1
|
Tezanos P, Trejo JL. Why are threatening experiences remembered so well? Insights into memory strengthening from protocols of gradual aversive learning. Neurosci Biobehav Rev 2025; 174:106145. [PMID: 40250543 DOI: 10.1016/j.neubiorev.2025.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
Aversive experiences often result in strong and persistent memory traces, which can sometimes lead to conditions such as Post-Traumatic Stress Disorder or phobias. Aversive stimulation tests are key tools in psychology and neuroscience for studying learning and memory. These tests typically use electric shocks as the unconditioned stimulus, allowing for precise control over the aversive content of the learning event. This feature has led to extensive research applying these tests with varying shock intensities to examine differences in learning, behavior, and memory formation between low- and high-aversive experiences. This line of research is particularly valuable for understanding the neurobiology underlying memory strengthening, but, to our knowledge, no review has yet compiled and organized the findings from this specific methodology. In this comprehensive review, we focus primarily on animal studies that have employed the same aversive test (i.e. Fear Conditioning, Passive Avoidance, Active Avoidance or Operant boxes) at different intensities. We will first outline and briefly describe the main aversive learning paradigms used in this field. Next, we will examine the relationship between aversiveness and memory strength. Finally, we will explore the neurobiological insights these studies have revealed over the years. Our aim is to gain a better understanding of how the nervous system gradually strengthens memory, while also addressing the remaining gaps and challenges in this area of research.
Collapse
Affiliation(s)
- Patricia Tezanos
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain; PhD Program in Neuroscience, Universidad Autónoma de Madrid-Instituto Cajal, Madrid 28002, Spain
| | - José Luis Trejo
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid 28002, Spain.
| |
Collapse
|
2
|
Mantsch JR. Corticotropin releasing factor and drug seeking in substance use disorders: Preclinical evidence and translational limitations. ADDICTION NEUROSCIENCE 2022; 4:100038. [PMID: 36531188 PMCID: PMC9757758 DOI: 10.1016/j.addicn.2022.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The neuropeptide, corticotropin releasing factor (CRF), has been an enigmatic target for the development of medications aimed at treating stress-related disorders. Despite a large body of evidence from preclinical studies in rodents demonstrating that CRF receptor antagonists prevent stressor-induced drug seeking, medications targeting the CRF-R1 have failed in clinical trials. Here, we provide an overview of the abundant findings from preclinical rodent studies suggesting that CRF signaling is involved in stressor-induced relapse. The scientific literature that has defined the receptors, mechanisms and neurocircuits through which CRF contributes to stressor-induced reinstatement of drug seeking following self-administration and conditioned place preference in rodents is reviewed. Evidence that CRF signaling is recruited with repeated drug use in a manner that heightens susceptibility to stressor-induced drug seeking in rodents is presented. Factors that may determine the influence of CRF signaling in substance use disorders, including developmental windows, biological sex, and genetics are examined. Finally, we discuss the translational failure of medications targeting CRF signaling as interventions for substance use disorders and other stress-related conditions. We conclude that new perspectives and research directions are needed to unravel the mysterious role of CRF in substance use disorders.
Collapse
Affiliation(s)
- John R Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States
| |
Collapse
|
3
|
Caccamise A, Van Newenhizen E, Mantsch JR. Neurochemical mechanisms and neurocircuitry underlying the contribution of stress to cocaine seeking. J Neurochem 2021; 157:1697-1713. [PMID: 33660857 PMCID: PMC8941950 DOI: 10.1111/jnc.15340] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
In individuals with substance use disorders, stress is a critical determinant of relapse susceptibility. In some cases, stressors directly trigger cocaine use. In others, stressors interact with other stimuli to promote drug seeking, thereby setting the stage for relapse. Here, we review the mechanisms and neurocircuitry that mediate stress-triggered and stress-potentiated cocaine seeking. Stressors trigger cocaine seeking by activating noradrenergic projections originating in the lateral tegmentum that innervate the bed nucleus of the stria terminalis to produce beta adrenergic receptor-dependent regulation of neurons that release corticotropin releasing factor (CRF) into the ventral tegmental area (VTA). CRF promotes the activation of VTA dopamine neurons that innervate the prelimbic prefrontal cortex resulting in D1 receptor-dependent excitation of a pathway to the nucleus accumbens core that mediates cocaine seeking. The stage-setting effects of stress require glucocorticoids, which exert rapid non-canonical effects at several sites within the mesocorticolimbic system. In the nucleus accumbens, corticosterone attenuates dopamine clearance via the organic cation transporter 3 to promote dopamine signaling. In the prelimbic cortex, corticosterone mobilizes the endocannabinoid, 2-arachidonoylglycerol (2-AG), which produces CB1 receptor-dependent reductions in inhibitory transmission, thereby increasing excitability of neurons which comprise output pathways responsible for cocaine seeking. Factors that influence the role of stress in cocaine seeking, including prior history of drug use, biological sex, chronic stress/co-morbid stress-related disorders, adolescence, social variables, and genetics are discussed. Better understanding when and how stress contributes to drug seeking should guide the development of more effective interventions, particularly for those whose drug use is stress related.
Collapse
Affiliation(s)
- Aaron Caccamise
- Graduate Program in Neuroscience, Marquette University, Milwaukee, WI 53201
| | - Erik Van Newenhizen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| | - John R. Mantsch
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226
| |
Collapse
|
4
|
Enhanced CRFR1-Dependent Regulation of a Ventral Tegmental Area to Prelimbic Cortex Projection Establishes Susceptibility to Stress-Induced Cocaine Seeking. J Neurosci 2018; 38:10657-10671. [PMID: 30355627 DOI: 10.1523/jneurosci.2080-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/28/2018] [Accepted: 10/15/2018] [Indexed: 11/21/2022] Open
Abstract
The ability of stress to trigger cocaine seeking in humans and rodents is variable and is determined by the amount and pattern of prior drug use. This study examined the role of a corticotropin releasing factor (CRF)-regulated dopaminergic projection from the ventral tegmental area (VTA) to the prelimbic cortex in shock-induced cocaine seeking and its recruitment under self-administration conditions that establish relapse vulnerability. Male rats with a history of daily long-access (LgA; 14 × 6 h/d) but not short-access (ShA; 14 × 2 h/d) self-administration showed robust shock-induced cocaine seeking. This was associated with a heightened shock-induced prelimbic cortex Fos response and activation of cholera toxin b retro-labeled VTA neurons that project to the prelimbic cortex. Chemogenetic inhibition of this pathway using a dual virus intersectional hM4Di DREADD (designer receptor exclusively activated by designer drug) based approach prevented shock-induced cocaine seeking. Both shock-induced reinstatement and the prelimbic cortex Fos response were prevented by bilateral intra-VTA injections of the CRF receptor 1 (CRFR1) antagonist, antalarmin. Moreover, pharmacological disconnection of the CRF-regulated dopaminergic projection to the prelimbic cortex by injection of antalarmin into the VTA in one hemisphere and the D1 receptor antagonist, SCH23390, into the prelimbic cortex of the contralateral hemisphere prevented shock-induced cocaine seeking. Finally, LgA, but not ShA, cocaine self-administration resulted in increased VTA CRFR1 mRNA levels as measured using in situ hybridization. Altogether, these findings suggest that excessive cocaine use may establish susceptibility to stress-induced relapse by recruiting CRF regulation of a stressor-responsive mesocortical dopaminergic pathway.SIGNIFICANCE STATEMENT Understanding the neural pathways and mechanisms through which stress triggers relapse to cocaine use is critical for the development of more effective treatment approaches. Prior work has demonstrated a critical role for the neuropeptide corticotropin releasing factor (CRF) in stress-induced cocaine seeking. Here we provide evidence that stress-induced reinstatement in a rat model of relapse is mediated by a CRF-regulated dopaminergic projection from the ventral tegmental area (VTA) that activates dopamine D1 receptors in the prelimbic cortex. Moreover, we report that this pathway may be recruited as a result of daily cocaine self-administration under conditions of extended drug access/heightened drug intake, likely as a result of increased CRFR1 expression in the VTA, thereby promoting susceptibility to stress-induced cocaine seeking.
Collapse
|
5
|
Effect of footshock stress on place conditioning produced by Δ 9-tetrahydrocannabinol and the fatty acid amide hydrolase (FAAH) inhibitor, URB597, in Sprague-Dawley rats. Psychopharmacology (Berl) 2017; 234:3229-3240. [PMID: 28803323 DOI: 10.1007/s00213-017-4714-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/06/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE Unlike other drugs of abuse, Δ9-tetrahydrocanabinol (THC) is generally aversive in rodent conditioned place preference models, but little is known about how stress may modify THC affective properties. OBJECTIVE We evaluate the potential of footshock stress to enhance the rewarding effects of THC and the fatty acid amide hydrolase inhibitor, URB597, as it has been shown to enhance their anxiolytic effects. MATERIALS AND METHODS The effect of footshock stress 24 h prior to each conditioning trial on the rewarding/aversive effects of THC (1, 0.1, 0.5 mg/kg, ip) and URB597 (0.3 mg/kg, ip) was evaluated in an unbiased place conditioning procedure in rats. Subsequently, the same stressor was given immediately prior to conditioning with THC (1 and 0.1 mg/kg). Locomotor activity was also measured during conditioning. RESULTS A dose of 1 mg/kg THC, but not 0.1-0.5 mg/kg, produced a conditioned place aversion (CPA) that was not modified by footshock delivered 24 h prior to conditioning trials; however, footshock delivered immediately prior to conditioning trials prevented that CPA. Lower doses of THC and URB597 produced no place conditioning regardless of footshock conditions. A dose of 1 mg/kg THC produced locomotor suppression during conditioning trials that was prevented by footshock delivered 24 h before and reversed to locomotor activation by footshock delivered immediately before conditioning. CONCLUSIONS Unlike the effect of footshock on THC- and URB597-induced anxiolytic effects, footshock does not promote THC or URB597-induced reward in a conditioned place preference paradigm. However, footshock stress reverses the sedative effects of 1 mg/kg THC.
Collapse
|
6
|
Foley TE, Fleshner M. Neuroplasticity of Dopamine Circuits After Exercise: Implications for Central Fatigue. Neuromolecular Med 2008; 10:67-80. [DOI: 10.1007/s12017-008-8032-3] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
7
|
Tisch S, Silberstein P, Limousin-Dowsey P, Jahanshahi M. The basal ganglia: anatomy, physiology, and pharmacology. Psychiatr Clin North Am 2004; 27:757-99. [PMID: 15550292 DOI: 10.1016/j.psc.2004.06.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The basal ganglia are perceived as important nodes in cortico-subcortical networks involved in the transfer, convergence, and processing of information in motor, cognitive, and limbic domains. How this integration might occur remains a matter of some debate, particularly given the consistent finding in anatomic and physiologic studies of functional segregation in cortico-subcortical loops. More recent theories, however, have raised the notion that modality-specific information might be integrated not spatially, but rather temporally, by coincident processing in discrete neuronal populations. Basal ganglia neurotransmitters, given their diverse roles in motor performance, learning, working memory, and reward-related activity are also likely to play an important role in the integration of cerebral activity. Further work will elucidate this to a greater extent, but for now, it is clear that the basal ganglia form an important nexus in the binding of cognitive, limbic, and motor information into thought and action.
Collapse
Affiliation(s)
- Stephen Tisch
- Sobell Department of Motor Neuroscience & Movement Disorders Institute of Neurology, Queen Square, London WC1N 3BG, United Kingdom
| | | | | | | |
Collapse
|
8
|
Wang GJ, Volkow ND, Fowler JS. The role of dopamine in motivation for food in humans: implications for obesity. Expert Opin Ther Targets 2002; 6:601-9. [PMID: 12387683 DOI: 10.1517/14728222.6.5.601] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Obesity is a major public health problem. The increasing number of obese individuals in the US adds urgency to the efforts to understand the mechanisms underlying pathological overeating. Imaging studies using positron emission tomography implicate the involvement of brain dopamine (DA) in normal and pathological food intake in humans. In normal body weight, fasting subjects, food presentation that could not be consumed was associated with increases in striatal extracellular DA, which provides evidence of an involvement of DA in non-hedonic motivational properties of food intake. In pathologically obese subjects, the authors showed reductions in striatal D2 receptor availability that were inversely associated with the weight of the subject. The involvement of the DA system in reward and reinforcement has led to the hypothesis that low brain DA activity in obese subjects predisposes them to excessive use of food. A better understanding of the role of the DA system in the motivation for food intake will help the development of better therapeutic interventions.
Collapse
Affiliation(s)
- Gene-Jack Wang
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | | | | |
Collapse
|
9
|
Ouchi Y, Yoshikawa E, Futatsubashi M, Okada H, Torizuka T, Sakamoto M. Effect of simple motor performance on regional dopamine release in the striatum in Parkinson disease patients and healthy subjects: a positron emission tomography study. J Cereb Blood Flow Metab 2002; 22:746-52. [PMID: 12045673 DOI: 10.1097/00004647-200206000-00013] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate changes in dopamine release in the striatum during motor exercise in human subjects with and without striatal dopamine denervation, eight healthy subjects and eight patients with Parkinson disease (PD) were measured during unilateral foot extension/flexion movement using positron emission tomography with [11C]raclopride. Five subjects in each group were later scanned in the resting condition. Estimation of binding potential (k3/k4) of [11C]raclopride was based on Logan plot method. Significant reductions in [11C]raclopride k3/k4 were found in the dorsal putamen contralateral to the exercise side in the healthy group and ipsilaterally in the PD group. Spearman rank correlation analysis showed that [11C]raclopride k3/k4 correlated inversely with the decrease in performance (velocity and motion range) in the dorsal putamen contralaterally in the healthy group and ipsilaterally in the PD group. These results suggest that simple but laborious motor exercise (motor stimulation) generates significant dopamine release in the dorsal striatum contralateral to the motor execution in humans. Lack of the crossed pattern and ipsilateral increase in dopamine release in the dorsal striatum during the unilateral limb movement may reflect the pathophysiology for hypokinetic and insufficient coordinating movement in PD.
Collapse
Affiliation(s)
- Yasuomi Ouchi
- Positron Medical Center, Department of Neurology, Hamamatsu Medical Center, Hamamatsu, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Nakazato T. The medial prefrontal cortex mediates 3-methoxytyramine-induced behavioural changes in rat. Eur J Pharmacol 2002; 442:73-9. [PMID: 12020684 DOI: 10.1016/s0014-2999(02)01495-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
L-3,4-Dihydroxyphenylalanine (L-DOPA) remains a common treatment for Parkinson's disease; however, side effects (i.e., dyskinesia and hallucinations) also remain problematic. We recently reported that the dopamine metabolite 3-methoxytyramine causes stereotypy in rats via dopamine receptors, raising the possibility that 3-methoxytyramine is involved in the adverse side effects of chronic L-DOPA treatment. Thus, the present study examined the sites of 3-methoxytyramine action in the rat brain. After intracerebroventricular administration of 3-methoxytyramine, significantly more neurones expressed c-Fos in mesocortico-limbic dopamine areas including frontal cortex, medial prefrontal cortex, parietal cortex, piriform cortex, the nucleus accumbens shell, and ventral tegmental area. 3-Methoxytyramine injection into the medial prefrontal cortex specifically resulted in behavioural changes characteristic of those elicited by the more general intracerebroventricular injection of 3-methoxytyramine. This suggests that the medial prefrontal cortex mediates the 3-methoxytyramine-induced behavioural changes and that a reduction of its action there may alleviate the adverse effects of chronic L-DOPA treatment.
Collapse
Affiliation(s)
- Taizo Nakazato
- Department of Physiology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
11
|
|
12
|
Heidbreder CA, Weiss IC, Domeney AM, Pryce C, Homberg J, Hedou G, Feldon J, Moran MC, Nelson P. Behavioral, neurochemical and endocrinological characterization of the early social isolation syndrome. Neuroscience 2001; 100:749-68. [PMID: 11036209 DOI: 10.1016/s0306-4522(00)00336-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rearing rats in isolation has been shown to be a relevant paradigm for studying early life stress and understanding the genesis of depression and related affective disorders. Recent studies from our laboratory point to the relevance of studying the social isolation syndrome as a function of home caging conditions. Accordingly, the present series of experiments assessed the contribution of each condition to the expression of the prepulse inhibition of the acoustic startle, food hoarding and spontaneous locomotor activity. In addition, ex vivo neurochemical changes in the brains of isolated and grouped rats reared either in sawdust-lined or in grid-floor cages were determined by measuring dopamine and serotonin as well as their major metabolites in a "psychosis circuit" that includes mainly the hippocampus and selected hippocampal efferent pathways projecting towards the anterior cingulate and infralimbic cortices, nucleus accumbens, dorsolateral caudate nucleus, amygdala and entorhinal cortex. The results of the present study demonstrate that rearing rats in isolation (i) produces a syndrome of generalized locomotor hyperactivity; (ii) increases the startle response; (iii) impairs prepulse inhibition; (iv) tends to increase food hoarding behavior; (v) increases basal dopamine turnover in the amygdaloid complex; (vi) decreases basal dopamine turnover in the infralimbic part of the medial prefrontal cortex; and (vii) decreases basal turnover of serotonin in the nucleus accumbens. In the entorhinal cortex, dopamine neurotransmission seemed to be more sensitive to the caging conditions since a decreased basal turnover of dopamine was observed in grid-reared animals. Plasma corticosterone levels were also increased in grid-reared animals compared with rats reared in sawdust cages. Finally, isolates reared on grids showed a significant positive correlation between plasma corticosterone levels and dopamine in the left nucleus accumbens.Altogether, these results support the contention that there is a link between social isolation, attention deficit, spontaneous locomotor hyperactivity and reduced dopamine turnover in the medial prefrontal cortex. Furthermore, our data demonstrate that rearing rats in grid-floor cages represents a form of chronic mild stress associated with increased corticosterone levels, decreased basal turnover of entorhinal dopamine and increased dopamine activity in the left nucleus accumbens. Finally, a significant and selective decrease in the basal turnover of serotonin in the nucleus accumbens of isolated rats may be linked to the isolation-induced locomotor hyperactivity.
Collapse
Affiliation(s)
- C A Heidbreder
- SmithKline Beecham Pharmaceuticals, Department of Neuroscience, New Frontiers Science Park (North), Building H25, Room 104A, Essex CM19 5AW, Harlow, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Inoue T, Izumi T, Maki Y, Muraki I, Koyama T. Effect of the dopamine D(1/5) antagonist SCH 23390 on the acquisition of conditioned fear. Pharmacol Biochem Behav 2000; 66:573-8. [PMID: 10899372 DOI: 10.1016/s0091-3057(00)00254-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The authors previously reported that typical and atypical antipsychotic drugs inhibited the acquisition but not expression of conditioned fear. The present study examined the effects of the selective dopamine D(1/5) agonist (SKF 38393) and antagonist (SCH 23390) on the acquisition and expression of conditioned fear. Drugs were administered subcutaneously to male Sprague-Dawley rats 30 min before foot shock (2.5 mA for 5 min). Twenty-four hours after foot shock, rats were again placed and observed in the shock chamber without shocks (conditioned fear). Freezing behavior induced by conditioned fear, an index of anxiety or fear, was recorded using a time-sampling procedure. SCH 23390 (0.1-1 mg/kg) inhibited the acquisition of conditioned freezing. The administration of SCH 23390 at a dose of 0.1 mg/kg 30 min after foot shock did not affect conditioned freezing. Taken together, it is concluded that D(1/5) antagonism inhibits the acquisition of conditioned fear. SKF 38393 (3-20 mg/kg) failed to change the acquisition of conditioned fear. SCH 23390 or SKF 38393 administered prior to testing did not reduce the expression of conditioned fear. These results suggest that D(1/5) receptors may play a role in the development of fear or anxiety.
Collapse
Affiliation(s)
- T Inoue
- Department of Psychiatry, Hokkaido University School of Medicine, North 15, West 7, Kit a-ku, 060-8638, Sapporo, Japan
| | | | | | | | | |
Collapse
|
14
|
Dassesse D, Vanderwinden JM, Goldberg I, Vanderhaeghen JJ, Schiffmann SN. Caffeine-mediated induction of c-fos, zif-268 and arc expression through A1 receptors in the striatum: different interactions with the dopaminergic system. Eur J Neurosci 1999; 11:3101-14. [PMID: 10510174 DOI: 10.1046/j.1460-9568.1999.00725.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine and the adenosine receptor antagonist, caffeine, modulate locomotor activity and striatal neuropeptide expression through interactions with the dopaminergic system by mechanisms which remain partially undetermined. We addressed this question by using quantitative immunocytochemistry and in situ hybridization, combined with retrograde tracing of striatal neurons, to characterize the mechanism(s) leading to the striatal increase in the immediate early genes (IEG), c-fos, zif-268 and arc, following a single injection of caffeine or the A1 antagonist, 1,3-dipropyl-8-cyclopentylxanthine (DPCPX). Caffeine and DPCPX induced c-fos, zif-268 and arc expression, both at mRNA and protein levels, in large proportions of striatonigral and striatopallidal neurons. The involvement of dopamine systems was evaluated by manipulations of the dopaminergic transmission. Quinpirole, a D2 agonist, almost completely blocked the caffeine-induced IEG increase in both striatopallidal and striatonigral neurons. Conversely, the lesion of the nigrostriatal pathway and the D1 antagonist SCH23390 abolished the caffeine effects in striatonigral neurons but had no or slight effect, respectively, on its action in striatopallidal neurons. These observations demonstrate that caffeine- and DPCPX-mediated IEG inductions involved different mechanisms in striatonigral and striatopallidal neurons through blockade of A1 receptors. Immediate early gene inductions result from a stimulation of dopamine release in striatonigral neurons and from activation of glutamate release and probably also acetylcholine release in striatopallidal neurons. These results also support the idea that, besides A2A receptors, adenosine acting at the A1 receptor plays pivotal functions in the basal ganglia physiology and that blockade of these receptors by specific or nonspecific antagonists, DPCPX and caffeine, may influence a broad range of neuronal functions in the striatum.
Collapse
Affiliation(s)
- D Dassesse
- Brain Research Unit and Laboratory of Neuropathology and Neuropeptides Research, School of Medicine, Université Libre de Bruxelles, Campus Erasme, Brussels, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Nobrega JN, Gernert M, Löscher W, Raymond R, Belej T, Richter A. Tyrosine hydroxylase immunoreactivity and [3H]WIN 35,428 binding to the dopamine transporter in a hamster model of idiopathic paroxysmal dystonia. Neuroscience 1999; 92:211-7. [PMID: 10392843 DOI: 10.1016/s0306-4522(98)00753-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent pharmacological studies and receptor analyses have suggested that dopamine neurotransmission is enhanced in mutant dystonic hamsters (dt(sz)), a model of idiopathic paroxysmal dystonia which displays attacks of generalized dystonia in response to mild stress. In order to further characterize the nature of dopamine alterations, the present study investigated possible changes in the number of dopaminergic neurons, as defined by tyrosine hydroxylase immunohistochemistry, as well as binding to the dopamine transporter labelled with [3H]WIN 35,428 in dystonic hamsters. No differences in the number of tyrosine hydroxylase-immunoreactive neurons were found within the substantia nigra and ventral tegmental area of mutant hamsters compared to non-dystonic control hamsters. Similarly, under basal conditions, i.e. in the absence of a dystonic episode, no significant changes in [3H]WIN 35,428 binding were detected in dystonic brains. However, in animals killed during the expression of severe dystonia, significant decreases in dopamine transporter binding became evident in the nucleus accumbens and ventral tegmental area in comparison to controls exposed to the same external stimulation. Since stimulation tended to increase [3H]WIN 35,428 binding in control brains, the observed decrease in the ventral tegmental area appeared to be due primarily to the fact that binding was increased less in dystonic brains than in similarly stimulated control animals. This finding could reflect a diminished ability of the dopamine transporter to undergo adaptive changes in response to external stressful stimulation in mutant hamsters. The selective dopamine uptake inhibitor GBR 12909 (20 mg/kg) aggravated dystonia in mutant hamsters, further suggesting that acute alterations in dopamine transporter function during stimulation may be an important component of dystonia in this model.
Collapse
Affiliation(s)
- J N Nobrega
- Neuroimaging Research Section, Clarke Institute of Psychiatry, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Liste I, Rodriguez-Pallares J, Caruncho HJ, Labandeira-Garcia JL. Locomotor-activity-induced changes in striatal levels of preprotachykinin and preproenkephalin mRNA. Regulation by the dopaminergic and glutamatergic systems. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 70:74-83. [PMID: 10381545 DOI: 10.1016/s0169-328x(99)00140-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mechanisms by which dopaminergic and glutamatergic inputs interact to regulate striatal neuropeptide expression during physiological motor activity are poorly understood. In this work, striatal expression of preprotachykinin (PPT) and preproenkephalin (PPE) mRNA was studied by in situ hybridization in rats killed 2 h after treadmill running (36 m/min for 20 min). Treadmill running induced a significant increase in the levels of both PPT (60% increase) and PPE (90% increase) mRNA in the striatum of normal rats. The increase in the level of PPT mRNA was blocked in rats previously subjected to nigrostriatal deafferentation (i.e., 6-hydroxydopamine lesion) or pretreated with D1-receptor antagonist SCH-23390 (0.1 mg/kg), the D2-receptor antagonist eticlopride (0.5 mg/kg), or the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801 (0.1 mg/kg). The running-induced increase in the level of PPE mRNA was blocked in rats pretreated with SCH-23390 or MK-801. Rats subjected to nigrostriatal deafferentation or pretreated with eticlopride showed an increase in PPE mRNA levels (around 150% and 40% increase, respectively), that was enhanced by running (around 230% and 160% increase, respectively). These results suggest that locomotor activity increases, in a NMDA receptor dependent fashion, the excitatory influence of the corticostriatal glutamatergic system on the two populations of striatal projection neurons, as reflected by increases in the levels of PPT and PPE mRNA. The results obtained after dopamine depletion or injection of dopamine receptor antagonists suggest that a concomitant increase in dopamine release may enhance PPT mRNA level in striatonigral neurons via D1 receptors, and reduce PPE mRNA level in striatopallidal neurons via D2 receptors. Additionally, levels of dopamine and glutamate may be regulated by other complex indirect mechanisms.
Collapse
Affiliation(s)
- I Liste
- Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, E-15705, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
17
|
Inoue K, Kiriike N, Okuno M, Fujisaki Y, Kurioka M, Iwasaki S, Yamagami S. Prefrontal and striatal dopamine metabolism during enhanced rebound hyperphagia induced by space restriction--a rat model of binge eating. Biol Psychiatry 1998; 44:1329-36. [PMID: 9861476 DOI: 10.1016/s0006-3223(97)00518-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Several lines of evidence indicate that abnormalities in brain dopamine and serotonin metabolism may play an important role in bulimia nervosa. However, the regional neurochemical mechanism of the binge eating is poorly understood. Our purpose was to elucidate brain neurochemical mechanisms of binge eating using a rat model. METHODS The dopamine release and metabolism in the prefrontal cortex (PFC) and in the ventrolateral striatum (VLS) of rats were studied using microdialysis during enhanced rebound hyperphagia induced by space restriction (an animal model of binge eating). RESULTS The rats showed rebound hyperphagic state when they were released from scheduled feeding (2 hours/day feeding for 7 days). The hyperphagia was further enhanced when they were put in a space-restricted cage where their mobility was restricted. Dopamine release and metabolism were increased both in the PFC and in the VLS during the enhanced rebound hyperphagia. CONCLUSIONS These results tentatively suggest that increased dopamine release and metabolism in the PFC and in the VLS may be related to space restriction and to activation of motor function involved in feeding behavior, respectively. The enhanced rebound hyperphagia induced by space restriction may be useful as an animal model of binge eating.
Collapse
Affiliation(s)
- K Inoue
- Department of Neuropsychiatry, Osaka City University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Struthers WM, Wirtshafter D. Quinpirole attenuates the striatal fos expression induced by escape behavior. Brain Res 1998; 785:347-50. [PMID: 9518687 DOI: 10.1016/s0006-8993(97)01378-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Several studies have shown that the D2-like dopamine receptor agonist quinpirole is able to markedly potentiate the striatal Fos expression induced by D1 agonists. The present study examined the effects of quinpirole on the striatal Fos-like immunoreactivity (FLI) induced by escape behavior. Male rats were pretreated with either saline or quinpirole (0.156, 0.625, 1.25 or 2.5 mg/kg) and 30 min later, placed in a shuttle box and required to crossover every 30 s in order to escape mild footshock. Animals were sacrificed 30 min following the completion of a 1-h block of escape trials and sections through the striatum were processed for FLI. Pretreatment with quinpirole produced a marked, dose-dependent, attenuation of escape-induced FLI in the striatum. These findings demonstrate that quinpirole affects the striatal Fos expression induced by shuttling in a very different fashion than it does that induced by D1 agonists, and further support the view that dopaminergic mechanisms play an important role in behaviorally induced striatal Fos expression.
Collapse
Affiliation(s)
- W M Struthers
- Department of Psychology (M/C 285), The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60612, USA
| | | |
Collapse
|
19
|
Abstract
Physical exercise influences the central dopaminergic, noradrenergic and serotonergic systems. A number of studies have examined brain noradrenaline (norepinephrine), serotonin (5-hydroxytryptamine; 5-HT) and dopamine with exercise. Although there are great discrepancies in experimental protocols, the results indicate that there is evidence in favour of changes in synthesis and metabolism of monoamines during exercise. There is a possibility that the interactions between brain neurotransmitters and their specific receptors could play a role in the onset of fatigue during prolonged exercise. The data on the effects of branched chain amino acid (BCAA) supplementation and 'central fatigue' seem to be conflicting, although recent studies suggest that BCAA supplementation has no influence on endurance performance. There are numerous levels at which central neurotransmitters can affect motor behaviour; from sensory perception, and sensory-motor integration, to motor effector mechanisms. However, the crucial point is whether or not the changes in neurotransmitter levels trigger or reflect changes in monoamine release. Until recently most studies were done on homogenised tissue, which gives no indication of the dynamic release of neurotransmitters in the extracellular space of living organisms. Recently, new techniques such as microdialysis are voltammetry were introduced to measure in vivo release of neurotransmitters. Microdialysis can collect virtually any substance from the brain of a freely moving animal with a limited amount of tissue trauma. This method allows measurement of local neurotransmitter release during on-going behavioural changes such as exercise. The results of the first studies using these methods indicate that the release of most neurotransmitters is influenced by exercise. Although the few studies that have been published to date show some discrepancies, we feel that these recently developed and more sophisticated in vivo methods will improve our insight into the relationship between the monoamine and other transmitters during exercise. Continued quantitative and qualitative research needs to be conducted so that a further understanding of the effects of exercise on brain neurotransmission can be gained.
Collapse
Affiliation(s)
- R Meeusen
- Vrije Universiteit Brussel, Dept Human Physiology and Sportsmedicine, Laarbeeklaan, Belgium
| | | |
Collapse
|
20
|
Castanon N, Perez-Diaz F, Mormède P. Genetic analysis of the relationships between behavioral and neuroendocrine traits in Roman High and Low Avoidance rat lines. Behav Genet 1995; 25:371-84. [PMID: 7575368 DOI: 10.1007/bf02197288] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to determine whether the coselection observed between the selection trait (active avoidance behavior) of the Roman High Avoidance (RHA) and Roman Low Avoidance (RLA) rat lines and their neuroendocrine characteristics were genetically determined, we analyzed, in nonsegregating (RHA, RLA, and F1) and segregating (F2 and the two backcrosses) crosses, the inheritance pattern and the phenotypic correlations among behavioral (shuttle-box behavior), physiological (body, adrenal, and thymus weights), and neuroendocrine (corticosterone and prolactin reactivity, catecholamine enzyme activities) variables. Physiological characteristics and enzyme activities have a crucial role in sex dissociation. Avoidance behavior and prolactin reactivity to novel environment remained associated in segregating crosses despite gene rearrangement. They represented the most important variables to differentiate the Roman lines, perhaps sharing a common regulatory mechanism under genetic control.
Collapse
Affiliation(s)
- N Castanon
- Laboratoire de Génétique du Stress et Neurobiologie de l'Adaptation, CJF INSERM 94-05-INRA, Université de Bordeaux II, France
| | | | | |
Collapse
|
21
|
Inoue T, Tsuchiya K, Koyama T. Regional changes in dopamine and serotonin activation with various intensity of physical and psychological stress in the rat brain. Pharmacol Biochem Behav 1994; 49:911-20. [PMID: 7886107 DOI: 10.1016/0091-3057(94)90243-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The present study examined whether regional patterns of brain dopamine (DA) and serotonin (5-HT) activation after physical and psychological stress depend on the intensity of that stress. Monoamine concentrations (DA, 5-HT, and their metabolites) were measured using high-performance liquid chromatography with electrochemical detection in eight brain regions of rats exposed to two different intensities of foot shock stress for 30 min (1.5 mA or 2.5 mA) or conditioned fear stress (CFS, after single or repeated foot shock). A low level of foot shock selectively increased the DA metabolism in the medial prefrontal cortex (mPFC), whereas a high level of foot shock increased it in most of the brain regions examined in the present study. A low level of foot shock did not increase the 5-HT metabolism in any regions, but a high-intensity shock increased the 5-HT metabolism in the mPFC, nucleus accumbens, and lateral hypothalamus. Rats that received high-intensity shock displayed more freezing than those that received low-intensity shock in a conditioned fear paradigm (24 h after receiving foot shock, the animals were placed in a shock chamber without being given shock), indicating an augmentation of conditioned fear. The increased DA and 5-HT metabolism were especially marked in the mPFC after CFS following a single foot shock session (2.5 mA). Rats that were repeatedly exposed to 2.5 mA foot shock for a period of 10 days displayed a greater degree of freezing induced by CFS than those given only one foot shock session, indicating an augmentation of fear and stress intensity. CFS after repeated foot shock, like foot shock per se, increased the DA metabolism in most of the brain regions except for the striatum and increased the 5-HT metabolism in the mPFC, nucleus accumbens, and amygdala. These results suggest that regional patterns of brain DA and 5-HT activation after physical and psychological stress depend on the intensity of that stress, although there are some differences between these stress; and that the more widespread activation of DA and 5-HT after more severe stress might relate to behavioral changes that reflect the augmentation of fear.
Collapse
Affiliation(s)
- T Inoue
- Department of Psychiatry and Neurology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | |
Collapse
|
22
|
Abstract
Using the recent burgeoning of information on how the stress response systems interact, and combining this with advances in our understanding of neuroimmune communication, a proposed neuroendocrine-neuroimmune stress response system incorporating autoimmunoregulation is reviewed. The study of immunocyte behavior in certain clinical conditions associated with a variant stress response may help illuminate the functioning of the neuroendocrine-neuroimmune stress response system.
Collapse
Affiliation(s)
- G L Fricchione
- Division of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | | |
Collapse
|
23
|
Carlson JN, Fitzgerald LW, Keller RW, Glick SD. Lateralized changes in prefrontal cortical dopamine activity induced by controllable and uncontrollable stress in the rat. Brain Res 1993; 630:178-87. [PMID: 8118684 DOI: 10.1016/0006-8993(93)90655-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Exposure to stressors that are not controlled results in a variety of changes in behavior and in brain chemistry. Among these is the activation of dopamine-containing neuronal systems projecting to the medial prefrontal cortex (PFC), to a lesser extent the nucleus accumbens (NAC) and, in a few studies, the striatum. Previous data have shown that stressor evoked PFC activation is asymmetrical. The present experiments were designed to assess the effects of controlled and uncontrolled stressors on these DA systems using the procedures of the learned helplessness (LH) model. In a first experiment, 80 trials of either a controllable (ESC) or identical uncontrollable footshock stressor (YOK) caused an activation, as indicated by increased metabolite concentrations of DA in the PFC, NAC and striatum. In the PFC, YOK caused a bilateral DA depletion, relative to ESC and control animals, and a right > left increase in DOPAC/DA which was not seen in ESC animals. These findings suggested a preferential effect of YOK in the right PFC. A second experiment used rats that had been grouped according to their turning behavior, YOK right-biased rats showed an increase in DOPAC on the right side of the PFC and YOK left-biased rats displayed a similar increase on the left side in response to a brief (5 min) controllable footshock stressor. Since right-turning rats had been shown to be more sensitive to a LH behavioral phenomenon, the data suggested that right PFC activation is responsible for the greater LH sensitivity. A final experiment evaluated the neurochemical and behavioral responses to a prolonged footshock stressor 24 h after uncontrolled footshock. Right-biased YOK animals displayed depressed footshock escape behavior and a right > left depletion in PFC DA and HVA. Across-groups footshock escape performance was correlated with DA and HVA concentrations on the right but not on the left side of the PFC. Thus a disturbance of right PFC DA utilization was again associated with compromised coping behavior. The data suggest that the inability to control a stressor causes a lateralized alteration of PFC DA and this results in a disruption of the ability to respond to a new stressor. These findings indicate that the two sides of the PFC are differentially specialized for responding to a stressor.
Collapse
Affiliation(s)
- J N Carlson
- Department of Pharmacology and Toxicology, Albany Medical College, NY 12208
| | | | | | | |
Collapse
|
24
|
Wirtshafter D, Trifunovic R. Nonserotonergic control of nucleus accumbens dopamine metabolism by the median raphe nucleus. Pharmacol Biochem Behav 1992; 41:501-5. [PMID: 1533937 DOI: 10.1016/0091-3057(92)90364-l] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Injections of the GABA agonist muscimol into the median raphe nucleus (MR) have been shown to result in an acceleration of dopamine metabolism within the nucleus accumbens. To examine whether serotonergic mechanisms play a role in this effect, muscimol or its vehicle was injected into the MR of either control subjects or of rats that had received prior injections of the serotonin-depleting agent p-chlorophenylalanine (PCPA). Although PCPA treatments produced massive depletions of forebrain serotonin, they failed to alter the effect of muscimol infusions on dopamine metabolism. This finding suggests that the effects of intra-MR injections of muscimol on accumbens dopamine turnover do not result entirely from an interaction between serotonergic and dopaminergic systems.
Collapse
Affiliation(s)
- D Wirtshafter
- Department of Psychology, Committee on Neuroscience, University of Illinois, Chicago 60680
| | | |
Collapse
|
25
|
Abstract
A comparison of the effects of apomorphine, amphetamine and dopamine (DA) receptor subtype-specific agonists in responding for conditioned reward, self-administration and place conditioning paradigms provides insights into the possible involvement of D-1 and D-2 receptors in reward-related learning. Amphetamine and the D-2 agonists bromocriptine and quinpirole enhanced responding for conditioned reward, were self-administered and produced place preferences. Apomorphine impaired responding for conditioned reward by enhancing responding on two levers, was self-administered and produced a place preference. The D-1 agonist SKF 38393 impaired responding for condition reward, did not support self-administration and produced a place preference. The failure of SKF 38393 to support self-administration may have been related to effects of this drug, for example, peripheral aversive effects or a slow onset of action, unrelated to its action at the D-1 receptor. It was suggested that a D-1 agonist might be expected to be self-administered from the point of view of the hypothesis that it is the action at D-1 receptors of DA released in association with reward that produces reward-related learning. This hypothesis was supported by the remaining data. Thus, apomorphine and SKF 38393 may have masked the DA signal associated with reward in the conditioned reward paradigm leading to a loss of control of responding by the conditioned rewarding stimulus. In self-administration, apomorphine would have its onset of action after the performance of the response which is followed immediately by a conditioned reward. The conditioned reward may effectively maintain control of behaviour by the lever and related stimuli while the drug may maintain the effectiveness of the conditioned reward. In place conditioning, there is no specific environmental stimulus that must come to control responding; therefore, apomorphine and SKF 38393 may have been seen to produce place preferences in spite of their relatively tonic action at D-1 receptors. Finally, the finding that the D-1 antagonists SCH 23390 or SCH 39166 blocked the effects of reward in these paradigms was taken as further evidence that the D-1 receptor may be critically involved in the learning produced by rewarding stimuli.
Collapse
Affiliation(s)
- R J Beninger
- Department of Psychology, Queen's University, Kingston, Canada K7L 3N6
| |
Collapse
|
26
|
Caldecott-Hazard S, Morgan DG, DeLeon-Jones F, Overstreet DH, Janowsky D. Clinical and biochemical aspects of depressive disorders: II. Transmitter/receptor theories. Synapse 1991; 9:251-301. [PMID: 1685032 DOI: 10.1002/syn.890090404] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The present document is the second of three parts in a review that focuses on recent data from clinical and animal research concerning the biochemical bases of depressive disorders, diagnosis, and treatment. Various receptor/transmitter theories of depressive disorders are discussed in this section. Specifically, data supporting noradrenergic, serotonergic, cholinergic, dopaminergic, GABAergic, and peptidergic theories, as well as interactions between noradrenergic and serotonergic, or cholinergic and catecholaminergic systems are presented. Problems with the data and future directions for research are also discussed. A previous publication, Part I of this review, dealt with the classification of depressive disorders and research techniques for studying the biochemical mechanisms of these disorders. A future publication, Part III of this review, discusses treatments for depression and some of the controversies in this field.
Collapse
Affiliation(s)
- S Caldecott-Hazard
- Laboratory of Biomedical and Environmental Science, University of California, Los Angeles 90024
| | | | | | | | | |
Collapse
|
27
|
Gentsch C, Lichtsteiner M, Feer H. Genetic and environmental influences on reactive and spontaneous locomotor activities in rats. EXPERIENTIA 1991; 47:998-1008. [PMID: 1936209 DOI: 10.1007/bf01923335] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Paired groups of rats (derived from divergent, selective breeding or living in divergent environmental conditions) were compared with regard to locomotor activities. Intrapair differences were found to vary non-systematically, depending upon whether the rats were initially exposed to a test-environment with or without a slight environmental modification (reactive activities), or were allowed to habituate extensively to the environment (spontaneous activity). Since the behavioral patterns were found to represent distinct entities, this pointed to the necessity of differentiating clearly between spontaneous and reactive activities and indicated, once again, that both genetic and environmental influences are important in these behaviors and must be taken into account. Accepting and controlling for these variables makes it possible to use the factor of individual differences in laboratory animal behavior to advantage.
Collapse
Affiliation(s)
- C Gentsch
- Psychiatrische Universitätsklinik Basel, Switzerland
| | | | | |
Collapse
|
28
|
Bernardini GL, Gu X, German DC. Nucleus A10 dopaminergic neurons in inbred mouse strains: firing rate and autoreceptor sensitivity are independent of the number of cells in the nucleus. Brain Res Bull 1991; 27:163-8. [PMID: 1742603 DOI: 10.1016/0361-9230(91)90062-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inbred mouse strains have different numbers of midbrain dopaminergic neurons; for example, BALB/cJ mice have 20-25% more neurons than CBA/J mice. As the number of cells decrease, for example in Parkinson's disease and in animals with midbrain dopaminergic cell lesions, the activity of their remaining cells increases. The purpose of the present experiment was to determine whether the functional properties of dopaminergic neurons in the ventral tegmental area (nucleus A10) differ in inbred mouse strains which possess different numbers of cells. The firing rate and autoreceptor sensitivity of A10 dopaminergic cells were examined in the in vitro slice preparation in BALB/cJ, C3H/HeJ, CBA/J, and DBA/2J mouse strains. It was observed that the autoreceptors on mouse dopaminergic neurons exhibit pharmacological properties of dopamine autoreceptors; activation of the autoreceptor produced a marked inhibition (50-70%) in cell firing rate by quinpirole (10(-8) M), LY-141865 (10(-7) M), (+)-3-(3-hydroxyphenyl)-N-n-propyl-piperidine (10(-6) M), propyl-norapomorphine (10(-5) M) and dopamine (10(-4) M), and this inhibition was blocked or reversed by specific dopamine D2 receptor antagonists [(-) sulpiride and spiroperidol, 10(-6) M]. The baseline firing rates of the A10 cells did not differ among the four inbred strains [range 2.5 +/- 0.2 (C3H/HeJ)-3.4 +/- 0.3 (CBA/J) spikes/s +/- SEM], and there was no significant difference in autoreceptor sensitivity among the mouse strains as assessed either by superfused dopamine (inhibitory dose 50% approximately 150 microM), or by superfused quinpirole (inhibitory dose 50% approximately 10 nM).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- G L Bernardini
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9070
| | | | | |
Collapse
|
29
|
Heinsbroek RP, van Haaren F, Feenstra MG, Boon P, van de Poll NE. Controllable and uncontrollable footshock and monoaminergic activity in the frontal cortex of male and female rats. Brain Res 1991; 551:247-55. [PMID: 1913155 DOI: 10.1016/0006-8993(91)90939-s] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Effects of controllable and uncontrollable footshock on monoaminergic activity in the frontal cortex and plasma corticosterone levels were studied in male and female rats. Subjects were exposed to a shuttle-box procedure for a period of either 30 min (60 shocks) or 90 min (180 shocks). A shuttle response ended shock presentation for escape subjects, whereas their yoked, same-sex, counterparts were unable to escape from shock presentation. A third group was exposed to the experimental environment, but did not receive any shocks. Concentrations of noradrenaline, serotonin and dopamine and their major metabolites were measured in the frontal cortex by high performance liquid chromatography with electrochemical detection. Plasma corticosterone was measured by radioimmunoassay. Results of this experiment show that: (1) exposure to the experimental environment without shock already increased the activity of all 3 transmitter systems. In particular, serotonin was very responsive to mere confinement to the shuttle-box. Changes induced by exposure to the experimental environment were similar for males and females. (2) Presentation of footshocks further increased transmitter activity. The activation of noradrenaline and dopamine was larger after uncontrollable shock than after controllable shock. Moreover, uncontrollable shock resulted in higher serotonin levels than controllable shock. (3) Sex-dependent effects of controllability were found for noradrenaline and dopamine, but not for serotonin. Differences in catecholaminergic activity between controllable and uncontrollable shock were larger in females than in males. (4) In both males and females, corticosterone levels in plasma were increased by exposure to the experimental environment. A further elevation was found in response to footshock presentation, which was independent of the controllability of shock.
Collapse
|
30
|
Bertolucci-D'Angio M, Serrano A, Driscoll P, Scatton B. Involvement of mesocorticolimbic dopaminergic systems in emotional states. PROGRESS IN BRAIN RESEARCH 1991; 85:405-16; discussion 416-7. [PMID: 2094907 DOI: 10.1016/s0079-6123(08)62692-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Deutch AY, Roth RH. The determinants of stress-induced activation of the prefrontal cortical dopamine system. PROGRESS IN BRAIN RESEARCH 1991; 85:367-402; discussion 402-3. [PMID: 2094906 DOI: 10.1016/s0079-6123(08)62691-6] [Citation(s) in RCA: 216] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- A Y Deutch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508
| | | |
Collapse
|
32
|
Heinsbroek RP, van Haaren F, Feenstra MG, van Galen H, Boer G, van de Poll NE. Sex differences in the effects of inescapable footshock on central catecholaminergic and serotonergic activity. Pharmacol Biochem Behav 1990; 37:539-50. [PMID: 1708146 DOI: 10.1016/0091-3057(90)90025-d] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In two experiments sex differences in changes in central noradrenergic, dopaminergic and serotonergic activity were measured immediately after a 30-min session of inescapable footshocks. In Experiment 1 concentrations of noradrenaline, dopamine, serotonin and their major metabolites were determined in the frontal cortex, hypothalamus, amygdala, striatum, mesencephalon and the medulla-pons area. Inescapable shock increased the activity of all 3 transmitter systems, as evidence by increased metabolite concentrations in specific brain areas. Shock-induced increments in metabolite levels were larger in females than in males, especially for the serotonergic system. In addition, shock presentation resulted in a decrement in the noradrenaline content in most areas studied. In the frontal cortex, noradrenaline was reduced by inescapable shock in males but not in females. In Experiment 2, sex-dependent neurochemical consequences of predictable versus unpredictable shocks were studied in the frontal cortex and the medulla-pons area. Similar to Experiment 1, both brain parts showed large shock-induced increments in the activity of the catecholaminergic systems. Differential effects of predictable and unpredictable shock were not found (frontal cortex) or were rather small (medulla-pons) and appeared sex-dependent for serotonin in this area. The sex differences in neurochemical change found in the first experiment were largely replicated in the second experiment. The relevance of the observed sex differences in central neurotransmitter reactivity for sex differences in behavior is discussed.
Collapse
|
33
|
Bertolucci-D'Angio M, Serrano A, Scatton B. Differential effects of forced locomotion, tail-pinch, immobilization, and methyl-beta-carboline carboxylate on extracellular 3,4-dihydroxyphenylacetic acid levels in the rat striatum, nucleus accumbens, and prefrontal cortex: an in vivo voltammetric study. J Neurochem 1990; 55:1208-15. [PMID: 2398355 DOI: 10.1111/j.1471-4159.1990.tb03126.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In vivo voltammetry with carbon fiber electrodes was used to assess extracellular 3,4-dihydroxyphenylacetic acid (DOPAC) levels in striatum, nucleus accumbens, and anteromedial prefrontal cortex of freely moving rats subjected to altered motor activity or anxiogenic stimuli. Forced locomotion on a rotarod for 40 min caused an increase in extracellular DOPAC levels in the striatum and to a lesser extent in the nucleus accumbens but not in the prefrontal cortex. Subcutaneous injection of the anxiogenic agent methyl-beta-carboline carboxylate (10 mg/kg) increased extracellular DOPAC levels to a similar extent in prefrontal cortex and nucleus accumbens. Immobilization for 4 min augmented dopamine (DA) metabolism preferentially in the nucleus accumbens and to a lesser extent in the prefrontal cortex. Tail-pinch caused a selective activation of DA metabolism in the nucleus accumbens. None of these stimuli altered extracellular striatal DOPAC levels. These results confirm the involvement of dopaminergic systems projecting to the striatum and nucleus accumbens in motor function and suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli; the relative activation of either of these latter systems could depend primarily on the nature (sensory modality, intensity) of the acute stressor.
Collapse
|
34
|
Bertolucci-D'Angio M, Serrano A, Scatton B. Mesocorticolimbic dopaminergic systems and emotional states. J Neurosci Methods 1990; 34:135-42. [PMID: 2259234 DOI: 10.1016/0165-0270(90)90051-g] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have used the technique of in vivo voltammetry with carbon fibre electrodes to investigate further the involvement of ascending mesencephalic dopaminergic systems in emotional states in freely moving rats. In Sprague-Dawley rats, forced locomotion caused an increase in extracellular DOPAC levels in the striatum and nucleus accumbens but not in the prefrontal cortex. Immobilization (4 min) or systemic injection of the anxiogenic agent methyl-beta-carboline carboxylate enhanced extracellular DOPAC in both prefrontal cortex and nucleus accumbens but not in striatum whereas tail-pinch provoked a selective increase in this parameter in the nucleus accumbens. These data suggest that mesolimbic and mesocortical dopaminergic systems can be specifically activated by certain kinds of anxiogenic stimuli. To evaluate the relationship between emotional status and the response of mesocortical dopaminergic neurons to stress, we investigated the effects of stressful conditions on dopamine metabolism in the prefrontal cortex of 2 genetically selected lines of rats which differ drastically in their level of emotionality. Introduction of the animals into an unfamiliar environment, application of a high-intensity loud noise or immobilization were associated with an increase in extracellular cortical DOPAC levels in the hypoemotional (RHA) but not in the hyperemotional (RLA) line. These results suggest that the increase in cortical dopamine metabolism induced by stress is not connected to the emotional reaction caused by the aversive nature of the stressor but may reflect activation of cognitive processes in an attempt to cope with the stressor.
Collapse
|
35
|
Miller R, Wickens JR, Beninger RJ. Dopamine D-1 and D-2 receptors in relation to reward and performance: a case for the D-1 receptor as a primary site of therapeutic action of neuroleptic drugs. Prog Neurobiol 1990; 34:143-83. [PMID: 1969668 DOI: 10.1016/0301-0082(90)90005-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- R Miller
- Department of Anatomy, University of Otago Medical School, Dunedin, New Zealand
| | | | | |
Collapse
|
36
|
Smiałowski A. Chronic administration of SCH 23390 enhances spontaneous searching and locomotor activity of rats. An open field study. Behav Brain Res 1989; 35:41-4. [PMID: 2529872 DOI: 10.1016/s0166-4328(89)80006-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The influence of dopamine D1 receptor supersensitivity, induced by repeated SCH 23390 administration, on rat spontaneous behavior was studied in an open field test. The frequency of line crossing, rearing and looking-into-holes episodes was evaluated as a part of the locomotor and exploratory behavior. SCH 23390 was injected subcutaneously in a dose of 0.5 mg/kg, one injection per day for 21 days. Controls were injected with isotonic saline. When the open field test was applied one day after the last treatment, all the tested parameters were significantly enhanced in rats treated repeatedly with SCH 23390. The effects were diminished after 3 days and had almost disappeared after 7 days. It is argued that supersensitivity of dopamine D1 receptors is responsible for the increase in locomotion and exploration.
Collapse
Affiliation(s)
- A Smiałowski
- Polish Academy of Sciences, Institute of Pharmacology, Kraków-Bronowice
| |
Collapse
|
37
|
Beninger RJ, Hoffman DC, Mazurski EJ. Receptor subtype-specific dopaminergic agents and conditioned behavior. Neurosci Biobehav Rev 1989; 13:113-22. [PMID: 2573022 DOI: 10.1016/s0149-7634(89)80019-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dopaminergic neurotransmission has been implicated in reward-related learning. With the advent of pharmacological agents that are relatively specific for D1 and D2 dopamine receptors, it has become possible to assess the role of these receptor subtypes in this form of learning. Antagonist studies have shown that either D1 or D2 receptor blockers produced extinction-like effects on operant responding for food, water or brain stimulation reward and in drug self-administration paradigms. They also blocked place preference learning based on amphetamine. Agonist studies showed that D2, but not D1 agonists were self-administered, produced place preferences and enhanced responding for conditioned reward. It may be that the dopaminergic signal at the D1 receptor is important for the establishment and maintenance of reward-related learning. From this point of view the effects of D1 antagonists can be understood. D2 antagonists may produce extinction-like effects because they lead to increased dopamine release and, therefore, indirectly mask the dopamine signal at the D1 receptor. D1 agonists may fail to produce reward effects because they, unlike D2 agonists, directly mask the dopaminergic signal at the D1 receptor.
Collapse
Affiliation(s)
- R J Beninger
- Department of Psychology, Queen's University, Kingston, Canada
| | | | | |
Collapse
|
38
|
Wirtshafter D, Klitenick MA, Asin KE. Is dopamine involved in the hyperactivity produced by injections of muscimol into the median raphe nucleus? Pharmacol Biochem Behav 1988; 30:577-83. [PMID: 3211966 DOI: 10.1016/0091-3057(88)90068-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many studies have shown that experimental manipulations of the median raphe nucleus are able to produce profound effects on locomotor activity. Other data indicate that the raphe nuclei may exert an inhibitory influence over dopamine systems projecting to the forebrain. These results raise the possibility that the median raphe's influence over locomotion may be mediated through alterations in forebrain dopamine release. We examined this possibility in the current report by studying the role of dopamine in the hyperactivity produced by microinjections of the GABA agonist muscimol into the median raphe. Muscimol injections resulted in pronounced hyperactivity which was accompanied by a decrease in serotonin metabolism within the hippocampus and an increase in dopamine metabolism within the nucleus accumbens. Systemic injections of high doses of the dopamine antagonist haloperidol, however, were not able to attenuate muscimol's effect on activity. These results suggest that dopaminergic mechanisms do not play an essential role in mediating the effects of intraraphe muscimol on locomotor activity.
Collapse
Affiliation(s)
- D Wirtshafter
- Department of Psychology, University of Illinois, Chicago 60680
| | | | | |
Collapse
|
39
|
D'Angio M, Serrano A, Driscoll P, Scatton B. Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study. Brain Res 1988; 451:237-47. [PMID: 3251585 DOI: 10.1016/0006-8993(88)90768-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effects of a variety of stressful environmental situations on dopamine metabolism in the prefrontal cortex (as assessed by in vivo voltammetry with carbon fiber electrodes) have been compared in two genetically selected lines of rat (Roman high (RHA/Verh) and low (RLA/Verh) avoidance) which differ drastically in their level of emotionality. Heart rate was continuously monitored in these animals (via chronically implanted subcutaneous electrodes) so as to index the emotional reaction to the stressors. An electrochemical signal corresponding to the oxidation of dihydroxyphenylacetic acid (DOPAC) was recorded in the deeper laminae of the anteromedial prefrontal cortex in both lines of rats. Under normal conditions, this signal was stable for at least 4 h and its amplitude was similar in both lines. Introduction of the animals into an unfamiliar environment (30 min), application of a mild tail pinch (10 min) or of a high-intensity loud noise (30 min) or immobilization (20 min) were all associated with an increase in extracellular cortical DOPAC levels in the hypoemotional RHA/Verh line but not in the hyperemotional RLA/Verh line. Similarly, forced locomotion on a rotarod (40 min) provoked a dramatic increase in the amplitude of the cortical DOPAC oxidation peak in RHA/Verh rats and only a mild increase in this parameter in RLA/Verh rats. In RHA/Verh rats, tolerance to this increase was observed when animals were subjected to forced locomotion every day for 5 days. All of the stressful situations investigated provoked an immediate augmentation of heart rate which resumed gradually after cessation of the stressful stimulus; the magnitude and duration of this increase were much greater in RLA/Verh than in RHA/Verh rats. Moreover, in all stress situations, RLA/Verh but not RHA/Verh rats showed behavioral signs of emotional response e.g. defecation, freezing and self-grooming. It is concluded that the increase in cortical dopamine metabolism induced by stress is not connected to the emotional reaction caused by the aversive nature of the stressor but may rather reflect a heightened attention of the animal or activation of cognitive processes in an attempt to cope with the stressor.
Collapse
Affiliation(s)
- M D'Angio
- Laboratoires d'Etudes et de Recherches Synthélabo, Biochemical Pharmacology Group, Bagneux, France
| | | | | | | |
Collapse
|
40
|
Wilcox RE, Mudie E, Mayfield D, Young RK, Spirduso WW. Movement initiation characteristics in young adult rats in relation to the high- and low-affinity agonist states of the striatal D2 dopamine receptor. Brain Res 1988; 443:190-8. [PMID: 2965957 DOI: 10.1016/0006-8993(88)91612-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Changes in the speed of movement initiation as a function of age, brain damage, or rat strain are associated with altered characteristics of nigrostriatal dopamine (DA) neurons and of striatal D2 DA receptors. In the present study we investigated the relationship between movement initiation (response parameters: percent of successful responses and response latency) and the agonist binding states of the D2 DA receptor in corpus striatum in 3-month-old Sprague-Dawley rats (n = 51). In contrast to the typical experimental procedure, the variances of the behavioral and receptor binding data were intentionally made as small as possible to provide the most stringent test of putative relationships among variables. Rats were trained to release a lever as rapidly as possible in response to a light/buzzer (CS) combination in order to avoid a mild footshock (UCS). Percent avoidance scores, latencies of the fastest successful trials (successful latencies) and mean latencies for all responses (mean latencies) were collected for 1000-, 500-, 300- and 200-ms CS-UCS intervals. Twenty-four hours following the last behavioral test, animals were euthanized for measurements of the high- and low-affinity binding of DA to D2 receptors in corpus striatum. The standard errors of the mean for both behavioral and receptor binding parameters were, generally, less than 10%. The tightness of the receptor binding data appeared to be related to a lack of biological variance in the animals rather than to an artifact associated with the behavioral testing procedure, since a parallel experiment indicated that different numbers of behavioral shaping sessions had no effects on striatal D2 binding characteristics.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R E Wilcox
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin 78712
| | | | | | | | | |
Collapse
|
41
|
Schwarting R, Nagel JA, Huston JP. Asymmetries of brain dopamine metabolism related to conditioned paw usage in the rat. Brain Res 1987; 417:75-84. [PMID: 2441821 DOI: 10.1016/0006-8993(87)90181-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Concentrations of dopamine, serotonin, and some of their metabolites were analyzed by means of high-performance liquid chromatography in brain samples obtained from rats operantly conditioned to use one paw for water-reinforced lever pressing. In the first experiment, the side of paw usage was determined by physical constraint (forced-handedness condition), whereas in the second experiment the side of paw usage was not restricted (paw-preference condition). Differences in dopamine metabolism were detected between brain samples from the hemispheres located ipsi- and contralaterally to the side of paw usage. A higher dopamine metabolism (indicated by higher metabolite/transmitter ratios) was found in the amygdala ipsilateral to the paw used both under the forced-handedness and paw-preference condition. A higher level of dopamine in the contralateral septum was found in rats sacrificed immediately after 15 min of forced-handedness and an ipsilateral increase was found in rats analyzed 2 h after performance of this task. In addition, a higher dopamine metabolism in the ventral striatum, dorsal striatum, and amygdala was found in the forced-handedness and yoked controls groups than in rats analyzed 2 h after lever pressing. In the second experiment, rats in the paw preference group had a lower dopamine metabolism in the ventral and dorsal striatum, septum, and substantia nigra than did their yoked controls. These results show that changes in dopamine metabolism during conditioned lever pressing can be asymmetrical with respect to the side of paw usage, indicating that the dopamine neurons in the two brain hemispheres are asymmetrically involved in such behavioral tasks.
Collapse
|
42
|
Robinson TE, Becker JB, Young EA, Akil H, Castaneda E. The effects of footshock stress on regional brain dopamine metabolism and pituitary beta-endorphin release in rats previously sensitized to amphetamine. Neuropharmacology 1987; 26:679-91. [PMID: 2957606 DOI: 10.1016/0028-3908(87)90228-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The repeated intermittent administration of amphetamine (AMP) produces an enduring enhancement in the response of dopamine (DA) systems in the brain to a subsequent "challenge" with amphetamine. However, former amphetamine addicts are not only hypersensitive to amphetamine, but also to "physical or psychological stress". This suggests that sensitization to amphetamine may change the response of DA neurons in brain to subsequent stress. To explore this idea, the effects of footshock stress on regional metabolism of DA in brain, and on the concentrations of plasma beta-endorphin and N-acetylated beta-endorphin, were studied in rats previously exposed to amphetamine or saline. It was found that: Prior treatment with amphetamine produced enduring (at least 7 days) changes in the dopaminergic response to footshock in the medial frontal cortex, hypothalamus, dorsolateral striatum and nucleus accumbens. Generally, rats pretreated with amphetamine showed a greater initial reduction in concentrations of DA in response to footshock, and a greater elevation in concentrations of metabolites of DA and/or metabolite/transmitter ratios, compared to nonhandled control rats. In some regions of the brain repeated injections of saline produced changes in the response to subsequent footshock that were comparable to those produced by amphetamine. Prior treatment with amphetamine enhanced the release of beta-endorphin and N-acetylated beta-endorphin from the pituitary elicited by footshock stress. It is concluded that repeated intermittent treatment with amphetamine or stress (injections of saline) produce enduring changes in the response of DA neurons and the pituitary to subsequent stress. These changes may be responsible for the hypersensitivity to stress reported in former amphetamine addicts, and in rats previously sensitized to amphetamine.
Collapse
|
43
|
Schwarting R, Huston JP. Dopamine and serotonin metabolism in brain sites ipsi- and contralateral to direction of conditioned turning in rats. J Neurochem 1987; 48:1473-9. [PMID: 3559561 DOI: 10.1111/j.1471-4159.1987.tb05688.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Concentrations of dopamine, serotonin, and some of their metabolites were analyzed by means of HPLC in brain samples obtained from rats operantly conditioned to turn in circles to obtain water reinforcement. In experiment 1 using Wistar rats, no differences in the levels of transmitters or metabolites were detected between brain samples (frontal cortex, ventral striatum, dorsal striatum, septum, amygdala, substantia nigra) from the hemispheres located ipsi- and contralateral to the direction of turning. A higher dopamine metabolism (indicated by higher metabolite/transmitter ratios) in ventral striatum, dorsal striatum, and amygdala was found after 15 min than after 5 min of turning in both hemispheres. A higher dopamine metabolism was found in water-deprived rats compared to nondeprived rats independently of whether or not deprived rats were trained to turn for water reinforcement. In two additional experiments, no differences in dopamine metabolism were found between the ipsi- and contralateral striatum of Wistar rats after 25 min and Sprague-Dawley rats after 10 min of operantly conditioned turning. The present results confirm that dopamine metabolism can change with different behavioral or physiological states; they do not support the hypothesis that conditioned turning is correlated with asymmetrical changes in the metabolism of dopamine or serotonin in the brain.
Collapse
|