1
|
Kelly EA, Love TM, Fudge JL. Corticotropin-releasing factor-dopamine interactions in male and female macaque: Beyond the classic VTA. Synapse 2024; 78:e22284. [PMID: 37996987 PMCID: PMC10842953 DOI: 10.1002/syn.22284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/11/2023] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Dopamine (DA) is involved in stress and stress-related illnesses, including many psychiatric disorders. Corticotropin-releasing factor (CRF) plays a role in stress responses and targets the ventral midbrain DA system, which is composed of DA and non-DA cells, and divided into specific subregions. Although CRF inputs to the midline A10 nuclei ("classic VTA") are known, in monkeys, CRF-containing terminals are also highly enriched in the expanded A10 parabrachial pigmented nucleus (PBP) and in the A8 retrorubral field subregions. We characterized CRF-labeled synaptic terminals on DA (tyrosine hydroxylase, TH+) and non-DA (TH-) cell types in the PBP and A8 regions using immunoreactive electron microscopy (EM) in male and female macaques. CRF labeling was present mostly in axon terminals, which mainly contacted TH-negative dendrites in both subregions. Most CRF-positive terminals had symmetric profiles. In both PBP and A8, CRF symmetric (putative inhibitory) synapses onto TH-negative dendrites were significantly greater than asymmetric (putative excitatory) profiles. This overall pattern was similar in males and females, despite shifts in the size of these effects between regions depending on sex. Because stress and gonadal hormone shifts can influence CRF expression, we also did hormonal assays over a 6-month time period and found little variability in basal cortisol across similarly housed animals at the same age. Together our findings suggest that at baseline, CRF-positive synaptic terminals in the primate PBP and A8 are poised to regulate DA indirectly through synaptic contacts onto non-DA neurons.
Collapse
Affiliation(s)
- E A Kelly
- Departments of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - T M Love
- Department of Biostatistics, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - J L Fudge
- Departments of Neuroscience, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Psychiatry, Del Monte Institute of Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
2
|
Functional neuroanatomical review of the ventral tegmental area. Neuroimage 2019; 191:258-268. [PMID: 30710678 DOI: 10.1016/j.neuroimage.2019.01.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
The ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) are assumed to play a key role in dopamine-related functions such as reward-related behaviour, motivation, addiction and motor functioning. Although dopamine-producing midbrain structures are bordering, they show significant differences in structure and function that argue for a distinction when studying the functions of the dopaminergic midbrain, especially by means of neuroimaging. First, unlike the SNc, the VTA is not a nucleus, which makes it difficult to delineate the structure due to lack of clear anatomical borders. Second, there is no consensus in the literature about the anatomical nomenclature to describe the VTA. Third, these factors in combination with limitations in magnetic resonance imaging (MRI) complicate VTA visualization. We suggest that developing an MRI-compatible probabilistic atlas of the VTA will help to overcome these issues. Such an atlas can be used to identify the individual VTA and serve as region-of-interest for functional MRI.
Collapse
|
3
|
Kelly EA, Fudge JL. The neuroanatomic complexity of the CRF and DA systems and their interface: What we still don't know. Neurosci Biobehav Rev 2018; 90:247-259. [PMID: 29704516 PMCID: PMC5993645 DOI: 10.1016/j.neubiorev.2018.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 12/28/2022]
Abstract
Corticotropin-releasing factor (CRF) is a neuropeptide that mediates the stress response. Long known to contribute to regulation of the adrenal stress response initiated in the hypothalamic-pituitary axis (HPA), a complex pattern of extrahypothalamic CRF expression is also described in rodents and primates. Cross-talk between the CRF and midbrain dopamine (DA) systems links the stress response to DA regulation. Classically CRF + cells in the extended amygdala and paraventricular nucleus (PVN) are considered the main source of this input, principally targeting the ventral tegmental area (VTA). However, the anatomic complexity of both the DA and CRF system has been increasingly elaborated in the last decade. The DA neurons are now recognized as having diverse molecular, connectional and physiologic properties, predicted by their anatomic location. At the same time, the broad distribution of CRF cells in the brain has been increasingly delineated using different species and techniques. Here, we review updated information on both CRF localization and newer conceptualizations of the DA system to reconsider the CRF-DA interface.
Collapse
Affiliation(s)
- E A Kelly
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States
| | - J L Fudge
- University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Neuroscience, Rochester, NY, United States; University of Rochester, School of Medicine and Dentistry, The Ernest J Del Monte Institute for Neuroscience, Department of Psychiatry, Rochester, NY, United States.
| |
Collapse
|
4
|
Gaskill PJ, Miller DR, Gamble-George J, Yano H, Khoshbouei H. HIV, Tat and dopamine transmission. Neurobiol Dis 2017; 105:51-73. [PMID: 28457951 PMCID: PMC5541386 DOI: 10.1016/j.nbd.2017.04.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/04/2017] [Accepted: 04/16/2017] [Indexed: 01/02/2023] Open
Abstract
Human Immunodeficiency Virus (HIV) is a progressive infection that targets the immune system, affecting more than 37 million people around the world. While combinatorial antiretroviral therapy (cART) has lowered mortality rates and improved quality of life in infected individuals, the prevalence of HIV associated neurocognitive disorders is increasing and HIV associated cognitive decline remains prevalent. Recent research has suggested that HIV accessory proteins may be involved in this decline, and several studies have indicated that the HIV protein transactivator of transcription (Tat) can disrupt normal neuronal and glial function. Specifically, data indicate that Tat may directly impact dopaminergic neurotransmission, by modulating the function of the dopamine transporter and specifically damaging dopamine-rich regions of the CNS. HIV infection of the CNS has long been associated with dopaminergic dysfunction, but the mechanisms remain undefined. The specific effect(s) of Tat on dopaminergic neurotransmission may be, at least partially, a mechanism by which HIV infection directly or indirectly induces dopaminergic dysfunction. Therefore, precisely defining the specific effects of Tat on the dopaminergic system will help to elucidate the mechanisms by which HIV infection of the CNS induces neuropsychiatric, neurocognitive and neurological disorders that involve dopaminergic neurotransmission. Further, this will provide a discussion of the experiments needed to further these investigations, and may help to identify or develop new therapeutic approaches for the prevention or treatment of these disorders in HIV-infected individuals.
Collapse
Affiliation(s)
- Peter J Gaskill
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, United States.
| | - Douglas R Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Joyonna Gamble-George
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States
| | - Hideaki Yano
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, United States
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
5
|
Ramayya AG, Pedisich I, Levy D, Lyalenko A, Wanda P, Rizzuto D, Baltuch GH, Kahana MJ. Proximity of Substantia Nigra Microstimulation to Putative GABAergic Neurons Predicts Modulation of Human Reinforcement Learning. Front Hum Neurosci 2017; 11:200. [PMID: 28536513 PMCID: PMC5422436 DOI: 10.3389/fnhum.2017.00200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 04/06/2017] [Indexed: 11/13/2022] Open
Abstract
Neuronal firing in the substantia nigra (SN) immediately following reward is thought to play a crucial role in human reinforcement learning. As in Ramayya et al. (2014a) we applied microstimulation in the SN of patients undergoing deep brain stimulation (DBS) for the treatment of Parkinson's disease as they engaged in a two-alternative reinforcement learning task. We obtained microelectrode recordings to assess the proximity of the electrode tip to putative dopaminergic and GABAergic SN neurons and applied stimulation to assess the functional importance of these neuronal populations for learning. We found that the proximity of SN microstimulation to putative GABAergic neurons predicted the degree of stimulation-related changes in learning. These results extend previous work by supporting a specific role for SN GABA firing in reinforcement learning. Stimulation near these neurons appears to dampen the reinforcing effect of rewarding stimuli.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Isaac Pedisich
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Deborah Levy
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Anastasia Lyalenko
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Paul Wanda
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Daniel Rizzuto
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of PennsylvaniaPhiladelphia, PA, USA
| |
Collapse
|
6
|
Yoon JH, Larson P, Grandelis A, La C, Cui E, Carter CS, Minzenberg MJ. Delay Period Activity of the Substantia Nigra during Proactive Control of Response Selection as Determined by a Novel fMRI Localization Method. J Cogn Neurosci 2014; 27:1238-48. [PMID: 25514657 DOI: 10.1162/jocn_a_00775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The ability to proactively control motor responses, particularly to overcome overlearned or automatic actions, is an essential prerequisite for adaptive, goal-oriented behavior. The substantia nigra (SN), an element of the BG, has figured prominently in current models of response selection. However, because of its small size and proximity to functionally distinct subcortical structures, it has been challenging to test the SN's involvement in response selection using conventional in vivo functional neuroimaging approaches. We developed a new fMRI localization method for directly distinguishing, on echo-planar images, the SN BOLD signal from that of neighboring structures, including the subthalamic nucleus (STN). Using this method, we tested the hypothesis that the SN supports the proactive control of response selection. We acquired high-resolution EPI volumes at 3 T from 16 healthy participants while they completed the Preparing to Overcome Prepotency task of proactive control. There was significantly elevated delay period signal selectively during high- compared with low-control trials in the SN. The STN did not show delay period activity in either condition. SN delay period signal was significantly inversely associated with task performance RTs across participants. These results suggest that our method offers a novel means for measuring SN BOLD responses, provides unique evidence of SN involvement in cognitive control in humans, and suggests a novel mechanism for proactive response selection.
Collapse
|
7
|
Haber SN. The place of dopamine in the cortico-basal ganglia circuit. Neuroscience 2014; 282:248-57. [PMID: 25445194 DOI: 10.1016/j.neuroscience.2014.10.008] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 10/24/2022]
Abstract
The midbrain dopamine (DA) neurons play a central role in developing appropriate goal-directed behaviors, including the motivation and cognition to develop appropriate actions to obtain a specific outcome. Indeed, subpopulations of DA neurons have been associated with these different functions: the mesolimbic, mesocortical, and nigrostriatal pathways. The mesolimbic and nigrostriatal pathways are an integral part of the basal ganglia through its reciprocal connections to the ventral and dorsal striatum respectively. This chapter reviews the connections of the midbrain DA cells and their role in integrating information across limbic, cognitive and motor functions. Emphasis is placed on the interface between these functional domains within the striatum through corticostriatal connections, through the striato-nigro-striatal connection, and through the lateral habenula projection to the midbrain.
Collapse
Affiliation(s)
- S N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, 601 Elmwood Avenue, Rochester, NY 14642, United States.
| |
Collapse
|
8
|
Ramayya AG, Zaghloul KA, Weidemann CT, Baltuch GH, Kahana MJ. Electrophysiological evidence for functionally distinct neuronal populations in the human substantia nigra. Front Hum Neurosci 2014; 8:655. [PMID: 25249957 PMCID: PMC4158808 DOI: 10.3389/fnhum.2014.00655] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/05/2014] [Indexed: 11/28/2022] Open
Abstract
The human substantia nigra (SN) is thought to consist of two functionally distinct neuronal populations—dopaminergic (DA) neurons in the pars compacta subregion and GABA-ergic neurons in the pars reticulata subregion. However, a functional dissociation between these neuronal populations has not previously been demonstrated in the awake human. Here we obtained microelectrode recordings from the SN of patients undergoing deep brain stimulation (DBS) surgery for Parkinson's disease as they performed a two-alternative reinforcement learning task. Following positive feedback presentation, we found that putative DA and GABA neurons demonstrated distinct temporal dynamics. DA neurons demonstrated phasic increases in activity (250–500 ms post-feedback) whereas putative GABA neurons demonstrated more delayed and sustained increases in activity (500–1000 ms post-feedback). These results provide the first electrophysiological evidence for a functional dissociation between DA and GABA neurons in the human SN. We discuss possible functions for these neuronal responses based on previous findings in human and animal studies.
Collapse
Affiliation(s)
- Ashwin G Ramayya
- Department of Neuroscience, Neuroscience Graduate Group, University of Pennsylvania Philadelphia, PA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health Bethesda, MD, USA
| | | | - Gordon H Baltuch
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania Philadelphia, PA, USA
| |
Collapse
|
9
|
Hong S, Hikosaka O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 2014; 282:139-55. [PMID: 25058502 DOI: 10.1016/j.neuroscience.2014.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/16/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
Dopamine (DA) neurons in the midbrain are crucial for motivational control of behavior. However, recent studies suggest that signals transmitted by DA neurons are heterogeneous. This may reflect a wide range of inputs to DA neurons, but which signals are provided by which brain areas is still unclear. Here we focused on the pedunculopontine tegmental nucleus (PPTg) in macaque monkeys and characterized its inputs to DA neurons. Since the PPTg projects to many brain areas, it is crucial to identify PPTg neurons that project to DA neuron areas. For this purpose we used antidromic activation technique by electrically stimulating three locations (medial, central, lateral) in the substantia nigra pars compacta (SNc). We found SNc-projecting neurons mainly in the PPTg, and some in the cuneiform nucleus. Electrical stimulation in the SNc-projecting PPTg regions induced a burst of spikes in presumed DA neurons, suggesting that the PPTg-DA (SNc) connection is excitatory. Behavioral tasks and clinical tests showed that the SNc-projecting PPTg neurons encoded reward, sensorimotor and arousal/alerting signals. Importantly, reward-related PPTg neurons tended to project to the medial and central SNc, whereas sensorimotor/arousal/alerting-related PPTg neurons tended to project to the lateral SNc. Most reward-related signals were positively biased: excitation and inhibition when a better and worse reward was expected, respectively. These PPTg neurons tended to retain the reward value signal until after a reward outcome, representing 'value state'; this was different from DA neurons which show phasic signals representing 'value change'. Our data, together with previous studies, suggest that PPTg neurons send positive reward-related signals mainly to the medial-central SNc where DA neurons encode motivational values, and sensorimotor/arousal signals to the lateral SNc where DA neurons encode motivational salience.
Collapse
Affiliation(s)
- S Hong
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - O Hikosaka
- Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
10
|
Reyes S, Fu Y, Double K, Thompson L, Kirik D, Paxinos G, Halliday GM. GIRK2 expression in dopamine neurons of the substantia nigra and ventral tegmental area. J Comp Neurol 2013; 520:2591-607. [PMID: 22252428 DOI: 10.1002/cne.23051] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
G-protein-regulated inward-rectifier potassium channel 2 (GIRK2) is reported to be expressed only within certain dopamine neurons of the substantia nigra (SN), although very limited data are available in humans. We examined the localization of GIRK2 in the SN and adjacent ventral tegmental area (VTA) of humans and mice by using either neuromelanin pigment or immunolabeling with tyrosine hydroxylase (TH) or calbindin. GIRK2 immunoreactivity was found in nearly every human pigmented neuron or mouse TH-immunoreactive neuron in both the SN and VTA, although considerable variability in the intensity of GIRK2 staining was observed. The relative intensity of GIRK2 immunoreactivity in TH-immunoreactive neurons was determined; in both species nearly all SN TH-immunoreactive neurons had strong GIRK2 immunoreactivity compared with only 50-60% of VTA neurons. Most paranigral VTA neurons also contained calbindin immunoreactivity, and approximately 25% of these and nearby VTA neurons also had strong GIRK2 immunoreactivity. These data show that high amounts of GIRK2 protein are found in most SN neurons as well as in a proportion of nearby VTA neurons. The single previous human study may have been compromised by the fixation method used and the postmortem delay of their controls, whereas other studies suggesting that GIRK2 is located only in limited neuronal groups within the SN have erroneously included VTA regions as part of the SN. In particular, the dorsal layer of dopamine neurons directly underneath the red nucleus is considered a VTA region in humans but is commonly considered the dorsal tier of the SN in laboratory species.
Collapse
Affiliation(s)
- Stefanie Reyes
- Neuroscience Research Australia and the School of Medical Sciences, University of New South Wales, Randwick, Sydney, 2031 New South Wales, Australia
| | | | | | | | | | | | | |
Collapse
|
11
|
The nigrostriatal pathway: axonal collateralization and compartmental specificity. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2010. [PMID: 20411767 DOI: 10.1007/978-3-211-92660-4_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
This paper reviews two of the major features of the nigrostriatal pathway, its axonal collateralization, and compartmental specificity, as revealed by single-axon labeling experiments in rodents and immunocytological analysis of human postmortem tissue. The dorsal and ventral tiers of the substantia nigra pars compacta harbor various types of neurons the axons of which branch not only within the striatum but also in other major components of the basal ganglia. Furthermore, some nigrostriatal axons send collaterals both to thalamus and to brainstem pedunculopontine tegmental nucleus. In humans, the compartmental specificity of the nigrostriatal pathway is revealed by the fact that the matrix compartment is densely innervated by dopaminergic fibers, whereas the striosomes display different densities of dopaminergic terminals depending on their location within the striatum. The nigral neurons most severely affected in Parkinson's disease are the ventral tier cells that project to the matrix and form deep clusters in the substantia nigra pars reticulata.
Collapse
|
12
|
Haber SN, Knutson B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 2010; 35:4-26. [PMID: 19812543 PMCID: PMC3055449 DOI: 10.1038/npp.2009.129] [Citation(s) in RCA: 2553] [Impact Index Per Article: 170.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 08/01/2009] [Accepted: 08/04/2009] [Indexed: 11/09/2022]
Abstract
Although cells in many brain regions respond to reward, the cortical-basal ganglia circuit is at the heart of the reward system. The key structures in this network are the anterior cingulate cortex, the orbital prefrontal cortex, the ventral striatum, the ventral pallidum, and the midbrain dopamine neurons. In addition, other structures, including the dorsal prefrontal cortex, amygdala, hippocampus, thalamus, and lateral habenular nucleus, and specific brainstem structures such as the pedunculopontine nucleus, and the raphe nucleus, are key components in regulating the reward circuit. Connectivity between these areas forms a complex neural network that mediates different aspects of reward processing. Advances in neuroimaging techniques allow better spatial and temporal resolution. These studies now demonstrate that human functional and structural imaging results map increasingly close to primate anatomy.
Collapse
Affiliation(s)
- Suzanne N Haber
- Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, NY 14642, USA.
| | | |
Collapse
|
13
|
Düzel E, Bunzeck N, Guitart-Masip M, Wittmann B, Schott BH, Tobler PN. Functional imaging of the human dopaminergic midbrain. Trends Neurosci 2009; 32:321-8. [PMID: 19446348 DOI: 10.1016/j.tins.2009.02.005] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/02/2009] [Accepted: 02/18/2009] [Indexed: 10/20/2022]
Abstract
Invasive recording of dopamine neurons in the substantia nigra and ventral tegmental area (SN/VTA) of behaving animals suggests a role for these neurons in reward learning and novelty processing. In humans, functional magnetic resonance imaging (fMRI) is currently the only non-invasive event-related method to measure SN/VTA activity, but it is debated to what extent fMRI enables inference about dopaminergic responses within the SN/VTA. We consider the anatomical and functional parcellation of the primate SN/VTA and find that its homogeneity suggests little variation in the regional specificity of fMRI signals for reward-related dopaminergic responses. Hence, these responses seem to be well captured by the compound fMRI signal from the SN/VTA, which seems quantitatively related to dopamine release in positron emission tomography (PET). We outline how systematic investigation of the functional parcellation of the SN/VTA in animals, new developments in fMRI analysis and combined PET-fMRI studies can narrow the gap between fMRI and dopaminergic neurotransmission.
Collapse
Affiliation(s)
- Emrah Düzel
- Institute of Cognitive Neuroscience, University College London, 17 Queen Square, London, WC13 NAR, UK.
| | | | | | | | | | | |
Collapse
|
14
|
Haber SN, Lynd E, Klein C, Groenewegen HJ. Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 2009; 293:282-98. [PMID: 19189717 DOI: 10.1002/cne.902930210] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ventral striatum is considered to be that portion of the striatum associated with the limbic system by virtue of its afferent connections from allocortical and mesolimbic areas as well as from the amygdala. The efferent projections from this striatal region in the primate were traced by using 3H amino acids and Phaseolus vulgaris-leucoagglutinin (PHA-L). Particular attention was paid to the topographic organization of terminal fields in the globus pallidus and substantia nigra, the projections to non-extrapyramidal areas, the relationship between projections from the nucleus accumbens and the other parts of the ventral striatum, and the comparison between ventral and dorsal striatal projections. This study demonstrates that in monkeys a circumscribed region of the globus pallidus receives topographically organized efferent fibers from the ventral striatum. The ventral striatal fibers terminate in the ventral pallidum, the subcommissural part of the globus pallidus, the rostral pole of the external segment, and the rostromedial portion of the internal segment. The more central and caudal portions of the globus pallidus do not receive this input. This striatal output appears to remain segregated from the dorsal striatal efferent projections to pallidal structures. Fibers from the ventral striatum projecting to the substantia nigra are not as confined to a specific region as those projecting to the globus pallidus. Although the densest terminal fields occur in the medial portion, numerous fibers also extend laterally to innervate the dorsal stratum of dopaminergic neurons of the substantia nigra and the retrorubral area. Furthermore, they project throughout the rostral-caudal extent of the substantia nigra. Projections from the medial part of the ventral striatum reach the more caudally located pedunculopontine tegmental nucleus. Thus unlike the above described terminals in the globus pallidus, the ventral striatum project widely throughout the substantia nigra, a fact that indicates that they may contribute to the integration between limbic and other output systems of the striatum. Finally, the ventral striatum projects to non-extrapyramidal regions including the bed nucleus of the stria terminals, the nucleus basalis magnocellularis, the lateral hypothalamus, and the medial thalamus.
Collapse
Affiliation(s)
- S N Haber
- Department of Neurobiology and Anatomy, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | | | | | | |
Collapse
|
15
|
Dopaminergic mesencephalic systems and behavioral performance in very old rats. Neuroscience 2008; 154:1598-606. [PMID: 18554807 DOI: 10.1016/j.neuroscience.2008.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/10/2008] [Accepted: 04/09/2008] [Indexed: 11/24/2022]
Abstract
Morphologic and functional studies describing the impact of aging on mesencephalic dopaminergic (DA) neurons in laboratory animals are rather scanty and inconclusive. In rats, stereological studies characterizing age changes in the mesencephalic DA neurons have not been documented. In order to fill this information gap and to determine whether the very old rat may serve as a suitable animal model of Parkinson's disease, we performed a stereological assessment of the mesencephalic tyrosine hydroxylase immunoreactive (TH-ir) neurons in young-adult (4-6 months), old (22-24 months) and senile (30-32 months) Sprague-Dawley female rats. Morphometric analysis of the TH-ir neurons of the substantia nigra (SN) and ventral tegmental area (VTA) was performed using an appropriate image analysis system. Age changes in motor performance were assessed measuring the endurance of rats to hang from a wire mesh pole or to remain on a ramp set at different angles to the floor. Age changes in locomotion and exploratory activity were evaluated by the open field test. We observed a significant age-related reduction in TH-ir neuron numbers in the SN (17 and 33% reduction in old and senile rats, respectively compared with young counterparts) but not in the VTA. The size of the TH-ir cells increased significantly in both the SN and VTA of the senescent animals but TH labeling intensity fell. Motor, locomotor and exploratory performance deteriorated markedly in the old and senile rats as compared with young animals. These findings reveal the existence of a moderate but significant vulnerability of mesencephalic DA neurons to aging in rats. This phenomenon, which is particularly marked in the SN of very old rats, may contribute to the age-related decline in motor and exploratory performance recorded in this species.
Collapse
|
16
|
Luquin N, Mitrofanis J. Does the cerebral cortex exacerbate dopaminergic cell death in the substantia nigra of 6OHDA-lesioned rats? Parkinsonism Relat Disord 2008; 14:213-23. [DOI: 10.1016/j.parkreldis.2007.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Revised: 06/25/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
|
17
|
Shimada H, Uta D, Nabekura J, Yoshimura M. Involvement of Kv channel subtypes on GABA release in mechanically dissociated neurons from the rat substantia nigra. Brain Res 2007; 1141:74-83. [PMID: 17300765 DOI: 10.1016/j.brainres.2007.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Revised: 12/25/2006] [Accepted: 01/05/2007] [Indexed: 11/27/2022]
Abstract
The seven members of Shaker-related K(+) channel family, which are known to regulate membrane excitability and transmitter release, have been identified in the CNS. It is known that the substantia nigra pars reticulata (SNr) receives GABAergic inputs mainly from the striatum and sends GABAergic outputs to the thalamus. An immunohistochemical study shows that the Kv1 family, particularly Kv1.4, is expressed in the SNr, while it is reported that Kv1.2 mRNA is detected in the striatal neurons. Therefore, which Kv channels may be involved in the release of GABA in the SNr remains still controversial. To address this issue, we tested the effects of various K(+) channel blockers on the synaptic transmission using mechanically dissociated SNr neurons known as "synaptic bouton preparation", that retained functional presynaptic nerve terminals which enable us to examine miniature inhibitory postsynaptic currents (mIPSCs) by conventional whole-cell patch clamp recordings. Based on the sensitivities of mIPSCs to the Kv channel blockers, we concluded that Kv channels, in particular Kv1.2 subunit play the most significant role in the release of GABA at the presynaptic terminals projecting to the SNr neurons.
Collapse
Affiliation(s)
- Hideki Shimada
- Department of Integrative Physiology, Graduate School of Medical Sciences, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
18
|
Deniau JM, Mailly P, Maurice N, Charpier S. The pars reticulata of the substantia nigra: a window to basal ganglia output. PROGRESS IN BRAIN RESEARCH 2007; 160:151-72. [PMID: 17499113 DOI: 10.1016/s0079-6123(06)60009-5] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Together with the internal segment of the globus pallidus (GP(i)), the pars reticulata of the substantia nigra (SNr) provides a main output nucleus of the basal ganglia (BG) where the final stage of information processing within this system takes place. In the last decade, progress on the anatomical organization and functional properties of BG output neurons have shed some light on the mechanisms of integration taking place in these nuclei and leading to normal and pathological BG outflow. In this review focused on the SNr, after describing how the anatomical arrangement of nigral cells and their afferents determines specific input-output registers, we examine how the basic electrophysiological properties of the cells and their interaction with synaptic inputs contribute to the spatio-temporal shaping of BG output. The reported data show that the intrinsic membrane properties of the neurons subserves a tonic discharge allowing BG to gate the transmission of information to motor and cognitive systems thereby contributing to appropriate selection of behavior.
Collapse
Affiliation(s)
- J M Deniau
- Dynamique et Physiopathologie des Réseaux Neuronaux, INSERM U667, UPMC, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | | | | | | |
Collapse
|
19
|
Cebrián C, Parent A, Prensa L. The somatodendritic domain of substantia nigra pars reticulata projection neurons in the rat. Neurosci Res 2006; 57:50-60. [PMID: 17049656 DOI: 10.1016/j.neures.2006.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Revised: 08/17/2006] [Accepted: 09/14/2006] [Indexed: 11/23/2022]
Abstract
We have examined the morphology of the somatodendritic domain of projection neurons located in different sectors of rat substantia nigra pars reticulata (SNr) or having distinct axonal arborizations. Forty-three neurons - 23 located in the dorsal half and 20 in the ventral half of SNr - were injected with biotinylated dextran amine and their somatodendritic domain was reconstructed from serial sagittal sections with a camera lucida. The axonal arborization of 14 neurons was also reconstructed. Dorsally located SNr neurons had a larger perikaryon, a higher number of primary dendrites and a more extensive dendritic arbor than the ventrally located ones. However, irrespective of their location in the SNr, the somatodendritic domain was always longer along the rostrocaudal axis than along the dorsoventral and mediolateral axes. Specific correlations between somatodendritic morphology and axonal arborization could be established for some SNr neurons, but among SNr neurons with similar efferent projections, those lying dorsally always exhibited a larger perikaryon and a more widespread dendritic arbor than those located ventrally. These results indicate that the morphology of the somatodendritic domain of SNr projection neurons is related to the location of their perikaryon within the structure rather than to the pattern of their axonal projections.
Collapse
Affiliation(s)
- Carolina Cebrián
- División de Neurociencias, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31080 Pamplona, Spain
| | | | | |
Collapse
|
20
|
Usunoff KG, Itzev DE, Rolfs A, Schmitt O, Wree A. Brain stem afferent connections of the amygdala in the rat with special references to a projection from the parabigeminal nucleus: a fluorescent retrograde tracing study. ACTA ACUST UNITED AC 2006; 211:475-96. [PMID: 16763808 DOI: 10.1007/s00429-006-0099-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2006] [Indexed: 02/04/2023]
Abstract
A recently revealed important function of the amygdala (Am) is that it acts as the brain's "lighthouse", which constantly monitors the environment for stimuli which signal a threat to the organism. The data from patients with extensive lesions of the striate cortex indicate that "unseen" fearful and fear-conditioned faces elicit increased Am responses. Thus, also extrageniculostriate pathways are involved. A multisynaptic pathway from the retina to the Am via the superior colliculus (SC) and the pulvinar was recently suggested. We here present data based on retrograde neuronal labeling following injection of the fluorescent tracer Fluoro-Gold in the rat Am that the parabigeminal nucleus (Pbg) emits a substantial, bilateral projection to the Am. This small cholinergic nucleus (Ch8 group) in the midbrain tegmentum is a subcortical relay visual center that is reciprocally connected with the SC. We suggest the existence of a second extrageniculostriate multisynaptic connection to Am: retina-SC-Pbg-Am, that might be very effective since all tracts listed above are bilateral. In addition, we present hodological details on other brainstem afferent connections of the Am, some of which are only recently described, and some others that still remain equivocal. Following selective injections of Fluoro-Gold in the Am, retrogradely labeled neurons were observed in parasubthalamic nucleus, peripeduncular nucleus, periaqueductal gray, dopaminergic nuclear complex (substantia nigra pars lateralis and pars compacta, paranigral, parabrachial pigmented and interfascicular nuclei, rostral and caudal linear nuclei, retrorubral area), deep mesencephalic nucleus, serotoninergic structures (dorsal, median and pontine raphe nuclei), laterodorsal and pedunculopontine tegmental nuclei (Ch6 and Ch5 groups), parabrachial nuclear complex, locus coeruleus, nucleus incertus, ventrolateral pontine tegmentum (A5 group), dorsomedial medulla (nucleus of the solitary tract, A2 group), ventrolateral medulla (A1/C1 group), and pars caudalis of the spinal trigeminal nucleus. A bilateral labeling of the upper cervical spinal cord was also observed.
Collapse
Affiliation(s)
- K G Usunoff
- Department of Anatomy and Histology, Faculty of Medicine, Medical University, Sofia 1431, Bulgaria
| | | | | | | | | |
Collapse
|
21
|
Vilaró MT, Cortés R, Mengod G. Serotonin 5-HT4receptors and their mRNAs in rat and guinea pig brain: Distribution and effects of neurotoxic lesions. J Comp Neurol 2005; 484:418-39. [PMID: 15770652 DOI: 10.1002/cne.20447] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Serotonin 5-HT4 receptors are widely distributed in the periphery and in brain, where they modulate the release of various neurotransmitters and have been implicated in learning and memory. Nine C-terminal splice variants of this receptor have been cloned in mammalian species. In the rat, three such variants have been described: 5-HT4(a), 5-HT4(b), and 5-HT4(e). In the present study, we have examined several aspects of the distribution of these receptors in brain. First, we provide, in rat and guinea pig, a detailed comparison of the distribution of 5-HT4 receptors labeled by the antagonist [125I]-SB 207710 with the distribution of their encoding mRNA visualized by in situ hybridization histochemistry (ISHH). The results suggest that, in several projection systems (striato-nigral and striato-pallidal pathways, projection from dentate granule cells to field CA3, habenulo-interpeduncular pathway), 5-HT4 receptors are located both somatodendritically and axonally. Second, we have analyzed the distribution of mRNA for the three known rat splice variants by reverse transcription-polymerase chain reaction (RT-PCR) and by ISHH. RT-PCR indicates that all three variants are widely distributed, with 5-HT4(b) mRNA being present in all regions examined (olfactory tubercle, striatum, hippocampus, inferior colliculus, substantia nigra, parietal cortex) and 5-HT4(a) and 5-HT4(e) showing a somewhat more restricted distribution. In other regions (periaqueductal gray, reticular formation, medial septum, diagonal band), faint ISHH signals are observed for 5-HT4(a)+4(e) mRNAs, whereas 5-HT4(b) mRNA signals are almost undetectable. Finally, neurotoxic lesions of basal ganglia components in guinea pig also indicate a location of these receptors on terminals of striatal projection neurons.
Collapse
Affiliation(s)
- M Teresa Vilaró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain.
| | | | | |
Collapse
|
22
|
Bentivoglio M, Morelli M. Chapter I The organization and circuits of mesencephalic dopaminergic neurons and the distribution of dopamine receptors in the brain. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80005-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Chapter IX Human forebrain dopamine systems: Characterization of the normal brain and in relation to psychiatric disorders. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80013-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
24
|
Ostergaard K, Holm IE, Zimmer J. Tyrosine hydroxylase and acetylcholinesterase in the domestic pig mesencephalon: An immunocytochemical and histochemical study. J Comp Neurol 2004; 322:149-66. [PMID: 1355778 DOI: 10.1002/cne.903220202] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mesencephalon of the young domestic pig was studied by tyrosine hydroxylase (TH) immunocytochemistry and acetylcholinesterase (AChE) histochemistry with focus on the substantia nigra (SN), the ventral tegmental area (VTA), and related areas. The purpose was to obtain information on the organization of the mesencephalic, TH immunoreactive (TH-i), and dopaminergic areas of the pig, in order to provide the necessary background for the possible use of the pig as an alternative large animal experimental model for research on Parkinson's disease, including the use of encapsulated pig dopaminergic neurons for intracerebral xenotransplantation. Significant findings in the pig, compared to observations in other species, included the presence of prominent bundles of TH-i dendrites passing in a dorsoventral direction from pars compacta into pars reticulata at middle and caudal levels of the SN, and the presence of a distinct TH-i substantia nigra pars lateralis (SNL). Caudally in the pig mesencephalon, the retrorubral field (RRF) was found to be very extensive. The view of the RRF, SN, and VTA as parts of the same integrated system was indicated by the crisscrossing of TH-i dendrites at the transitions between these areas. Estimation of the number of TH-i neurons in the SN and the VTA showed that these nuclei were of equal size in the pig. Further, it was found that TH-i nerve cells were present in the midline between the VTA in the interfascicular and rostral linear groups. TH-i nerve cells were also present in the otherwise serotoninergic dorsal raphe nuclei, just as other TH-i cells formed a perirubral cell group. AChE-positive neurons were present in both SN and VTA, and appeared to have the same size and morphology as the TH-i neurons in these areas. Within both nuclei, there were local differences in the AChE staining density, but perhaps more significantly were some marked differences in the structure of the AChE-positive neuropil of the two areas. We anticipate that the present description of the cellular organization of the TH-i dopaminergic areas in the domestic pig ventral mesencephalon will be useful for the development of a nonprimate, large animal, experimental model of Parkinson's disease.
Collapse
Affiliation(s)
- K Ostergaard
- PharmaBiotec, Institute of Neurobiology, University of Aarhus, Denmark
| | | | | |
Collapse
|
25
|
Bannon MJ, Pruetz B, Barfield E, Schmidt CJ. Transcription factors specifying dopamine phenotype are decreased in cocaine users. Neuroreport 2004; 15:401-4. [PMID: 15094491 DOI: 10.1097/00001756-200403010-00003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
During development, survival of midbrain dopamine neurons and specification of their phenotype are dependent upon the intracellular expression of a number of transcription factors, including Engrailed 1, Pitx3, and Nurr1. The role of these transcription factors in the maintenance of the dopaminergic phenotype is less clear. In the present study, we show that each of these transcription factors is robustly expressed in adult dopamine neurons in human midbrain, and that cocaine abuse is associated with a significant decrease in the abundance of Nurr1 and Pitx3 in these cells. These data suggest that cocaine abuse leads to a partial loss of dopaminergic phenotype.
Collapse
Affiliation(s)
- Michael J Bannon
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, 540 E. Canfield, Rm. 2309 Scott Hall, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
26
|
Ravizza T, Friedman LK, Moshé SL, Velísková J. Sex differences in GABA(A)ergic system in rat substantia nigra pars reticulata. Int J Dev Neurosci 2003; 21:245-54. [PMID: 12850057 DOI: 10.1016/s0736-5748(03)00069-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The substantia nigra pars reticulata (SNR) is involved in the control of movement disorders including seizures through its GABAergic neurons. Microinfusions of muscimol (a GABA(A) receptor agonist) produce specific effects on seizures depending on sex, infusion site (SNR(anterior) or SNR(posterior)) and age. To assess whether these effects are due to sex differences in GABAergic indices within the SNR we analyzed the expression of alpha(1) subunit mRNA of the GABA(A) receptor and the levels of GABA immunoreactivity (IR) of male and female rats at postnatal day 15 (PN15) and PN30. In each age, within the same SNR region, expression of alpha(1) subunit mRNA and intensity of GABA IR per neuron was higher in females compared to males. At PN15, in both sexes, there were no regional differences in expression of alpha(1) subunit mRNA and intensity of GABA IR. However, at PN30 in both sexes, expression of alpha(1) subunit mRNA and intensity of GABA IR per cell was higher in SNR(anterior) than in SNR(posterior). These results demonstrate that expression of alpha(1) subunit mRNA for GABA(A) receptor and levels of GABA IR in the SNR are sex- and site-specific, which may contribute to sex-, regional- and age-related differences in the expression of movement disorders and seizures.
Collapse
Affiliation(s)
- Teresa Ravizza
- Department of Neurology, Albert Einstein College of Medicine, K311, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
27
|
Ravizza T, Galanopoulou AS, Velísková J, Moshé SL. Sex differences in androgen and estrogen receptor expression in rat substantia nigra during development: an immunohistochemical study. Neuroscience 2003; 115:685-96. [PMID: 12435407 DOI: 10.1016/s0306-4522(02)00491-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gonadal hormones are important regulators of sexual differentiation of the CNS. Exposure to testosterone and estrogen during development causes permanent organizational differences between males and females. We previously described functional sex-related differences of the GABA(A)ergic circuits of the rat substantia nigra pars reticulata (SNR) involved in the control of flurothyl seizures. This sexual differentiation of the SNR is regulated by postnatal testosterone. To assess whether the organizing effects of testosterone in the SNR are mediated via the androgen receptor (AR) and/or estrogen receptors (ER), we used immunohistochemistry to study the ontogeny of AR, ERalpha and ERbeta expression in SNR and substantia nigra pars compacta (SNC) of male and female rats. Rats on the day of birth [postnatal day (PN) 0] and at PN1, PN5, PN15 and PN30 were used. AR- and ERbeta-immunopositive cells were present in SNR and SNC in both sexes and at all ages. ERalpha was not detected in male and female SNC at PN0-PN1. In both substantia nigra (SN) regions, there were developmentally regulated sex differences in AR, ERalpha and ERbeta immunoreactivity. In the SN, each receptor showed specific intracellular localization: AR was present in the nucleus, ERalpha and ERbeta were present both in nuclear and extranuclear compartments. ERalpha was detected also in processes. At PN0-PN1, quantitative analysis revealed sex and regional differences in the distribution of SN cells expressing AR and ERalpha, while ERbeta were equally present in both sexes. The presence of gonadal steroid receptors in the SN suggests that the biological effects of gonadal hormones in the CNS extend beyond reproduction-related functions and may affect and modify motor behaviors (including seizures) in a sex-specific manner. Based on the ontogeny of SNR ERbeta, we hypothesize that postnatal injections of testosterone may regulate the nigral GABA(A) system through the aromatization pathway and activation of ERbeta.
Collapse
Affiliation(s)
- T Ravizza
- Department of Neurology, Albert Einstein College of Medicine, K311, 1410 Pelham Parkway South, Bronx, NY, USA.
| | | | | | | |
Collapse
|
28
|
Ravizza T, Velísková J, Moshé SL. Testosterone regulates androgen and estrogen receptor immunoreactivity in rat substantia nigra pars reticulata. Neurosci Lett 2003; 338:57-61. [PMID: 12565140 DOI: 10.1016/s0304-3940(02)01317-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
At postnatal day (PN)1, there are sex differences in gonadal receptor expression in the rat substantia nigra pars reticulata (SNR). Male pups have lower levels of androgen receptor (AR) and estrogen receptor (ER)beta immunoreactivity (IR) compared to female pups, while ERalpha IR is equally expressed in the two sexes. To test whether these differences are due to sex differences in testosterone exposure, we injected female pups with testosterone propionate (TP) on the day of birth and analyzed the levels of AR and ER IR at PN1. TP-treated females have lower levels of AR and ERbeta IR than control, while there are no differences in the levels of ERalpha IR. TP treatment did not affect the number of AR and ER expressing cells. The regulation of SNR AR and ERbeta IR by testosterone may be important for the development of sex-specific functional systems involved in motor control.
Collapse
Affiliation(s)
- T Ravizza
- Department of Neurology, Albert Einstein College of Medicine, K311, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|
29
|
Von Krosigk M, Smith AD. Descending Projections from the Substantia Nigra and Retrorubral Field to the Medullary and Pontomedullary Reticular Formation. Eur J Neurosci 2002; 3:260-273. [PMID: 12106204 DOI: 10.1111/j.1460-9568.1991.tb00088.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the projection from the substantia nigra to the pontomedullary reticular formation in the rat using both retrograde and anterograde neuroanatomical tracers. Injections of a conjugate of wheatgerm agglutinin with horseradish peroxidase into the medullary or pontomedullary reticular formation resulted in the retrograde labelling of a continuous band of cells extending from the caudal half of the dorsolateral substantia nigra into the retrorubral field. Injections of the anterograde tracer Phaseolus vulgaris leukoagglutinin (PHA-L) into either the dorsolateral substantia nigra or the caudally adjacent retrorubral field revealed a descending projection to the lateral medullary and pontomedullary brainstem, which terminated mainly within the lateral (parvicellular) reticular formation. The anterograde PHA-L fibre labelling ran throughout the rostrocaudal extent of the parvicellular reticular formation and extended into the caudally continuous region, the medullary dorsal and medullary ventral reticular formation, where it tapered off. Also labelled, although more lightly, were the rostral and ventrolateral regions of the nucleus of the solitary tract and the magnocellular reticular formation. Electron microscopy established that the PHA-L-labelled fibres formed synaptic contacts with nerve cell bodies and dendrites in the parvicellular reticular formation. It is suggested that one role of this nigroreticular pathway might be to connect the basal ganglia with brainstem premotor neurons that influence orofacial musculature.
Collapse
Affiliation(s)
- M. Von Krosigk
- MRC Anatomical Neuropharmacology Unit, University Department of Pharmacology, South Parks Road, Oxford OX1 3QT, UK
| | | |
Collapse
|
30
|
Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM. Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 2002; 445:238-55. [PMID: 11920704 DOI: 10.1002/cne.10165] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study compares the basal ganglia of rats, marmosets, macaques, baboons, and humans. It uses established protocols to estimate the volume and number of neurons within the output nuclei (internal globus pallidus, IGP; and nondopaminergic substantia nigra, SNND), two internal relay and modulating nuclei (subthalamic nucleus, STh; and external globus pallidus, EGP), and a modulator of the striatum (dopaminergic substantia nigra, SND). Nuclear boundaries were defined by using immunohistochemistry for striatal afferents. Total numbers of Nissl-stained and parvalbumin-immunoreactive neurons were calculated by using the fractionator technique. Comparisons between species were standardized relative to brain mass (rats < marmosets < macaques < baboons < humans). The EGP consistently had more neurons relative to the IGP, STh, and SND, which had similar neuronal numbers within each species. The SNND had proportionally more neurons in rats than in primates (especially humans). The distribution of SND neurons varied substantially between rats and primates (very few ventrally located neurons in rats) with humans containing fewer SND neurons than other primates. The reduction in SND neurons in humans suggests less dopaminergic regulation of the basal ganglia system compared with other species. The consistency in the number of IGP neurons across all species, combined with the reduction in SNND neurons in humans, suggests a greater emphasis on output pathways through the IGP and that there are proportionally more STh and EGP neurons in humans.
Collapse
|
31
|
Cervantes M, González-Vidal MD, Ruelas R, Escobar A, Moralí G. Neuroprotective effects of progesterone on damage elicited by acute global cerebral ischemia in neurons of the caudate nucleus. Arch Med Res 2002; 33:6-14. [PMID: 11825624 DOI: 10.1016/s0188-4409(01)00347-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND In addition to the hippocampus, the dorsolateral caudate nucleus (CN) and the pars reticularis of the substantia nigra (SNr) are among the most vulnerable brain areas to ischemia. A possible association of the neuronal injury in these two subcortical nuclei has been proposed, the primary damage affecting the CN GABAergic neurons innervating the SNr, and secondarily the SNr neurons as a result of an imbalance of GABAergic and glutamatergic input to the SNr. Progesterone (P(4)) exerts a GABAergic action on the central nervous system (CNS) and is known to protect neurons in the cat hippocampus from the damaging effect of acute global cerebral ischemia (AGCI). The effects of AGCI on the neuronal populations of the CN and SNr, in addition to the possible neuroprotective effects of P(4), were assessed in cats in the present study. METHODS Ovariectomized adult cats were treated subcutaneously (s.c.) with either P(4) (10 mg/kg/day) or corn oil during the 7 days before and 7 days after being subjected to a period of AGCI by 15 min of cardiorespiratory arrest followed by 4 min of reanimation. After 14 days of survival, animals were sacrificed and their brains perfused in situ with phosphate-buffered 10% formaldehyde for histologic examination. RESULTS ACGI resulted in an intense glial reaction in the CN and a significant loss (43%) of medium-sized neurons of the CN, but no difference was found in the densities of SNr neurons between controls and ischemic oil- and P(4)-treated cats. Progesterone treatment completely prevented CN neuronal loss. CONCLUSIONS The overall results point to the higher vulnerability of CN neurons to ischemia as compared to neurons in the SNr and show the protective effects of P(4) upon CN neuronal damage after ischemia.
Collapse
Affiliation(s)
- Miguel Cervantes
- Laboratorio de Neurofarmacología, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social (IMSS), Morelia, Michoacán, Mexico
| | | | | | | | | |
Collapse
|
32
|
Fudge JL, Haber SN. Bed nucleus of the stria terminalis and extended amygdala inputs to dopamine subpopulations in primates. Neuroscience 2001; 104:807-27. [PMID: 11440812 DOI: 10.1016/s0306-4522(01)00112-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 'extended amygdala', a forebrain continuum implicated in complex motivational responses, is comprised of the bed nucleus of the stria terminalis and its sublenticular extension into the centromedial amygdala. Dopamine is also involved in motivated behavior, and is increased in several brain regions by emotionally relevant stimuli. To examine how the extended amygdala influences the dopamine cells, we determined the organization of inputs from subdivisions of the bed nucleus of the stria terminalis and sublenticular extended amygdala to the dopamine subpopulations in monkeys. Inputs from the bed nucleus of the stria terminalis and corresponding regions of the sublenticular extended amygdala are differentially organized. The medial bed nucleus of the stria terminalis and its medial sublenticular extension have a mediolateral organization with the densest inputs to the medial substantia nigra, pars compacta, and relatively few inputs to the central and lateral substantia nigra. In contrast, the lateral bed nucleus of the stria terminalis (and its continuation into the sublenticular extended amygdala) projects across the mediolateral extent of the substantia nigra. The subnuclei of the lateral bed nucleus of the stria terminalis also have differential projections to the dopamine cells. While the central core of the lateral bed nucleus of the stria terminalis has restricted inputs, the surrounding dorsolateral, capsular and juxtacapsular subdivisions project strongly to the dorsal tier dopamine neurons. The posterior subdivision of the lateral bed nucleus of the stria terminalis and its continuation into the central sublenticular extended amygdala project more broadly to both the dorsal tier and densocellular region of the ventral tier. From these results we suggest that specific subdivisions of the bed nucleus of the stria terminalis have differential influences on the dopamine subpopulations, influencing dopamine responses in diverse brain regions.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, NY 14642, USA
| | | |
Collapse
|
33
|
Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G. Distribution of the major gamma-aminobutyric acid(A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 2001; 433:526-49. [PMID: 11304716 DOI: 10.1002/cne.1158] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Within the basal ganglia, gamma-aminobutyric acid (GABA) exerts a fundamental role as neurotransmitter of local circuit and projection neurons. Its fast hyperpolarizing action is mediated through GABA(A) receptors. These ligand-gated chloride channels are assembled from five subunits, which derive from multiple genes. Using immunocytochemistry, we investigated the distribution of 12 major GABA(A) receptor subunits (alpha1-5, beta1-3, gamma1-3, and delta) in the basal ganglia and associated limbic brain areas of the rat. Immunoreactivity for an additional subunit (subunit alpha6) was not observed. The striatum, the nucleus accumbens, and the olfactory tubercle displayed strong, diffuse staining for the subunits alpha2, alpha4, beta3, and delta presumably located on dendrites of the principal medium spiny neurons. Subunit alpha1-, beta2-, and gamma2-immunoreactivities were apparently mostly restricted to interneurons of these areas. In contrast, the globus pallidus, the entopeduncular nucleus, the ventral pallidum, the subthalamic nucleus, and the substantia nigra pars reticulata revealed dense networks of presumable dendrites of resident projection neurons, which were darkly labeled for subunit alpha1-, beta2-, and gamma2-immunoreactivities. The globus pallidus, ventral pallidum, entopeduncular nucleus, and substantia nigra pars reticulata, all areas receiving innervations from the striatum, displayed strong subunit gamma1-immunoreactivity compared to other brain areas. In the substantia nigra pars compacta and in the ventral tegmental area, numerous presumptive dopaminergic neurons were labeled for subunits alpha3, gamma3, and/or delta. This highly heterogeneous distribution of individual GABA(A) receptor subunits suggests the existence of differently assembled, and presumably also functionally different, GABA(A) receptors within individual nuclei of the basal ganglia and associated limbic brain areas.
Collapse
Affiliation(s)
- C Schwarzer
- Department of Pharmacology, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | |
Collapse
|
34
|
Meade CA, Figueredo-Cardenas G, Fusco F, Nowak TS, Pulsinelli WA, Reiner A. Transient global ischemia in rats yields striatal projection neuron and interneuron loss resembling that in Huntington's disease. Exp Neurol 2000; 166:307-23. [PMID: 11085896 DOI: 10.1006/exnr.2000.7530] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The various types of striatal projection neurons and interneurons show a differential pattern of loss in Huntington's disease (HD). Since striatal injury has been suggested to involve similar mechanisms in transient global brain ischemia and HD, we examined the possibility that the patterns of survival for striatal neurons after transient global ischemic damage to the striatum in rats resemble that in HD. The perikarya of specific types of striatal interneurons were identified by histochemical or immunohistochemical labeling while projection neuron abundance was assessed by cresyl violet staining. Projectionneuron survival was assessed by neurotransmitter immunolabeling of their efferent fibers in striatal target areas. The relative survival of neuron types was determined quantitatively within the region of ischemic damage, and the degree of fiber loss in striatal target areas was quantified by computer-assisted image analysis. We found that NADPHd(+) and cholinergic interneurons were largely unaffected, even in the striatal area of maximal damage. Parvalbumin interneurons, however, were as vulnerable as projection neurons. Among immunolabeled striatal projection systems, striatoentopeduncular fibers survived global ischemia better than did striatopallidal or striatonigral fibers. The order of vulnerability observed in this study among the striatal projection systems, and the resistance to damage shown by NADPHd(+) and cholinergic interneurons, is similar to that reported in HD. The high vulnerability of projection neurons and parvalbumin interneurons to global ischemia also resembles that seen in HD. Our results thus indicate that global ischemic damage to striatum in rat closely mimics HD in its neuronal selectivity, which supports the notion that the mechanisms of injury may be similar in both.
Collapse
Affiliation(s)
- C A Meade
- Department of Anatomy and Neurobiology, Department of Neurology, University of Tennessee at Memphis, The Health Sciences Center, Memphis, Tennessee, 38163, USA
| | | | | | | | | | | |
Collapse
|
35
|
Han ZY, Le Novère N, Zoli M, Hill JA, Champtiaux N, Changeux JP. Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 2000; 12:3664-74. [PMID: 11029636 DOI: 10.1046/j.1460-9568.2000.00262.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present here a systematic mapping of nAChR subunit mRNAs in Macaca mulatta brain. A fragment, from the transmembrane segments MIII to MIV of Macaca neuronal nAChR subunits was cloned, and shown to exhibit high identity (around 95%) to the corresponding human subunits. Then, specific oligodeoxynucleotides were synthesized for in situ hybridization experiments. Both alpha4 and beta2 mRNA signals were widely distributed in the brain, being stronger in the thalamus and in the dopaminergic cells of the mesencephalon. Most brain nuclei displayed both alpha4 and beta2 signals with the exception of some basal ganglia regions and the reticular thalamic nucleus which were devoid of alpha4 signal. alpha6 and beta3 mRNA signals were selectively concentrated in the substantia nigra and the medial habenula. The strongest signals for alpha3 or beta4 mRNAs were found in the epithalamus (medial habenula and pineal gland), whereas there were no specific alpha3 or beta4 signals in mesencephalic dopaminergic nuclei. alpha5 and alpha7 mRNA signals were found in several brain areas, including cerebral cortex, thalamus and substantia nigra, although at a lower level than alpha4 and beta2. The distribution of alpha3, alpha4, alpha5, alpha6, alpha7, beta2, beta3 and beta4 subunit mRNAs in the monkey is substantially similar to that observed in rodent brain. Surprisingly, alpha2 mRNA signal was largely distributed in the Macaca brain, at levels comparable with those of alpha4 and beta2. This observation represents the main difference between rodent and Macaca subunit mRNA distribution and suggests that, besides alpha4beta2*, alpha2beta2* nAChRs constitute a main nAChR isoform in primate brain.
Collapse
Affiliation(s)
- Z Y Han
- CNRS URA 2182, 'Récepteurs et Cognition', Institut Pasteur, 25-28, rue du Dr Roux, 75724 Paris Cédex 15, France
| | | | | | | | | | | |
Collapse
|
36
|
Fudge JL, Haber SN. The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 2000; 97:479-94. [PMID: 10828531 DOI: 10.1016/s0306-4522(00)00092-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The dopamine system plays a major role in responses to potentially rewarding stimuli. An important input to the dopamine neurons is derived from the central nucleus of the amygdala. The central nucleus is a complex structure consisting of several subdivisions with distinct histochemical, morphologic, and connectional features. The central nucleus subdivisions are therefore likely to have specific inputs to the dopamine neurons. The midbrain dopamine cells are divided into dorsal and ventral subpopulations. We determined the organization of inputs from the central nucleus subdivisions to the dopamine subpopulations in monkeys. The dorsal tier neurons receive relatively greater central nucleus input compared to the ventral tier. Within the ventral tier, the central nucleus projects to the densocellular region, but not the cell columns. Furthermore, the midbrain subpopulations receive a differential projection from specific central nucleus subterritories. The medial subdivision of the central nucleus has the greatest input to the dopamine system, and projects throughout the dorsal tier and densocellular regions. This indicates that the medial subdivision influences not only the ventral striatum but also more dorsal striatal areas, through its inputs to these dopamine subpopulations. In contrast, the capsular subdivision of the lateral central nucleus and the amygdalostriatal area project preferentially to the dorsal tier, which selectively modulates the ventral striatum and cortex. The central core of the lateral central nucleus is unique in its restricted projection to the lateral substantia nigra in the region of the nigrotectal pathway. Taken as a whole, the central nucleus-nigral pathway provides a route for affectively significant stimuli to modulate the DA system, influencing the initiation of behavioral responses.
Collapse
Affiliation(s)
- J L Fudge
- Department of Psychiatry, University of Rochester School of Medicine, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | |
Collapse
|
37
|
Fran�ois C, Yelnik J, Tand� D, Agid Y, Hirsch E. Dopaminergic cell group A8 in the monkey: Anatomical organization and projections to the striatum. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19991122)414:3<334::aid-cne4>3.0.co;2-x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Alonso-Vanegas MA, Fawcett JP, Causing CG, Miller FD, Sadikot AF. Characterization of dopaminergic midbrain neurons in a DBH:BDNF transgenic mouse. J Comp Neurol 1999; 413:449-62. [PMID: 10502251 DOI: 10.1002/(sici)1096-9861(19991025)413:3<449::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has been implicated in the survival and differentiation of central nervous system neurons, including dopaminergic cells in culture. To determine whether BDNF might play a role in the development of dopaminergic neurons in vivo, we used a previously characterized transgenic mouse (DBH:BDNF) that overexpresses BDNF in adrenergic and noradrenergic neurons as a result of fusion of the BDNF gene to the dopamine beta-hydroxylase (DBH) gene promoter. We quantified dopaminergic neuronal profiles at four midbrain coronal levels and compared DBH:BDNF transgenic animals with wild-type mice of the same genetic background. Analysis of sections immunostained with tyrosine hydroxylase (TH) showed that the mean number of dopaminergic neurons in the four selected midbrain sections was 52% greater (one-way analysis of variance, P < 0.0005) in transgenic mice (2,165 +/- 55 S. E.M., n = 4) than in control mice (1,428 +/- 71 S.E.M., n = 4). The increase in dopaminergic neuron profile count in DBH:BDNF transgenic animals was confirmed by analysis of the pars compacta of the substantia nigra on Nissl-stained sections. Surface area of the reference region of interest containing TH-immunoreactive neurons was similar in transgenic and control mice. Regional analysis of different midbrain areas containing dopaminergic neurons suggested that the increase in cell profile count occurs in a relatively homogeneous manner. Comparison of TH-immunoreactive cell size showed a tendency for smaller neurons in transgenic animals, but the difference was not statistically significant. We conclude that DBH:BDNF transgenic mice show increased number of TH-immunoreactive cells in the midbrain. We propose that BDNF rescues dopaminergic neurons from the perinatal period of developmental cell death as a consequence of increased anterograde transport of the neurotrophin via the coeruleonigral projection.
Collapse
Affiliation(s)
- M A Alonso-Vanegas
- Department of Neurology and Neurosurgery, Cone Laboratory and Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | |
Collapse
|
39
|
Geller AI. Genetic analysis of the role of protein kinase C signaling pathways in behaviors by direct gene transfer with HSV-1 vectors. Rev Neurosci 1999; 10:1-13. [PMID: 10356988 DOI: 10.1515/revneuro.1999.10.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A genetic intervention strategy is described to elucidate the specific biochemical pathways in identified types of neurons that underlie behavioral adaptations. This strategy contains three parts: A Herpes simplex virus (HSV-1) vector is used to obtain localized gene transfer, a cell type-specific promoter is used to target expression to a particular type of neuron, and a constitutively active signal transduction enzyme is expressed to alter neuronal physiology. To enable this approach, a constitutively active protein kinase C (PKC) was developed which causes a long-lasting, activation-dependent increase in neurotransmitter release from cultured sympathetic neurons. This genetic intervention strategy was tested using the nigrostriatal system: Microinjection of HSV-1 vectors that contain the tyrosine hydroxylase promoter targeted expression to dopaminergic nigrostriatal neurons. Expression of the constitutively active PKC in a small percentage of nigrostriatal neurons (approximately 0.1-2%) produced a long-term (> or = 1 month) change in apomorphine-induced rotational behavior, the amount of rotational behavior correlated with the number of affected nigrostriatal neurons, and D2-like dopamine receptor levels were elevated in the striatal regions innervated by the affected nigrostriatal neurons. The strengths and limitations of this genetic intervention strategy are discussed.
Collapse
Affiliation(s)
- A I Geller
- Division of Endocrinology, Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
40
|
Slovin H, Abeles M, Vaadia E, Haalman I, Prut Y, Bergman H. Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys. J Neurophysiol 1999; 81:858-74. [PMID: 10036286 DOI: 10.1152/jn.1999.81.2.858] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is considerable overlap between the cognitive deficits observed in humans with frontal lobe damage and those described in patients with Parkinson's disease. Similar frontal impairments have been found in the 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine (MPTP) primate model of Parkinsonism. Here we provide quantitative documentation of the cognitive, oculomotor, and skeletomotor dysfunctions of monkeys trained on a frontal task and treated with low-doses (LD) of MPTP. Two rhesus monkeys were trained to perform a spatial delayed-response task with frequent alternations between two behavioral modes (GO and NO-GO). After control recordings, the monkeys were treated with one placebo and successive LD MPTP courses. Monkey C developed motor Parkinsonian signs after a fourth course of medium-dose (MD) MPTP and later was treated with combined dopaminergic therapy (CDoT). There were no gross motor changes after the LD MPTP courses, and the average movement time (MT) did not increase. However, reaction time (RT) increased significantly. Both RT and MT were further increased in the symptomatic state, under CDoT. Self-initiated saccades became hypometric after LD MPTP treatments and their frequency decreased. Visually triggered saccades were affected to a lesser extent by the LD MPTP treatments. All saccadic parameters declined further in the symptomatic state and improved partially during CDoT. The number of GO mode (no-response, location, and early release) errors increased after MPTP treatment. The monkeys made more perseverative errors while switching from the GO to the NO-GO mode. Saccadic eye movement patterns suggest that frontal deficits were involved in most observed errors. CDoT had a differential effect on the behavioral errors. It decreased omission errors but did not improve location errors or perseverative errors. Tyrosine hydroxylase immunohistochemistry showed moderate ( approximately 70-80%) reduction in the number of dopaminergic neurons in the substantia nigra pars compacta after MPTP treatment. These results show that cognitive and motor disorders can be dissociated in the LD MPTP model and that cognitive and oculomotor impairments develop before the onset of skeletal motor symptoms. The behavioral and saccadic deficits probably result from the marked reduction of dopaminergic neurons in the midbrain. We suggest that these behavioral changes result from modified neuronal activity in the frontal cortex.
Collapse
Affiliation(s)
- H Slovin
- Department of Physiology, Hadassah Medical School, The Hebrew University, Jerusalem 91120, Israel
| | | | | | | | | | | |
Collapse
|
41
|
|
42
|
McRitchie DA, Cartwright H, Pond SM, van der Schyf CJ, Castagnoli N, van der Nest DG, Halliday GM. The midbrain dopaminergic cell groups in the baboon Papio ursinus. Brain Res Bull 1998; 47:611-23. [PMID: 10078618 DOI: 10.1016/s0361-9230(98)00128-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The present study evaluates the cytoarchitecture of midbrain dopaminergic regions in baboons using similar methodology to that recently applied to compare humans and rats. This information is relevant for the interpretation of nonhuman primate models of Parkinson's disease (PD). The midbrains of four alpha male baboons were serially sectioned into 10 evenly spaced series of 50 microm sections. Series were stained with either cresyl violet or immunohistochemically reacted for tyrosine hydroxylase, substance P, calbindin-D28k, or parvalbumin. The organization of dopaminergic cell groups and the distribution of proteins within these groups were found to be very similar to that previously described in humans [McRitchie et al., J. Comp. Neurol. 364:121-150; 1996]. Dorsal and ventral tiers of the A9 substantia nigra (SN) pars compacta and all divisions of the A8 and A10 cell groups were identified revealing a high degree of homology in the arrangement of chemically distinct midbrain neurons between primates. The major difference between the organization of human and baboon midbrain dopaminergic neurons is the anteroposterior extent of the dense cell clusters within the SN pars compacta. In baboons the dorsomedial cell cluster is absent at posterior levels. The ventral tier cell clusters, which are targeted by PD in humans, are restricted to the posterior and ventral regions of the SN pars compacta of the baboon. In humans these cell clusters are found throughout the rostrocaudal extent of the SN. These ventral cell clusters have been previously shown to have reciprocal connections with sensorimotor regions of the putamen.
Collapse
Affiliation(s)
- D A McRitchie
- Prince of Wales Medical Research Institute, Randwick, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
43
|
Velísková J, Kubová H, Friedman LK, Wu R, Sperber EF, Zukin RS, Moshé SL. The expression of GABA(A) receptor subunits in the substantia nigra is developmentally regulated and region-specific. ITALIAN JOURNAL OF NEUROLOGICAL SCIENCES 1998; 19:205-10. [PMID: 10933458 DOI: 10.1007/bf02427602] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The substantia nigra pars reticulata (SNR) controls the spread of seizures. GABA(A)ergic drug (agonist or antagonist) infusions into the SNR have age-specific and site-specific effects on flurothyl-induced seizures. Developmental and cell-specific regulation of GABA(A) receptor subunit expression may be responsible for these specific effects. To test this hypothesis, in situ hybridization was used to examine regional expression of alpha1 and gamma2L GABA(A) receptor subunit mRNAs in the SNR during development. Distinct temporal and spatial patterns of expression were observed. In rats at postnatal days (PN) 21-60, fewer neurons were labeled with probes directed to alpha1 and gamma2L subunits in SNRanterior compared with SNRposterior. In addition, neurons in SNRanterior contained higher amounts of hybridization grains than in SNRposterior. In PN 15 rats, the labeling of neurons was relatively diffuse throughout the anterior and posterior SNR regions with moderate amounts of hybridization grains for both subunits. The finding of age-related differential distribution of alpha1 and gamma2L subunit mRNAs in the SNR suggests that GABA(A) receptor heterogeneity may play a role in the age-specific and site-specific effects of GABA(A)ergic agents on seizures in the SNR.
Collapse
Affiliation(s)
- J Velísková
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Modulation of rat rotational behavior by direct gene transfer of constitutively active protein kinase C into nigrostriatal neurons. J Neurosci 1998. [PMID: 9592092 DOI: 10.1523/jneurosci.18-11-04119.1998] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The modulation of motor behavior by protein kinase C (PKC) signaling pathways in nigrostriatal neurons was examined by using a genetic intervention approach. Herpes simplex virus type 1 (HSV-1) vectors that encode a catalytic domain of rat PKCbetaII (PkcDelta) were developed. PkcDelta exhibited a constitutively active protein kinase activity with a substrate specificity similar to that of rat brain PKC. As demonstrated in cultured sympathetic neurons, PkcDelta caused a long-lasting, activation-dependent increase in neurotransmitter release. In the rat brain, microinjection of HSV-1 vectors that contain the tyrosine hydroxylase promoter targeted expression to dopaminergic nigrostriatal neurons. Expression of pkcDelta in a small percentage of nigrostriatal neurons (approximately 0.1-2%) was sufficient to produce a long-term (>/=1 month) change in apomorphine-induced rotational behavior. Nigrostriatal neurons were the only catecholaminergic neurons that contained PkcDelta, and the amount of rotational behavior was correlated with the number of affected nigrostriatal neurons. The change in apomorphine-induced rotational behavior was blocked by a dopamine receptor antagonist (fluphenazine). D2-like dopamine receptor density was increased in those regions of the striatum innervated by the affected nigrostriatal neurons. Therefore, this strategy enabled the demonstration that a PKC pathway or PKC pathways in nigrostriatal neurons modulate apomorphine-induced rotational behavior, and altered dopaminergic transmission from nigrostriatal neurons appears to be the affected neuronal physiology responsible for the change in rotational behavior.
Collapse
|
45
|
Abstract
A segmental mapping of brain tyrosine-hydroxylase-immunoreactive (TH-IR) neurons in human embryos between 4.5 and 6 weeks of gestation locates with novel precision the dorsoventral and anteroposterior topography of the catecholamine-synthetizing primordia relative to neuromeric units. The data support the following conclusions. (1) All transverse sectors of the brain (prosomeres in the forebrain, midbrain, rhombomeres in the hindbrain, spinal cord) produce TH-IR neuronal populations. (2) Each segment shows peculiarities in its contribution to the catecholamine system, but there are some overall regularities, which reflect that some TH-IR populations develop similarly in different segments. (3) Dorsoventral topology of the TH-IR neurons indicates that at least four separate longitudinal zones (in the floor and basal plates and twice in the alar plate) found across most segments are capable of producing the TH-IR phenotype. (4) Basal plate TH-IR neurons tend to migrate intrasegmentally to a ventrolateral superficial position, although some remain periventricular; those in the brainstem are related to motoneurons of the oculomotor and branchiomotor nuclei. (5) Some alar TH-IR populations migrate superficially within the segmental boundaries. (6) Most catecholaminergic anatomical entities are formed as fusions of smaller segmental components, each of which show similar histogenetic patterns. A nomenclature is proposed that partly adheres to previous terminology but introduces the distinction of embryologically different cell populations and unifies longitudinally analogous entities. Such a model, as presented in the present study, is convenient for resolving problems of homology of the catecholamine system across the diversity of vertebrate forms.
Collapse
Affiliation(s)
- L Puelles
- Department of Morphological Sciences, University of Murcia, Spain.
| | | |
Collapse
|
46
|
Abstract
The immature brain is most susceptible to the development of seizures. The substantia nigra may play a crucial role in the control of seizures as a function of age. In the adult substantia nigra pars reticulata (SNR), there are two regions that mediate opposing effects on seizures after infusions of GABA(A) agents. One region is located in the anterior SNR, and localized muscimol infusions mediate anticonvulsant effects. These anticonvulsant effects use a circuitry that may involve the ventromedial thalamic nucleus, the deep layer of the superior colliculus, or both. The second region is in the posterior SNR, and muscimol infusions produce proconvulsant effects, perhaps mediated by the striatum, the globus pallidus, the deep layer of the superior colliculus, or all three. In developing male rats, only the proconvulsant region is present up to the age of 21 days. In ongoing studies, it has been shown that, in the male rat, the transition from the immature to mature SNR-mediated seizure control occurs between the ages of 25 and 30 days, just before adolescence. In male rats castrated on the day of birth, the ensuing depletion of testosterone accelerates the development of the anterior SNR with its anticonvulsant features. Castration does not alter the development of the proconvulsant region. In the developing female SNR, muscimol infusions produce only anticonvulsant effects. The data indicate that gonadal hormones may have an important role in the maturation of systems involved in the containment of seizures.
Collapse
Affiliation(s)
- S L Moshé
- Department of Neurology, Albert Einstein College of Medicine, Rose F. Kennedy Center, Bronx, New York 10461, USA
| |
Collapse
|
47
|
Richards CD, Shiroyama T, Kitai ST. Electrophysiological and immunocytochemical characterization of GABA and dopamine neurons in the substantia nigra of the rat. Neuroscience 1997; 80:545-57. [PMID: 9284356 DOI: 10.1016/s0306-4522(97)00093-6] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Neurons in the substantia nigra pars reticulata and pars compacta of the rat were studied using a combination of intracellular electrophysiological recording in in vitro and subsequent immunocytochemical double and triple labelling techniques. The neurons recorded in the pars reticulata were identified as either GABA or dopamine neurons: neurons were considered to be GABA neurons if they were immunopositive for glutamate decarboxylase, whereas those neurons which were immunopositive for tyrosine hydroxylase were considered to be dopaminergic. The GABA neurons had short duration action potentials (0.45+/-0.03 ms halfwidth), no apparent rectifying currents, no low threshold calcium spikes, were spontaneously active (7.4+/-3.7 Hz), and could maintain high firing rates. The dopamine neurons had long duration action potentials (1.49+/-0.10 ms), displayed both anomalous inward and transient outward rectifying currents, and more than half (12/17 neurons) displayed a low threshold calcium spike. Their spontaneous firing rate was lower than that of the GABA neurons (2.3+/-1.0 Hz), and they displayed strong frequency adaptation. Morphological reconstruction of neurobiotin-filled neurons revealed that the pars reticulata GABA neurons had more extensive local dendritic arborization than the dopamine neurons from either the pars reticulata or the pars compacta. All of the neurons recorded from the pars compacta were dopamine neurons; they were found not to be different either electrophysiologically or morphologically from pars reticulata dopamine neurons. The electrophysiology of the GABA neurons suggests that input activity is translated linearly to spike frequency. These GABA neurons probably represent the projection neurons of the pars reticulata, and it is thus likely that this basal ganglia output is frequency coded. The close similarity between the dopamine neurons in the pars compacta, which give rise to the nigrostriatal pathway, and those in the pars reticulata supports the notion that the dopamine neurons in these two regions are part of the same neuronal population.
Collapse
Affiliation(s)
- C D Richards
- Department of Anatomy and Neurobiology, University of Tennessee, College of Medicine, Memphis 38163, U.S.A
| | | | | |
Collapse
|
48
|
Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, Vital C, Bloch B. Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 1997; 379:72-87. [PMID: 9057113 DOI: 10.1002/(sici)1096-9861(19970303)379:1<72::aid-cne5>3.0.co;2-f] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A series of 15 fetal and perinatal human brains (from week 12 of fetal life to day 2 after birth) was studied in order to describe the anatomical and molecular correlates of the substantia nigra ontogeny. In situ hybridization, immunohistochemistry and binding studies were used to detect D2 dopamine receptor (D2R) mRNA, D2R binding sites, dopamine membrane transporter (DAT) mRNA, tyrosine hydroxylase (TH) protein D1 dopamine receptor (D1R) protein and D1R binding sites. Dopaminergic (DA) neurons of the substantia nigra were detected through TH immunoreactivity from week 12. At week 16, the substantia nigra was clearly delineated as a compact group of intermingled neurons and fibers. From week 19, groups of DA neurons were segregated from the pars reticulata. These groups have been divided into the substantia nigra pars compacta, the ventral tegmental area and the retrorubral area. The DA neurons exhibited a gradual increase in size and branching development until birth. From week 12 onward they expressed several other markers of dopamine transmission, i.e., D2R mRNA, D2R binding sites and DAT mRNA. The ventral tegmental area expressed lower levels of mRNA for DAT and D2R than the pars compacta. From week 12, D1R immunoreactivity and D1R binding sites were also present in the substantia nigra pars reticulata. This suggests that projecting striatonigral neurons, known to express the D1R gene, have developed pathways connecting with the substantia nigra by week 12. Our results demonstrate that the developing substantia nigra in human displays early transcriptional and translational activity for the main constituents of dopaminergic transmission from week 12 and receives at this time dopaminoceptive inputs bearing D1 receptors from the striatum.
Collapse
Affiliation(s)
- I Aubert
- UMR CNRS 5541, Laboratoire d'Histologie-Embryologie, Université de Bordeaux II, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Functional properties of AMPA and NMDA receptors expressed in identified types of basal ganglia neurons. J Neurosci 1997. [PMID: 8987749 DOI: 10.1523/jneurosci.17-01-00204.1997] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AMPA- and NMDA-type glutamate receptors (AMPARs and NMDARs) mediate excitatory synaptic transmission in the basal ganglia and may contribute to excitotoxic injury. We investigated the functional properties of AMPARs and NMDARs expressed by six main types of basal ganglia neurons in acute rat brain slices (principal neurons and cholinergic interneurons of striatum, GABAergic and dopaminergic neurons of substantia nigra, globus pallidus neurons, and subthalamic nucleus neurons) using fast application of glutamate to nucleated and outside-out membrane patches. AMPARs in different types of basal ganglia neurons were functionally distinct. Those expressed in striatal principal neurons exhibited the slowest gating (desensitization time constant tau = 11.5 msec, 1 mM glutamate, 22 degrees C), whereas those in striatal cholinergic interneurons showed the fastest gating (desensitization time constant tau = 3.6 msec). The lowest Ca2+ permeability of AMPARs was observed in nigral dopaminergic neurons (PCa/PNa = 0.10), whereas the highest Ca2+ permeability was found in subthalamic nucleus neurons (PCa/PNa = 1.17). NMDARs of different types of basal ganglia neurons were less variable in their functional properties; those expressed in nigral dopaminergic neurons exhibited the slowest gating (deactivation time constant of predominant fast component tau1 = 150 msec, 100 microM glutamate), and those of globus pallidus neurons showed the fastest gating (tau1 = 67 msec). The Mg2+ block of NMDARs was similar; the average chord conductance ratio g-60mV/g+40mV was 0.18-0.22 in 100 microM external Mg2+. Hence, AMPARs expressed in different types of basal ganglia neurons are markedly diverse, whereas NMDARs are less variable in functional properties that are relevant for excitatory synaptic transmission and neuronal vulnerability.
Collapse
|
50
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|