1
|
Melleu FF, Canteras NS. Pathways from the Superior Colliculus to the Basal Ganglia. Curr Neuropharmacol 2024; 22:1431-1453. [PMID: 37702174 PMCID: PMC11097988 DOI: 10.2174/1570159x21666230911102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 09/14/2023] Open
Abstract
The present work aims to review the structural organization of the mammalian superior colliculus (SC), the putative pathways connecting the SC and the basal ganglia, and their role in organizing complex behavioral output. First, we review how the complex intrinsic connections between the SC's laminae projections allow for the construction of spatially aligned, visual-multisensory maps of the surrounding environment. Moreover, we present a summary of the sensory-motor inputs of the SC, including a description of the integration of multi-sensory inputs relevant to behavioral control. We further examine the major descending outputs toward the brainstem and spinal cord. As the central piece of this review, we provide a thorough analysis covering the putative interactions between the SC and the basal ganglia. To this end, we explore the diverse thalamic routes by which information from the SC may reach the striatum, including the pathways through the lateral posterior, parafascicular, and rostral intralaminar thalamic nuclei. We also examine the interactions between the SC and subthalamic nucleus, representing an additional pathway for the tectal modulation of the basal ganglia. Moreover, we discuss how information from the SC might also be relayed to the basal ganglia through midbrain tectonigral and tectotegmental projections directed at the substantia nigra compacta and ventrotegmental area, respectively, influencing the dopaminergic outflow to the dorsal and ventral striatum. We highlight the vast interplay between the SC and the basal ganglia and raise several missing points that warrant being addressed in future studies.
Collapse
Affiliation(s)
| | - Newton Sabino Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
2
|
Campos-Rodriguez C, Palmer D, Forcelli PA. Optogenetic stimulation of the superior colliculus suppresses genetic absence seizures. Brain 2023; 146:4320-4335. [PMID: 37192344 PMCID: PMC11004938 DOI: 10.1093/brain/awad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
While anti-seizure medications are effective for many patients, nearly one-third of individuals have seizures that are refractory to pharmacotherapy. Prior studies using evoked preclinical seizure models have shown that pharmacological activation or excitatory optogenetic stimulation of the deep and intermediate layers of the superior colliculus (DLSC) display multi-potent anti-seizure effects. Here we monitored and modulated DLSC activity to suppress spontaneous seizures in the WAG/Rij genetic model of absence epilepsy. Female and male WAG/Rij adult rats were employed as study subjects. For electrophysiology studies, we recorded single unit activity from microwire arrays placed within the DLSC. For optogenetic experiments, animals were injected with virus coding for channelrhodopsin-2 or a control vector, and we compared the efficacy of continuous neuromodulation to that of closed-loop neuromodulation paradigms. For each, we compared three stimulation frequencies on a within-subject basis (5, 20, 100 Hz). For closed-loop stimulation, we detected seizures in real time based on the EEG power within the characteristic frequency band of spike-and-wave discharges (SWDs). We quantified the number and duration of each SWD during each 2 h-observation period. Following completion of the experiment, virus expression and fibre-optic placement was confirmed. We found that single-unit activity within the DLSC decreased seconds prior to SWD onset and increased during and after seizures. Nearly 40% of neurons displayed suppression of firing in response to the start of SWDs. Continuous optogenetic stimulation of the DLSC (at each of the three frequencies) resulted in a significant reduction of SWDs in males and was without effect in females. In contrast, closed-loop neuromodulation was effective in both females and males at all three frequencies. These data demonstrate that activity within the DLSC is suppressed prior to SWD onset, increases at SWD onset, and that excitatory optogenetic stimulation of the DLSC exerts anti-seizure effects against absence seizures. The striking difference between open- and closed-loop neuromodulation approaches underscores the importance of the stimulation paradigm in determining therapeutic effects.
Collapse
Affiliation(s)
| | - Devin Palmer
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007, USA
- Department of Neuroscience, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
3
|
Hyder SK, Ghosh A, Forcelli PA. Optogenetic activation of the superior colliculus attenuates spontaneous seizures in the pilocarpine model of temporal lobe epilepsy. Epilepsia 2023; 64:524-535. [PMID: 36448878 PMCID: PMC10907897 DOI: 10.1111/epi.17469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/04/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
OBJECTIVE Decades of studies have indicated that activation of the deep and intermediate layers of the superior colliculus can suppress seizures in a wide range of experimental models of epilepsy. However, prior studies have not examined efficacy against spontaneous limbic seizures. The present study aimed to address this gap through chronic optogenetic activation of the superior colliculus in the pilocarpine model of temporal lobe epilepsy. METHODS Sprague Dawley rats underwent pilocarpine-induced status epilepticus and were maintained until the onset of spontaneous seizures. Virus coding for channelrhodopsin-2 was injected into the deep and intermediate layers of the superior colliculus, and animals were implanted with head-mounted light-emitting diodes at the same site. Rats were stimulated with either 5- or 100-Hz light delivery. Seizure number, seizure duration, 24-h seizure burden, and behavioral seizure severity were monitored. RESULTS Both 5- and 100-Hz optogenetic stimulation of the deep and intermediate layers of the superior colliculus reduced daily seizure number and total seizure burden in all animals in the active vector group. Stimulation did not affect either seizure duration or behavioral seizure severity. Stimulation was without effect in opsin-negative control animals. SIGNIFICANCE Activation of the deep and intermediate layers of the superior colliculus reduces both the number of seizures and total daily seizure burden in the pilocarpine model of temporal lobe epilepsy. These novel data demonstrating an effect against chronic experimental seizures complement a long history of studies documenting the antiseizure efficacy of superior colliculus activation in a range of acute seizure models.
Collapse
Affiliation(s)
- Safwan K. Hyder
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Anjik Ghosh
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
| | - Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington DC, USA
- Department of Neuroscience, Georgetown University, Washington DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington DC, USA
| |
Collapse
|
4
|
Lazarini-Lopes W, Do Val-da Silva RA, da Silva-Júnior RMP, Cunha AOS, Garcia-Cairasco N. Cannabinoids in Audiogenic Seizures: From Neuronal Networks to Future Perspectives for Epilepsy Treatment. Front Behav Neurosci 2021; 15:611902. [PMID: 33643007 PMCID: PMC7904685 DOI: 10.3389/fnbeh.2021.611902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids and Cannabis-derived compounds have been receiving especial attention in the epilepsy research scenario. Pharmacological modulation of endocannabinoid system's components, like cannabinoid type 1 receptors (CB1R) and their bindings, are associated with seizures in preclinical models. CB1R expression and functionality were altered in humans and preclinical models of seizures. Additionally, Cannabis-derived compounds, like cannabidiol (CBD), present anticonvulsant activity in humans and in a great variety of animal models. Audiogenic seizures (AS) are induced in genetically susceptible animals by high-intensity sound stimulation. Audiogenic strains, like the Genetically Epilepsy Prone Rats, Wistar Audiogenic Rats, and Krushinsky-Molodkina, are useful tools to study epilepsy. In audiogenic susceptible animals, acute acoustic stimulation induces brainstem-dependent wild running and tonic-clonic seizures. However, during the chronic protocol of AS, the audiogenic kindling (AuK), limbic and cortical structures are recruited, and the initially brainstem-dependent seizures give rise to limbic seizures. The present study reviewed the effects of pharmacological modulation of the endocannabinoid system in audiogenic seizure susceptibility and expression. The effects of Cannabis-derived compounds in audiogenic seizures were also reviewed, with especial attention to CBD. CB1R activation, as well Cannabis-derived compounds, induced anticonvulsant effects against audiogenic seizures, but the effects of cannabinoids modulation and Cannabis-derived compounds still need to be verified in chronic audiogenic seizures. The effects of cannabinoids and Cannabis-derived compounds should be further investigated not only in audiogenic seizures, but also in epilepsy related comorbidities present in audiogenic strains, like anxiety, and depression.
Collapse
Affiliation(s)
- Willian Lazarini-Lopes
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Raquel A. Do Val-da Silva
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rui M. P. da Silva-Júnior
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Alexandra O. S. Cunha
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Neuroscience and Behavioral Sciences Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Neurophysiology and Experimental Neuroethology Laboratory (LNNE), Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Descending projections from the substantia nigra pars reticulata differentially control seizures. Proc Natl Acad Sci U S A 2019; 116:27084-27094. [PMID: 31843937 DOI: 10.1073/pnas.1908176117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Three decades of studies have shown that inhibition of the substantia nigra pars reticulata (SNpr) attenuates seizures, yet the circuits mediating this effect remain obscure. SNpr projects to the deep and intermediate layers of the superior colliculus (DLSC) and the pedunculopontine nucleus (PPN), but the contributions of these projections are unknown. To address this gap, we optogenetically silenced cell bodies within SNpr, nigrotectal terminals within DLSC, and nigrotegmental terminals within PPN. Inhibition of cell bodies in SNpr suppressed generalized seizures evoked by pentylenetetrazole (PTZ), partial seizures evoked from the forebrain, absence seizures evoked by gamma-butyrolactone (GBL), and audiogenic seizures in genetically epilepsy-prone rats. Strikingly, these effects were fully recapitulated by silencing nigrotectal projections. By contrast, silencing nigrotegmental terminals reduced only absence seizures and exacerbated seizures evoked by PTZ. These data underscore the broad-spectrum anticonvulsant efficacy of this circuit, and demonstrate that specific efferent projection pathways differentially control different seizure types.
Collapse
|
6
|
Soper C, Wicker E, Kulick CV, N'Gouemo P, Forcelli PA. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol Dis 2015; 87:102-15. [PMID: 26721319 DOI: 10.1016/j.nbd.2015.12.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 11/17/2022] Open
Abstract
Because sites of seizure origin may be unknown or multifocal, identifying targets from which activation can suppress seizures originating in diverse networks is essential. We evaluated the ability of optogenetic activation of the deep/intermediate layers of the superior colliculus (DLSC) to fill this role. Optogenetic activation of DLSC suppressed behavioral and electrographic seizures in the pentylenetetrazole (forebrain+brainstem seizures) and Area Tempestas (forebrain/complex partial seizures) models; this effect was specific to activation of DLSC, and not neighboring structures. DLSC activation likewise attenuated seizures evoked by gamma butyrolactone (thalamocortical/absence seizures), or acoustic stimulation of genetically epilepsy prone rates (brainstem seizures). Anticonvulsant effects were seen with stimulation frequencies as low as 5 Hz. Unlike previous applications of optogenetics for the control of seizures, activation of DLSC exerted broad-spectrum anticonvulsant actions, attenuating seizures originating in diverse and distal brain networks. These data indicate that DLSC is a promising target for optogenetic control of epilepsy.
Collapse
Affiliation(s)
- Colin Soper
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Evan Wicker
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Catherine V Kulick
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007
| | - Prosper N'Gouemo
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007; Department of Pediatrics, Georgetown University, Washington, DC 20007
| | - Patrick A Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC 20007; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007.
| |
Collapse
|
7
|
Merker B. The efference cascade, consciousness, and its self: naturalizing the first person pivot of action control. Front Psychol 2013; 4:501. [PMID: 23950750 PMCID: PMC3738861 DOI: 10.3389/fpsyg.2013.00501] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/16/2013] [Indexed: 11/13/2022] Open
Abstract
The 20 billion neurons of the neocortex have a mere hundred thousand motor neurons by which to express cortical contents in overt behavior. Implemented through a staggered cortical "efference cascade" originating in the descending axons of layer five pyramidal cells throughout the neocortical expanse, this steep convergence accomplishes final integration for action of cortical information through a system of interconnected subcortical way stations. Coherent and effective action control requires the inclusion of a continually updated joint "global best estimate" of current sensory, motivational, and motor circumstances in this process. I have previously proposed that this running best estimate is extracted from cortical probabilistic preliminaries by a subcortical neural "reality model" implementing our conscious sensory phenomenology. As such it must exhibit first person perspectival organization, suggested to derive from formating requirements of the brain's subsystem for gaze control, with the superior colliculus at its base. Gaze movements provide the leading edge of behavior by capturing targets of engagement prior to contact. The rotation-based geometry of directional gaze movements places their implicit origin inside the head, a location recoverable by cortical probabilistic source reconstruction from the rampant primary sensory variance generated by the incessant play of collicularly triggered gaze movements. At the interface between cortex and colliculus lies the dorsal pulvinar. Its unique long-range inhibitory circuitry may precipitate the brain's global best estimate of its momentary circumstances through multiple constraint satisfaction across its afferents from numerous cortical areas and colliculus. As phenomenal content of our sensory awareness, such a global best estimate would exhibit perspectival organization centered on a purely implicit first person origin, inherently incapable of appearing as a phenomenal content of the sensory space it serves.
Collapse
|
8
|
Favaro PDN, Gouvêa TS, de Oliveira SR, Vautrelle N, Redgrave P, Comoli E. The influence of vibrissal somatosensory processing in rat superior colliculus on prey capture. Neuroscience 2010; 176:318-27. [PMID: 21163336 DOI: 10.1016/j.neuroscience.2010.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/04/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
The lateral part of intermediate layer of superior colliculus (SCl) is a critical substrate for successful predation by rats. Hunting-evoked expression of the activity marker Fos is concentrated in SCl while prey capture in rats with NMDA lesions in SCl is impaired. Particularly affected are rapid orienting and stereotyped sequences of actions associated with predation of fast moving prey. Such deficits are consistent with the view that the deep layers of SC are important for sensory guidance of movement. Although much of the relevant evidence involves visual control of movement, less is known about movement guidance by somatosensory input from vibrissae. Indeed, our impression is that prey contact with whiskers is a likely stimulus to trigger predation. Moreover, SCl receives whisker and orofacial somatosensory information directly from trigeminal complex, and indirectly from zona incerta, parvicelular reticular formation and somatosensory barrel cortex. To better understand sensory guidance of predation by vibrissal information we investigated prey capture by rats after whisker removal and the role of superior colliculus (SC) by comparing Fos expression after hunting with and without whiskers. Rats were allowed to hunt cockroaches, after which their whiskers were removed. Two days later they were allowed to hunt cockroaches again. Without whiskers the rats were less able to retain the cockroaches after capture and less able to pursue them in the event of the cockroach escaping. The predatory behaviour of rats with re-grown whiskers returned to normal. In parallel, Fos expression in SCl induced by predation was significantly reduced in whiskerless animals. We conclude that whiskers contribute to the efficiency of rat prey capture and that the loss of vibrissal input to SCl, as reflected by reduced Fos expression, could play a critical role in predatory deficits of whiskerless rats.
Collapse
Affiliation(s)
- P D N Favaro
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Furigo I, de Oliveira W, de Oliveira A, Comoli E, Baldo M, Mota-Ortiz S, Canteras N. The role of the superior colliculus in predatory hunting. Neuroscience 2010; 165:1-15. [DOI: 10.1016/j.neuroscience.2009.10.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2009] [Indexed: 11/27/2022]
|
10
|
Abstract
The striatum is a site of integration of neural pathways involved in reinforcement learning. Traditionally, inputs from cerebral cortex are thought to be reinforced by dopaminergic afferents signaling the occurrence of biologically salient sensory events. Here, we detail an alternative route for short-latency sensory-evoked input to the striatum requiring neither dopamine nor the cortex. Using intracellular recording techniques, we measured subthreshold inputs to spiny projection neurons (SPNs) in urethane-anesthetized rats. Contralateral whole-field light flashes evoked weak membrane potential responses in approximately two-thirds of neurons. However, after local disinhibitory injections of the GABA(A) antagonist bicuculline into the deep layers of the superior colliculus (SC), but not the overlying visual cortex, strong, light-evoked, depolarizations to the up state emerged at short latency (115 +/- 14 ms) in all neurons tested. Dopamine depletion using alpha-methyl-para-tyrosine had no detectable effect on striatal visual responses during SC disinhibition. In contrast, local inhibitory injections of GABA agonists, muscimol and baclofen, into the parafascicular nucleus of the thalamus blocked the early, visual-evoked up-state transitions in SPNs. Comparable muscimol-induced inhibition of the visual cortex failed to suppress the visual responsiveness of SPNs induced by SC disinhibition. Together, these results suggest that short-latency, preattentive visual input can reach the striatum not only via the tecto-nigro-striatal route but also through tecto-thalamo-striatal projections. Thus, after the onset of a biologically significant visual event, closely timed short-latency thalamostriatal (glutamate) and nigrostriatal (dopamine) inputs are likely to converge on striatal SPNs, providing depolarizing and neuromodulator signals necessary for synaptic plasticity mechanisms.
Collapse
|
11
|
Dringenberg HC, Yahia N, Cirasuolo J, McKee D, Kuo MC. Neocortical activation by electrical and chemical stimulation of the rat inferior colliculus: intra-collicular mapping and neuropharmacological characterization. Exp Brain Res 2003; 154:461-9. [PMID: 14614580 DOI: 10.1007/s00221-003-1675-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Accepted: 08/12/2003] [Indexed: 12/22/2022]
Abstract
Classic experiments suggested that the midbrain reticular formation plays an important role in the induction and maintenance of high-frequency, low-amplitude activation of the electrocorticogram (ECoG). However, recent studies have shown that generalized activating systems are not restricted to the reticular formation in that non-reticular brain systems (e.g., basal forebrain, amygdala, superior colliculus) can effectively produce ECoG activation. Here, we investigated the role of the inferior colliculus (IC) in regulating ECoG activation in rats. Urethane-anesthetized rats displayed continuous large amplitude ECoG activity with peak power in the delta frequency range (0.5-3.9 Hz). Electrical 100-Hz stimulation (0.1-0.5 mA) of 40/88 (46%) stimulation sites in the IC suppressed low frequency oscillations and induced ECoG activation (>/=50% suppression of peak delta power). Systematic mapping of different IC territories (central nucleus, external and dorsal cortex) revealed that stimulation of all IC parts was equally effective in producing activation. Chemical stimulation of the IC with intra-collicular glutamate infusions (50 mM, 0.5 micro l) produces similar, but more consistent effects, with ECoG activation elicited in eight of nine rats. Pharmacological experiments were carried out in order to identify transmitters that mediate cortical activation in response to IC stimulation. The muscarinic receptor antagonist scopolamine (1 mg/kg, i.p.) reduced, but did not abolish, activation, as did the serotonergic receptor antagonist methiothepin (1 mg/kg, i.p.). A combination of the two drugs produced a complete block of IC-induced ECoG activation. These experiments demonstrate that the IC contains a distributed network, spanning all IC territories, which can participate in regulating the generalized activation state of the rat neocortex. Rather than by some direct cortical projections, IC neurons appear to induce ECoG activation by acting through both cholinergic and serotonergic systems, thought to provide the final effector mechanisms for cortical activation.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Queen's University, K7L 3N6, Kingston, Ontario, Canada.
| | | | | | | | | |
Collapse
|
12
|
Dringenberg HC, Dennis KEB, Tomaszek S, Martin J. Orienting and defensive behaviors elicited by superior colliculus stimulation in rats: effects of 5-HT depletion, uptake inhibition, and direct midbrain or frontal cortex application. Behav Brain Res 2003; 144:95-103. [PMID: 12946599 DOI: 10.1016/s0166-4328(03)00065-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Electrical or chemical stimulation of the superior colliculus (SC) in rats produces orienting and defensive responses. Defensive behaviors are modulated by serotonin (5-hydroxytryptamine, 5-HT), and serotonergic fibers provide a dense innervation of the SC. Here, we examined the role of 5-HT in modulating the behavioral responses of rats elicited by electrical SC stimulation. Low-intensity (107+/-12 microA) stimulation of the SC elicited orienting head movements, while higher intensities (204+/-20 microA) produced running and jumping responses. Treatment with the 5-HT depletor p-chlorophenylalanine (300 mg/kg/day x 3, i.p.) lowered current thresholds to elicit orienting and running by 40 and 21%, respectively. Conversely, concurrent administration of the 5-HT uptake inhibitor fluoxetine (10 mg/kg, i.p.) and the 5-HT(1A) receptor antagonist WAY 100635 (0.5 mg/kg, s.c.) increased threshold currents to produce head and running movements by 41 and 18%, respectively. We investigated the anatomical substrate of this inhibitory effect of 5-HT with intracerebral 5-HT application by means of reverse microdialysis. Application of 5-HT (1-50 mM) into the midbrain immediately adjacent to the SC stimulation electrode resulted in a pronounced (approximately four-fold for 50 mM 5-HT) dose- and time-dependent increase in stimulation thresholds to elicit head movements. Application of 5-HT into the frontal cortex (up to 100 mM) had no significant effect on SC-evoked behavioral responses. These results show that 5-HT exerts an inhibitory influence over orienting and defensive behaviors initiated in the mammalian SC. It appears that this inhibitory effect is mediated, to a large extent, by a direct action of 5-HT at the level of the midbrain.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology, Centre for Neuroscience Studies, Queen's University, Kingston, Ont., Canada K7L 3N6.
| | | | | | | |
Collapse
|
13
|
Dringenberg HC, Vanderwolf CH, Noseworthy PA. Superior colliculus stimulation enhances neocortical serotonin release and electrocorticographic activation in the urethane-anesthetized rat. Brain Res 2003; 964:31-41. [PMID: 12573510 DOI: 10.1016/s0006-8993(02)04062-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recent evidence indicates that the superior colliculus (SC), in addition to its functions in sensory detection, also participates in controlling the generalized activation state of the forebrain, as measured by the electroencephalogram (EEG) or electrocorticogram (ECoG). The mechanisms by which the SC modulates forebrain activation are not well understood. By using in vivo microdialysis, we examined the role of serotonin release as a mechanism by which the SC can control neocortical activity in the urethane-anesthetized rat. Electrical 100 Hz stimulation of the SC increased frontal cortex serotonin output to 116, 118, and 140% of baseline levels for stimulation intensities of 0.5, 0.75, and 1.0 mA, respectively. Further, 75% of extracellularly recorded single (putative serotonergic) dorsal raphe neurons increased their discharge rate in response to 100 Hz stimulation of the SC. Stimulation of the SC also suppressed frontal cortex low frequency (1-6 Hz) synchronized ECoG activity, replacing it with high-frequency desynchronization. This activation response was resistant to cholinergic-muscarinic receptor antagonists (atropine, 50 mg/kg; scopolamine, 2 mg/kg), but was reduced or abolished by systemic treatment with the serotonergic receptor antagonists ketanserin (10 mg/kg) or methiothepin (5 mg/kg). These data suggest that efferents from the SC, possibly by an excitatory action on serotonergic dorsal raphe cells, produce an enhanced release of serotonin and ECoG activation in the neocortex. The stimulation of cortical serotonin output may constitute a mechanism by which the SC acts on the forebrain to increase cortical excitability in response to sensory stimuli processed by SC neurons.
Collapse
Affiliation(s)
- Hans C Dringenberg
- Department of Psychology and Center for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | | | |
Collapse
|
14
|
Wang S, Redgrave P. Microinjections of muscimol into lateral superior colliculus disrupt orienting and oral movements in the formalin model of pain. Neuroscience 1997; 81:967-88. [PMID: 9330360 DOI: 10.1016/s0306-4522(97)00191-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An important reaction in rodent models of persistent pain is for the animal to turn and bite/lick the source of discomfort (autotomy). Comparatively little is known about the supraspinal pathways which mediate this reaction. Since autotomy requires co-ordinated control of the head and mouth, it is possible that basal ganglia output via the superior colliculus may be involved; previously this projection has been implicated in the control of orienting and oral behaviour. The purpose of the present study was therefore, to test whether the striato-nigro-tectal projection plays a significant role in oral responses elicited by subcutaneous injections of formalin. Behavioural output from this system is normally associated with the release of collicular projection neurons from tonic inhibitory input from substantia nigra pars reticulata. Therefore, in the present study normal disinhibitory signals from the basal ganglia were blocked by injecting the GABA agonist muscimol into different regions of the rat superior colliculus. c-Fos immunohistochemistry was used routinely to provide regional estimates of the suppressive effects of muscimol on neuronal activity. Biting and licking directed to the site of a subcutaneous injection of formalin (50 microliters of 4%) into the hind-paw were suppressed in a dose-related manner by bilateral microinjections of muscimol into the lateral superior colliculus (10-50 ng; 0.5 microliter/side); injections into the medial superior colliculus had little effect. Bilateral injections of muscimol 20 ng into lateral colliculus caused formalin-treated animals to re-direct their attention and activity from lower to upper regions of space. Muscimol injected unilaterally into lateral superior colliculus elicited ipsilateral turning irrespective of which hind-paw was injected with formalin. Oral behaviour was blocked when the muscimol and formalin injections were contralaterally opposed; this was also true for formalin injections into the front foot. Interestingly, when formalin was injected into the perioral region, injections of muscimol into the lateral superior colliculus had no effect on the ability of animals to make appropriate contralaterally directed head and body movements to facilitate localization of the injected area with either front- or hind-paw. These findings suggest that basal ganglia output via the lateral superior colliculus is critical for responses to noxious stimuli which entail the mouth moving to and acting on the foot, but not when the foot is the active agent applied to the mouth. The data also suggest that pain produces a spatially non-specific facilitation of units throughout collicular maps, which can be converted into a spatially inappropriate signal by locally suppressing parts of the map with the muscimol.
Collapse
Affiliation(s)
- S Wang
- Department of Psychology, University of Sheffield, U.K
| | | |
Collapse
|
15
|
Merabet L, de Gasparo M, Casanova C. Dose-dependent inhibitory effects of angiotensin II on visual responses of the rat superior colliculus: AT1 and AT2 receptor contributions. Neuropeptides 1997; 31:469-81. [PMID: 9413025 DOI: 10.1016/s0143-4179(97)90042-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Angiotensin II (Ang II) has traditionally been regarded as a peripherally circulating and acting hormone involved in fluid homeostasis and blood pressure regulation. With the rather recent localization of Ang II receptors within the mammalian brain, renewed interest has emerged in the hope of elucidating the central impact and function of this hormone. One region that has been clearly demonstrated to express Ang II receptors is the superior colliculus (SC). This mesencephalic structure plays an important role in sensory visuomotor integration. Receptors for Ang II (of both the AT1 and AT2 subtypes) have been localized within the superficial layers of this structure, i.e. the areas that are visually responsive. In the hopes of characterizing the role of Ang II in the SC, we have attempted to physiologically activate these receptors in vivo and observe the effects of Ang II on visually evoked responses. In the attempt to identify the receptor subtype(s) responsible in mediating these effects, Ang II was injected concomitantly with selective receptor ligands. Experiments were performed on adult rats prepared in classical fashion for electrophysiological studies. Through microinjection of Ang II, and the simultaneous recording of visually evoked potentials to flash stimulation, we have observed that this peptide yields a strong suppressive effect on visual neuronal activity. By injecting Ang II at various concentrations (10(-3)-10(-10) M), we have further observed that the effects of this peptide express a dose-related dependency. Injection of Ang II in progressively more ventral layers yielded less pronounced effects, demonstrating physiologically the discrete localization of these receptors in the stratum griseum superficiale. Coinjection of Ang II with Losartan yielded a near complete blockade of Ang II suppressive effects, suggesting that AT1 receptors play a prominent role in mediating these responses. However, coinjection of Ang II with PD 123,319 yielded a slight, yet significant partial blockade. Coinjection of Ang II with both the AT1 and AT2 receptor antagonists yielded a complete blockade of the Ang II effect. Finally, some of the results suggest that the AT2 receptor ligand CGP 42,112 may possess agonist properties. Taken together, these findings suggest that the AT1 receptor is predominantly involved in mediating Ang II responses in the SC and there also appears to be some indication of AT2 receptor involvement. However, the underlying mechanisms (such as receptor interactions), the exact specificity of the ligands used, and the possibility of other receptor subtype implication have yet to be explored fully.
Collapse
Affiliation(s)
- L Merabet
- Département d'ophtalmologie, Faculté de médecine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
16
|
Harrington ME. The ventral lateral geniculate nucleus and the intergeniculate leaflet: interrelated structures in the visual and circadian systems. Neurosci Biobehav Rev 1997; 21:705-27. [PMID: 9353800 DOI: 10.1016/s0149-7634(96)00019-x] [Citation(s) in RCA: 259] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The ventral lateral geniculate nucleus (vLGN) and the intergeniculate leaflet (IGL) are retinorecipient subcortical nuclei. This paper attempts a comprehensive summary of research on these thalamic areas, drawing on anatomical, electrophysiological, and behavioral studies. From the current perspective, the vLGN and IGL appear closely linked, in that they share many neurochemicals, projections, and physiological properties. Neurochemicals commonly reported in the vLGN and IGL are neuropeptide Y, GABA, enkephalin, and nitric oxide synthase (localized in cells) and serotonin, acetylcholine, histamine, dopamine and noradrenalin (localized in fibers). Afferent and efferent connections are also similar, with both areas commonly receiving input from the retina, locus coreuleus, and raphe, having reciprocal connections with superior colliculus, pretectum and hypothalamus, and also showing connections to zona incerta, accessory optic system, pons, the contralateral vLGN/IGL, and other thalamic nuclei. Physiological studies indicate species differences, with spectral-sensitive responses common in some species, and varying populations of motion-sensitive units or units linked to optokinetic stimulation. A high percentage of IGL neurons show light intensity-coding responses. Behavioral studies suggest that the vLGN and IGL play a major role in mediating non-photic phase shifts of circadian rhythms, largely via neuropeptide Y, but may also play a role in photic phase shifts and in photoperiodic responses. The vLGN and IGL may participate in two major functional systems, those controlling visuomotor responses and those controlling circadian rhythms. Future research should be directed toward further integration of these diverse findings.
Collapse
Affiliation(s)
- M E Harrington
- Department of Psychology, Smith College, Northampton, MA 01063, USA.
| |
Collapse
|
17
|
King SM, Shehab S, Dean P, Redgrave P. Differential expression of fos-like immunoreactivity in the descending projections of superior colliculus after electrical stimulation in the rat. Behav Brain Res 1996; 78:131-45. [PMID: 8864045 DOI: 10.1016/0166-4328(95)00241-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In rodent, there is evidence that the orienting behaviour elicited by direct stimulation of the superior colliculus (SC) is partly mediated by contralateral descending projections, while avoidance-type behaviour is associated with ipsilateral descending projections. However, the identity of target structures in the brainstem which mediate these different behavioural responses is unknown. The c-fos immediate early gene is expressed polysynaptically in neurons in response to a wide range of extracellular stimuli, and hence has been proposed as a technique for mapping functional pathways. The purpose of this study was, therefore, to use the c-fos technique to investigate the functional specificity of brainstem regions which are innervated by the two main descending projections of the SC. Patterns of fos-like immunoreactivity (FLI) were observed throughout the brainstem following electrical stimulation of the SC in Urethane-anaesthetized rats. Previously, the electrical stimulation had been shown to elicit either approach-like or avoidance-like movement. The main results of this experiment were; (i) animals in which the stimulation elicited defensive behaviour had elevated levels of immunostaining in specific terminal areas of the ipsilateral descending projections, e.g. the ventrolateral midbrain/pontine reticular formation, the cuneiform area and rostral periaqueductal grey; (ii) there was no FLI expression in any of the terminal areas of the crossed descending projection, even in animals where the electrical stimulation elicited approach. Control experiments showed that the lack of expression in the crossed descending pathway was not due to the restricted range of stimulation parameters used in the main study, or to the effects of the anaesthetic. In conclusion, this experiment was able to identify likely substrates for the mediation of defensive reactions elicited by tectal stimulation. However, given the total lack of expression in a pathway which is known to be activated, it also provides further evidence that c-fos cannot simply be used as a high resolution neuronal activity marker for mapping functional pathways.
Collapse
Affiliation(s)
- S M King
- Department of Psychology, University of Sheffield, UK.
| | | | | | | |
Collapse
|
18
|
Shehab S, Simkins M, Dean P, Redgrave P. The dorsal midbrain anticonvulsant zone--I. Effects of locally administered excitatory amino acids or bicuculline on maximal electroshock seizures. Neuroscience 1995; 65:671-9. [PMID: 7609869 DOI: 10.1016/0306-4522(94)00515-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microinjections of bicuculline methiodide into the dorsal midbrain anticonvulsant zone, a region which includes the caudal deep layers of the superior colliculus, the adjacent mesencephalic reticular formation and the intercollicular nucleus, suppress tonic hindlimb extension induced by maximal electroshock. The purpose of the present experiments was to establish the most effective and convenient method for eliciting anticonvulsant properties from the dorsal midbrain using the electroshock model of epilepsy. A comparison of different injections of excitatory amino acids and bicuculline into the dorsal midbrain of the rat showed: (i) injections of kainate suppressed hindlimb extension but only at substantially larger doses (i.e. 200-400 pmol) than 50 pmol of bicuculline, which produced generally superior effects; (ii) quisqualate provided only weak protection against tonic seizures at doses that produced neurotoxic effects (2-40 nmol); (iii) N-methyl-D-aspartate was ineffective at doses which produced mild clonic seizure in their own right (2-4 nmol) and also produced some evidence of neurotoxicity; (iv) the suppression of hindlimb extension by bicuculline was dose related, and the lowest bilateral dose for producing reliable suppression was 50 pmol/400 nl per side; and (v) a unilateral injection of 100 pmol/400 nl also reliably suppressed hindlimb extension. The latter finding had important implications for the design and interpretation of the following lesion study. Injections of bicuculline into the dorsal midbrain also produced defence-like behavioural responses that included running and biting; the intensity of these responses correlated with the suppression of hindlimb extension.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Shehab
- Department of Anatomy, University of Glasgow, U.K
| | | | | | | |
Collapse
|
19
|
Westby GW, Collinson C, Redgrave P, Dean P. Opposing excitatory and inhibitory influences from the cerebellum and basal ganglia converge on the superior colliculus: an electrophysiological investigation in the rat. Eur J Neurosci 1994; 6:1335-42. [PMID: 7981875 DOI: 10.1111/j.1460-9568.1994.tb00324.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We recently showed (Westby et al., Eur. J. Neurosci., 5, 1378-1388, 1993) that the cerebellar interpositus nucleus is a source of excitatory drive for a population of spontaneously active neurons in the lateral intermediate layers of the contralateral superior colliculus. Anatomical and physiological studies have shown that this region of the colliculus contains cells of origin of the crossed descending tectoreticulospinal tract and receives GABAergic input from the ipsilateral basal ganglia. In the present study we tested the hypothesis that the same neurons receiving excitatory drive from the cerebellum also receive tonic inhibitory input from the substantia nigra pars reticulata. From a sample of 73 spontaneously active collicular cells we found that in 53% the firing rate was suppressed by GABA microinjection into the contralateral deep cerebellar nuclei; a further 15% showed a frequency increase. Of the collicular cells identified as receiving excitatory cerebellar input, 85% were found to be disinhibited by nigral GABA microinjection. The remainder were all inhibited by nigral GABA. These data show that the main excitatory influence from the cerebellum and the main inhibitory influence from the substantia nigra converge on at least one population of spontaneously active cells in the lateral intermediate layers of the superior colliculus. This finding is discussed in relation to the possible function of these spontaneous cells in movement control and nociception.
Collapse
Affiliation(s)
- G W Westby
- Department of Psychology, Sheffield University, UK
| | | | | | | |
Collapse
|
20
|
Redgrave P, Westby GW, Dean P. Functional architecture of rodent superior colliculus: relevance of multiple output channels. PROGRESS IN BRAIN RESEARCH 1993; 95:69-77. [PMID: 8493354 DOI: 10.1016/s0079-6123(08)60358-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | |
Collapse
|
21
|
Weng X, Rosenberg HC. Infusion of bicuculline methiodide into the tectum: model specificity of pro- and anticonvulsant actions. Epilepsy Res 1992; 12:1-8. [PMID: 1526225 DOI: 10.1016/0920-1211(92)90085-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Microinjection of drugs, such as muscimol, into the substantia nigra pars reticulata (SNpr) can inhibit several types of experimental seizures. Some findings suggested that this was a result of disinhibition of neurons receiving input from GABAergic nigrotectal cells. Indeed, it was reported that bicuculline methiodide (BMI), infused into the tectal region that was reported to receive nigral input, produced an anticonvulsant effect against maximal electroshock (MES) convulsion. Since previous work had suggested that the anticonvulsant effect of intranigral muscimol depended on the particular experimental seizure used, three different experimental seizures were used in the present study to evaluate the effects of BMI infusion into the tectum. Guide cannulas aimed at the tectal region receiving nigral innervation were stereotaxically implanted in rats a week before testing. Bilateral intratectal infusions of BMI (25 ng/side) had an anticonvulsant effect against MES convulsions, confirming a previous report. In contrast, the same BMI pretreatment worsened convulsions produced by either systemic pentylenetetrazol (40 mg/kg, i.p.) or bicuculline (0.5 mg/kg, i.v.). The effects of intratectal BMI were seizure model-dependent, suggesting different functional interconnections between tectum and those pathways responsible for generalization of MES as compared to PTZ or bicuculline convulsions.
Collapse
Affiliation(s)
- X Weng
- Department of Pharmacology, Medical College of Ohio, Toledo 43699
| | | |
Collapse
|
22
|
Krauthamer GM, Krol JG, Grunwerg BS. Effect of superior colliculus lesions on sensory unit responses in the intralaminar thalamus of the rat. Brain Res 1992; 576:277-86. [PMID: 1515921 DOI: 10.1016/0006-8993(92)90691-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effects of kainic acid lesions of the intermediate and deep layers of the superior colliculus on the sensory input to the intralaminar thalamus of the rat were determined. Ipsiversive circling and contralateral sensory neglect were consistently seen after lesion placement. Two to 7 days later, the intralaminar thalamus was systematically explored for extracellular mechanoreceptive unit responses to high threshold and low threshold stimuli. On the side ipsilateral to the lesion the number of responsive units was reduced by 51%. The loss was particularly marked for nociceptive units (80%), and low threshold and complex units with orofacial receptive fields (73%). This effect may involve a partial deafferentation of the intralaminar thalamus as well as altered excitatory thresholds of thalamic neurons. It is suggested that the functionally distinct direct tectothalamic projection as well as the indirect tecto-reticulo-thalamic pathway are implicated.
Collapse
Affiliation(s)
- G M Krauthamer
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854
| | | | | |
Collapse
|
23
|
Dean P, Redgrave P. Behavioural consequences of manipulating GABA neurotransmission in the superior colliculus. PROGRESS IN BRAIN RESEARCH 1992; 90:263-81. [PMID: 1321460 DOI: 10.1016/s0079-6123(08)63618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- P Dean
- Department of Psychology, University of Sheffield, England, UK
| | | |
Collapse
|
24
|
Redgrave P, Simkins M, overton P, Dean P. Anticonvulsant role of nigrotectal projection in the maximal electroshock model of epilepsy--I. Mapping of dorsal midbrain with bicuculline. Neuroscience 1992; 46:379-90. [PMID: 1542413 DOI: 10.1016/0306-4522(92)90059-b] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Previous work has indicated that the anticonvulsant effect of nigral inactivation on the maximal electroshock model of generalized seizures is mediated by the projection from substantia nigra to superior colliculus. In accordance with this idea, and with the GABAergic nature of the nigrotectal pathway, microinjections of the GABAA antagonist bicuculline methiodide into the superior colliculus have been reported to block tonic hindlimb extension induced by maximal electroshock. To characterize the relevant circuitry more precisely, the present study sought to determine which region of the superior colliculus was important for the anticonvulsant effect of bicuculline by systematic mapping in the rat. Bilateral injections of bicuculline methiodide (50 pmol in 400 nl/side) were most effective in the caudal deep layers of the superior colliculus and adjoining midbrain reticular formation. These results suggest that the well-known projection from substantia nigra pars reticulata to the superior colliculus may not be involved in the anticonvulsant effect of nigral inactivation in the electroshock model, because this pathway terminates primarily in the intermediate layers of the superior colliculus throughout its rostrocaudal extent. Instead, some other pathway from ventral midbrain to a dorsal midbrain anticonvulsant zone appears to be part of the brain's anticonvulsant circuitry. The following paper [Redgrave et al. (1991) Neuroscience 46, 391-406] describes an anatomical study to characterize this pathway.
Collapse
Affiliation(s)
- P Redgrave
- Department of Psychology, University of Sheffield, U.K
| | | | | | | |
Collapse
|