1
|
Sattler MC, Soares FAF, Silva JC, Carvalho CR, Clarindo WR. Physical Mapping of 5S rDNA in Eucalyptus dunnii Maiden and Zea mays L. by PRINS. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Mariana Cansian Sattler
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa
| | - Fernanda Aparecida Ferrari Soares
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa
| | - Jéssica Coutinho Silva
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa
| | - Carlos Roberto Carvalho
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa
| | - Wellington Ronildo Clarindo
- Laboratório de Citogenética e Citometria, Departamento de Biologia Geral, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Viçosa
| |
Collapse
|
2
|
Gimenez MD, Yañez-Santos AM, Paz RC, Quiroga MP, Marfil CF, Conci VC, García-Lampasona SC. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation. PLANT CELL REPORTS 2016; 35:129-41. [PMID: 26466594 DOI: 10.1007/s00299-015-1874-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/14/2015] [Accepted: 09/25/2015] [Indexed: 05/05/2023]
Abstract
This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.
Collapse
|
3
|
Mondin M, Santos-Serejo JA, Bertäo MR, Laborda P, Pizzaia D, Aguiar-Perecin MLR. Karyotype variability in tropical maize sister inbred lines and hybrids compared with KYS standard line. FRONTIERS IN PLANT SCIENCE 2014; 5:544. [PMID: 25352856 PMCID: PMC4195276 DOI: 10.3389/fpls.2014.00544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/24/2014] [Indexed: 05/27/2023]
Abstract
Maize karyotype variability has been extensively investigated. The identification of maize somatic and pachytene chromosomes has improved with the development of fluorescence in situ hybridization (FISH) using tandemly repeated DNA sequences as probes. We identified the somatic chromosomes of sister inbred lines that were derived from a tropical flint maize population (Jac Duro [JD]), and hybrids between them, using FISH probes for the 180-bp knob repeat, centromeric satellite (CentC), centromeric satellite 4 (Cent4), subtelomeric clone 4-12-1, 5S ribosomal DNA and nucleolus organizing region DNA sequences. The observations were integrated with data based on C-banded mitotic metaphases and conventional analysis of pachytene chromosomes. Heterochromatic knobs visible at pachynema were coincident with C-bands and 180-bp FISH signals on somatic chromosomes, and most of them were large. Variation in the presence of some knobs was observed among lines. Small 180-bp knob signals were invariant on the short arms of chromosomes 1, 6, and 9. The subtelomeric 4-12-1 signal was also invariant and useful for identifying some chromosomes. The centromere location of chromosomes 2 and 4 differed from previous reports on standard maize lines. Somatic chromosomes of a JD line and the commonly used KYS line were compared by FISH in a hybrid of these lines. The pairing behavior of chromosomes 2 and 4 at pachytene stage in this hybrid was investigated using FISH with chromosome-specific probes. The homologues were fully synapsed, including the 5S rDNA and CentC sites on chromosome 2, and Cent4 and subtelomeric 4-12-1 sites on chromosome 4. This suggests that homologous chromosomes could pair through differential degrees of chromatin packaging in homologous arms differing in size. The results contribute to current knowledge of maize global diversity and also raise questions concerning the meiotic pairing of homologous chromosomes possibly differing in their amounts of repetitive DNA.
Collapse
Affiliation(s)
- Mateus Mondin
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of SãoPaulo, Piracicaba, Brazil
| | - Janay A. Santos-Serejo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of SãoPaulo, Piracicaba, Brazil
- Embrapa Cassava and Fruits, Brazilian Agricultural Research CorporationCruz das Almas, Brazil
| | - Mônica R. Bertäo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of SãoPaulo, Piracicaba, Brazil
- Department of Biological Sciences, Faculty of Sciences and Letters, São Paulo State UniversityAssis, Brazil
| | - Prianda Laborda
- Center for Molecular Biology and Genetic Engineering, State University of CampinasCampinas, Brazil
| | - Daniel Pizzaia
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of SãoPaulo, Piracicaba, Brazil
- Herminio Ometto University Center, Herminio Ometto FoundationAraras, Brazil
| | | |
Collapse
|
4
|
Maize AMEIOTIC1 is essential for multiple early meiotic processes and likely required for the initiation of meiosis. Proc Natl Acad Sci U S A 2009; 106:3603-8. [PMID: 19204280 DOI: 10.1073/pnas.0810115106] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular mechanisms that initiate meiosis have been studied in fungi and mammals, but little is known about the mechanisms directing the meiosis transition in other organisms. To elucidate meiosis initiation in plants, we characterized and cloned the ameiotic1 (am1) gene, which affects the transition to meiosis and progression through the early stages of meiotic prophase in maize. We demonstrate that all meiotic processes require am1, including expression of meiosis-specific genes, establishment of the meiotic chromosome structure, meiosis-specific telomere behavior, meiotic recombination, pairing, synapsis, and installation of the meiosis-specific cytoskeleton. As a result, in most am1 mutants premeiotic cells enter mitosis instead of meiosis. Unlike the genes involved in initiating meiosis in yeast and mouse, am1 also has a second downstream function, whereby it regulates the transition through a novel leptotene-zygotene checkpoint, a key step in early meiotic prophase. The am1 gene encodes a plant-specific protein with an unknown biochemical function. The AM1 protein is diffuse in the nucleus during the initiation of meiosis and then binds to chromatin in early meiotic prophase I when it regulates the leptotene-zygotene progression.
Collapse
|
5
|
|
6
|
Douet J, Tourmente S. Transcription of the 5S rRNA heterochromatic genes is epigenetically controlled in Arabidopsis thaliana and Xenopus laevis. Heredity (Edinb) 2007; 99:5-13. [PMID: 17487217 DOI: 10.1038/sj.hdy.6800964] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
5S ribosomal DNA is a highly conserved tandemly repeated multigenic family. As suggested for a long time, we have shown that only a fraction of the 5S rRNA genes are expressed in Arabidopsis thaliana. In Xenopus laevis, there is a developmental control of the expression of the 5S rRNA genes with only one of the two 5S rDNA families expressed during oogenesis. For both Arabidopsis and Xenopus, the strongest transcription of 5S rRNA, respectively in the seed and during oogenesis is correlated with heterogeneity in the transcribed 5S rRNAs. Epigenetic mechanisms such as modification of the chromatin structure are involved in the transcriptional regulation of the 5S rRNA genes in both organisms. In Arabidopsis, two silencing pathways, methylation-dependent (RNAi) and methylation-independent (MOM pathway), are involved in the silencing of a 5S rDNA fraction.
Collapse
Affiliation(s)
- J Douet
- Unité Mixte de Recherche CNRS 6547 BIOMOVE, Université Blaise Pascal, Aubière Cedex, France
| | | |
Collapse
|
7
|
Singh D, Ahuja PS. 5S rDNA gene diversity in tea (Camellia sinensis (L.) O. Kuntze) and its use for variety identification. Genome 2006; 49:91-6. [PMID: 16462906 DOI: 10.1139/g05-065] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Variability in the organization of repeats of 5S rDNA is useful for phylogenetic studies in various crops. We found variable repeats of 5S rDNA gene in the genome of tea (Camellia sinensis (L.) O. Kuntze) during Southern hybridization. Variability in the repeats of 5S rDNA with specific restriction endonuleases (Sau3AI, BamHI, and ApoI) was analyzed in 28 different tea clones representing 3 types of tea. Our results clearly show that the 5S rDNA gene in tea could be used as a molecular marker to distinguish C. sinensis Chinary tea from the other important types of tea, namely Assamica and Cambod. Upon analysis with restriction endonucleases, the 5S rDNA gene in the tea genome was found to be heavily methylated.Key words: Camellia sinensis, 5S rDNA, DNA methylation, restriction endonucleases, molecular marker.
Collapse
Affiliation(s)
- Dharam Singh
- Institute of Himalayan Bioresource Technology, Palampur, India
| | | |
Collapse
|
8
|
Ream TS, Strobel J, Roller B, Auger DL, Kato A, Halbrook C, Peters EM, Theuri J, Bauer MJ, Addae P, Dioh W, Staub JM, Gilbertson LA, Birchler JA. A test for ectopic exchange catalyzed by Cre recombinase in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:378-85. [PMID: 15912343 DOI: 10.1007/s00122-005-2031-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2004] [Accepted: 04/06/2005] [Indexed: 05/02/2023]
Abstract
A maize line expressing Cre recombinase as well as the recipient line without the transgene were assayed for evidence of ectopic recombination within the maize genome. Such a test is valuable for understanding the action of Cre as well as for its use to recombine two target lox sites present in the chromosomes. Pollen examination and seed set tests of material expressing Cre provided no evidence of ectopic recombination, which would be manifested in the production of translocations or inversions and result in pollen abortion and reduced seed set. Root-tip chromosome karyotype analysis was also performed on material with and without Cre expression. Chromosomal aberrations in Cre+ material were not observed above the background level.
Collapse
Affiliation(s)
- Thomas S Ream
- Division of Biological Sciences, University of Missouri-Columbia, Columbia, 65211, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The physical locations of the 5S and 45S rDNA sequences were examined in three types of teosinte, Zea mays ssp. mexicana (2n = 20), Zea diploperennis (2n = 20) and Zea perennis (2n = 40) by biotinylated fluorescence in situ hybridization (FISH). The tested materials only showed one hybridization site of 5S rDNA on their genomes, but they were different in the position of the signals. The hybridization site of Zea mays ssp. mexicana was located on the long arm of chromosome 2, indicating that it is the same as the cultivated maize in the position of 5S rDNA, while the sites of Zea diploperennis and Zea perennis were on the short arms of other chromosomes. For 45S rDNA, one hybridization site was detected at secondary constriction region of the satellite chromosomes in Zea mays ssp. mexicana and Zea diploperennis, while in Zea perennis, besides the site located at the secondary constriction region, a second site on the short arm of another chromosome pair was observed. Our results provide additional evidence for Zea mays ssp. mexicana being a subspecies of Zea mays.
Collapse
Affiliation(s)
- Y H Han
- The Key Laboratory of MOE for Plant Developmental Biology, Wuhan University, Wuhan Hubei, P.R. China
| | | | | | | | | | | |
Collapse
|
10
|
Mathieu O, Yukawa Y, Sugiura M, Picard G, Tourmente S. 5S rRNA genes expression is not inhibited by DNA methylation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:313-23. [PMID: 11844108 DOI: 10.1046/j.0960-7412.2001.01212.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Methylation has often been correlated with transcriptional inhibition of genes transcribed by polymerase II, but its role on polymerase III genes is less well understood. Using the genomic sequencing technique, we have analysed the methylation pattern of the different 5S-rDNA arrays of the Arabidopsis genome. Every cytosine position within the 5S sequence is highly methylated whatever the context - CpG, CpNpG or non-symmetrical. The methylation pattern of both transcribed and non-transcribed 5S units is similar, with no preferential methylated or unmethylated site. These results, taken together with 5-azacytidine treatments and in vitro transcription experiments using methylated 5S templates, demonstrate that 5S rRNA gene transcription is not inhibited by methylation. Non-transcribed 5S arrays are more subject to transition mutations resulting from deamination of 5-methylcytosines, leading to CpG depletions and an increasing A + T content. As there were no detectable differences in methylation, this implies more efficient repair and/or selection pressure in transcribed 5S-blocks.
Collapse
Affiliation(s)
- Olivier Mathieu
- U.M.R. 6547 BIOMOVE, Université Blaise Pascal, 24 Avenue des Landais, 63177 Aubière Cedex, France
| | | | | | | | | |
Collapse
|
11
|
Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 2000; 10:679-90. [PMID: 10810091 PMCID: PMC310874 DOI: 10.1101/gr.10.5.679] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1999] [Accepted: 03/08/2000] [Indexed: 11/24/2022]
Abstract
A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning approximately 1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units exist: the major variant with 0.5-kb repeats and one with short repeats (251 bp) only detected on YAC 11A3 from chromosome 3. Although the 38 sequences displayed noticeable heterogeneity, we were able to group them according to their 5S array origin. The presence of 5S array-specific variants was confirmed with the restriction polymorphism study of all the YACs carrying 5S units.
Collapse
MESH Headings
- Animals
- Arabidopsis/genetics
- Base Sequence
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Contig Mapping
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic/genetics
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 5S/genetics
- Xenopus
Collapse
Affiliation(s)
- C Cloix
- Unité Mixte de Recherche, 6547 BIOMOVE, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Park YK, Park KC, Park CH, Kim NS. Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 2000; 10:18-24. [PMID: 10774742 DOI: 10.1007/s10059-000-0018-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chromosomal localization and sequence analysis of the 5S rRNA gene were carried out in five Capsicum species. Fluorescence in situ hybridization revealed that chromosomal location of the 5S rRNA gene was conserved in a single locus at a chromosome which was assigned to chromosome 1 by the synteny relationship with tomato. In sequence analysis, the repeating units of the 5S rRNA genes in the Capsicum species were variable in size from 278 bp to 300 bp. In sequence comparison of our results to the results with other Solanaceae plants as published by others, the coding region was highly conserved, but the spacer regions varied in size and sequence. T stretch regions, just after the end of the coding sequences, were more prominant in the Capsicum species than in two other plants. High G x C rich regions, which might have similar functions as that of the GC islands in the genes transcribed by RNA PolII, were observed after the T stretch region. Although we could not observe the TATA like sequences, an AT rich segment at -27 to -18 was detected in the 5S rRNA genes of the Capsicum species. Species relationship among the Capsicum species was also studied by the sequence comparison of the 5S rRNA genes. While C. chinense, C. frutescens, and C. annuum formed one lineage, C. baccatum was revealed to be an intermediate species between the former three species and C. pubescens.
Collapse
MESH Headings
- Base Sequence
- Capsicum/genetics
- Child, Preschool
- Chromosome Mapping
- Cloning, Molecular
- DNA, Plant/chemistry
- DNA, Plant/genetics
- Genes, rRNA/genetics
- Genetic Variation
- Humans
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Plants, Medicinal
- Polymerase Chain Reaction
- RNA, Ribosomal, 5S/genetics
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- Y K Park
- Division of Applied Plant Sciences, Kangwon National University, Chunchon, Korea
| | | | | | | |
Collapse
|
13
|
Lee SH, Do GS, Seo BB. Chromosomal localization of 5S rRNA gene loci and the implications for relationships within the Allium complex. Chromosome Res 1999; 7:89-93. [PMID: 10328620 DOI: 10.1023/a:1009222411001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chromosomal localizations and distribution patterns of the 5S rRNA genes by means of fluorescence in-situ hybridization in diploid Allium species could help to classify species into chromosome types and aid in determining relationships among genomes. All eleven diploid species were classified into five types, A to E. Species of type A showed a pair of 5S rRNA signals on the short arm of chromosome 5 and two pairs of signals on both arms of chromosome 7. Species of types B and C showed one pair and two pairs of signals on the short arm of chromosome 7, respectively. Type D species showed two pairs of signals on the satellite region of the short arm and a pair of signals on the long arm of chromosome 7. Type E species showed three distinct 5S rRNA gene loci signals on the short arm of chromosome 7. Information on chromosomal localization of 5S rRNA gene loci and distribution patterns within chromosomes in diploid Allium species could help to infer the pathway of origin of the three kinds of alloploid species. Data indicate that A. wakegi is an allopolyploid with genomes of types B and C, and A. deltoide-fistulosum is an allotetraploid derived from a natural hybridization between different species within chromosome type A. Results indicate that A. senescens is an allopolyploid with type B chromosomes and an unidentified chromosomal type.
Collapse
Affiliation(s)
- S H Lee
- Department of Biology, Kyungpook National University, Taegu, Korea
| | | | | |
Collapse
|
14
|
Ren N, Song YC, Bi XZ, Ding Y, Liu LH. The physical location of genes cdc2 and prh1 in maize (Zea mays L.). Hereditas 1997; 126:211-7. [PMID: 9350135 DOI: 10.1111/j.1601-5223.1997.00211.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A biotin-labelling in situ hybridization technique was first used to physically map two single copy genes, cdc2 and prh1, in maize. These two genes are metabolically interrelated genes. The full-length cDNA clones cdc2ZmA and ZmPPI of genes cdc2 and prh1 were adopted as the probes. They are 1.3 and 1.6 kb in size, respectively. Clone cdc2ZmA was physically mapped on the long arm of chromosomes 4, 8, and 9. The percent distances from centromere to detection site were 57.9 +/- 2.7, 28.4 +/- 1.5, and 88.2 +/- 3.3. The detection rate was 19.2%. Clone ZmPPI was physically mapped on the long arm of chromosomes 4, 6, and 8. The percent distances were 53.6 +/- 1.2, 60.8 +/- 2.9 and 17.1 +/- 1.6. The detection ratio was 18.5%. The technique of chromosome ISH and the relationship between the location and function of these two genes have been discussed.
Collapse
Affiliation(s)
- N Ren
- Department of Genetics, College of Life Sciences, Wuhan University, Wuhan Hubei, People's Republic of China
| | | | | | | | | |
Collapse
|
15
|
Danna KJ, Workman R, Coryell V, Keim P. 5S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 1996; 39:445-55. [DOI: 10.1139/g96-056] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The organization of 5S rRNA genes in plants belonging to tribe Phaseoleae was investigated by clamped homogeneous electric field gel electrophoresis and Southern blot hybridization. Representatives of subtribe Glycininae included the diploid species Neonotonia wightii and Teramnus labialis, as well as three soybean accessions: an elite Glycine max (L.) Merr. cultivar (BSR101), an unadapted G. max introduction (PI 437.654), and a wild Glycine soja (PI 468.916). A cultivar of Phaseolus vulgaris (kidney bean), a member of subtribe Phaseolinae, was also examined. We determined the number of 5S rDNA arrays and estimated the size and copy number of the repeat unit for each array. The three soybean accessions all have a single 5S locus, with a repeat unit size of ~345 bp and a copy number ranging from about 600 in 'BSR101' to about 4600 in the unadapted soybean introduction. The size of the 5S gene cluster in 'BSR101' is the same in roots, shoots, and trifoliate leaves. Given that the genus Glycine probably has an allotetraploid origin, our data strongly suggest that one of the two progenitor 5S loci has been lost during diploidization of soybean. Neonotonia wightii, the diploid species most closely related to soybean, also has a single locus but has a repeat unit of 520 bp and a copy number of about 1300. The more distantly related species T. labialis and P. vulgaris exhibited a more complex arrangement of 5S rRNA genes, having at least three arrays, each comprising a few hundred copies of a distinct repeat unit. Although each array in P. vulgaris exhibits a high degree of homogeneity with regard to the sequence of the repeat unit, heterogeneity in array size (copy number) was evident when individual plants were compared. A cis-dependent molecular drive process, such as unequal crossing-over, could account for both the homogenization of repeat units within individual arrays and the observed variation in copy number among individuals. Key words : pulsed-field gel electrophoresis, rRNA genes, soybean, tandem arrays.
Collapse
|
16
|
Song YC, Gustafson JP. The physical location of fourteen RFLP markers in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1995; 90:113-9. [PMID: 24173791 DOI: 10.1007/bf00221003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/1994] [Accepted: 03/08/1994] [Indexed: 05/17/2023]
Abstract
A biotin-labeled in situ hybridization technique was used in order to physically map RFLP markers to the chromosomes of rice (Oryza sativa L.). Fourteen RFLP markers, associated with the ends of the linkage groups on rice chromosomes 7, 8, 11, 12, were physically mapped onto specific regions of the chromosomes. The average detection rate of in situ hybridization was 5.91%. The markers were located on seven different chromosome arms. Ten of the fourteen markers were distributed near the chromosome ends. This demonstrated that the RFLP linkage groups involved covered a wide physical distance and that the centromeric region was bisected by all but one linkage group. Two markers covered a short genetic distance but were physically distant, while two covering a longer genetic distance were physically closer together. This indicates that considerable variation can, and does, exist between genetic and physical maps.This paper is a contribution of the U.S. Department of Agriculture, Agricultural Research Service, and Missouri Agricultural Experiment Station, Journal Series No. 11 882All programs and services of the U.S. Department of Agriculture are offered on a nondiscriminatory basis without regard to race, color, national origin, religion, sex, age, marital status, or handicap.
Collapse
Affiliation(s)
- Y C Song
- College of Life Science, Wuhan University, 430072, Wuhan Hubei, The People's Republic of China
| | | |
Collapse
|
17
|
Huestis GM, McGrath JM, Quiros CF. Development of genetic markers in celery based on restriction fragment length polymorphisms. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1993; 85:889-96. [PMID: 24196065 DOI: 10.1007/bf00225034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/1992] [Accepted: 06/19/1992] [Indexed: 05/09/2023]
Abstract
Linkage relationships are reported for 34 markers in celery (Apium graveolens L. var 'dulce') including 21 RFLP, 11 isozyme, and 2 morphological traits. The mapping was carried out in a cross between celery and an annual accession from Thailand, A143, and based on F2 segregation of 136 plants. A total of 318 centiMorgans (cM) are covered by the markers distributed in 8 linkage groups. Probes for the identification of RFLPs were isolated from a celery cDNA library and were also obtained from heterologous sources. EcoRV, EcoRI, and HindIII were the most useful restriction enzymes in uncovering polymorphism. In our cross, 18% of the cDNA probes were found to be polymorphic for at least one of the enzymes used. Six of the markers showed significant deviations from expected F2 ratios.
Collapse
Affiliation(s)
- G M Huestis
- Department of Vegetable Crops, University of California, 95616-8746, Davis, CA, USA
| | | | | |
Collapse
|
18
|
Molecular Analysis of the Nucleolus Organizer Region in Maize. ACTA ACUST UNITED AC 1991. [DOI: 10.1016/b978-0-444-88259-2.50031-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
19
|
Schneeberger RG, Creissen GP, Cullis CA. Chromosomal and molecular analysis of 5S RNA gene organization in the flax, Linum usitatissimum. Gene 1989; 83:75-84. [PMID: 2591746 DOI: 10.1016/0378-1119(89)90405-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 5S rRNA genes (5S DNA) comprise up to 3% of the flax genome. Large copy-number changes in 5S DNA have been observed in flax genotrophs. We have characterized the chromosomal and molecular organization of this large gene family. In situ hybridization studies indicate the 5S DNA is distributed over many chromosomes, unlike most plants studied to date. Eleven genomic clones were isolated and characterized. All but one of the clones contain both 5S DNA and non-5S DNA. The homology of the 5S DNA of each clone, to a previously isolated flax 5S plasmid clone (pBG13), was determined. Five groups of 5S DNA were identified based on shared identity and repeat unit size. Group-1 and group-2 clones are the most abundant in terms of genomic representation. The remaining groups are significantly different from the previously described flax 5S DNA and are in low representation in comparison to group-1 and group-2 5S DNA. The results establish the presence of several groups of 5S DNA which are distributed over many chromosomes. The extent of identity shared among these groups to pBG13, indicates a high degree of divergence between the different groups.
Collapse
Affiliation(s)
- R G Schneeberger
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106
| | | | | |
Collapse
|
20
|
Berlani RE, Davis RW, Walbot V. Genomic organization of two families of highly repeated nuclear DNA sequences of maize selected for autonomous replicating activity in yeast. PLANT MOLECULAR BIOLOGY 1988; 11:161-172. [PMID: 24272258 DOI: 10.1007/bf00015668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/1987] [Accepted: 04/25/1988] [Indexed: 06/02/2023]
Abstract
Maize nuclear DNA sequences capable of promoting the autonomous replication of plasmids in yeast were isolated by ligating Eco RI-digested fragments into yeast vectors unable to replicate autonomously. Three such autonomously replicating sequences (ARS), representing two families of highly repeated sequences within the maize genome, were isolated and characterized. Each repetitive family shows hybridization patterns on a Southern blot characteristic of a dispersed sequence. Unlike most repetitive sequences in maize, both ARS families have a constant copy number and characteristic genomic hybridization pattern in the inbred lines examined. Larger genome clones with sequence homology to the ARS-containing elements were selected from a lambda library of maize genomic DNA. There was typically only one copy of an ARS-homologous sequence on each 12-15 kb genomic fragment.
Collapse
Affiliation(s)
- R E Berlani
- Department of Biological Sciences, Stanford University, 94305, Stanford, CA, USA
| | | | | |
Collapse
|
21
|
|
22
|
Hariharan N, Reddy PS, Padayatty JD. 5S-rRNA genes in rice embryos. PLANT MOLECULAR BIOLOGY 1987; 9:443-451. [PMID: 24277131 DOI: 10.1007/bf00015876] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/1986] [Accepted: 07/03/1987] [Indexed: 06/02/2023]
Abstract
The 5S-rRNA from the ungerminated and 48-h-germinated rice embryos differs from the wheat, rye and maize by two nucleotides. The 48-h-germinated embryos contain another species of 5S-rRNA which differs by 3 nucleotides from the ungerminated embryos, thereby showing the expression of two 5S-rRNA genes during germination. The 5S-rRNA genes are present in tandem repeats of a 0.3-kb sequence with some length heterogeneity in the rice genome. The 5S-rRNA gene that was sequenced is identical to that of wheat and maize, except for two nucleotides, C and T, which are interchanged at positions 107 and 117. The insert of continuous 5S-rRNA gene in pBR322 was transcribed in vitro much more efficiently than the discontinuous gene. There was no homology between the 184-bp spacer sequence of 5S-rRNA genes in rice and other systems except the presence of the oligo(T) transcription terminator sequence.
Collapse
Affiliation(s)
- N Hariharan
- Department of Biochemistry, Indian Institute of Science, 560 012, Bangalore, India
| | | | | |
Collapse
|
23
|
|
24
|
Abstract
Despite the availability of a rapidly growing ribosomal RNA database that now includes organisms in all three primary lines of descent (eubacteria, archaebacteria, and eukaryotes), theoretical treatment of the evolution of the ribosomal RNAs has lagged behind that of the protein genes. In this paper a theory is developed that applies current views of protein gene evolution to the ribosomal RNAs. The major topics addressed are the variability in size, gene arrangement, and processing of the rRNAs among the three primary lines of descent. Among the conclusions are that the rRNAs of eukaryotes retain some primitive features that were probably present in the rRNAs of the earliest cell (the progenote) and that the genes coding for the three major rRNA species were probably originally unlinked.
Collapse
Affiliation(s)
- C G Clark
- Laboratory of Molecular Parasitology, Rockefeller University, New York, New York 10021-6399
| |
Collapse
|
25
|
Application of Recombinant DNA Techniques to Pines: A Molecular Approach To Genetic Engineering in Forestry. CELL AND TISSUE CULTURE IN FORESTRY 1987. [DOI: 10.1007/978-94-017-0994-1_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
26
|
Abstract
Recombination occurs by infectious gene transfer in bacteria, at rates much lower than recombination by sexual reproduction in other organisms. Thus, recombination may accelerate evolution in bacteria only under restricted conditions, such as occur when mutations at several loci are required for the evolution of an expanded ecological niche. Mathematical ("chemostat") models of several such cases--evolution of independence from three limiting essential or "interactive-essential" resources; evolution of the ability to use three new substitutable resources; and evolution of resistance to three growth inhibitors--were analyzed by computer simulation. All combinations of three mutation rates (U) and four values for the "infectious gene transfer rate parameter" (chi) were considered. Recombination accelerated evolution most when U was low and chi was high, but was unlikely to have large effects when chi was low enough to be realistic for natural populations of Escherichia coli. Recombination had the largest effects when resources were substitutable, and in that case could have substantially reduced the chance of random loss of the favored "triple mutant" while it was still rare. The simulations also revealed some interesting features of selection for an expanded niche. Evolution of independence from essential resources occurred more rapidly when the resources were weakly complementary than when they did not interact. Selection for the ability to use all substitutable resources was weak after all intermediate types that used only one or two of the resources had arisen.
Collapse
|
27
|
Buescher PJ, Phillips RL, Brambl R. Ribosomal RNA contents of maize genotypes with different ribosomal RNA gene numbers. Biochem Genet 1984; 22:923-30. [PMID: 6517855 DOI: 10.1007/bf00499483] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ribosomal RNA (rRNA) contents were determined in 16 maize genotypes whose individual rRNA gene numbers varied from 5000 to 23,000 per 2C nucleus. Analytical polyacrylamide gel electrophoresis of total RNA showed that no obvious relation existed between rRNA gene number and rRNA content. Only two of nine common inbred lines contained more rRNA than W-23, the inbred with the lowest rRNA gene number. Two of four lines with altered protein content (due to long-term experimental selection) had rRNA contents significantly reduced from those of W-23. A line with an apparent duplication of the nucleolus organizer region of chromosome 6 (called 2-NOR) was expected to possess an elevated quantity of rRNA because it possesses a larger nucleolus; however, we produced a 2-NOR isogenic version and found no difference in rRNA content. The rRNA genes in maize are distributed throughout the NOR-heterochromatin and the NOR-secondary constriction portions of the NOR. The absence of an obvious correlation between rRNA gene number and cellular rRNA content may reflect the presence of a large number of rRNA genes in an inactive state, at least during the stage of growth examined in these experiments.
Collapse
|
28
|
Sorenson JC. The Structure And Expression Of Nuclear Genes In Higher Plants. ADVANCES IN GENETICS 1984; 22:109-44. [PMID: 15633287 DOI: 10.1016/s0065-2660(08)60039-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Affiliation(s)
- J C Sorenson
- Experimental Agricultural Sciences, The Upjohn Company, Kalamazoo, Michigan 49001, USA
| |
Collapse
|
29
|
|
30
|
Rafalski JA, Wiewiorowski M, Söll D. Organization and nucleotide sequence of nuclear 5S rRNA genes in yellow lupin (Lupinus luteus). Nucleic Acids Res 1982; 10:7635-42. [PMID: 7155897 PMCID: PMC327035 DOI: 10.1093/nar/10.23.7635] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genomic blots of yellow lupin (Lupinus luteus) DNA digested with restriction nucleases and probed with 32P-labelled Lupinus 5S RNA reveal that 5S DNA is organized as tandemly repeated sequences of one size class, 342 bp. The DNA is extensively methylated. Two cloned BamHI ribosomal repeats were sequenced, revealing sequence divergence within both the coding and spacer regions.
Collapse
|