1
|
Okutani H, Lo Vecchio S, Arendt-Nielsen L. Mechanisms and treatment of opioid-induced pruritus: Peripheral and central pathways. Eur J Pain 2024; 28:214-230. [PMID: 37650457 DOI: 10.1002/ejp.2180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/08/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND AND OBJECTIVE Pruritus (also known as itch) is defined as an unpleasant and irritating sensation of the skin that provokes an urge to scratch or rub. It is well known that opioid administration can cause pruritus, which is paradoxical as itch and pain share overlapping sensory pathways. Because opioids inhibit pain but can cause itching. Significant progress has been made to improve our understanding of the fundamental neurobiology of itch; however, much remains unknown about the mechanisms of opioid-induced pruritus. The prevention and treatment of opioid-induced pruritus remains a challenge in the field of pain management. The objective of this narrative review is to present and discuss the current body of literature and summarize the current understanding of the mechanisms underlying opioid-induced pruritus, and its relationship to analgesia, and possible treatment options. RESULTS The incidence of opioid-induced pruritus differs with different opioids and routes of administration, and the various mechanisms can be broadly divided into peripheral and central. Especially central mechanisms are intricate, even at the level of the spinal dorsal horn. There is evidence that opioid receptor antagonists and mixed agonist and antagonists, especially μ-opioid antagonists and κ-opioid agonists, are effective in relieving opioid-induced pruritus. Various treatments have been used for opioid-induced pruritus; however, most of them are controversial and have conflicting results. CONCLUSION The use of a multimodal analgesic treatment regimen combined with a mixed antagonist and κ agonists, especially μ-opioid antagonists, and κ-opioid agonists, seems to be the current best treatment modality for the management of opioid-induced pruritus and pain. SIGNIFICANCE Opioids remain the gold standard for the treatment of moderate to severe acute pain as well as cancer pain. It is well known that opioid-induced pruritus often does not respond to regular antipruritic treatment, thereby posing a challenge to clinicians in the field of pain management. We believe that our review makes a significant contribution to the literature, as studies on the mechanisms of opioid-induced pruritus and effective management strategies are crucial for the management of these patients.
Collapse
Affiliation(s)
- Hiroai Okutani
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Anesthesiology and Pain Medicine, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Silvia Lo Vecchio
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain, SMI, Department of Health Science and Technology, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
2
|
Qi Y, Nelson TS, Prasoon P, Norris C, Taylor BK. Contribution of µ Opioid Receptor-expressing Dorsal Horn Interneurons to Neuropathic Pain-like Behavior in Mice. Anesthesiology 2023; 139:840-857. [PMID: 37566700 PMCID: PMC10840648 DOI: 10.1097/aln.0000000000004735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
BACKGROUND Intersectional genetics have yielded tremendous advances in our understanding of molecularly identified subpopulations and circuits within the dorsal horn in neuropathic pain. The authors tested the hypothesis that spinal µ opioid receptor-expressing neurons (Oprm1-expressing neurons) contribute to behavioral hypersensitivity and neuronal sensitization in the spared nerve injury model in mice. METHODS The authors coupled the use of Oprm1Cre transgenic reporter mice with whole cell patch clamp electrophysiology in lumbar spinal cord slices to evaluate the neuronal activity of Oprm1-expressing neurons in the spared nerve injury model of neuropathic pain. The authors used a chemogenetic approach to activate or inhibit Oprm1-expressing neurons, followed by the assessment of behavioral signs of neuropathic pain. RESULTS The authors reveal that spared nerve injury yielded a robust neuroplasticity of Oprm1-expressing neurons. Spared nerve injury reduced Oprm1 gene expression in the dorsal horn as well as the responsiveness of Oprm1-expressing neurons to the selective µ agonist (D-Ala2, N-MePhe4, Gly-ol)-enkephalin (DAMGO). Spared nerve injury sensitized Oprm1-expressing neurons, as reflected by an increase in their intrinsic excitability (rheobase, sham 38.62 ± 25.87 pA [n = 29]; spared nerve injury, 18.33 ± 10.29 pA [n = 29], P = 0.0026) and spontaneous synaptic activity (spontaneous excitatory postsynaptic current frequency in delayed firing neurons: sham, 0.81 ± 0.67 Hz [n = 14]; spared nerve injury, 1.74 ± 1.68 Hz [n = 10], P = 0.0466), and light brush-induced coexpression of the immediate early gene product, Fos in laminae I to II (%Fos/tdTomato+: sham, 0.42 ± 0.57% [n = 3]; spared nerve injury, 28.26 ± 1.92% [n = 3], P = 0.0001). Chemogenetic activation of Oprm1-expressing neurons produced mechanical hypersensitivity in uninjured mice (saline, 2.91 ± 1.08 g [n = 6]; clozapine N-oxide, 0.65 ± 0.34 g [n = 6], P = 0.0006), while chemogenetic inhibition reduced behavioral signs of mechanical hypersensitivity (saline, 0.38 ± 0.37 g [n = 6]; clozapine N-oxide, 1.05 ± 0.42 g [n = 6], P = 0.0052) and cold hypersensitivity (saline, 6.89 ± 0.88 s [n = 5] vs. clozapine N-oxide, 2.31 ± 0.52 s [n = 5], P = 0.0017). CONCLUSIONS The authors conclude that nerve injury sensitizes pronociceptive µ opioid receptor-expressing neurons in mouse dorsal horn. Nonopioid strategies to inhibit these interneurons might yield new treatments for neuropathic pain. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Yanmei Qi
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler S. Nelson
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Pranav Prasoon
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Christopher Norris
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bradley K. Taylor
- Department of Anesthesiology and Perioperative Medicine, Center for Neuroscience, Pittsburgh Center for Pain Research, Pittsburgh Project to end Opioid Misuse, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Ochandarena NE, Niehaus JK, Tassou A, Scherrer G. Cell-type specific molecular architecture for mu opioid receptor function in pain and addiction circuits. Neuropharmacology 2023; 238:109597. [PMID: 37271281 PMCID: PMC10494323 DOI: 10.1016/j.neuropharm.2023.109597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023]
Abstract
Opioids are potent analgesics broadly used for pain management; however, they can produce dangerous side effects including addiction and respiratory depression. These harmful effects have led to an epidemic of opioid abuse and overdose deaths, creating an urgent need for the development of both safer pain medications and treatments for opioid use disorders. Both the analgesic and addictive properties of opioids are mediated by the mu opioid receptor (MOR), making resolution of the cell types and neural circuits responsible for each of the effects of opioids a critical research goal. Single-cell RNA sequencing (scRNA-seq) technology is enabling the identification of MOR-expressing cell types throughout the nervous system, creating new opportunities for mapping distinct opioid effects onto newly discovered cell types. Here, we describe molecularly defined MOR-expressing neuronal cell types throughout the peripheral and central nervous systems and their potential contributions to opioid analgesia and addiction.
Collapse
Affiliation(s)
- Nicole E Ochandarena
- Neuroscience Curriculum, Biological and Biomedical Sciences Program, The University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Jesse K Niehaus
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Adrien Tassou
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA; New York Stem Cell Foundation - Robertson Investigator, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
4
|
Yin JB, Lu YC, Li F, Zhang T, Ding T, Hu HQ, Chen YB, Guo HW, Kou ZZ, Zhang MM, Yuan J, Chen T, Li H, Cao BZ, Dong YL, Li YQ. Morphological investigations of endomorphin-2 and spinoparabrachial projection neurons in the spinal dorsal horn of the rat. Front Neuroanat 2022; 16:1072704. [PMID: 36506871 PMCID: PMC9726772 DOI: 10.3389/fnana.2022.1072704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
It has been proved that endomorphin-2 (EM2) produced obvious analgesic effects in the spinal dorsal horn (SDH), which existed in our human bodies with remarkable affinity and selectivity for the μ-opioid receptor (MOR). Our previous study has demonstrated that EM2 made synapses with the spinoparabrachial projection neurons (PNs) in the SDH and inhibited their activities by reducing presynaptic glutamate release. However, the morphological features of EM2 and the spinoparabrachial PNs in the SDH have not been completely investigated. Here, we examined the morphological features of EM2 and the spinoparabrachial PNs by using triple fluorescence and electron microscopic immunohistochemistry. EM2-immunoreactive (-ir) afferents directly contacted with the spinoparabrachial PNs in lamina I of the SDH. Immunoelectron microscopy (IEM) were used to confirm that these contacts were synaptic connections. It was also observed that EM2-ir axon terminals contacting with spinoparabrachial PNs in lamina I contained MOR, substance P (SP) and vesicular glutamate transporter 2 (VGLUT2). In lamina II, MOR-ir neurons were observed to receive direct contacts from EM2-ir varicosities. The synaptic connections among EM2, MOR, SP, VGLUT2, and the spinoparabrachial PNs were also confirmed by IEM. In sum, our results supply morphological evidences for the analgesic effects of EM2 on the spinoparabrachial PNs in the SDH.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ya-Cheng Lu
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Fei Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ting Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Tan Ding
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huai-Qiang Hu
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ying-Biao Chen
- Department of Human Anatomy, Fujian Health College, Fuzhou, China
| | - Hong-Wei Guo
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Zhen-Zhen Kou
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ming-Ming Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Jun Yuan
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Tao Chen
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Hui Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Bing-Zhen Cao
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Yu-Lin Dong
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Yu-Lin Dong,
| | - Yun-Qing Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,*Correspondence: Yun-Qing Li,
| |
Collapse
|
5
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
6
|
Pollard KJ, Bowser DA, Anderson WA, Meselhe M, Moore MJ. Morphine-sensitive synaptic transmission emerges in embryonic rat microphysiological model of lower afferent nociceptive signaling. SCIENCE ADVANCES 2021; 7:7/35/eabj2899. [PMID: 34452921 PMCID: PMC8397270 DOI: 10.1126/sciadv.abj2899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/08/2021] [Indexed: 05/12/2023]
Abstract
Debilitating chronic pain resulting from genetic predisposition, injury, or acquired neuropathy is becoming increasingly pervasive. Opioid analgesics remain the gold standard for intractable pain, but overprescription of increasingly powerful and addictive opioids has contributed to the current prescription drug abuse epidemic. There is a pressing need to screen experimental compounds more efficiently for analgesic potential that remains unmet by conventional research models. The spinal cord dorsal horn is a common target for analgesic intervention, where peripheral nociceptive signals are relayed to the central nervous system through synaptic transmission. Here, we demonstrate that coculturing peripheral and dorsal spinal cord nerve cells in a novel bioengineered microphysiological system facilitates self-directed emergence of native nerve tissue macrostructure and concerted synaptic function. The mechanistically distinct analgesics-morphine, lidocaine, and clonidine-differentially and predictably modulate this microphysiological synaptic transmission. Screening drug candidates for similar microphysiological profiles will efficiently identify therapeutics with analgesic potential.
Collapse
Affiliation(s)
- Kevin J Pollard
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Devon A Bowser
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- Bioinnovation Program, Tulane University, New Orleans, LA 70118, USA
| | - Wesley A Anderson
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- AxoSim Inc., New Orleans, LA 70112, USA
| | - Mostafa Meselhe
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| | - Michael J Moore
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
- AxoSim Inc., New Orleans, LA 70112, USA
- Tulane Brain Institute, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
7
|
Zhang XY, Dou YN, Yuan L, Li Q, Zhu YJ, Wang M, Sun YG. Different neuronal populations mediate inflammatory pain analgesia by exogenous and endogenous opioids. eLife 2020; 9:55289. [PMID: 32519950 PMCID: PMC7311172 DOI: 10.7554/elife.55289] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Mu-opioid receptors (MORs) are crucial for analgesia by both exogenous and endogenous opioids. However, the distinct mechanisms underlying these two types of opioid analgesia remain largely unknown. Here, we demonstrate that analgesic effects of exogenous and endogenous opioids on inflammatory pain are mediated by MORs expressed in distinct subpopulations of neurons in mice. We found that the exogenous opioid-induced analgesia of inflammatory pain is mediated by MORs in Vglut2+ glutamatergic but not GABAergic neurons. In contrast, analgesia by endogenous opioids is mediated by MORs in GABAergic rather than Vglut2+ glutamatergic neurons. Furthermore, MORs expressed at the spinal level is mainly involved in the analgesic effect of morphine in acute pain, but not in endogenous opioid analgesia during chronic inflammatory pain. Thus, our study revealed distinct mechanisms underlying analgesia by exogenous and endogenous opioids, and laid the foundation for further dissecting the circuit mechanism underlying opioid analgesia.
Collapse
Affiliation(s)
- Xin-Yan Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Nong Dou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Lei Yuan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yan-Jing Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
8
|
Domenici RA, Campos ACP, Maciel ST, Berzuino MB, Hernandes MS, Fonoff ET, Pagano RL. Parkinson's disease and pain: Modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol 2019; 315:72-81. [PMID: 30772369 DOI: 10.1016/j.expneurol.2019.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/04/2019] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that causes progressive dysfunction of dopaminergic and non-dopaminergic neurons, generating motor and nonmotor signs and symptoms. Pain is reported as the most bothersome nonmotor symptom in PD; however, pain remains overlooked and poorly understood. In this study, we evaluated the nociceptive behavior and the descending analgesia circuitry in a rat model of PD. Three independent experiments were performed to investigate: i) thermal nociceptive behavior; ii) mechanical nociceptive behavior and dopaminergic repositioning; and iii) modulation of the pain control circuitry. The rat model of PD, induced by unilateral striatal 6-hydroxydopamine (6-OHDA), did not interfere with thermal nociceptive responses; however, the mechanical nociceptive threshold was decreased bilaterally compared to that of naive or striatal saline-injected rats. This response was reversed by apomorphine or levodopa treatment. Striatal 6-OHDA induced motor impairments and reduced dopaminergic neuron immunolabeling as well as the pattern of neuronal activation (c-Fos) in the substantia nigra ipsilateral (IPL) to the lesion. In the midbrain periaqueductal gray (PAG), 6-OHDA-induced lesion increased IPL and decreased contralateral PAG GABAergic labeling compared to control. In the dorsal horn of the spinal cord, lesioned rats showed bilateral inhibition of enkephalin and μ-opioid receptor labeling. Taken together, we demonstrated that the unilateral 6-OHDA-induced PD model induces bilateral mechanical hypernociception, which is reversed by dopamine restoration, changes in the PAG circuitry, and inhibition of spinal opioidergic regulation, probably due to impaired descending analgesic control. A better understanding of pain mechanisms in PD patients is critical for developing better therapeutic strategies to improve their quality of life.
Collapse
Affiliation(s)
- Roberta A Domenici
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Soraya T Maciel
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Miriã B Berzuino
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Marina S Hernandes
- Department of Medicine, Emory University, Atlanta, GA, United States of America
| | - Erich T Fonoff
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil; Division of Functional Neurosurgery, Department of Neurology, University of São Paulo School of Medicine, São Paulo, SP, Brazil
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP, Brazil.
| |
Collapse
|
9
|
Maiarù M, Leese C, Certo M, Echeverria-Altuna I, Mangione AS, Arsenault J, Davletov B, Hunt SP. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10:10/450/eaar7384. [DOI: 10.1126/scitranslmed.aar7384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
10
|
Kim YR, Shim HG, Kim CE, Kim SJ. The effect of µ-opioid receptor activation on GABAergic neurons in the spinal dorsal horn. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:419-425. [PMID: 29962856 PMCID: PMC6019873 DOI: 10.4196/kjpp.2018.22.4.419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/20/2018] [Accepted: 04/09/2018] [Indexed: 11/15/2022]
Abstract
The superficial dorsal horn of the spinal cord plays an important role in pain transmission and opioid activity. Several studies have demonstrated that opioids modulate pain transmission, and the activation of µ-opioid receptors (MORs) by opioids contributes to analgesic effects in the spinal cord. However, the effect of the activation of MORs on GABAergic interneurons and the contribution to the analgesic effect are much less clear. In this study, using transgenic mice, which allow the identification of GABAergic interneurons, we investigated how the activation of MORs affects the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive afferent and GABAergic interneurons. We found that a selective µ-opioid agonist, [D-Ala2, NMe-Phe4, Gly-ol]-enkephanlin (DAMGO), induced an outward current mediated by K+ channels in GABAergic interneurons. In addition, DAMGO reduced the amplitude of evoked excitatory postsynaptic currents (EPSCs) of GABAergic interneurons which receive monosynaptic inputs from primary nociceptive C fibers. Taken together, we found that DAMGO reduced the excitability of GABAergic interneurons and synaptic transmission between primary nociceptive C fibers and GABAergic interneurons. These results suggest one possibility that suppression of GABAergic interneurons by DMAGO may reduce the inhibition on secondary GABAergic interneurons, which increase the inhibition of the secondary GABAergic interneurons to excitatory neurons in the spinal dorsal horn. In this circumstance, the sum of excitation of the entire spinal network will control the pain transmission.
Collapse
Affiliation(s)
- Yoo Rim Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chang-Eop Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Physiology, College of Korean Medicine, Gachon University, Seongnam 13120, Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Neuroscience Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
11
|
Wang D, Tawfik VL, Corder G, Low SA, François A, Basbaum AI, Scherrer G. Functional Divergence of Delta and Mu Opioid Receptor Organization in CNS Pain Circuits. Neuron 2018; 98:90-108.e5. [PMID: 29576387 PMCID: PMC5896237 DOI: 10.1016/j.neuron.2018.03.002] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/19/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
Cellular interactions between delta and mu opioid receptors (DORs and MORs), including heteromerization, are thought to regulate opioid analgesia. However, the identity of the nociceptive neurons in which such interactions could occur in vivo remains elusive. Here we show that DOR-MOR co-expression is limited to small populations of excitatory interneurons and projection neurons in the spinal cord dorsal horn and unexpectedly predominates in ventral horn motor circuits. Similarly, DOR-MOR co-expression is rare in parabrachial, amygdalar, and cortical brain regions processing nociceptive information. We further demonstrate that in the discrete DOR-MOR co-expressing nociceptive neurons, the two receptors internalize and function independently. Finally, conditional knockout experiments revealed that DORs selectively regulate mechanical pain by controlling the excitability of somatostatin-positive dorsal horn interneurons. Collectively, our results illuminate the functional organization of DORs and MORs in CNS pain circuits and reappraise the importance of DOR-MOR cellular interactions for developing novel opioid analgesics.
Collapse
MESH Headings
- Animals
- Anterior Horn Cells/chemistry
- Anterior Horn Cells/metabolism
- Anterior Horn Cells/pathology
- Central Nervous System/chemistry
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Nerve Net/chemistry
- Nerve Net/metabolism
- Nerve Net/pathology
- Pain/metabolism
- Pain/pathology
- Pain Measurement/methods
- Posterior Horn Cells/chemistry
- Posterior Horn Cells/metabolism
- Posterior Horn Cells/pathology
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Sarah A Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Amaury François
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA 94304, USA; Department of Molecular and Cellular Physiology, Stanford University, Palo Alto, CA 94304, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA 94304, USA; Stanford Neurosciences Institute, Stanford University, Palo Alto, CA 94304, USA; New York Stem Cell Foundation - Robertson Investigator, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
12
|
Dopamine D1-like Receptors Regulate Constitutive, μ-Opioid Receptor-Mediated Repression of Use-Dependent Synaptic Plasticity in Dorsal Horn Neurons: More Harm than Good? J Neurosci 2017; 36:5661-73. [PMID: 27194343 DOI: 10.1523/jneurosci.2469-15.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 04/11/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED The current study reports on a synaptic mechanism through which D1-like receptors (D1LRs) modulate spinal nociception and plasticity by regulating activation of the μ-opioid receptor (MOR).D1LR stimulation with agonist SKF 38393 concentration-dependently depressed C-fiber-evoked potentials in rats receiving spinal nerve ligation (SNL), but not in uninjured rats. Depression was prevented by MOR- but not GABA-receptor blockade. Neurons expressing the D1 subtype were immunopositive for met-enkephalin and vesicular glutamate transporter VGLUT2, but not for GABAergic marker vGAT.Nerve ligation was followed by increased immunoreactivity for D1 in synaptic compartment (P3) in dorsal horn homogenates and presynaptic met-enkephalin-containing boutons. SNL led to increased immunoreactivity for met-enkephalin in dorsal horn homogenates, which was dose-dependently attenuated by selective D1LR antagonist SCH 23390. During blockade of either D1R or MOR, low-frequency (0.2 or 3 Hz) stimulation (LFS) to the sciatic nerve induced long-term potentiation (LTP) of C-fiber-evoked potentials, revealing a constituent role of both receptors in repressing afferent-induced synaptic plasticity. LFS consistently induced NMDA receptor-dependent LTP in nerve-injured rats. The ability of MOR both to prevent LTP and to modulate mechanical and thermal pain thresholds in behavioral tests was preserved in nerve-ligated rats that were postoperatively treated with SCH 23390. D1LR priming for 30 min sufficed to disrupt MOR function in otherwise naive rats via a mechanism involving receptor overuse.The current data support that, whereas D1LR-modulated MOR activation is instrumental in antinociception and endogenous repression of synaptic plasticity, this mechanism deteriorates rapidly by sustained use, generating increased vulnerability to afferent input. SIGNIFICANCE STATEMENT The current study shows that dopamine D1-like receptors (D1LRs) and μ-opioid receptors (MOR) in the spinal dorsal horn constitutively repress the expression of synaptic long-term potentiation (LTP) of C-fiber-evoked potentials. Anatomical data are provided supporting that the D1 subtype regulates MOR function by modulating met-enkephalin release. Sustained neuropathic pain induced by spinal nerve ligation is accompanied by D1R and met-enkephalin upregulation, acquired D1LR-mediated antinociception, and a loss of endogenous repression of further synaptic plasticity. We show that the ability of MOR to oppose LTP is rapidly impaired by sustained D1LR activation via a mechanism involving sustained MOR activation.
Collapse
|
13
|
Corder G, Tawfik VL, Wang D, Sypek EI, Low SA, Dickinson JR, Sotoudeh C, Clark JD, Barres BA, Bohlen CJ, Scherrer G. Loss of μ opioid receptor signaling in nociceptors, but not microglia, abrogates morphine tolerance without disrupting analgesia. Nat Med 2017; 23:164-173. [PMID: 28092666 PMCID: PMC5296291 DOI: 10.1038/nm.4262] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022]
Abstract
Opioid pain medications have detrimental side effects including analgesic tolerance and opioid-induced hyperalgesia (OIH). Tolerance and OIH counteract opioid analgesia and drive dose escalation. The cell types and receptors on which opioids act to initiate these maladaptive processes remain disputed, which has prevented the development of therapies to maximize and sustain opioid analgesic efficacy. We found that μ opioid receptors (MORs) expressed by primary afferent nociceptors initiate tolerance and OIH development. RNA sequencing and histological analysis revealed that MORs are expressed by nociceptors, but not by spinal microglia. Deletion of MORs specifically in nociceptors eliminated morphine tolerance, OIH and pronociceptive synaptic long-term potentiation without altering antinociception. Furthermore, we found that co-administration of methylnaltrexone bromide, a peripherally restricted MOR antagonist, was sufficient to abrogate morphine tolerance and OIH without diminishing antinociception in perioperative and chronic pain models. Collectively, our data support the idea that opioid agonists can be combined with peripheral MOR antagonists to limit analgesic tolerance and OIH.
Collapse
Affiliation(s)
- Gregory Corder
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| | - Vivianne L. Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| | - Dong Wang
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| | - Elizabeth I. Sypek
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford University Neuroscience Graduate Program, Stanford, CA 94305, USA
| | - Sarah A. Low
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| | - Jasmine R. Dickinson
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Stanford University Biology Graduate Program, Stanford, CA 94305, USA
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| | - J. David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Anesthesiology Service, Veteran’s Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Ben A. Barres
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Christopher J. Bohlen
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
- Department of Neurobiology, Stanford University, Stanford, CA 94305, USA
| | - Grégory Scherrer
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, USA
- Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
- Stanford Neurosciences Institute, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Todd AJ. Identifying functional populations among the interneurons in laminae I-III of the spinal dorsal horn. Mol Pain 2017; 13:1744806917693003. [PMID: 28326935 PMCID: PMC5315367 DOI: 10.1177/1744806917693003] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The spinal dorsal horn receives input from primary afferent axons, which terminate in a modality-specific fashion in different laminae. The incoming somatosensory information is processed through complex synaptic circuits involving excitatory and inhibitory interneurons, before being transmitted to the brain via projection neurons for conscious perception. The dorsal horn is important, firstly because changes in this region contribute to chronic pain states, and secondly because it contains potential targets for the development of new treatments for pain. However, at present, we have only a limited understanding of the neuronal circuitry within this region, and this is largely because of the difficulty in defining functional populations among the excitatory and inhibitory interneurons. The recent discovery of specific neurochemically defined interneuron populations, together with the development of molecular genetic techniques for altering neuronal function in vivo, are resulting in a dramatic improvement in our understanding of somatosensory processing at the spinal level.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
15
|
Cho PS, Lee HK, Lee SH, Im JZ, Jung SJ. DAMGO modulates two-pore domain K(+) channels in the substantia gelatinosa neurons of rat spinal cord. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:525-31. [PMID: 27610039 PMCID: PMC5014999 DOI: 10.4196/kjpp.2016.20.5.525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 11/24/2022]
Abstract
The analgesic mechanism of opioids is known to decrease the excitability of substantia gelatinosa (SG) neurons receiving the synaptic inputs from primary nociceptive afferent fiber by increasing inwardly rectifying K+ current. In this study, we examined whether a µ-opioid agonist, [D-Ala2,N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO), affects the two-pore domain K+ channel (K2P) current in rat SG neurons using a slice whole-cell patch clamp technique. Also we confirmed which subtypes of K2P channels were associated with DAMGO-induced currents, measuring the expression of K2P channel in whole spinal cord and SG region. DAMGO caused a robust hyperpolarization and outward current in the SG neurons, which developed almost instantaneously and did not show any time-dependent inactivation. Half of the SG neurons exhibited a linear I~V relationship of the DAMGO-induced current, whereas rest of the neurons displayed inward rectification. In SG neurons with a linear I~V relationship of DAMGO-induced current, the reversal potential was close to the K+ equilibrium potentials. The mRNA expression of TWIK (tandem of pore domains in a weak inwardly rectifying K+ channel) related acid-sensitive K+ channel (TASK) 1 and 3 was found in the SG region and a low pH (6.4) significantly blocked the DAMGO-induced K+ current. Taken together, the DAMGO-induced hyperpolarization at resting membrane potential and subsequent decrease in excitability of SG neurons can be carried by the two-pore domain K+ channel (TASK1 and 3) in addition to inwardly rectifying K+ channel.
Collapse
Affiliation(s)
- Pyung Sun Cho
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Han Kyu Lee
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Sang Hoon Lee
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Jay Zoon Im
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| | - Sung Jun Jung
- Department of Biomedical Science, Graduate School of Biomedical Science; Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
16
|
Abstract
UNLABELLED Treating pain is one of the most difficult challenges in medicine and a key facet of disease management. The isolation of morphine by Friedrich Sertürner in 1804 added an essential pharmacological tool in the treatment of pain and spawned the discovery of a new class of drugs known collectively as opioid analgesics. Revered for their potent pain-relieving effects, even Morpheus the god of dreams could not have dreamt that his opium tincture would be both a gift and a burden to humankind. To date, morphine and other opioids remain essential analgesics for alleviating pain. However, their use is plagued by major side effects, such as analgesic tolerance (diminished pain-relieving effects), hyperalgesia (increased pain sensitivity), and drug dependence. This review highlights recent advances in understanding the key causes of these adverse effects and explores the effect of chronic pain on opioid reward. SIGNIFICANCE STATEMENT Chronic pain is pervasive and afflicts >100 million Americans. Treating pain in these individuals is notoriously difficult and often requires opioids, one of the most powerful and effective classes of drugs used for controlling pain. However, their use is plagued by major side effects, such as a loss of pain-relieving effects (analgesic tolerance), paradoxical pain (hyperalgesia), and addiction. Despite the potential side effects, opioids remain the pharmacological cornerstone of modern pain therapy. This review highlights recent breakthroughs in understanding the key causes of these adverse effects and explores the cellular control of opioid systems in reward and aversion. The findings will challenge traditional views of the good, the bad, and the ugly of opioids.
Collapse
|
17
|
Cheng CF, Wang WC, Huang CY, Du PH, Yang JH, Tsaur ML. Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4-positive nociceptors and pain-modulating spinal interneurons. J Comp Neurol 2015; 524:846-73. [PMID: 26239200 DOI: 10.1002/cne.23876] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/30/2015] [Accepted: 07/31/2015] [Indexed: 12/21/2022]
Abstract
Subthreshold A-type K(+) currents (ISA s) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISA s. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore-forming Kv4 subunits and two types of auxiliary subunits: K(+) channel-interacting proteins (KChIPs) and dipeptidyl peptidase-like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA -expressing pain-related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA -expressing nociceptors and pain-modulating spinal interneurons.
Collapse
Affiliation(s)
- Chau-Fu Cheng
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chen Wang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yi Huang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hau Du
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Hui Yang
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Meei-Ling Tsaur
- Institute of Neuroscience, Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
18
|
Synaptic upregulation and superadditive interaction of dopamine D2- and μ-opioid receptors after peripheral nerve injury. Pain 2014; 155:2526-2533. [DOI: 10.1016/j.pain.2014.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/09/2014] [Accepted: 09/11/2014] [Indexed: 11/16/2022]
|
19
|
Autophagy in superficial spinal dorsal horn accelerates the cathepsin B-dependent morphine antinociceptive tolerance. Neuroscience 2014; 275:384-94. [DOI: 10.1016/j.neuroscience.2014.06.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/06/2023]
|
20
|
Braz J, Solorzano C, Wang X, Basbaum AI. Transmitting pain and itch messages: a contemporary view of the spinal cord circuits that generate gate control. Neuron 2014; 82:522-36. [PMID: 24811377 DOI: 10.1016/j.neuron.2014.01.018] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The original formulation of Gate Control Theory (GCT) proposed that the perception of pain produced by spinal cord signaling to the brain depends on a balance of activity generated in large (nonnociceptive)- and small (nociceptive)-diameter primary afferent fibers. The theory proposed that activation of the large-diameter afferent "closes" the gate by engaging a superficial dorsal horn interneuron that inhibits the firing of projection neurons. Activation of the nociceptors "opens" the gate through concomitant excitation of projection neurons and inhibition of the inhibitory interneurons. Sixty years after publication of the GCT, we are faced with an ever-growing list of morphologically and neurochemically distinct spinal cord interneurons. The present Review highlights the complexity of superficial dorsal horn circuitry and addresses the question whether the premises outlined in GCT still have relevance today. By examining the dorsal horn circuits that underlie the transmission of "pain" and "itch" messages, we also address the extent to which labeled lines can be incorporated into a contemporary view of GCT.
Collapse
Affiliation(s)
- João Braz
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Carlos Solorzano
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Xidao Wang
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA
| | - Allan I Basbaum
- Department of Anatomy, University California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
21
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Iwagaki N, Garzillo F, Polgár E, Riddell JS, Todd AJ. Neurochemical characterisation of lamina II inhibitory interneurons that express GFP in the PrP-GFP mouse. Mol Pain 2013; 9:56. [PMID: 24176114 PMCID: PMC4228398 DOI: 10.1186/1744-8069-9-56] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023] Open
Abstract
Background Inhibitory interneurons in the superficial dorsal horn play important roles in modulating sensory transmission, and these roles are thought to be performed by distinct functional populations. We have identified 4 non-overlapping classes among the inhibitory interneurons in the rat, defined by the presence of galanin, neuropeptide Y, neuronal nitric oxide synthase (nNOS) and parvalbumin. The somatostatin receptor sst2A is expressed by ~50% of the inhibitory interneurons in this region, and is particularly associated with nNOS- and galanin-expressing cells. The main aim of the present study was to test whether a genetically-defined population of inhibitory interneurons, those expressing green fluorescent protein (GFP) in the PrP-GFP mouse, belonged to one or more of the neurochemical classes identified in the rat. Results The expression of sst2A and its relation to other neurochemical markers in the mouse was similar to that in the rat, except that a significant number of cells co-expressed nNOS and galanin. The PrP-GFP cells were entirely contained within the set of inhibitory interneurons that possessed sst2A receptors, and virtually all expressed nNOS and/or galanin. GFP was present in ~3-4% of neurons in the superficial dorsal horn, corresponding to ~16% of the inhibitory interneurons in this region. Consistent with their sst2A-immunoreactivity, all of the GFP cells were hyperpolarised by somatostatin, and this was prevented by administration of a selective sst2 receptor antagonist or a blocker of G-protein-coupled inwardly rectifying K+ channels. Conclusions These findings support the view that neurochemistry provides a valuable way of classifying inhibitory interneurons in the superficial laminae. Together with previous evidence that the PrP-GFP cells form a relatively homogeneous population in terms of their physiological properties, they suggest that these neurons have specific roles in processing sensory information in the dorsal horn.
Collapse
Affiliation(s)
| | | | | | - John S Riddell
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | | |
Collapse
|
23
|
Ferrini F, Trang T, Mattioli TAM, Laffray S, Del’Guidice T, Lorenzo LE, Castonguay A, Doyon N, Zhang W, Godin AG, Mohr D, Beggs S, Vandal K, Beaulieu JM, Cahill C, Salter MW, De Koninck Y. Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl⁻ homeostasis. Nat Neurosci 2013; 16:183-92. [PMID: 23292683 PMCID: PMC4974077 DOI: 10.1038/nn.3295] [Citation(s) in RCA: 340] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/05/2012] [Indexed: 01/18/2023]
Abstract
A major unresolved issue in treating pain is the paradoxical hyperalgesia produced by the gold-standard analgesic morphine and other opiates. We found that hyperalgesia-inducing treatment with morphine resulted in downregulation of the K(+)-Cl(-) co-transporter KCC2, impairing Cl(-) homeostasis in rat spinal lamina l neurons. Restoring the anion equilibrium potential reversed the morphine-induced hyperalgesia without affecting tolerance. The hyperalgesia was also reversed by ablating spinal microglia. Morphine hyperalgesia, but not tolerance, required μ opioid receptor-dependent expression of P2X4 receptors (P2X4Rs) in microglia and μ-independent gating of the release of brain-derived neurotrophic factor (BDNF) by P2X4Rs. Blocking BDNF-TrkB signaling preserved Cl(-) homeostasis and reversed the hyperalgesia. Gene-targeted mice in which Bdnf was deleted from microglia did not develop hyperalgesia to morphine. However, neither morphine antinociception nor tolerance was affected in these mice. Our findings dissociate morphine-induced hyperalgesia from tolerance and suggest the microglia-to-neuron P2X4-BDNF-KCC2 pathway as a therapeutic target for preventing hyperalgesia without affecting morphine analgesia.
Collapse
Affiliation(s)
- Francesco Ferrini
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
- Department of Veterinary Sciences, University of Turin, 10095, Grugliasco, Turin, Italy
| | - Tuan Trang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Departments of Comparative Biology & Experimental Medicine, and Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Theresa-Alexandra M. Mattioli
- Departments of Comparative Biology & Experimental Medicine, and Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sophie Laffray
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Thomas Del’Guidice
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Louis-Etienne Lorenzo
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Annie Castonguay
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Nicolas Doyon
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Wenbo Zhang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Antoine G. Godin
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
| | - Daniela Mohr
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Simon Beggs
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Karen Vandal
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
| | - Jean-Martin Beaulieu
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| | - Catherine Cahill
- Department of Pharmacology & Toxicology, Queen’s University, Kingston, Ontario, Canada
| | - Michael W. Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Yves De Koninck
- Institut Universitaire de santé mentale de Québec, Québec, G1J 2G3, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec, G13 7P4, Canada
| |
Collapse
|
24
|
Sardella TCP, Polgár E, Garzillo F, Furuta T, Kaneko T, Watanabe M, Todd AJ. Dynorphin is expressed primarily by GABAergic neurons that contain galanin in the rat dorsal horn. Mol Pain 2011; 7:76. [PMID: 21958458 PMCID: PMC3192681 DOI: 10.1186/1744-8069-7-76] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023] Open
Abstract
Background The opioid peptide dynorphin is expressed by certain neurons in the superficial dorsal horn of the spinal cord, but little is known about the types of cell that contain dynorphin. In this study, we have used an antibody against the dynorphin precursor preprodynorphin (PPD), to reveal the cell bodies and axons of dynorphin-expressing neurons in the rat spinal cord. The main aims were to estimate the proportion of neurons in each of laminae I-III that express dynorphin and to determine whether they are excitatory or inhibitory neurons. Results PPD-immunoreactive cells were concentrated in lamina I and the outer part of lamina II (IIo), where they constituted 17% and 8%, respectively, of all neurons. Around half of those in lamina I and 80% of those in lamina II were GABA-immunoreactive. We have previously identified four non-overlapping neurochemical populations of inhibitory interneurons in this region, defined by the presence of neuropeptide Y, galanin, parvalbumin and neuronal nitric oxide synthase. PPD co-localised extensively with galanin in both cell bodies and axons, but rarely or not at all with the other three markers. PPD was present in around 4% of GABAergic boutons (identified by the presence of the vesicular GABA transporter) in laminae I-II. Conclusions These results show that most dynorphin-expressing cells in the superficial dorsal horn are inhibitory interneurons, and that they largely correspond to the population that is defined by the presence of galanin. We estimate that dynorphin is present in ~32% of inhibitory interneurons in lamina I and 11% of those in lamina II. Since the proportion of GABAergic boutons that contain PPD in these laminae was considerably lower than this, our findings suggest that these neurons may generate relatively small axonal arborisations.
Collapse
Affiliation(s)
- Thomas C P Sardella
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ UK
| | | | | | | | | | | | | |
Collapse
|
25
|
Yasaka T, Tiong SYX, Hughes DI, Riddell JS, Todd AJ. Populations of inhibitory and excitatory interneurons in lamina II of the adult rat spinal dorsal horn revealed by a combined electrophysiological and anatomical approach. Pain 2011; 151:475-488. [PMID: 20817353 PMCID: PMC3170912 DOI: 10.1016/j.pain.2010.08.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/19/2010] [Accepted: 08/05/2010] [Indexed: 11/30/2022]
Abstract
Lamina II contains a large number of interneurons involved in modulation and transmission of somatosensory (including nociceptive) information. However, its neuronal circuitry is poorly understood due to the difficulty of identifying functional populations of interneurons. This information is important for understanding nociceptive processing and for identifying changes that underlie chronic pain. In this study, we compared morphology, neurotransmitter content, electrophysiological and pharmacological properties for 61 lamina II neurons recorded in slices from adult rat spinal cord. Morphology was related to transmitter content, since islet cells were GABAergic, while radial and most vertical cells were glutamatergic. However, there was considerable diversity among the remaining cells, some of which could not be classified morphologically. Transmitter phenotype was related to firing pattern, since most (18/22) excitatory cells, but few (2/23) inhibitory cells had delayed, gap or reluctant patterns, which are associated with A-type potassium (IA) currents. Somatostatin was identified in axons of 14/24 excitatory neurons. These had variable morphology, but most of those tested showed delayed-firing. Excitatory interneurons are therefore likely to contribute to pain states associated with synaptic plasticity involving IA currents. Although noradrenaline and serotonin evoked outward currents in both inhibitory and excitatory cells, somatostatin produced these currents only in inhibitory neurons, suggesting that its pro-nociceptive effects are mediated by disinhibition. Our results demonstrate that certain distinctive populations of inhibitory and excitatory interneuron can be recognised in lamina II. Combining this approach with identification of other neurochemical markers should allow further clarification of neuronal circuitry in the superficial dorsal horn.
Collapse
Affiliation(s)
- Toshiharu Yasaka
- Neuroscience and Molecular Pharmacology, Faculty of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | |
Collapse
|
26
|
Abstract
Neurons in the spinal dorsal horn process sensory information, which is then transmitted to several brain regions, including those responsible for pain perception. The dorsal horn provides numerous potential targets for the development of novel analgesics and is thought to undergo changes that contribute to the exaggerated pain felt after nerve injury and inflammation. Despite its obvious importance, we still know little about the neuronal circuits that process sensory information, mainly because of the heterogeneity of the various neuronal components that make up these circuits. Recent studies have begun to shed light on the neuronal organization and circuitry of this complex region.
Collapse
Affiliation(s)
- Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, West Medical Building, University of Glasgow, G12 8QQ, UK.
| |
Collapse
|
27
|
Hossaini M, Duraku LS, Saraç Ç, Jongen JLM, Holstege JC. Differential distribution of activated spinal neurons containing glycine and/or GABA and expressing c-fos in acute and chronic pain models. Pain 2010; 151:356-365. [PMID: 20727678 DOI: 10.1016/j.pain.2010.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 07/09/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
The inhibitory transmitters GABA and glycine play an important role in modulating pain transmission, both in normal and in pathological situations. In the present study we have combined in situ hybridization for identifying spinal neurons that use the transmitter(s) glycine and/or GABA (Gly/GABA neurons) with immunohistochemistry for c-fos, a marker for neuronal activation. This procedure was used with acute pain models induced by the injection of capsaicin or formalin; and chronic pain models using Complete Freund's Adjuvant (CFA, chronic inflammation), and the spared nerve injury (SNI) model (neuropathic pain). In all models Gly/GABA neurons were activated as indicated by their expression of c-fos. The pattern of Gly/GABA neuronal activation was different for every model, both anatomically and quantitatively. However, the averaged percentage of activated neurons that were Gly/GABA in the chronic phase (≥20h survival, 46%) was significantly higher than in the acute phase (≤2h survival, 34%). In addition, the total numbers of activated Gly/GABA neurons were similar in both phases, showing that the activation of non-Gly/GABA (presumed excitatory) neurons in the chronic phase decreased. Finally, morphine application equally decreased the total number of activated neurons and activated Gly/GABA neurons. This showed that morphine did not specifically activate Gly/GABA neurons to achieve nociceptive inhibition. The present study shows an increased activity of Gly/GABA neurons in acute and chronic models. This mechanism, together with mechanisms that antagonize the effects of GABA and glycine at the receptor level, may determine the sensitivity of our pain system during health and disease.
Collapse
Affiliation(s)
- Mehdi Hossaini
- Department of Neuroscience, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands Department of Plastic Reconstructive and Hand Surgery, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands Department of Neurology, Erasmus University Medical Center, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Ray SB, Gupta H, Gupta YK. Up-regulation of mu-opioid receptors in the spinal cord of morphine-tolerant rats. J Biosci 2009; 29:51-6. [PMID: 15286403 DOI: 10.1007/bf02702561] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Though morphine remains the most powerful drug for treating pain, its effectiveness is limited by the development of tolerance and dependence. The mechanism underlying development of tolerance to morphine is still poorly understood. One of the factors could be an alteration in the number of micro-receptors within specific parts of the nervous system. However, reports on changes in the micro-opioid receptor density in the spinal cord after chronic morphine administration are conflicting. Most of the studies have used subcutaneously implanted morphine pellets to produce tolerance. However, it does not simulate clinical conditions, where it is more common to administer morphine at intervals, either by injections or orally. In the present study, rats were made tolerant to morphine by injecting increasing doses of morphine (10-50 mg/kg, subcutaneously) for five days. In vitro tissue autoradiography for localization of micro-receptor in the spinal cord was done using [3H]-DAMGO. As compared to the spinal cord of control rats, the spinal cord of tolerant rats showed an 18.8% increase or up-regulation in the density of micro-receptors in the superficial layers of the dorsal horn. This up-regulation of micro-receptors after morphine tolerance suggests that a fraction of the receptors have been rendered desensitized, which in turn could lead to tolerance
Collapse
Affiliation(s)
- Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | | | | |
Collapse
|
29
|
Zhou HY, Chen SR, Chen H, Pan HL. The glutamatergic nature of TRPV1-expressing neurons in the spinal dorsal horn. J Neurochem 2008; 108:305-18. [PMID: 19012737 DOI: 10.1111/j.1471-4159.2008.05772.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The transient receptor potential vanilloid receptor 1 (TRPV1) is expressed on primary afferent terminals and spinal dorsal horn neurons. However, the neurochemical phenotypes and functions of TRPV1-expressing post-synaptic neurons in the spinal cord are not clear. In this study, we tested the hypothesis that TRPV1-expressing dorsal horn neurons are glutamatergic. Immunocytochemical labeling revealed that TRPV1 and vesicular glutamate transporter-2 were colocalized in dorsal horn neurons and their terminals in the rat spinal cord. Resiniferatoxin (RTX) treatment or dorsal rhizotomy ablated TRPV1-expressing primary afferents but did not affect TRPV1- and vesicular glutamate transporter-2-expressing dorsal horn neurons. Capsaicin significantly increased the frequency of glutamatergic spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in almost all the lamina II neurons tested in control rats. In RTX-treated or dorsal rhizotomized rats, capsaicin still increased the frequency of spontaneous excitatory post-synaptic currents and miniature excitatory post-synaptic currents in the majority of neurons examined, and this effect was abolished by a TRPV1 blocker or by non-NMDA receptor antagonist. In RTX-treated or in dorsal rhizotomized rats, capsaicin also produced an inward current in a subpopulation of lamina II neurons. However, capsaicin had no effect on GABAergic and glycinergic spontaneous inhibitory post-synaptic currents of lamina II neurons in RTX-treated or dorsal rhizotomized rats. Collectively, our study provides new histological and functional evidence that TRPV1-expressing dorsal horn neurons in the spinal cord are glutamatergic and that they mediate excitatory synaptic transmission. This finding is important to our understanding of the circuitry and phenotypes of intrinsic dorsal horn neurons in the spinal cord.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Pain Medicine, The University of Texas M D Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
30
|
Santos SFA, Rebelo S, Derkach VA, Safronov BV. Excitatory interneurons dominate sensory processing in the spinal substantia gelatinosa of rat. J Physiol 2007; 581:241-54. [PMID: 17331995 PMCID: PMC2075233 DOI: 10.1113/jphysiol.2006.126912] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Substantia gelatinosa (SG, lamina II) is a spinal cord region where most unmyelinated primary afferents terminate and the central nociceptive processing begins. It is formed by several distinct groups of interneurons whose functional properties and synaptic connections are poorly understood, in part, because recordings from synaptically coupled pairs of SG neurons are quite challenging due to a very low probability of finding connected cells. Here, we describe an efficient method for identifying synaptically coupled interneurons in rat spinal cord slices and characterizing their excitatory or inhibitory function. Using tight-seal whole-cell recordings and a cell-attached stimulation technique, we routinely tested about 1500 SG interneurons, classifying 102 of them as monosynaptically connected to neurons in lamina I-III. Surprisingly, the vast majority of SG interneurons (n = 87) were excitatory and glutamatergic, while only 15 neurons were inhibitory. According to their intrinsic firing properties, these 102 SG neurons were also classified as tonic (n = 49), adapting (n = 17) or delayed-firing neurons (n = 36). All but two tonic neurons and all adapting neurons were excitatory interneurons. Of 36 delayed-firing neurons, 23 were excitatory and 13 were inhibitory. We conclude that sensory integration in the intrinsic SG neuronal network is dominated by excitatory interneurons. Such organization of neuronal circuitries in the spinal SG can be important for nociceptive encoding.
Collapse
Affiliation(s)
- Sónia F A Santos
- Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | | | | | | |
Collapse
|
31
|
Abstract
Convincing evidence from preclinical studies demonstrates that cannabinoids can reduce pain responses in a range of inflammatory and neuropathic pain models. The anatomical and functional data reveal cannabinoid receptor-mediated analgesic actions operating at sites concerned with the transmission and processing of nociceptive signals in brain, spinal cord and the periphery. The precise signalling mechanisms by which cannabinoids produce analgesic effects at these sites remain unclear; however, significant clues point to cannabinoid modulation of the functions of neurone and immune cells that mediate nociceptive and inflammatory responses. Intracellular signalling mechanisms engaged by cannabinoid receptors-like the inhibition of calcium transients and adenylate cyclase, and pre-synaptic modulation of transmitter release-have been demonstrated in some of these cell types and are predicted to play a role in the analgesic effects of cannabinoids. In contrast, the clinical effectiveness of cannabinoids as analgesics is less clear. Progress in this area requires the development of cannabinoids with a more favourable therapeutic index than those currently available for human use, and the testing of their efficacy and side-effects in high-quality clinical trials.
Collapse
Affiliation(s)
- I J Lever
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | | |
Collapse
|
32
|
Papp I, Szucs P, Holló K, Erdélyi F, Szabó G, Antal M. Hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 ion channels modulate synaptic transmission from nociceptive primary afferents containing substance P to secondary sensory neurons in laminae I-IIo of the rodent spinal dorsal horn. Eur J Neurosci 2006; 24:1341-52. [PMID: 16987220 DOI: 10.1111/j.1460-9568.2006.05013.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously demonstrated that hyperpolarization-activated and cyclic nucleotide-gated cation channel subunit 2 (HCN2) is expressed by terminals of peptidergic nociceptive primary afferents in laminae I-IIo of the rat spinal dorsal horn. In this study, we investigated the possible neurotransmitters and postsynaptic targets of these HCN2-expressing primary afferent terminals in the superficial spinal dorsal horn by using immunocytochemical methods. We demonstrated that HCN2 widely colocalizes with substance P (SP), and that HCN2-positive terminals that are also immunoreactive for SP form serial close appositions with dendrites and perikarya of neurokinin 1 receptor-immunoreactive neurons. It was also found that HCN2-immunoreactive terminals are frequently apposed to neurons that are immunoreactive for calbindin, micro-opioid receptor and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptor subunit GluR2, markers for excitatory interneurons. Investigating HCN2 immunoreactivity in glutamic acid decarboxylase 65-green fluorescent protein transgenic mice, we found that HCN2-positive terminals occasionally also contact cells that contain an isoform of glutamic acid decarboxylase (glutamic acid decarboxylase 65), a marker for GABAergic inhibitory neurons. Application of ZD7288, an antagonist of HCN channels, onto neurons that were recorded in spinal cord slices with whole-cell patch-clamp electrodes reduced the number of monosynaptic excitatory postsynaptic potentials evoked by electrical stimulation of primary afferents at nociceptive intensities. The results suggest that HCN2 may contribute to the modulation of membrane excitability of SP-containing nociceptive primary afferent terminals, may increase the reliability of synaptic transmission from primary afferents to secondary sensory neurons and thus may play a role in the fine-tuning of pain transmission from nociceptive primary afferents to neurons in the spinal dorsal horn.
Collapse
Affiliation(s)
- Ildikó Papp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Torsney C, Anderson RL, Ryce-Paul KAG, MacDermott AB. Characterization of sensory neuron subpopulations selectively expressing green fluorescent protein in phosphodiesterase 1C BAC transgenic mice. Mol Pain 2006; 2:17. [PMID: 16681857 PMCID: PMC1479315 DOI: 10.1186/1744-8069-2-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 05/08/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly understood. However, defining the circuits underlying the transmission of information from primary afferents to higher levels is critical to our understanding of sensory processing. In this study, we have examined phosphodiesterase 1C (Pde1c) BAC transgenic mice in which a green fluorescent protein (GFP) reporter gene reflects Pde1c expression in sensory neuron subpopulations in the dorsal root ganglia and spinal cord. RESULTS Using double labeling immunofluorescence, we demonstrate GFP expression in specific subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament 200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the primary sensory neurons immunoreactive for the vanilloid receptor TRPV1 and the ATP-gated ion channel P2X3. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina I and to a lesser extent lamina II, but surprisingly did not coexpress markers for key neuronal populations present in the superficial dorsal horn. CONCLUSION The expression of GFP in subclasses of nociceptors and also in dorsal horn regions densely innervated by nociceptors suggests that Pde1c marks a unique subpopulation of nociceptive sensory neurons.
Collapse
MESH Headings
- Animals
- Biomarkers/metabolism
- Calcitonin Gene-Related Peptide/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 1
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/enzymology
- Genes, Reporter/genetics
- Green Fluorescent Proteins/genetics
- Mice
- Mice, Transgenic
- Nerve Fibers, Unmyelinated/enzymology
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurons, Afferent/cytology
- Neurons, Afferent/enzymology
- Nociceptors/cytology
- Nociceptors/enzymology
- Pain/enzymology
- Pain/genetics
- Pain/physiopathology
- Phosphoric Diester Hydrolases/genetics
- Posterior Horn Cells/cytology
- Posterior Horn Cells/enzymology
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X3
- TRPV Cation Channels/genetics
Collapse
Affiliation(s)
- Carole Torsney
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- CT is currently in the Centre for Neuroscience Research, Division of Veterinary Biomedical Sciences, University of Edinburgh, UK
| | - Rebecca L Anderson
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- RLA is currently in the Department of Anatomy & Histology and Centre for Neuroscience at Flinders University, Adelaide, Australia
| | | | - Amy B MacDermott
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
- Center for Neurobiology and Behavior, Columbia University, NY, USA
| |
Collapse
|
34
|
Kondo I, Marvizon JCG, Song B, Salgado F, Codeluppi S, Hua XY, Yaksh TL. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release. J Neurosci 2006; 25:3651-60. [PMID: 15814796 PMCID: PMC6725388 DOI: 10.1523/jneurosci.0252-05.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Opioid mu- and delta-receptors are present on the central terminals of primary afferents, where they are thought to inhibit neurotransmitter release. This mechanism may mediate analgesia produced by spinal opiates; however, when they used neurokinin 1 receptor (NK1R) internalization as an indicator of substance P release, Trafton et al. (1999) noted that this evoked internalization was altered only modestly by morphine delivered intrathecally at spinal cord segment S1-S2. We reexamined this issue by studying the effect of opiates on NK1R internalization in spinal cord slices and in vivo. In slices, NK1R internalization evoked by dorsal root stimulation at C-fiber intensity was abolished by the mu agonist [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO) (1 microM) and decreased by the delta agonist [D-Phe2,5]-enkephalin (DPDPE) (1 microM). In vivo, hindpaw compression induced NK1R internalization in ipsilateral laminas I-II. This evoked internalization was significantly reduced by morphine (60 nmol), DAMGO (1 nmol), and DPDPE (100 nmol), but not by the kappa agonist trans-(1S,2S)-3,4-dichloro-N-mathyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride (200 nmol), delivered at spinal cord segment L2 using intrathecal catheters. These doses of the mu and delta agonists were equi-analgesic as measured by a thermal escape test. Lower doses neither produced analgesia nor inhibited NK1R internalization. In contrast, morphine delivered by percutaneous injections at S1-S2 had only a modest effect on thermal escape, even at higher doses. Morphine decreased NK1R internalization after systemic delivery, but at a dose greater than that necessary to produce equivalent analgesia. All effects were reversed by naloxone. These results indicate that lumbar opiates inhibit noxious stimuli-induced neurotransmitter release from primary afferents at doses that are confirmed behaviorally as analgesic.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Afferent Pathways/metabolism
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Opioid/administration & dosage
- Analysis of Variance
- Animals
- Behavior, Animal
- Dose-Response Relationship, Drug
- Drug Administration Routes
- Drug Interactions
- Electric Stimulation/methods
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enkephalin, D-Penicillamine (2,5)-/pharmacology
- Functional Laterality
- Immunochemistry/methods
- In Vitro Techniques
- Male
- Microscopy, Confocal/methods
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Pain Measurement
- Physical Stimulation/methods
- Rats
- Rats, Sprague-Dawley
- Receptors, Neurokinin-1/metabolism
- Spinal Cord/drug effects
- Spinal Cord/radiation effects
- Spinal Nerve Roots/radiation effects
- Substance P/metabolism
Collapse
Affiliation(s)
- Ichiro Kondo
- Department of Anesthesiology, University of California-San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Polgár E, Furuta T, Kaneko T, Todd A. Characterization of neurons that express preprotachykinin B in the dorsal horn of the rat spinal cord. Neuroscience 2006; 139:687-97. [PMID: 16446041 DOI: 10.1016/j.neuroscience.2005.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 11/07/2005] [Accepted: 12/03/2005] [Indexed: 11/22/2022]
Abstract
Although it is established that neurokinin B is expressed by some neurons in laminae I-III of the rat spinal dorsal horn, little is known about the proportions of cells in these laminae that express neurokinin B, or whether these are excitatory or inhibitory neurons. Neurokinin B is derived from preprotachykinin B, and we have used an antibody against preprotachykinin B to address these issues. We found that preprotachykinin B-immunoreactive neurons were present throughout laminae I-III, constituting 10-11% of the neuronal population in laminae I-II, and 4% of that in lamina III. They formed a prominent band in the ventral half of lamina II (where they made up 16% of the population) and the dorsalmost part of lamina III. The great majority (99%) of preprotachykinin B-immunoreactive axonal boutons contained the vesicular glutamate transporter 2, while none contained glutamic acid decarboxylase. Since most of these boutons are likely to be derived from local preprotachykinin B-expressing cells, these observations suggest that most of the latter are excitatory interneurons. Although 9% of preprotachykinin B-labeled axonal varicosities were substance P-immunoreactive, none contained calcitonin gene-related peptide, which is consistent with reports that neurokinin B is not expressed by primary afferent axons. Many of the preprotachykinin B-immunoreactive cells contained compounds that are present in putative excitatory neurons in laminae I-III: calbindin (84%), protein kinase Cgamma (76%) or somatostatin (31%). However, there was little or no overlap between preprotachykinin B and three other markers associated with excitatory neurons in these laminae: the mu opioid receptor MOR-1, the neurokinin 1 receptor and neurotensin. These results suggest that neurokinin B is expressed by specific populations of excitatory neurons in the superficial dorsal horn. By examining expression of Fos protein in response to intraplantar injection of formaldehyde we provide evidence that many of the preprotachykinin B cells in lamina I and the outer part of lamina II respond to noxious stimulation.
Collapse
Affiliation(s)
- E Polgár
- Spinal Cord Group, Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | |
Collapse
|
36
|
Huang HY, Cheng JK, Shih YH, Chen PH, Wang CL, Tsaur ML. Expression of A-type K channel alpha subunits Kv 4.2 and Kv 4.3 in rat spinal lamina II excitatory interneurons and colocalization with pain-modulating molecules. Eur J Neurosci 2006; 22:1149-57. [PMID: 16176357 DOI: 10.1111/j.1460-9568.2005.04283.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Voltage-gated K(+) channel alpha subunits Kv 4.2 and Kv 4.3 are the major contributors of somatodendritic A-type K(+) currents in many CNS neurons. A recent hypothesis suggests that Kv 4 subunits may be involved in pain modulation in dorsal horn neurons. However, whether Kv 4 subunits are expressed in dorsal horn neurons remains unknown. Using immunohistochemistry, we found that Kv 4.2 and Kv 4.3 immunoreactivity was concentrated in the superficial dorsal horn, mainly in lamina II. Both Kv 4.2 and Kv 4.3 appeared on many rostrocaudally orientated dendrites, whereas Kv 4.3 could be also detected from certain neuronal somata. Kv 4.3(+) neurons were a subset of excitatory inerneurons with calretinin(+)/calbindin(-)/PKCgamma(-) markers, and a fraction of them expressed micro-opioid receptors. Kv 4.3(+) neurons also expressed ERK 2 and mGluR 5, which are molecules related to the induction of central sensitization, a mechanism mediating nociceptive plasticity. Together with the expression of Kv 4.3 in VR 1(+) DRG neurons, our data suggest that Kv C4 subunits could be involved in pain modulation.
Collapse
Affiliation(s)
- Hsin-Yi Huang
- Institute of Neuroscience, National Yang-Ming University, Brain Research Centre, University System of Taiwan, Taipei, Taiwan 112, Republic of China
| | | | | | | | | | | |
Collapse
|
37
|
Kohno T, Ji RR, Ito N, Allchorne AJ, Befort K, Karchewski LA, Woolf CJ. Peripheral axonal injury results in reduced mu opioid receptor pre- and post-synaptic action in the spinal cord. Pain 2006; 117:77-87. [PMID: 16098668 DOI: 10.1016/j.pain.2005.05.035] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Revised: 04/21/2005] [Accepted: 05/23/2005] [Indexed: 10/25/2022]
Abstract
In both the spared nerve injury (SNI) and spinal nerve ligation (SNL) rat peripheral neuropathic pain models the presynaptic inhibitory effect of the mu opioid receptor (MOR) agonist (DAMGO) on primary afferent-evoked excitatory postsynaptic currents (EPSCs) and miniature EPSCs in superficial dorsal horn neurons is substantially reduced, but only in those spinal cord segments innervated by injured primary afferents. The two nerve injury models also reduce the postsynaptic potassium channel opening action of DAMGO on lamina II spinal cord neurons, but again only in segments receiving injured afferent input. The inhibitory action of DAMGO on ERK (extracellular signal-regulated kinase) activation in dorsal horn neurons is also reduced in affected segments following nerve injury. MOR expression decreases substantially in injured dorsal root ganglion neurons (DRG), while intact neighboring DRGs are unaffected. Decreased activation of MOR on injured primary afferent central terminals and the second order neurons they innervate may minimize any reduction by opioids of the spontaneous pain mediated by ectopic input from axotomized small diameter afferents. Retention of MOR expression and activity in nearby non-injured afferents will enable, however, an opioid-mediated reduction of stimulus-evoked and spontaneous pain carried by intact nociceptor afferents and we find that intrathecal DAMGO (1000 ng) reduces mechanical hypersensitivity in rats with SNL. Axotomy-induced changes in MOR may contribute to opioid- insensitive components of neuropathic pain while the absence of these changes in intact afferents may contribute to the opioid sensitive components.
Collapse
Affiliation(s)
- Tatsuro Kohno
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Todd AJ. Chapter 6 Anatomy and neurochemistry of the dorsal horn. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:61-76. [PMID: 18808828 DOI: 10.1016/s0072-9752(06)80010-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
39
|
Abstract
A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation in animals. This review examines neuroanatomical, behavioral, and neurophysiological evidence supporting a role for cannabinoids in suppressing pain at spinal, supraspinal, and peripheral levels. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry, and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing. Pharmacological and transgenic approaches that have been used to study cannabinoid antinociceptive mechanisms are described. These studies provide insight into the functional roles of cannabinoid CB1 (CB1R) and CB2 (CB2R) receptor subtypes in cannabinoid antinociceptive mechanisms, as revealed in animal models of acute and persistent pain. The role of endocannabinoids and related fatty acid amides that are implicated in endogenous mechanisms for pain suppression are discussed. Human studies evaluating therapeutic potential of cannabinoid pharmacotherapies in experimental and clinical pain syndromes are evaluated. The potential of exploiting cannabinoid antinociceptive mechanisms in novel pharmacotherapies for pain is discussed.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Humans
- Hyperalgesia/physiopathology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/physiopathology
- RNA, Messenger/analysis
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Spinal Cord/drug effects
- Spinal Cord/physiology
Collapse
Affiliation(s)
- J M Walker
- Department of Psychology, Indiana University Bloomington, IN 47405-7007, USA
| | | |
Collapse
|
40
|
Kawate T, Sakamoto H, Yang C, Li Y, Shimada O, Atsumi S. Immunohistochemical study of delta and mu opioid receptors on synaptic glomeruli with substance P-positive central terminals in chicken dorsal horn. Neurosci Res 2005; 53:279-87. [PMID: 16165241 DOI: 10.1016/j.neures.2005.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
In an attempt to clarify the mechanism underlying the regulation of the release of substance P (SP) from the central axon terminals of the synaptic glomeruli in lamina II of the dorsal horn, we examined the expression patterns of delta and mu opioid receptors (DOR and MOR) in relation to those of enkephalin (ENK) and SP in the synaptic glomeruli. DOR, MOR, ENK and SP immunoreactivities in lamina II of the dorsal horn in the chicken were examined by confocal laser scanning and electron microscopies. DOR immunoreactivity was localized in both SP-positive central terminals and peripheral elements, while MOR immunoreactivity was only localized in the peripheral elements of the synaptic glomeruli. Both of the peripheral DOR- and MOR-immunoreactive elements were shown to be vesicle-containing dendrites by electron microscopy. Dual immunohistochemistry indicated that DOR, MOR and ENK immunoreactivities were located in distinct peripheral elements. On the basis of present results, the possible roles of DOR and MOR in the regulation of the release of SP from the central axon terminals in the synaptic glomeruli are discussed.
Collapse
Affiliation(s)
- Toyoko Kawate
- Department of Anatomy, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Tamaho, Yamanashi 409-3898, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Conte D, Legg ED, McCourt AC, Silajdzic E, Nagy GG, Maxwell DJ. Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 2005; 134:165-73. [PMID: 15975728 DOI: 10.1016/j.neuroscience.2005.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/11/2005] [Accepted: 02/11/2005] [Indexed: 01/30/2023]
Abstract
Recent evidence suggests that serotonin has pronociceptive actions in the spinal cord when it acts through 5-hydroxytryptamine (5-HT)(3) receptors. Cells and axon terminals which are concentrated in the superficial dorsal horn possess this receptor. We performed a series of immunocytochemical studies with an antibody raised against the 5-HT(3A) subunit in order to address the following questions: 1) Are axons that possess 5-HT(3) receptors excitatory? 2) Are 5-HT(3) receptors present on terminals of myelinated primary afferents? 3) What is the chemical nature of dorsal horn cells that possess 5-HT(3) receptors? 4) Do axons that possess 5-HT(3) receptors target lamina I projection cells? Approximately 45% of 5-HT(3A) immunoreactive boutons were immunoreactive for the vesicular glutamate transporter 2 and almost 80% formed synapse-like associations with GluR2 subunits of the AMPA receptor therefore it is principally glutamatergic axons that possess the receptor. Immunoreactivity was not present on myelinated primary afferent axons labeled with the B-subunit of cholera toxin or those containing the vesicular glutamate transporter 1. Calbindin (which is associated with excitatory interneurons) was found in 44% of 5-HT(3A) immunoreactive cells but other markers for inhibitory and excitatory cells were not present. Lamina I projection cells that possessed the neurokinin-1 receptor were associated with 5-HT(3A) axons but the density of contacts on individual neurons varied considerably. The results suggest that 5-HT(3) receptors are present principally on terminals of excitatory axons, and at least some of these originate from dorsal horn interneurons. The relationship between lamina I projection cells and axons possessing the 5-HT(3) receptor indicates that this receptor has an important role in regulation of ascending nociceptive information.
Collapse
Affiliation(s)
- D Conte
- Spinal Cord Group, West Medical Building, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|
42
|
Ackley MA, Baldwin SA, King AE. Adenosine contributes to mu-opioid synaptic inhibition in rat substantia gelatinosa in vitro. Neurosci Lett 2004; 376:102-6. [PMID: 15698929 DOI: 10.1016/j.neulet.2004.11.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 11/27/2022]
Abstract
The purpose of this study was to investigate the cellular basis of the synergistic anti-nociceptive interaction between adenosine and opioids reported for spinal cord in vivo. Patch clamp recordings from rat substantia gelatinosa neurons in vitro were used to assess whether adenosine receptor antagonists impact upon mu-opioid receptor (MOR)-mediated inhibition of glutamatergic synaptic transmission. The MOR agonist DAMGO inhibited evoked EPSCs and this inhibition was partly reversed by DPCPX, an A1 receptor (A1R) antagonist. The A2a receptor antagonist, ZM241385 had mixed effects on DAMGO-mediated inhibition, producing either a further inhibition or a reversal of the inhibition. These data show that activation of A1R as a secondary consequence of MOR-activation and putative adenosine release will potentiate opioid synaptic inhibition of nociceptive circuitry.
Collapse
Affiliation(s)
- Michael A Ackley
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
43
|
Schulte G, Robertson B, Fredholm BB, DeLander GE, Shortland P, Molander C. Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 2004; 121:907-16. [PMID: 14580941 DOI: 10.1016/s0306-4522(03)00480-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Adenosine can reduce pain and allodynia in animals and man, probably via spinal adenosine A1 receptors. In the present study, we investigate the distribution of the adenosine A1 receptor in the rat spinal cord dorsal horn using immunohistochemistry, in situ hybridization, radioligand binding, and confocal microscopy. In the lumbar cord dorsal horn, dense immunoreactivity was seen in the inner part of lamina II. This was unaltered by dorsal root section or thoracic cord hemisection. Confocal microscopy of the dorsal horn revealed close anatomical relationships but no or only minor overlap between A1 receptors and immunoreactivity for markers associated with primary afferent central endings: calcitonin gene-related peptide, or isolectin B4, or with neuronal subpopulations: mu-opioid receptor, neuronal nitric oxide synthase, met-enkephalin, parvalbumin, or protein kinase Cgamma, or with glial cells: glial fibrillary acidic protein. A few adenosine A1 receptor positive structures were double-labeled with alpha-amino-3-hydroxy-5-methyl-4-isoaxolepropionic acid glutamate receptor subunits 1 and 2/3. The results indicate that most of the adenosine A1 receptors in the dorsal horn are located in inner lamina II postsynaptic neuronal cell bodies and processes whose functional and neurochemical identity is so far unknown. Many adenosine A1 receptor positive structures are in close contact with isolectin B4 positive C-fiber primary afferents and/or postsynaptic structures containing components of importance for the modulation of nociceptive information.
Collapse
Affiliation(s)
- G Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
44
|
Dorsal horn neurons firing at high frequency, but not primary afferents, release opioid peptides that produce micro-opioid receptor internalization in the rat spinal cord. J Neurosci 2003. [PMID: 14534251 DOI: 10.1523/jneurosci.23-27-09171.2003] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To determine what neural pathways trigger opioid release in the dorsal horn, we stimulated the dorsal root, the dorsal horn, or the dorsolateral funiculus (DLF) in spinal cord slices while superfusing them with peptidase inhibitors to prevent opioid degradation. Internalization of mu-opioid receptors (MOR) and neurokinin 1 receptors (NK1R) was measured to assess opioid and neurokinin release, respectively. Dorsal root stimulation at low, high, or mixed frequencies produced abundant NK1R internalization but no MOR internalization, indicating that primary afferents do not release opioids. Moreover, capsaicin and NMDA also failed to produce MOR internalization. In contrast, dorsal horn stimulation elicited MOR internalization that increased with the frequency, being negligible at <10 Hz and maximal at 500 Hz. The internalization was abolished by the MOR antagonist D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), in the presence of low Ca2+ and by the Na+ channel blocker lidocaine, confirming that it was caused by opioid release and neuronal firing. DLF stimulation in "oblique" slices (encompassing the DLF and the dorsal horn of T11-L4) produced MOR internalization, but only in areas near the stimulation site. Moreover, cutting oblique slices across the dorsal horn (but not across the DLF) eliminated MOR internalization in areas distal to the cut, indicating that it was produced by signals traveling in the dorsal horn and not via the DLF. These findings demonstrate that some dorsal horn neurons release opioids when they fire at high frequencies, perhaps by integrating signals from the rostral ventromedial medulla, primary afferents, and other areas of the spinal cord.
Collapse
|
45
|
Wu SY, Ohtubo Y, Brailoiu GC, Dun NJ. Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices. Br J Pharmacol 2003; 140:1088-96. [PMID: 14530213 PMCID: PMC1574121 DOI: 10.1038/sj.bjp.0705534] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Whole-cell patch recordings were made from substantia gelatinosa (SG) neurons in transverse lumbar spinal cord slices of 15- to 30-day-old rats. 2. Endomorphin 1 (EM-1) or EM-2 (<or=10 microM) hyperpolarized or induced an outward current in 26 of the 66 SG neurons. The I-V relationship showed that the peptide activates an inwardly rectifying K+ current. 3. EM-1 or EM-2 (0.3-10 microM) suppressed short-latency excitatory postsynaptic currents (EPSCs) and long-latency inhibitory postsynaptic currents (IPSCs) in nearly all SG neurons tested or short-latency IPSCs in six of the 10 SG neurons. [Met5] enkephalin or [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (DAMGO) (1-10 microM) depressed EPSCs and IPSCs. EM-1 or EM-2 depressed synaptic responses without causing a significant change in holding currents or inward currents induced by glutamate. 4. Glutamate also evoked a short-latency outward current in five SG neurons or a biphasic current in two neurons; the outward current was blocked by tetrodotoxin (TTX, 0.3 microM) or bicuculline (10 microM). 5. EM-1 or DAMGO (1 or 5 microM) attenuated the glutamate-evoked outward or biphasic currents in four of the seven SG neurons. EM-1 (1 microm) reduced the frequency, but not the amplitude of miniature EPSCs or miniature IPSCs. 6.. Naloxone (1 microM) or the selective micro-opioid receptor antagonist beta-funaltrexamine (beta-FNA, 25 microM) antagonized the action of EM; EM-induced hyperpolarizations persisted in the presence of the kappa-opioid receptor antagonist (nor-binaltorphimine dihydrochloride, 1 microM) and/or sigma-opioid receptor antagonist (naltrindole hydrochloride, 1 microM). 7. It may be concluded that EM acting on micro-opioid receptors hyperpolarizes a population of SG neurons by activating an inwardly rectifying K+ current, and attenuates excitatory and inhibitory synaptic currents evoked in a population of SG neurons, probably by a presynaptic site of action.
Collapse
Affiliation(s)
- Su-Ying Wu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, U.S.A
| | - Yoshitaka Ohtubo
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, U.S.A
| | - G Cristina Brailoiu
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, U.S.A
| | - Nae J Dun
- Department of Pharmacology, James H. Quillen College of Medicine, East Tennessee State University, PO Box 70577, Johnson City, TN 37614, U.S.A
- Author for correspondence:
| |
Collapse
|
46
|
Eckert WA, McNaughton KK, Light AR. Morphology and axonal arborization of rat spinal inner lamina II neurons hyperpolarized by mu-opioid-selective agonists. J Comp Neurol 2003; 458:240-56. [PMID: 12619079 DOI: 10.1002/cne.10587] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ventral or inner region of spinal substantia gelatinosa (SG; lamina II(i)) is a heterogeneous sublamina important for the generation and maintenance of hyperalgesia and neuropathic pain. To test whether II(i) neurons can be hyperpolarized by the mu-opioid agonist [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin (DAMGO; 500 nM) and to address possible downstream consequences of mu-opioid-evoked inhibition of II(i) neurons, we combined in vitro whole-cell, tight-seal recording methods with fluorescent labeling of the intracellular tracer biocytin and confocal microscopy. Twenty-one of 23 neurons studied had identifiable axons. Nine possessed axons that projected ventrally into laminae III-V; six of these were hyperpolarized by DAMGO. Three of four neurons with identifiable axons that projected to lamina I were hyperpolarized by DAMGO. Most neurons could be classified as either islet cells or stalked cells. Five of nine labeled islet cells and only two of seven stalked cells were hyperpolarized by DAMGO. Three were stellate cells: one resembled a spiny cell and three could not be classified. DAMGO hyperpolarized each of the stellate cells, the spiny cell, and 1 of the unclassified cells. Our data support the hypothesis that part of the action of mu-opioid agonists involves the inhibition of interneurons that are part of a polysynaptic excitatory pathway from primary afferents to neurons in the deep and/or superficial dorsal horn.
Collapse
MESH Headings
- Afferent Pathways/cytology
- Afferent Pathways/drug effects
- Afferent Pathways/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Dendrites/drug effects
- Dendrites/metabolism
- Dendrites/ultrastructure
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Female
- Interneurons/cytology
- Interneurons/drug effects
- Interneurons/metabolism
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Microscopy, Confocal
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Pain/metabolism
- Pain/physiopathology
- Posterior Horn Cells/cytology
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Presynaptic Terminals/drug effects
- Presynaptic Terminals/metabolism
- Presynaptic Terminals/ultrastructure
- Rats
- Rats, Long-Evans
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/drug effects
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
Collapse
Affiliation(s)
- William A Eckert
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599-7545, USA
| | | | | |
Collapse
|
47
|
Peptidases prevent mu-opioid receptor internalization in dorsal horn neurons by endogenously released opioids. J Neurosci 2003. [PMID: 12629189 DOI: 10.1523/jneurosci.23-05-01847.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To evaluate the effect of peptidases on mu-opioid receptor (MOR) activation by endogenous opioids, we measured MOR-1 internalization in rat spinal cord slices. A mixture of inhibitors of aminopeptidases (amastatin), dipeptidyl carboxypeptidase (captopril), and neutral endopeptidase (phosphoramidon) dramatically increased the potencies of Leu-enkephalin and dynorphin A to produce MOR-1 internalization, and also enhanced the effects of Met-enkephalin and alpha-neoendorphin, but not endomorphins or beta-endorphin. The omission of any one inhibitor abolished Leu-enkephalin-induced internalization, indicating that all three peptidases degraded enkephalins. Amastatin preserved dynorphin A-induced internalization, and phosphoramidon, but not captopril, increased this effect, indicating that the effect of dynorphin A was prevented by aminopeptidases and neutral endopeptidase. Veratridine (30 microm) or 50 mm KCl produced MOR-1 internalization in the presence of peptidase inhibitors, but little or no internalization in their absence. These effects were attributed to opioid release, because they were abolished by the selective MOR antagonist CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH(2)) and were Ca(2+) dependent. The effect of veratridine was protected by phosphoramidon plus amastatin or captopril, but not by amastatin plus captopril or by phosphoramidon alone, indicating that released opioids are primarily cleaved by neutral endopeptidase, with a lesser involvement of aminopeptidases and dipeptidyl carboxypeptidase. Therefore, because the potencies of endomorphin-1 and endomorphin-2 to elicit internalization were unaffected by peptidase inhibitors, the opioids released by veratridine were not endomorphins. Confocal microscopy revealed that MOR-1-expressing neurons were in close proximity to terminals containing opioids with enkephalin-like sequences. These findings indicate that peptidases prevent the activation of extrasynaptic MOR-1 in dorsal horn neurons.
Collapse
|
48
|
Hohmann AG. Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. Chem Phys Lipids 2002; 121:173-90. [PMID: 12505699 DOI: 10.1016/s0009-3084(02)00154-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation. This review examines behavioral, neurophysiological and neuroanatomical evidence supporting a role for cannabinoids in suppressing nociceptive transmission at spinal and peripheral levels. The development of subtype-selective competitive antagonists and high-affinity agonists provides the pharmacological tools required to study cannabinoid antinociceptive mechanisms. These studies provide insight into the functional roles of cannabinoid receptor subtypes, CB1 and CB2, in cannabinoid antinociceptive mechanisms as revealed in animal models of acute and persistent (somatic inflammatory, visceral inflammatory, neuropathic) pain. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing.
Collapse
Affiliation(s)
- Andrea G Hohmann
- Department of Psychology, University of Georgia, Athens, GA 30602-3013, USA.
| |
Collapse
|
49
|
Ding YQ, Lu CR, Wang H, Su CJ, Chen LW, Zhang YQ, Ju G. Two major distinct subpopulations of neurokinin-3 receptor-expressing neurons in the superficial dorsal horn of the rat spinal cord. Eur J Neurosci 2002; 16:551-6. [PMID: 12193200 DOI: 10.1046/j.1460-9568.2002.02135.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study was designed to provide evidence for elucidating the mechanisms of neurokinin-3 receptor (NK3) in spinal pain modulation. First, colocalization of NK3 with the micro -opioid receptor (MOR1) was studied in the spinal dorsal horn of the rat. Confocal microscopy showed that about 44% of NK3-expressing neurons in laminae I and II were immunoreactive for MOR1, which corresponded to about 93% of the total population of MOR1-containing neurons in these laminae. Second, the relationship between NK3/MOR1-coexpressing neurons and those that express nitric oxide synthase (NOS) was examined by using a triple immunofluorescent staining method. About 37% of NK3-immunoreactive neurons were also NOS-immunoreactive, which constituted about 82% of NOS-immunoreacitve neurons in the superficial laminae. However, no triple-labelled neurons were detected. The present results indicate that there are two major distinct subpopulations of NK3-expressing neurons in the superficial dorsal horn, which suggests that the involvement of NK3 receptor in spinal nociception could be mediated by two distinct mechanisms, i.e. opioid and nitric oxide.
Collapse
Affiliation(s)
- Yu-Qiang Ding
- Institute of Neurosciences, Fourth Military Medical University, Xi'an 710032, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Spike RC, Puskár Z, Sakamoto H, Stewart W, Watt C, Todd AJ. MOR-1-immunoreactive neurons in the dorsal horn of the rat spinal cord: evidence for nonsynaptic innervation by substance P-containing primary afferents and for selective activation by noxious thermal stimuli. Eur J Neurosci 2002; 15:1306-16. [PMID: 11994125 DOI: 10.1046/j.1460-9568.2002.01969.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A direct action of mu-opioid agonists on neurons in the spinal dorsal horn is thought to contribute to opiate-induced analgesia. In this study we have investigated neurons that express the mu-opioid receptor MOR-1 in rat spinal cord to provide further evidence about their role in nociceptive processing. MOR-1-immunoreactive cells were largely restricted to lamina II, where they comprised approximately 10% of the neuronal population. The cells received few contacts from nonpeptidergic unmyelinated afferents, but many from substance P-containing afferents. However, electron microscopy revealed that most of these contacts were not associated with synapses. None of the MOR-1 cells in lamina II expressed the neurokinin 1 receptor; however, the mu-selective opioid peptide endomorphin-2 was present in the majority (62-82%) of substance P axons that contacted them. Noxious thermal stimulation of the foot induced c-Fos expression in approximately 15% of MOR-1 cells in the medial third of the ipsilateral dorsal horn at mid-lumbar level. However, following pinching of the foot or intraplantar injection of formalin very few MOR-1 cells expressed c-Fos, and for intraplantar formalin injection this result was not altered significantly by pretreatment with systemic naloxone. Although these findings indicate that at least some of the neurons in lamina II with MOR-1 are activated by noxious thermal stimulation, the results do not support the hypothesis that the cells have a role in transmitting nociceptive information following acute mechanical or chemical noxious stimuli.
Collapse
Affiliation(s)
- R C Spike
- Spinal Cord Group, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|