein coupled receptor drug targets as emerging therapies for Huntington's disease.
Collapse
Affiliation(s)
- Megan J Dowie
- Centre for Brain Research, University of Auckland, Private Bag 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
46
|
Zuccato C, Valenza M, Cattaneo E. Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease. Physiol Rev 2010; 90:905-81. [DOI: 10.1152/physrev.00041.2009] [Citation(s) in RCA: 626] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene encoding for huntingtin protein. A lot has been learned about this disease since its first description in 1872 and the identification of its causative gene and mutation in 1993. We now know that the disease is characterized by several molecular and cellular abnormalities whose precise timing and relative roles in pathogenesis have yet to be understood. HD is triggered by the mutant protein, and both gain-of-function (of the mutant protein) and loss-of-function (of the normal protein) mechanisms are involved. Here we review the data that describe the emergence of the ancient huntingtin gene and of the polyglutamine trait during the last 800 million years of evolution. We focus on the known functions of wild-type huntingtin that are fundamental for the survival and functioning of the brain neurons that predominantly degenerate in HD. We summarize data indicating how the loss of these beneficial activities reduces the ability of these neurons to survive. We also review the different mechanisms by which the mutation in huntingtin causes toxicity. This may arise both from cell-autonomous processes and dysfunction of neuronal circuitries. We then focus on novel therapeutical targets and pathways and on the attractive option to counteract HD at its primary source, i.e., by blocking the production of the mutant protein. Strategies and technologies used to screen for candidate HD biomarkers and their potential application are presented. Furthermore, we discuss the opportunities offered by intracerebral cell transplantation and the likely need for these multiple routes into therapies to converge at some point as, ideally, one would wish to stop the disease process and, at the same time, possibly replace the damaged neurons.
Collapse
Affiliation(s)
- Chiara Zuccato
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Marta Valenza
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| | - Elena Cattaneo
- Department of Pharmacological Sciences and Centre for Stem Cell Research, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
47
|
Buckley NJ, Johnson R, Zuccato C, Bithell A, Cattaneo E. The role of REST in transcriptional and epigenetic dysregulation in Huntington's disease. Neurobiol Dis 2010; 39:28-39. [PMID: 20170730 DOI: 10.1016/j.nbd.2010.02.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a devastating disorder that affects approximately 1 in 10,000 people and is accompanied by neuronal dysfunction and neurodegeneration. HD manifests as a progressive chorea, a decline in mental abilities accompanied by behavioural, emotional and psychiatric problems followed by, dementia, and ultimately, death. The molecular pathology of HD is complex but includes widespread transcriptional dysregulation. Although many transcriptional regulatory molecules have been implicated in the pathogenesis of HD, a growing body of evidence points to the pivotal role of RE1 Silencing Transcription Factor (REST). In HD, REST, translocates from the cytoplasm to the nucleus in neurons resulting in repression of key target genes such as BDNF. Since these original observations, several thousand direct target genes of REST have been identified, including numerous non-coding RNAs including both microRNAs and long non-coding RNAs, several of which are dysregulated in HD. More recently, evidence is emerging that hints at epigenetic abnormalities in HD brain. This in turn, promotes the notion that targeting the epigenetic machinery may be a useful strategy for treatment of some aspects of HD. REST also recruits a host of histone and chromatin modifying activities that can regulate the local epigenetic signature at REST target genes. Collectively, these observations present REST as a hub that coordinates transcriptional, posttranscriptional and epigenetic programmes, many of which are disrupted in HD. We identify several spokes emanating from this REST hub that may represent useful sites to redress REST dysfunction in HD.
Collapse
Affiliation(s)
- Noel J Buckley
- King's College London, Institute of Psychiatry, Centre for the Cellular Basis of Behaviour, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | | | |
Collapse
|
48
|
Xue F, Fang J, Lewis WW, Martásek P, Roman LJ, Silverman RB. Potent and selective neuronal nitric oxide synthase inhibitors with improved cellular permeability. Bioorg Med Chem Lett 2009; 20:554-7. [PMID: 19963381 DOI: 10.1016/j.bmcl.2009.11.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
Abstract
Recently, a series of potent and selective neuronal nitric oxide synthase inhibitors containing two basic nitrogen atoms was reported (Ji, H.; Stanton, B. Z.; Igarashi, J.; Li, H.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2008, 130, 3900-3914). In an effort to improve their bioavailability, three compounds (2a-c) were designed with electron-withdrawing groups near one of the basic nitrogen atoms to lower its pK(a). Inhibition studies with these compounds showed that two of them not only retained most of the potency and selectivity of the best analogue of the earlier series, but also showed improved membrane permeability based on data from a cell-based assay.
Collapse
Affiliation(s)
- Fengtian Xue
- Department of Chemistry, Center for Molecular Innovation and Drug Discovery, Chemistry of Life Processes Institute, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
| | | | | | | | | | | |
Collapse
|
49
|
Palumbo ML, Zorrilla Zubilete MA, Cremaschi GA, Genaro AM. Different effect of chronic stress on learning and memory in BALB/c and C57BL/6 inbred mice: Involvement of hippocampal NO production and PKC activity. Stress 2009; 12:350-61. [PMID: 19006005 DOI: 10.1080/10253890802506383] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Nitric oxide (NO) has been involved in many pathophysiological brain processes. Recently, we showed that neuronal nitric oxide synthase (nNOS)-mediated decrease in NO production is involved in memory impairment induced by chronic mild stress (CMS) in BALB/c mice. Two genetically different inbred murine strains, C57BL/6 and BALB/c, show distinct behavioral responses, neurodevelopmental and neurochemical parameters. Here, we perform a comparative study on CMS effects upon learning and memory in both strains, analyzing the role of NO production and its regulation by protein kinase C (PKC). Stressed BALB/c, but not C57Bl/6 mice, showed a poor learning performance in both the open field and passive avoidance inhibitory tasks. Also, CMS induced a diminished NO production by nNOS, associated with an increment in gamma and zeta PKC isoenzymes in BALB/c mice. In C57BL/6 mice, CMS had no effect on NO production, but increased delta and decreased betaI PKC isoforms. In vivo administration of a NOS inhibitor induced behavioral alterations in both strains. These results suggest a differential effect of stress, with BALB/c being more vulnerable to stress than C57BL/6 mice. This effect could be related to a differential regulation of NOS and PKC isoenzymes, pointing to an important role of NO in learning and memory.
Collapse
Affiliation(s)
- María Laura Palumbo
- CEFYBO-CONICET, 1a Cát de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
50
|
Ikeda H, Kotani A, Koshikawa N, Cools A. Somatostatin receptors in the nucleus accumbens modulate dopamine-dependent but not acetylcholine-dependent turning behaviour of rats. Neuroscience 2009; 159:974-81. [DOI: 10.1016/j.neuroscience.2009.01.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/22/2009] [Accepted: 01/28/2009] [Indexed: 11/27/2022]
|