1
|
Kieliszek M, Błażejak S, Bzducha-Wróbel A, Kot AM. Effect of Selenium on Lipid and Amino Acid Metabolism in Yeast Cells. Biol Trace Elem Res 2019; 187:316-327. [PMID: 29675568 PMCID: PMC6315055 DOI: 10.1007/s12011-018-1342-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 04/09/2018] [Indexed: 12/27/2022]
Abstract
This article discusses the effect of selenium in aqueous solutions on aspects of lipid and amino acid metabolism in the cell biomass of Saccharomyces cerevisiae MYA-2200 and Candida utilis ATCC 9950 yeasts. The yeast biomass was obtained by using waste products (potato wastewater and glycerol). Selenium, at a dose of 20 mg/L of aqueous solution, affected the differentiation of cellular morphology. Yeast enriched with selenium was characterized by a large functional diversity in terms of protein and amino acid content. The protein content in the biomass of S. cerevisiae enriched with selenium (42.6%) decreased slightly as compared to that in the control sample without additional selenium supplementation (48.4%). Moreover, yeasts of both strains enriched with selenium contained a large amount of glutamic acid, aspartic acid, lysine, and leucine. Analysis of fatty acid profiles in S. cerevisiae yeast supplemented with selenium showed an increase in the unsaturated fatty acid content (e.g., C18:1). The presence of margaric acid (C17:0) and hexadecanoic acid (C17:1) was found in the C. utilis biomass enriched with selenium, in contrast to that of S. cerevisiae. These results indicate that selenium may induce lipid peroxidation, which consequently affects the loss of integrity of the cytoplasmic membrane. Yeast enriched with selenium with optimal amino acid and lipid composition can be used to prepare a novel formula of dietary supplements, which can be applied directly to various diets for both humans and animals.
Collapse
Affiliation(s)
- Marek Kieliszek
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland.
| | - Stanisław Błażejak
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna Bzducha-Wróbel
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Anna M Kot
- Faculty of Food Sciences, Department of Biotechnology, Microbiology and Food Evaluation, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| |
Collapse
|
2
|
Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.08.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
3
|
Casein phosphopeptides and CaCl2 increase penicillin production and cause an increment in microbody/peroxisome proteins in Penicillium chrysogenum. J Proteomics 2017; 156:52-62. [DOI: 10.1016/j.jprot.2016.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/15/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022]
|
4
|
Identification of the Leishmania major proteins LmjF07.0430, LmjF07.0440, and LmjF27.2440 as components of fatty acid synthase II. J Biomed Biotechnol 2010; 2009:950864. [PMID: 20145708 PMCID: PMC2817374 DOI: 10.1155/2009/950864] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Accepted: 10/23/2009] [Indexed: 11/18/2022] Open
Abstract
Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP) of mitochondrial fatty acid synthase type 2 (FASII) plays a crucial role in parasite survival. Additionally, 3-oxoacyl-ACP synthase TbKASIII as well as TbHTD2 representing 3-hydroxyacyl-ACP dehydratase were also identified; however, 3-oxoacyl-ACP reductase TbKAR1 has hitherto evaded positive identification. Here, potential Leishmania FASII components LmjF07.0440 and LmjF07.0430 were revealed as 3-hydroxyacyl-ACP dehydratases LmHTD2-1 and LmHTD2-2, respectively, whereas LmjF27.2440 was identified as LmKAR1. These Leishmania proteins were ectopically expressed in Saccharomyces cerevisiae htd2Delta or oar1Delta respiratory deficient cells lacking the corresponding mitochondrial FASII enzymes Htd2p and Oar1p. Yeast mutants producing mitochondrially targeted versions of the parasite proteins resembled the self-complemented cells for respiratory growth. This is the first identification of a FASII-like 3-oxoacyl-ACP reductase from a kinetoplastid parasite.
Collapse
|
5
|
Gurvitz A. A C. elegans model for mitochondrial fatty acid synthase II: the longevity-associated gene W09H1.5/mecr-1 encodes a 2-trans-enoyl-thioester reductase. PLoS One 2009; 4:e7791. [PMID: 19924289 PMCID: PMC2774161 DOI: 10.1371/journal.pone.0007791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
Abstract
Our recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17β-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function. However, mouse knockouts for mitochondrial FASII have hitherto not been reported and, hence, there is a need to develop alternate metazoan models such as nematodes or fruit flies. Here, the identification of Caenorhabditis elegans W09H1.5/MECR-1 as a 2-trans-enoyl-thioester reductase of mitochondrial FASII is reported. To identify MECR-1, Saccharomyces cerevisiae etr1Δ mutant cells were employed that are devoid of mitochondrial 2-trans-enoyl-thioester reductase Etr1p. These yeast mutants fail to synthesize sufficient levels of lipoic acid or form cytochrome complexes, and cannot respire or grow on non-fermentable carbon sources. A mutant yeast strain ectopically expressing nematode mecr-1 was shown to contain reductase activity and resemble the self-complemented mutant strain for these phenotype characteristics. Since MECR-1 was not intentionally targeted for compartmentalization using a yeast mitochondrial leader sequence, this inferred that the protein represented a physiologically functional mitochondrial 2-trans-enoyl-thioester reductase. In accordance with published findings, RNAi-mediated knockdown of mecr-1 in C. elegans resulted in life span extension, presumably due to mitochondrial dysfunction. Moreover, old mecr-1(RNAi) worms had better internal organ appearance and were more mobile than control worms, indicating a reduced physiological age. This is the first report on RNAi work dedicated specifically to curtailing mitochondrial FASII in metazoans. The availability of affected survivors will help to position C. elegans as an excellent model for future pursuits in the emerging field of mitochondrial FASII research.
Collapse
Affiliation(s)
- Aner Gurvitz
- Section of Physiology of Lipid Metabolism, Institute of Physiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Caenorhabditis elegans F09E10.3 encodes a putative 3-oxoacyl-thioester reductase of mitochondrial type 2 fatty acid synthase FASII that is functional in yeast. J Biomed Biotechnol 2009; 2009:235868. [PMID: 19746209 PMCID: PMC2739286 DOI: 10.1155/2009/235868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/05/2009] [Accepted: 06/17/2009] [Indexed: 11/23/2022] Open
Abstract
Caenorhabditis elegans F09E10.3 (dhs-25) was identified as encoding a 3-oxoacyl-thioester reductase, potentially of the mitochondrial type 2 fatty acid synthase (FASII) system. Mitochondrial FASII is a relatively recent discovery in metazoans, and the relevance of this process to animal physiology has not been elucidated. A good animal model to study the role of FASII is the nematode C. elegans. However, the components of nematode mitochondrial FASII have hitherto evaded positive identification. The nematode F09E10.3 protein was ectopically expressed without an additional mitochondrial targeting sequence in Saccharomyces cerevisiae mutant cells lacking the homologous mitochondrial FASII enzyme 3-oxoacyl-ACP reductase Oar1p. These yeast oar1Δ mutants are unable to respire, grow on nonfermentable carbon sources, or synthesize sufficient levels of lipoic acid. Mutant yeast cells producing a full-length mitochondrial F09E10.3 protein contained NAD+-dependent 3-oxoacyl-thioester reductase activity and resembled the corresponding mutant overexpressing native Oar1p for the above-mentioned phenotype characteristics. This is the first identification of a metazoan 3-oxoacyl-thioester reductase (see Note Added in Proof).
Collapse
|
7
|
The essential mycobacterial genes, fabG1 and fabG4, encode 3-oxoacyl-thioester reductases that are functional in yeast mitochondrial fatty acid synthase type 2. Mol Genet Genomics 2009; 282:407-16. [PMID: 19685079 PMCID: PMC2746893 DOI: 10.1007/s00438-009-0474-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 07/22/2009] [Indexed: 11/17/2022]
Abstract
Mycobacterium tuberculosis represents a severe threat to human health worldwide. Therefore, it is important to expand our knowledge of vital mycobacterial processes, such as that effected by fatty acid synthase type 2 (FASII), as well as to uncover novel ones. Mycobacterial FASII undertakes mycolic acid biosynthesis, which relies on a set of essential enzymes, including 3-oxoacyl-AcpM reductase FabG1/Rv1483. However, the M. tuberculosis genome encodes four additional FabG homologs, designated FabG2–FabG5, whose functions have hitherto not been characterized in detail. Of the four candidates, FabG4/Rv0242c was recently shown to be essential for the survival of M. bovis BCG. The present work was initiated by assessing the suitability of yeast oar1Δ mutant cells lacking mitochondrial 3-oxoacyl-ACP reductase activity to act as a surrogate system for expressing FabG1/MabA directed to the mitochondria. Mutant yeast cells producing this targeted FabG1 variant were essentially wild type for all of the chronicled phenotype characteristics, including respiratory growth on glycerol medium, cytochrome assembly and lipoid acid production. This indicated that within the framework of de novo fatty acid biosynthesis in yeast mitochondria, FabG1 was able to act on shorter (C4) acyl substrates than was previously proposed (C8–20) during mycolic acid biosynthesis in M. tuberculosis. Thereafter, FabG2–FabG5 were expressed as mitochondrial proteins in the oar1Δ strain, and FabG4 was found to complement the mutant phenotype and contain high levels of 3-oxoacyl-thioester reductase activity. Hence, like FabG1, FabG4 is also an essential, physiologically functional 3-oxoacyl-thioester reductase, albeit the latter’s involvement in mycobacterial FASII remains to be explored.
Collapse
|
8
|
Gurvitz A, Suomi F, Rottensteiner H, Hiltunen JK, Dawes IW. Avoiding unscheduled transcription in shared promoters: Saccharomyces cerevisiae Sum1p represses the divergent gene pair SPS18-SPS19 through a midsporulation element (MSE). FEMS Yeast Res 2009; 9:821-31. [PMID: 19583587 PMCID: PMC2784042 DOI: 10.1111/j.1567-1364.2009.00527.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells. In sporulating diploids, MSEs recruit the Ndt80p transcription factor for activation, whereas under vegetative conditions, certain MSEs are targeted by the Sum1p repressor in association with Hst1p and Rfm1p. Quantitative real-time PCR demonstrated that in haploid sum1Δ, hst1Δ, or rfm1Δ cells, oleic acid-dependent expression of SPS18 was higher compared with the situation in wild-type cells, but in the sum1Δ mutant, this effect was diminished in the absence of Oaf1p or Pip2p. We conclude that SPS18 MSE is a functional element repressing the expression of both SPS18 and SPS19, and is a component of a stricture mechanism shielding SPS18 from the dramatic increase in ORE-dependent transcription of SPS19 in oleic acid-grown cells.
Collapse
Affiliation(s)
- Aner Gurvitz
- Center for Physiology, Pathophysiology and Immunology, Institute of Physiology, Section of Physiology of Lipid Metabolism, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | |
Collapse
|
9
|
Herrero E, Ros J, Bellí G, Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta Gen Subj 2008; 1780:1217-35. [DOI: 10.1016/j.bbagen.2007.12.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 11/29/2007] [Accepted: 12/07/2007] [Indexed: 12/21/2022]
|
10
|
Karpichev IV, Durand-Heredia JM, Luo Y, Small GM. Binding characteristics and regulatory mechanisms of the transcription factors controlling oleate-responsive genes in Saccharomyces cerevisiae. J Biol Chem 2008; 283:10264-75. [PMID: 18285336 PMCID: PMC2447635 DOI: 10.1074/jbc.m708215200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 02/05/2008] [Indexed: 11/06/2022] Open
Abstract
Transcriptional activation of many genes involved in peroxisome-related functions is regulated by the Oaf1p, Pip2p, and Adr1p transcription factors in Saccharomyces cerevisiae. We have analyzed the in vivo binding characteristics of Oaf1p-Pip2p and found that this complex is recruited to its target oleate-response element (ORE) under all growth conditions tested. In addition, this complex also binds to ORE-containing genes that do not appear to be regulated by these proteins, as well as to some genes lacking conventional OREs. The recruitment of the Oaf1p-Pip2p complex was greatly increased upon glucose derepression, possibly due to Oaf1p phosphorylation with only moderate increases upon oleate induction. Thus, this complex may receive a nutritional cue while it is already bound to DNA, suggesting that, in addition to the increase in Oaf1p-Pip2p binding, other mechanism(s) such as enhanced Adr1p association may drive the expression of highly inducible fatty acid-responsive genes. Adr1p binds to target genes in an oleate-dependent fashion and is involved in Oaf1p-Pip2p binding. In turn, the Oaf1p-Pip2p complex appears to be important for Adr1p binding to a subset of oleate-responsive genes. Adr1p is a positive regulator of ORE-containing genes, but it also acts as a negative factor in expression of some of these genes. Finally, we have also shown that Adr1p is directly involved in mediating oleate induction of Oaf1p-Pip2p target genes.
Collapse
Affiliation(s)
- Igor V Karpichev
- Department of Biology, City College of the City University of New York, New York, New York 10031, USA
| | | | | | | |
Collapse
|
11
|
Waterham HR, Wanders RJA. 23 as a Tool for Human Gene Function Discovery. METHODS IN MICROBIOLOGY 2007. [DOI: 10.1016/s0580-9517(06)36023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Gurvitz A, Rottensteiner H. The biochemistry of oleate induction: Transcriptional upregulation and peroxisome proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1392-402. [PMID: 16949166 DOI: 10.1016/j.bbamcr.2006.07.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Accepted: 07/24/2006] [Indexed: 01/08/2023]
Abstract
Unicellular organisms such as yeast constantly monitor their environment and respond to nutritional cues. Rapid adaptation to ambient changes may include modification and degradation of proteins; alterations in mRNA stability; and differential rates of translation. However, for a more prolonged response, changes are initiated in the expression of genes involved in the utilization of energy sources whose availability constantly fluctuates. For example, in the presence of oleic acid as a sole carbon source, yeast cells induce the expression of a discrete set of enzymes for fatty acid beta-oxidation as well as proteins involved in the expansion of the peroxisomal compartment containing this process. In this review chapter, we discuss the factors regulating oleate induction in Saccharomyces cerevisiae, and we also deal with peroxisome proliferation in other organisms, briefly mentioning fatty acid-independent signals that can trigger this process.
Collapse
Affiliation(s)
- Aner Gurvitz
- Medical University of Vienna, Center of Physiology and Pathophysiology, Department of Physiology, Section of Physiology of Fatty Acid Lipid Metabolism, 1090 Vienna, Austria
| | | |
Collapse
|
13
|
Abstract
Peroxisomes are ubiquitous subcellular organelles, which are highly dynamic and display large plasticity in response to cellular and environmental conditions. Novel proteins and pathways that mediate and control peroxisome formation, growth, and division continue to be discovered, and the cellular machineries that act together to regulate peroxisome number and size are under active investigation. Here, advances in the field of peroxisomal dynamics and proliferation in mammals and yeast are reviewed. The authors address the signals, conditions, and proteins that affect, regulate, and control the number and size of this essential organelle, especially the components involved in the division of peroxisomes. Special emphasis is on the function of dynamin-related proteins (DRPs), on Fis1, a putative adaptor for DRPs, on the role of the Pex11 family of peroxisomal membrane proteins, and the cytoskeleton.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Cell Biology and Cell Pathology, University of Marburg, 35037 Marburg, Germany
| | | |
Collapse
|
14
|
Kogure T, Takagi M, Ohta A. n-Alkane and clofibrate, a peroxisome proliferator, activate transcription of ALK2 gene encoding cytochrome P450alk2 through distinct cis-acting promoter elements in Candida maltosa. Biochem Biophys Res Commun 2005; 329:78-86. [PMID: 15721276 DOI: 10.1016/j.bbrc.2005.01.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Indexed: 11/19/2022]
Abstract
The ALK2 gene, encoding one of the n-alkane-hydroxylating cytochromes P450 in Candida maltosa, is induced by n-alkanes and a peroxisome proliferator, clofibrate. Deletion analysis of this gene's promoter revealed two cis-acting elements-an n-alkane-responsive element (ARE2) and a clofibrate-responsive element (CRE2)-that partly overlap in sequence but have distinct functions. ARE2-mediated activation responded to n-alkanes but not to clofibrate and was repressed by glucose. CRE2-mediated activation responded to polyunsaturated fatty acids and steroid hormones as well as to peroxisome proliferators but not to n-alkanes, and it was not repressed by glucose. Both elements mediated activation by oleic acid. Mutational analysis demonstrated that three CCG sequences in CRE2 were critical to the activation by clofibrate as well as to the in vitro binding of a specific protein to this element. These findings suggest that ALK2 is induced by peroxisome proliferators and steroid hormones through a specific CRE2-mediated regulatory mechanism.
Collapse
Affiliation(s)
- Takahisa Kogure
- Department of Biotechnology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
15
|
Rottensteiner H, Wabnegger L, Erdmann R, Hamilton B, Ruis H, Hartig A, Gurvitz A. Saccharomyces cerevisiae PIP2 mediating oleic acid induction and peroxisome proliferation is regulated by Adr1p and Pip2p-Oaf1p. J Biol Chem 2003; 278:27605-11. [PMID: 12748191 DOI: 10.1074/jbc.m304097200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae genes involved in fatty acid degradation contain in their promoters oleate response elements (OREs) and type 1 upstream activation sequences (UAS1s) that bind Pip2p-Oaf1p and Adr1p, respectively. The promoter of the PIP2 gene was found to contain a potential UAS1 that consists of a tandem array of CYCCRR half-sites in an overlapping arrangement with a previously characterized ORE. Electrophoretic mobility shift analysis demonstrated that Adr1p bound to UAS1PIP2, and Northern analysis in combination with a lacZ reporter gene confirmed that Adr1p influenced the transcription of PIP2. Immunoprecipitation showed that, in adr1delta mutant cells grown on oleic acid, Pip2p was less abundant compared with the corresponding wild-type. In addition, the amount of Pip2p-Oaf1p that bound to a target ORE in vitro was reduced in mutant extracts compared with the wild-type. Transcription of the oleic acid-inducible genes SPS19 and CTA1, which rely on both Pip2p-Oaf1p and Adr1p for their regulation, was reduced in adr1delta mutant cells. However, by ectopically restoring levels of Pip2p in adr1delta cells grown on oleic acid medium, transcription of both genes increased 2-fold compared with the control. This partial suppression of the adr1delta mutant phenotype was additionally manifested by moderate utilization of oleic acid. Hence, both the expression as well as the action of the two transcription factors, Adr1p and Pip2p-Oaf1p, are interconnected, which allows for an elaborate control of fatty acid-inducible genes.
Collapse
|
16
|
Schaufler LE, Klevit RE. Mechanism of DNA binding by the ADR1 zinc finger transcription factor as determined by SPR. J Mol Biol 2003; 329:931-9. [PMID: 12798683 DOI: 10.1016/s0022-2836(03)00550-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ADR1 protein recognizes a six base-pair consensus DNA sequence using two zinc fingers and an adjacent accessory motif. Kinetic measurements were performed on the DNA-binding domain of ADR1 using surface plasmon resonance. Binding by ADR1 was characterized to two known native binding sequences from the ADH2 and CTA1 promoter regions, which differ in two of the six consensus positions. In addition, non-specific binding by ADR1 to a random DNA sequence was measured. ADR1 binds the native sites with nanomolar affinities. Remarkably, ADR1 binds non-specific DNA with affinities only approximately tenfold lower than the native sequences. The specific and non-specific binding affinities are conferred mainly by differences in the association phase of DNA binding. The association rate for the complex is strongly influenced by the proximal accessory region, while the dissociation reaction and specificity of binding are controlled by the two zinc fingers. Binding kinetics of two ADR1 mutants was also examined. ADR1 containing an R91K mutation in the accessory region bound with similar affinity to wild-type, but with slightly less sequence specificity. The R91K mutation was observed to increase binding affinity to a suboptimal sequence by decreasing the complex dissociation rate. L146H, a change-of-specificity mutation at the +3 position of the second zinc finger, bound its preferred sequence with a slightly higher affinity than wild-type. The L146H mutant indicates that beneficial protein-DNA contacts provide similar levels of stabilization to the complex, whether they are hydrogen-bonding or van der Waals interactions.
Collapse
Affiliation(s)
- Lawrence E Schaufler
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
17
|
Schüller HJ. Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 2003; 43:139-60. [PMID: 12715202 DOI: 10.1007/s00294-003-0381-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2002] [Revised: 01/20/2003] [Accepted: 01/21/2003] [Indexed: 11/30/2022]
Abstract
Although sugars are clearly the preferred carbon sources of the yeast Saccharomyces cerevisiae, nonfermentable substrates such as ethanol, glycerol, lactate, acetate or oleate can also be used for the generation of energy and cellular biomass. Several regulatory networks of glucose repression (carbon catabolite repression) are involved in the coordinate biosynthesis of enzymes required for the utilization of nonfermentable substrates. Positively and negatively acting complexes of pleiotropic regulatory proteins have been characterized. The Snf1 (Cat1) protein kinase complex, together with its regulatory subunit Snf4 (Cat3) and alternative beta-subunits Sip1, Sip2 or Gal83, plays an outstanding role for the derepression of structural genes which are repressed in the presence of a high glucose concentration. One molecular function of the Snf1 complex is deactivation by phosphorylation of the general glucose repressor Mig1. In addition to regulation of alternative sugar fermentation, Mig1 also influences activators of respiration and gluconeogenesis, although to a lesser extent. Snf1 is also required for conversion of specific regulatory factors into transcriptional activators. This review summarizes regulatory cis-acting elements of structural genes of the nonfermentative metabolism, together with the corresponding DNA-binding proteins (Hap2-5, Rtg1-3, Cat8, Sip4, Adr1, Oaf1, Pip2), and describes the molecular interactions among general regulators and pathway-specific factors. In addition to the influence of the carbon source at the transcriptional level, mechanisms of post-transcriptional control such as glucose-regulated stability of mRNA are also discussed briefly.
Collapse
Affiliation(s)
- Hans-Joachim Schüller
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt-Universität, Jahnstrasse 15a, 17487 Greifswald, Germany.
| |
Collapse
|
18
|
Rottensteiner H, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A. Saccharomyces cerevisiae Pip2p-Oaf1p regulates PEX25 transcription through an adenine-less ORE. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2013-22. [PMID: 12709061 DOI: 10.1046/j.1432-1033.2003.03575.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of the Saccharomyces cerevisiae Pip2p-Oaf1p transcription factor was examined in reference to the regulation of the peroxin gene PEX25 involved in peroxisome proliferation. The PEX25 promoter contains an oleate response element (ORE)-like sequence comprising a CGG palindrome lacking a canonical adenine, which is considered critical for element function and Pip2p-Oaf1p binding. Pex25p levels were higher in wild-type cells grown on oleic acid medium than in those grown on ethanol, but this induction was abolished in cells devoid of Pip2p-Oaf1p. Studies based on lacZ reporter genes and in vitro protein-DNA interactions revealed that the PEX25 ORE could bind Pip2p-Oaf1p and confer activation on a basal promoter. These findings reinforced the central role played by Pip2p-Oaf1p in regulating peroxisome proliferation. We also investigated whether Pip2p-Oaf1p is important for regulating genes encoding peroxins involved in protein import into the peroxisomal matrix. Pip2p-Oaf1p was able to bind efficiently to the PEX5 ORE but not to an ORE-like CGG palindrome in the PEX14 promoter. However, immunoblotting revealed that both Pex5p and Pex14p (as well as Pex7p and Pex13p) were not more abundant in cells grown on oleic acid medium compared with ethanol. These data on a functional, adenine-less, PEX25 ORE and a nonfunctional N13-spaced ORE-like sequence in the PEX14 promoter capable of binding Pip2p-Oaf1p prompts readjustment of the ORE consensus to comprise CGGN3TNA/(R)N8-12CCG.
Collapse
|
19
|
Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 2003; 27:35-64. [PMID: 12697341 DOI: 10.1016/s0168-6445(03)00017-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Peroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation. The main factors involved in protein import into peroxisomes are also known, but only one peroxisomal metabolite transporter has been characterized in detail, Ant1p, which exchanges intraperoxisomal AMP with cytosolic ATP. The other known transporter is Pxa1p-Pxa2p, which bears similarity to the human adrenoleukodystrophy protein ALDP. The major players in the regulation of fatty acid-induced gene expression are Pip2p and Oaf1p, which unite to form a transcription factor that binds to oleate response elements in the promoter regions of genes encoding peroxisomal proteins. Adr1p, a transcription factor, binding upstream activating sequence 1, also regulates key genes involved in beta-oxidation. The development of new, postgenomic-era tools allows for the characterization of the entire transcriptome involved in beta-oxidation and will facilitate the identification of novel proteins as well as the characterization of protein families involved in this process.
Collapse
Affiliation(s)
- J Kalervo Hiltunen
- Biocenter Oulu and Department of Biochemistry, P.O. Box 3000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
20
|
Khanday FA, Saha M, Bhat PJ. Molecular characterization of MRG19 of Saccharomyces cerevisiae. Implication in the regulation of galactose and nonfermentable carbon source utilization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5840-50. [PMID: 12444972 DOI: 10.1046/j.1432-1033.2002.03303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have reported previously that multiple copies of MRG19 suppress GAL genes in a wild-type but not in a gal80 strain of Saccharomyces cerevisiae. In this report we show that disruption of MRG19 leads to a decrease in GAL induction when S. cerevisiae is induced with 0.02% but not with 2.0% galactose. Disruption of MRG19 in a gal3 background (this strain shows long-term adaptation phenotype) further delays the GAL induction, supporting the notion that its function is important only under low inducing signals. As a corollary, disruption of MRG19 in a gal80 strain did not decrease the constitutive expression of GAL genes. These results suggest that MRG19 has a role in GAL regulation only when the induction signal is weak. Unlike the effect on GAL gene expression, disruption of MRG19 leads to de-repression of CYC1-driven beta-galactosidase activity. MRG19 disruptant also showed a twofold increase in the rate of oxygen uptake as compared with the wild-type strain. ADH2, CTA1, DLD1, and CYC7 promoters that are active during nonfermentative growth did not show any de-repression of beta-galactosidase activity in the MRG19 disruptant. Western blot analysis indicated that MRG19 is a glucose repressible gene and is expressed in galactose and glycerol plus lactate. Experiments using green fluorescent protein fusion constructs indicate that Mrg19p is localized in the nucleus consistent with the presence of a consensus nuclear localization signal sequence. Based on the above results, we propose that Mrg19p is a regulator of galactose and nonfermentable carbon utilization.
Collapse
Affiliation(s)
- Firdous A Khanday
- Laboratory of Molecular Genetics, Biotechnology Center, Indian Institute of Technology, Powai, Mumbai, India
| | | | | |
Collapse
|
21
|
|
22
|
Smith JJ, Marelli M, Christmas RH, Vizeacoumar FJ, Dilworth DJ, Ideker T, Galitski T, Dimitrov K, Rachubinski RA, Aitchison JD. Transcriptome profiling to identify genes involved in peroxisome assembly and function. J Cell Biol 2002; 158:259-71. [PMID: 12135984 PMCID: PMC2173120 DOI: 10.1083/jcb.200204059] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Yeast cells were induced to proliferate peroxisomes, and microarray transcriptional profiling was used to identify PEX genes encoding peroxins involved in peroxisome assembly and genes involved in peroxisome function. Clustering algorithms identified 224 genes with expression profiles similar to those of genes encoding peroxisomal proteins and genes involved in peroxisome biogenesis. Several previously uncharacterized genes were identified, two of which, YPL112c and YOR084w, encode proteins of the peroxisomal membrane and matrix, respectively. Ypl112p, renamed Pex25p, is a novel peroxin required for the regulation of peroxisome size and maintenance. These studies demonstrate the utility of comparative gene profiling as an alternative to functional assays to identify genes with roles in peroxisome biogenesis.
Collapse
Affiliation(s)
- Jennifer J Smith
- The Institute for Systems Biology, 1441 N. 34th Street, Seattle, WA 98103-8904, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rottensteiner H, Palmieri L, Hartig A, Hamilton B, Ruis H, Erdmann R, Gurvitz A. The peroxisomal transporter gene ANT1 is regulated by a deviant oleate response element (ORE): characterization of the signal for fatty acid induction. Biochem J 2002; 365:109-17. [PMID: 12071844 PMCID: PMC1222661 DOI: 10.1042/bj20011495] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Saccharomyces cerevisiae ANT1/YPR128c encodes the peroxisomal adenine nucleotide transporter that provides ATP for intra-peroxisomal activation of medium-chain fatty acids. A lacZ reporter construct comprising the ANT1 promoter was shown to be comparatively more highly expressed in a wild-type strain grown on oleic acid, a long-chain fatty acid, than in pip2Delta(oaf1)Delta mutant cells that are defective in fatty acid induction. The ANT1 promoter was demonstrated to contain a deviant oleate response element (ORE) that could bind the Pip2p-Oaf1p transcription factor and confer activation on a basal CYC1-lacZ reporter gene. Expression of Ant1p as well as other enzymes whose genes are known to be regulated by a canonical ORE was found to be increased in cells grown on lauric acid, a medium-chain fatty acid. We concluded that the signal for induction does not differentiate between long- and medium-chain fatty acids. This signal was independent of beta-oxidation or the biogenesis of the peroxisomal compartment where this process occurs, since a pox1Delta strain blocked in the first and rate-limiting step of beta-oxidation as well as various pex mutant cells devoid of intact peroxisomes produced sufficient amounts of Pip2p-Oaf1p for binding OREs in vitro and for expressing an ORE-driven reporter gene. The signal's durability was shown to be related to the concentration of fatty acids in the medium, since a pex6Delta strain expressed an ORE-driven reporter gene at high levels for a longer period than did isogenic wild-type cells. Generation of the signal was also independent of protein synthesis, as demonstrated by cycloheximide treatment.
Collapse
|
24
|
Gurvitz A, Hamilton B, Ruis H, Hartig A, Hiltunen JK. Degradation of conjugated linoleic acid isomers in the yeast Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1533:81-5. [PMID: 11566445 DOI: 10.1016/s1388-1981(01)00148-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Propagation of Saccharomyces cerevisiae cells in conjugated linoleic acid (CLA) medium resulted in activation of the transcriptional machinery that responds to fatty acids. Cells utilized efficiently trans-10,cis-12 CLA, but not the corresponding cis-9,trans-11 isomer, probably due to the formation of cis-3,trans-5-dienoyl-CoA intermediates that are recalcitrant to beta-oxidation.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna, Austria.
| | | | | | | | | |
Collapse
|
25
|
Gurvitz A, Hiltunen JK, Erdmann R, Hamilton B, Hartig A, Ruis H, Rottensteiner H. Saccharomyces cerevisiae Adr1p governs fatty acid beta-oxidation and peroxisome proliferation by regulating POX1 and PEX11. J Biol Chem 2001; 276:31825-30. [PMID: 11431484 DOI: 10.1074/jbc.m105989200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae Adr1p is essential for fatty acid degradation and peroxisome proliferation. Here, the role of Adr1p was examined with respect to the transcriptional regulation of the Pip2p-Oaf1p dependent genes POX1 and PEX11. POX1 encodes the rate-limiting enzyme of peroxisomal beta-oxidation, acyl-CoA oxidase. The POX1 promoter was shown to contain a canonical Adr1p element (UAS1), within which the oleate response element (ORE) was nested. PEX11 codes for a peroxin that is critical for normal peroxisome proliferation, and its promoter was shown similarly to contain a UAS1-like element overlapping the ORE. Northern analysis demonstrated that transcriptional up-regulation of both POX1 and PEX11 was abolished in adr1 Delta mutant cells, and immunoblotting confirmed that the abundance of their gene products was dramatically reduced. Studies of an overlapping ORE/UAS1 arrangement in the CTA1 promoter revealed synergy between these elements. We conclude that overlapping ORE and UAS1 elements in conjunction with their binding factors Pip2p-Oaf1p and Adr1p coordinate the carbon flux through beta-oxidation with peroxisome proliferation.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Long-chain fatty acids are a vital metabolic energy source and are building blocks of membrane lipids. The yeast Saccharomyces cerevisiae is a valuable model system for elucidation of gene-function relationships in such eukaryotic processes as fatty acid metabolism. Yeast degrades fatty acids only in the peroxisome, and recently, genes encoding core and auxiliary enzymes of peroxisomal beta-oxidation have been identified. Mechanisms involved in fatty acid induction of gene expression have been described, and novel fatty acid-responsive genes have been discovered via yeast genome analysis. In addition, a number of genes essential for synthesis of the variety of fatty acids in yeast have been cloned. Advances in understanding such processes in S. cerevisiae will provide helpful insights to functional genomics approaches in more complex organisms.
Collapse
Affiliation(s)
- P J Trotter
- The Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
27
|
Leber R, Zenz R, Schröttner K, Fuchsbichler S, Pühringer B, Turnowsky F. A novel sequence element is involved in the transcriptional regulation of expression of the ERG1 (squalene epoxidase) gene in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:914-24. [PMID: 11179957 DOI: 10.1046/j.1432-1327.2001.01940.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Squalene epoxidase is an essential enzyme in the ergosterol-biosynthesis pathway. It catalyzes the epoxidation of squalene to 2,3-oxidosqualene and is the specific target of the antifungal drug terbinafine. Treatment of yeast cells with this inhibitor leads to squalene accumulation and sterol depletion. As ergosterol fulfils several essential functions, each requiring optimal sterol concentrations, synthesis of sterols in yeast must be tightly regulated. This study focuses on the sterol-mediated regulation of expression of the ERG1 gene, which codes for squalene epoxidase in Saccharomyces cerevisiae. Inhibition of ergosterol biosynthesis with terbinafine increases the expression of ERG1 in a concentration-dependent manner to a maximum of sevenfold. Inhibition of later steps in the ergosterol-biosynthetic pathway by ketoconazole, an inhibitor of the lanosterol-14alpha-demethylase, and U18666A, an inhibitor of the squalene-2,3-epoxide-lanosterol cyclase, also induce expression of ERG1, suggesting that ERG1 expression is positively regulated by diminished intracellular ergosterol levels. The regulatory effect of sterols is manifested at the level of transcription. Deletion analysis of the ERG1 promoter identified a novel regulatory DNA sequence element. Two 6-bp direct repeats, separated by 4 bp, AGCTCGGCCGAGCTCG, are unique to the ERG1 promoter. A DNA fragment containing this region confers ergosterol-regulated expression on an otherwise unregulated CYC1 promoter construction. One copy of the 6-bp element, AGCTCG, is sufficient to confer regulation, albeit less effectively than when both elements are present, whereas the removal of both elements from the ERG1 promoter leads to the loss of sterol-dependent ERG1 regulation.
Collapse
Affiliation(s)
- R Leber
- Institut für Molekularbiologie, Biochemie und Mikrobiologie, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | | | |
Collapse
|
28
|
Gurvitz A, Hamilton B, Ruis H, Hartig A. Peroxisomal degradation of trans-unsaturated fatty acids in the yeast Saccharomyces cerevisiae. J Biol Chem 2001; 276:895-903. [PMID: 11032827 DOI: 10.1074/jbc.m003305200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Degradation of trans-unsaturated fatty acids was studied in the yeast Saccharomyces cerevisiae. Propagation of yeast cells on trans-9 elaidic acid medium resulted in transcriptional up-regulation of the SPS19 gene, whose promoter contains an oleate response element. This up-regulation depended on the Pip2p-Oaf1p transcription factor and was accompanied by induction of import-competent peroxisomes. Utilization of trans fatty acids as a single carbon and energy source was evaluated by monitoring the formation of clear zones around cell growth on turbid media containing fatty acids dispersed with Tween 80. For metabolizing odd-numbered trans double bonds, cells required the beta-oxidation auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase Eci1p. Metabolism of the corresponding even-numbered double bonds proceeded in the absence of Sps19p (2,4-dienoyl-CoA reductase) and Dci1p (Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase). trans-2,trans-4-Dienoyl-CoAs could enter beta-oxidation directly via Fox2p (2-enoyl-CoA hydratase 2 and d-specific 3-hydroxyacyl-CoA dehydrogenase) without the involvement of Sps19p, whereas trans-2,cis-4-dienoyl-CoAs could not. This reductase-independent metabolism of trans-2,trans-4-dienoyl-CoAs resembled the situation postulated for mammalian mitochondria in which oleic acid is degraded through a di-isomerase-dependent pathway. In this hypothetical process, trans-2,trans-4-dienoyl-CoA metabolites are generated by Delta(3)-Delta(2)-enoyl-CoA isomerase and Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase and are degraded by 2-enoyl-CoA hydratase 1 in the absence of 2,4-dienoyl-CoA reductase. Growth of a yeast fox2sps19Delta mutant in which Fox2p was exchanged with rat peroxisomal multifunctional enzyme type 1 on trans-9,trans-12 linolelaidic acid medium gave credence to this theory. We propose an amendment to the current scheme of the carbon flux through beta-oxidation taking into account the dispensability of beta-oxidation auxiliary enzymes for metabolizing trans double bonds at even-numbered positions.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | |
Collapse
|
29
|
Curran BPG, Khalawan SA, Chatterjee MT. Dioctyl phthalate increases the percentage of unsaturated fatty acids with a concomitant decrease in cellular heat shock sensitivity in the yeast Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 2000; 146 ( Pt 10):2679-2684. [PMID: 11021943 DOI: 10.1099/00221287-146-10-2679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the past it has been reproducibly demonstrated that 37 degrees C-grown DBY747 yeast cells have 29% more unsaturated fatty acids and a 3 degrees C higher maximal heat shock response (HSR) than their 25 degrees C counterparts. Suddenly the HSR and lipid profiles of cells grown at 25 degrees C and 37 degrees C became indistinguishable from one another. This paper reports an aberrantly high level of unsaturated fatty acids and an abnormally insensitive HSR in cells grown at 25 degrees C in yeast nitrogen base (YNB) that has been reconstituted from dehydrated medium packaged in 'new' plastic containers. Effective even at a 1:600 dilution of reconstituted medium in laboratory-made YNB, the 'active ingredient' was identified using a combination of HPLC and mass spectroscopy as dioctyl phthalate (a plasticising agent). Furthermore, the same levels of increase in the percentage of unsaturated fatty acids and decrease in the sensitivity of HSR were found in cells grown in laboratory-made YNB that contained as little as 36 microM pure dioctyl phthalate. This compound nevertheless failed to elicit an observable effect on cellular growth rate at levels up to and including 144 microM. These results suggest that dioctyl phthalate causes yeast cells to accumulate high levels of unsaturated fatty acids with a concomitant decrease in the sensitivity of the HSR, without compromising overall cellular function. They also support earlier work that suggested that the HSR is exquisitely sensitive to the level of unsaturated fatty acids present in yeast cells.
Collapse
Affiliation(s)
- Brendan P G Curran
- School of Biological Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK1
| | - Seunath A Khalawan
- School of Biological Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK1
| | - Mahua T Chatterjee
- School of Biological Sciences, Queen Mary and Westfield College, Mile End Road, London E1 4NS, UK1
| |
Collapse
|
30
|
Gurvitz A, Wabnegger L, Rottensteiner H, Dawes IW, Hartig A, Ruis H, Hamilton B. Adr1p-dependent regulation of the oleic acid-inducible yeast gene SPS19 encoding the peroxisomal beta-oxidation auxiliary enzyme 2,4-dienoyl-CoA reductase. MOLECULAR CELL BIOLOGY RESEARCH COMMUNICATIONS : MCBRC 2000; 4:81-9. [PMID: 11170837 DOI: 10.1006/mcbr.2000.0261] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of Saccharomyces cerevisiae Adr1p was examined with respect to the transcriptional regulation of the SPS19 gene encoding the peroxisomal beta-oxidation auxiliary enzyme 2,4-dienoyl-CoA reductase. The SPS19 promoter contains both an oleate response element that binds the Pip2p-Oaf1p transcription factor as well as a canonical Adr1p-binding element, termed UAS1(SPS19). Northern analysis demonstrated that transcriptional up-regulation of SPS19 was abolished in cells devoid of Adr1p. Expression of an SPS19-lacZ reporter gene was shown to be quiescent in the adr1Delta mutant and abnormally elevated in cells containing multiple ADR1 copies. UAS1(SPS19) was able to compete for formation of a specific complex between recombinant Adr1p-LacZ and UAS1(CTA1) representing the corresponding Adr1p-binding element in the promoter of the catalase A gene, and to interact directly with this fusion protein. We conclude that in the presence of fatty acids in the medium transcription of SPS19 is directly regulated by both Pip2p-Oaf1p and Adr1p.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie, Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
31
|
Smith JJ, Brown TW, Eitzen GA, Rachubinski RA. Regulation of peroxisome size and number by fatty acid beta -oxidation in the yeast yarrowia lipolytica. J Biol Chem 2000; 275:20168-78. [PMID: 10787422 DOI: 10.1074/jbc.m909285199] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Yarrowia lipolytica MFE2 gene encodes peroxisomal beta-oxidation multifunctional enzyme type 2 (MFE2). MFE2 is peroxisomal in a wild-type strain but is cytosolic in a strain lacking the peroxisomal targeting signal-1 (PTS1) receptor. MFE2 has a PTS1, Ala-Lys-Leu, that is essential for targeting to peroxisomes. MFE2 lacking a PTS1 can apparently oligomerize with full-length MFE2 to enable targetting to peroxisomes. Peroxisomes of an oleic acid-induced MFE2 deletion strain, mfe2-KO, are larger and more abundant than those of the wild-type strain. Under growth conditions not requiring peroxisomes, peroxisomes of mfe2-KO are larger but less abundant than those of the wild-type strain, suggesting a role for MFE2 in the regulation of peroxisome size and number. A nonfunctional version of MFE2 did not restore normal peroxisome morphology to mfe2-KO cells, indicating that their phenotype is not due to the absence of MFE2. mfe2-KO cells contain higher amounts of beta-oxidation enzymes than do wild-type cells. We also show that increasing the level of the beta-oxidation enzyme thiolase results in enlarged peroxisomes. Our results implicate peroxisomal beta-oxidation in the control of peroxisome size and number in yeast.
Collapse
Affiliation(s)
- J J Smith
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Recent studies have shown that increased hepatic gluconeogenesis is the predominant contributor to fasting hyperglycemia - the hallmark of type 2 diabetes. Although it has been known for a long time that over-supply of fat is able to stimulate gluconeogenesis both in-vitro and in-vivo, neither the leading substrate nor the mechanism responsible for this phenomenon have been fully identified. Recent observations that the glyoxylate pathway may exist in animals has shed light on this question. The glyoxylate pathway is able to convert fatty acid into glucose but has been thought to be absent in animals. Although further evidence is needed, current available data does suggest a possible mechanism which, by integrating both glucose and lipid metabolism together rather than interpreting them separately, may explain the role of fatty acids in hepatic insulin resistance. This hypothesis is based on current understanding of insulin resistance and supported by many laboratory observations.
Collapse
Affiliation(s)
- S Song
- Department of Medicine, University of Melbourne, Australia
| |
Collapse
|
33
|
Karpichev IV, Small GM. Evidence for a novel pathway for the targeting of a Saccharomyces cerevisiae peroxisomal protein belonging to the isomerase/hydratase family. J Cell Sci 2000; 113 ( Pt 3):533-44. [PMID: 10639339 DOI: 10.1242/jcs.113.3.533] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We, and others, have identified a novel Saccharomyces cerevisiae peroxisomal protein that belongs to the isomerase/hydratase family. The protein, named Dci1p, shares 50% identity with Eci1p, a delta(3)-cis-delta(2)-trans-enoyl-CoA isomerase that acts as an auxiliary enzyme in the beta-oxidation of unsaturated fatty acids. Both of these proteins are localized to peroxisomes, and both contain motifs at their amino- and carboxyl termini that resemble peroxisome targeting signals (PTS) 1 and 2. However, we demonstrate that the putative type 1 signaling motif is not required for the peroxisomal localization of either of these proteins. Furthermore, the correct targeting of Eci1p and Dci1p occurs in the absence of the receptors for the type 1 or type 2 peroxisome targeting pathway. Together, these data suggest a novel mechanism for the intracellular targeting of these peroxisomal proteins.
Collapse
Affiliation(s)
- I V Karpichev
- Department of Cell Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
34
|
Wang H, Le Dall MT, Waché Y, Laroche C, Belin JM, Nicaud JM. Cloning, sequencing, and characterization of five genes coding for acyl-CoA oxidase isozymes in the yeast Yarrowia lipolytica. Cell Biochem Biophys 1999; 31:165-74. [PMID: 10593257 DOI: 10.1007/bf02738170] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Acyl-CoA oxidase (AOX) isozymes catalyze the first steps of peroxisomal beta-oxidation, which is important for the degradation of fatty acids. Using conserved blocks in previously identified yeast POX genes encoding AOXs, the authors have shown that five POX genes are present in the yeast Yarrowia lipolytica. These genes show approx 63% identity among themselves, and 42% identity with the POX genes from other yeasts. Mono-disrupted Y. lipolytica strains were constructed using a variation of the sticky-end polymerase chain reaction method. AOX activity in the mono-disrupted strains revealed that a long-chain oxidase is encoded by the POX2 gene and a short-chain oxidase by the POX3 gene.
Collapse
Affiliation(s)
- H Wang
- Laboratoire de Génétique des Microorganismes, INRA-CNRS, Centre de Biotechnologie Agro Industriel, INA-PG, Thiverval Grignon, France
| | | | | | | | | | | |
Collapse
|
35
|
Gurvitz A, Mursula AM, Yagi AI, Hartig A, Ruis H, Rottensteiner H, Hiltunen JK. Alternatives to the isomerase-dependent pathway for the beta-oxidation of oleic acid are dispensable in Saccharomyces cerevisiae. Identification of YOR180c/DCI1 encoding peroxisomal delta(3,5)-delta(2,4)-dienoyl-CoA isomerase. J Biol Chem 1999; 274:24514-21. [PMID: 10455114 DOI: 10.1074/jbc.274.35.24514] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acids with double bonds at odd-numbered positions such as oleic acid can enter beta-oxidation via a pathway relying solely on the auxiliary enzyme Delta(3)-Delta(2)-enoyl-CoA isomerase, termed the isomerase-dependent pathway. Two novel alternative pathways have recently been postulated to exist in mammals, and these additionally depend on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase (di-isomerase-dependent) or on Delta(3,5)-Delta(2,4)-dienoyl-CoA isomerase and 2,4-dienoyl-CoA reductase (reductase-dependent). We report the identification of the Saccharomyces cerevisiae oleic acid-inducible DCI1 (YOR180c) gene encoding peroxisomal di-isomerase. Enzyme assays conducted on soluble extracts derived from yeast cells overproducing Dci1p using 3,5,8,11,14-eicosapentenoyl-CoA as substrate demonstrated a specific di-isomerase activity of 6 nmol x min(-1) per mg of protein. Similarly enriched extracts from eci1Delta cells lacking peroxisomal 3,2-isomerase additionally contained an intrinsic 3,2-isomerase activity that could generate 3, 5,8,11,14-eicosapentenoyl-CoA from 2,5,8,11,14-eicosapentenoyl-CoA but not metabolize trans-3-hexenoyl-CoA. Amplification of this intrinsic activity replaced Eci1p since it restored growth of the eci1Delta strain on petroselinic acid for which di-isomerase is not required whereas Eci1p is. Heterologous expression in yeast of rat di-isomerase resulted in a peroxisomal protein that was enzymatically active but did not re-establish growth of the eci1Delta mutant on oleic acid. A strain devoid of Dci1p grew on oleic acid to wild-type levels, whereas one lacking both Eci1p and Dci1p grew as poorly as the eci1Delta mutant. Hence, we reasoned that yeast di-isomerase does not additionally represent a physiological 3,2-isomerase and that Dci1p and the postulated alternative pathways in which it is entrained are dispensable for degrading oleic acid.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Baumgartner U, Hamilton B, Piskacek M, Ruis H, Rottensteiner H. Functional analysis of the Zn(2)Cys(6) transcription factors Oaf1p and Pip2p. Different roles in fatty acid induction of beta-oxidation in Saccharomyces cerevisiae. J Biol Chem 1999; 274:22208-16. [PMID: 10428786 DOI: 10.1074/jbc.274.32.22208] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fatty acid induction of the peroxisomal beta-oxidation machinery in Saccharomyces cerevisiae involves transcriptional control of genes regulated by the oleate response element (ORE). Glucose as the preferred carbon source antagonizes this effect. Induction is dependent on the Zn(2)Cys(6) family members Oaf1p and Pip2p, which bind to this element as a heterodimer. We show here by ectopically expressing both components and LexA fusion derivatives that this transcription factor complex is only active in the presence of oleate. In contrast to Pip2p, Oaf1p is responsive to oleate activation in the absence of the other component of the heterodimer. Therefore, it is the exclusive receptor of the oleate signal. Pip2p is active also under noninducing conditions but is effectively inhibited when complexed with Oaf1p in the absence of inducer. It contributes to the trans-activation properties of the Oaf1p-Pip2p heterodimer and is required for efficient binding of Oaf1p to OREs in vivo. Repression of ORE-dependent transcription by glucose occurs via both Oaf1p and Pip2p. By dissecting functional domains of both proteins, we identified a region required for regulated activity of the C-terminal activation domain. These findings allow us to postulate a model for carbon source-regulated transcription of peroxisomal protein genes.
Collapse
Affiliation(s)
- U Baumgartner
- Vienna Biocenter, Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Dr. Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | | | |
Collapse
|
37
|
Gurvitz A, Mursula AM, Firzinger A, Hamilton B, Kilpeläinen SH, Hartig A, Ruis H, Hiltunen JK, Rottensteiner H. Peroxisomal Delta3-cis-Delta2-trans-enoyl-CoA isomerase encoded by ECI1 is required for growth of the yeast Saccharomyces cerevisiae on unsaturated fatty acids. J Biol Chem 1998; 273:31366-74. [PMID: 9813046 DOI: 10.1074/jbc.273.47.31366] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified the Saccharomyces cerevisiae gene ECI1 encoding Delta3-cis-Delta2-trans-enoyl-CoA isomerase that acts as an auxiliary enzyme in the beta-oxidation of (poly)unsaturated fatty acids. A mutant devoid of Eci1p was unable to grow on media containing unsaturated fatty acids such as oleic acid but was proficient for growth when a saturated fatty acid such as palmitic acid was the sole carbon source. Levels of ECI1 transcript were elevated in cells grown on oleic acid medium due to the presence in the ECI1 promoter of an oleate response element that bound the transcription factors Pip2p and Oaf1p. Eci1p was heterologously expressed in Escherichia coli and purified to homogeneity. It was found to be a hexameric protein with a subunit of molecular mass 32, 000 Da that converted 3-hexenoyl-CoA to trans-2-hexenoyl-CoA. Eci1p is the only known member of the hydratase/isomerase protein family with isomerase and/or 2-enoyl-CoA hydratase 1 activities that does not contain a conserved glutamate at its active site. Using a green fluorescent protein fusion, Eci1p was shown to be located in peroxisomes of wild-type yeast cells. Rat peroxisomal multifunctional enzyme type I containing Delta3-cis-Delta2-trans-enoyl-CoA isomerase activity was expressed in ECI1-deleted yeast cells, and this restored growth on oleic acid.
Collapse
Affiliation(s)
- A Gurvitz
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann Forschungsstelle für Biochemie, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Phelan SA, Johnson KA, Beier DR, Paigen B. Characterization of the murine gene encoding Aop2 (antioxidant protein 2) and identification of two highly related genes. Genomics 1998; 54:132-9. [PMID: 9806838 DOI: 10.1006/geno.1998.5568] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse Aop2 (antioxidant protein 2) cDNA recently cloned from liver and kidney is a member of the thiol-specific antioxidant gene family. We have isolated the mouse gene encoding Aop2 and have shown that it comprises five exons and four introns. Analysis of the sequence upstream of the translation start site revealed several potential Sp1-binding sites and two putative transcription initiation sites. Primer extension studies were used to determine the 5' end of the Aop2 transcript. This upstream region also contains consensus recognition sequences for the transcription factors USF, SREBP, and ADR1, all of which have been shown to regulate genes involved in lipid metabolism, and multiple consensus binding sites for HSF, whose activity is modulated by oxidative stress. Since Aop2 has recently been proposed as a candidate gene for atherosclerosis susceptibility differences in mice, the presence of these binding sites may have biological significance. We also isolated two highly related intronless genes and determined their chromosomal locations. Further characterization of this highly conserved gene family and its regulation will help to elucidate their biological functions.
Collapse
Affiliation(s)
- S A Phelan
- The Jackson Laboratory, Bar Harbor, Maine, 04609, USA.
| | | | | | | |
Collapse
|
39
|
Karpichev IV, Small GM. Global regulatory functions of Oaf1p and Pip2p (Oaf2p), transcription factors that regulate genes encoding peroxisomal proteins in Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:6560-70. [PMID: 9774671 PMCID: PMC109241 DOI: 10.1128/mcb.18.11.6560] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two transcription factors, Oaf1p and Pip2p (Oaf2p), are key components in the pathway by which several Saccharomyces cerevisiae genes encoding peroxisomal proteins are activated in the presence of a fatty acid such as oleate. By searching the S. cerevisiae genomic database for the consensus sequence that acts as a target for these transcription factors, we identified 40 genes that contain a putative Oaf1p-Pip2p binding site in their promoter region. Quantitative Northern analysis confirmed that the expression of 22 of the genes identified is induced by oleate and that either one or both of these transcription factors are required for the activation. In addition to known peroxisomal proteins, the regulated genes encode novel peroxisomal proteins, a mitochondrial protein, and proteins of unknown location and function. We demonstrate that Oaf1p regulates certain genes in the absence of Pip2p and that both of these transcription factors play a role in maintaining the glucose-repressed state of one gene. Furthermore, we provide evidence that the defined consensus binding site is not required for the regulation of certain oleate-responsive genes.
Collapse
Affiliation(s)
- I V Karpichev
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
40
|
Wang H, Le Clainche A, Le Dall MT, Wache Y, Pagot Y, Belin JM, Gaillardin C, Nicaud JM. Cloning and characterization of the peroxisomal acyl CoA oxidase ACO3 gene from the alkane-utilizing yeast Yarrowia lipolytica. Yeast 1998; 14:1373-86. [PMID: 9848229 DOI: 10.1002/(sici)1097-0061(199811)14:15<1373::aid-yea332>3.0.co;2-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ACO3 gene, which encodes one of the acyl-CoA oxidase isoenzymes, was isolated from the alkane-utilizing yeast Yarrowia lipolytica as a 10 kb genomic fragment. It was sequenced and found to encode a 701-amino acid protein very similar to other ACOs, 67.5% identical to Y. lipolytica Aco1p and about 40% identical to S. cerevisiae Pox1p. Haploid strains with a disrupted allele were able to grow on fatty acids. The levels of acyl-CoA oxidase activity in the ACO3 deleted strain, in an ACO1 deleted strain and in the wild-type strain, suggested that ACO3 encodes a short chain acyl-CoA oxidase isoenzyme. This narrow substrate spectrum was confirmed by expression of Aco3p in E. coli.
Collapse
Affiliation(s)
- H Wang
- Laboratoire de Génétique des Microorganismes, CNRS ERS567, INRA Centre de Grignon, Thiverval Grignon, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated.
Collapse
Affiliation(s)
- J M Gancedo
- Instituto de Investigaciones Biomédicas, Unidad de Bioquímica y Genética de Levaduras, CSIC, 28029 Madrid, Spain.
| |
Collapse
|
42
|
Brocard C, Lametschwandtner G, Koudelka R, Hartig A. Pex14p is a member of the protein linkage map of Pex5p. EMBO J 1997; 16:5491-500. [PMID: 9312008 PMCID: PMC1170181 DOI: 10.1093/emboj/16.18.5491] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To identify members of the translocation machinery for peroxisomal proteins, we made use of the two-hybrid system to establish a protein linkage map centered around Pex5p from Saccharomyces cerevisiae, the receptor for the C-terminal peroxisomal targeting signal (PTS1). Among the five interaction partners identified, Pex14p was found to be induced under conditions allowing peroxisome proliferation. Deletion of the corresponding gene resulted in the inability of yeast cells to grow on oleate as well as the absence of peroxisomal structures. The PEX14 gene product of approximately 38 kDa was biochemically and ultrastructurally demonstrated to be a peroxisomal membrane protein, despite the lack of a membrane-spanning domain. This protein was shown to interact with itself, with Pex13p and with both PTS receptors, Pex5p and Pex7p, indicating a central function for the import of peroxisomal matrix proteins, either as a docking protein or as a releasing factor at the organellar membrane.
Collapse
Affiliation(s)
- C Brocard
- Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Vienna Biocenter, Dr. Bohrgasse 9, A-1030 Wien, Austria
| | | | | | | |
Collapse
|
43
|
Gurvitz A, Rottensteiner H, Kilpeläinen SH, Hartig A, Hiltunen JK, Binder M, Dawes IW, Hamilton B. The Saccharomyces cerevisiae peroxisomal 2,4-dienoyl-CoA reductase is encoded by the oleate-inducible gene SPS19. J Biol Chem 1997; 272:22140-7. [PMID: 9268358 DOI: 10.1074/jbc.272.35.22140] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
beta-Oxidation is compartmentalized in mammals into both mitochondria and peroxisomes. Fatty acids with double bonds at even-numbered positions require for their degradation the auxiliary enzyme 2,4-dienoyl-CoA reductase, and at least three isoforms, two mitochondrial and one peroxisomal, exist in the rat. The Saccharomyces cerevisiae Sps19p is 34% similar to the human and rat mitochondrial reductases, and an SPS19 deleted strain was unable to utilize petroselineate (cis-C18:1(6)) as the sole carbon source, but remained viable on oleate (cis-C18:1(9)). Sps19p was purified to homogeneity from oleate-induced cells and the homodimeric enzyme (native molecular weight 69,000) converted 2,4-hexadienoyl-CoA into 3-hexenoyl-CoA in an NADPH-dependent manner and therefore contained 2,4-dienoyl-CoA reductase activity. Antibodies raised against Sps19p decorated the peroxisomal matrix of oleate-induced cells. SPS19 shares with the sporulation-specific SPS18 a common promoter region that contains an oleate response element. This element unidirectionally regulates transcription of the reductase and is sufficient for oleate induction of a promoterless CYC1-lacZ reporter gene. SPS19 is dispensable for growth and sporulation on solid acetate and oleate media, but is essential for these processes to occur on petroselineate.
Collapse
Affiliation(s)
- A Gurvitz
- School of Biochemistry and Molecular Genetics, University of New South Wales, Sydney NSW 2052, Australia
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Rottensteiner H, Kal AJ, Hamilton B, Ruis H, Tabak HF. A heterodimer of the Zn2Cys6 transcription factors Pip2p and Oaf1p controls induction of genes encoding peroxisomal proteins in Saccharomyces cerevisiae. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:776-83. [PMID: 9288897 DOI: 10.1111/j.1432-1033.1997.00776.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the yeast Saccharomyces cerevisiae, two transcriptional activators belonging to the Zn2Cys6 protein family, Pip2p and Oaf1p, are involved in fatty-acid-dependent induction of genes encoding peroxisomal proteins. This induction is mediated via an upstream activation sequence called the oleate-response element (ORE). DNA-bandshift experiments with ORE probes and epitope-tagged proteins showed that two binary complexes occurred: in wild-type cells the major complex consisted of a Pip2p x Oaf1p heterodimer, but in cells in which Oaf1p was overexpressed an Oaf1p homodimer was also observed. The genes encoding Oaf1p and Pip2p were controlled in different ways. The OAF1 gene was constitutively expressed, while the PIP2 gene was induced upon growth on oleate, giving rise to positive autoregulatory control. We have shown that the Pip2p x Oaf1p heterodimer is responsible for the strong expression of the genes encoding peroxisomal proteins upon growth on oleate. Pip2p and Oaf1p form an example of a heterodimere of yeast Zn2Cys6 zinc-finger proteins binding to DNA.
Collapse
Affiliation(s)
- H Rottensteiner
- Vienna Biocenter, Institut für Biochemie und Molekulare Zellbiologie der Universität Wien and Ludwig Boltzmann-Forschungsstelle für Biochemie, Austria
| | | | | | | | | |
Collapse
|
45
|
Karpichev IV, Luo Y, Marians RC, Small GM. A complex containing two transcription factors regulates peroxisome proliferation and the coordinate induction of beta-oxidation enzymes in Saccharomyces cerevisiae. Mol Cell Biol 1997; 17:69-80. [PMID: 8972187 PMCID: PMC231731 DOI: 10.1128/mcb.17.1.69] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Expression of the POX1 gene, which encodes peroxisomal acyl coenzyme A oxidase in the yeast Saccharomyces cerevisiae, is tightly regulated and can be induced by fatty acids such as oleate. Previously we have shown that this regulation is brought about by interactions between trans-acting factor(s) and an upstream activating sequence (UAS1) in the POX1 promoter. We recently identified and isolated a transcription factor, Oaf1p, that binds to the UAS1 of POX1 and mediates its induction. A screening strategy has been developed and used to identify eight S. cerevisiae mutants, from three complementation groups, that are defective in the oleate induction of POX1. Characterization of one such mutant led to the identification of Oaf2p, a protein that is 39% identical to Oaf1p. Oaf1p and Oaf2p form a protein complex that is required for the activation of POX1 and FOX3 and for proliferation of peroxisomes. We propose a model in which these two transcription factors heterodimerize and mediate this activation process. The mutants that we have isolated, and further identification of the corresponding defective genes, provide us with an opportunity to characterize the mechanisms involved in the coordinate regulation of peroxisomal beta-oxidation enzymes.
Collapse
Affiliation(s)
- I V Karpichev
- Department of Cell Biology and Anatomy, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
46
|
Affiliation(s)
- C Brocard
- Institut für Biochemie und Molekulare Zellbiologie, Universität Wein, Austria
| | | | | | | |
Collapse
|
47
|
Shani N, Valle D. A Saccharomyces cerevisiae homolog of the human adrenoleukodystrophy transporter is a heterodimer of two half ATP-binding cassette transporters. Proc Natl Acad Sci U S A 1996; 93:11901-6. [PMID: 8876235 PMCID: PMC38156 DOI: 10.1073/pnas.93.21.11901] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The adrenoleukodystrophy protein (ALDP) and the 70-kDa peroxisomal membrane protein (PMP70) are half ATP-binding cassette (ABC) transporters in the human peroxisome membrane. ALDP and PMP70 share sequence homology and both are implicated in genetic diseases. PXA1 and YKL741 are Saccharomyces cerevisiae genes that encode homologs of ALDP and PMP70. Pxa1p, a putative ortholog of ALDP, is involved in peroxisomal beta-oxidation of fatty acids while YKL741 is an open reading frame found by the yeast genome sequencing project. Here we designate YKL741 as PXA2 and show that its protein product, Pxa2p, like Pxa1p, is associated with peroxisomes but not required for their assembly. Yeast strains carrying gene disruption of PXA1, PXA2, or both have similar and, in the case of the latter, nonadditive phenotypes. We also find that the stability of Pxa1p, but not Pxa2p, is markedly reduced in the absence of the other. Finally, we find that Pxa1p and Pxa2p coimmuno-precipitate. These genetic and physical data suggest that Pxa1p and Pxa2p heterodimerize to form a complete peroxisomal ABC transporter involved in fatty acid beta-oxidation. This result predicts the presence of similar heterodimeric ABC transporters in the mammalian peroxisome membrane.
Collapse
Affiliation(s)
- N Shani
- Kennedy Krieger Institute, Baltimore, MD, USA
| | | |
Collapse
|
48
|
Igual JC, Navarro B. Respiration and low cAMP-dependent protein kinase activity are required for high-level expression of the peroxisomal thiolase gene in Saccharomyces cerevisiae. MOLECULAR & GENERAL GENETICS : MGG 1996; 252:446-55. [PMID: 8879246 DOI: 10.1007/bf02173010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Transcription of genes for peroxisomal proteins is repressed by glucose and induced by oleate. At least for the peroxisomal thiolase gene (POT1) there is a third regulatory mechanism, mediated by the transcription factor Adr1p, which is responsible for the high-level expression of the gene in stationary phase. Here we show that a region in the POT1 promoter that extends from positions -238 to -152 mediates this mechanism, and we suggest that Adr1p acts indirectly on POT1. We have also analyzed the role of the cAMP-dependent protein kinase (PKA) in the transcriptional regulation of POT1. PKA exerts a negative control: the high, unregulated PKA activity in a bcy1 mutant maintains POT1 transcription at the repressed level. In a ras2 mutant, which has low PKA activity, glucose repression is not alleviated but in non-repressing conditions POT1 regulation is perturbed and expression prematurely increases during exponential phase. This suggests that the PKA signalling pathway controls the regulation of POT1 in stationary phase. Finally, we have found that Adr1p-dependent expression in stationary phase and induction by oleate are both abolished when respiration is blocked. Utilization of fatty acids as carbon source requires respiration. Our result points to the existence of mechanisms that co-ordinate the level of expression of thiolase and the functional state of the mitochondria.
Collapse
Affiliation(s)
- J C Igual
- Department de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de València, Butjassot, Spain
| | | |
Collapse
|
49
|
Binder M, Hartig A, Sata T. Immunogold labeling of yeast cells: an efficient tool for the study of protein targeting and morphological alterations due to overexpression and inactivation of genes. Histochem Cell Biol 1996; 106:115-30. [PMID: 8858371 DOI: 10.1007/bf02473206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Immunogold labeling on Lowicryl HM20 resin sections is a valuable complement to biochemical methods as well as methods of molecular biology in the study of basic mechanisms in the yeast system. This contribution presents an overview of the state of the art. Emphasis is put on the explanation of caveats and pitfalls rather than on detailed bench protocols. In the Applications section the morphological aspect of genetic manipulation is accentuated and links to human pathology are indicated. The morphological consequences of genetic manipulations may gain importance in view of the efforts made to establish gene therapies. In particular, the contribution of immunoelectron microscopy to the elucidation of peroxisomal targeting signals and to the detection and identification of morphological alteration due to overexpressed, mutated or deleted genes in the context of peroxisome biogenesis is described.
Collapse
Affiliation(s)
- M Binder
- Vienna Biocenter, Institut für Biochemie und Molekulare Zellbiologie der Universität Wien, Austria.
| | | | | |
Collapse
|
50
|
Rahner A, Schöler A, Martens E, Gollwitzer B, Schüller HJ. Dual influence of the yeast Cat1p (Snf1p) protein kinase on carbon source-dependent transcriptional activation of gluconeogenic genes by the regulatory gene CAT8. Nucleic Acids Res 1996; 24:2331-7. [PMID: 8710504 PMCID: PMC145921 DOI: 10.1093/nar/24.12.2331] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The CSRE (carbon source-responsive element) is a sequence motif responsible for the transcriptional activation of gluconeogenic structural genes in Saccharomyces cerevisiae. We have isolated a regulatory gene, DIL1 (derepression of isocitrate lyase, = CAT8), which is specifically required for derepression of CSRE-dependent genes. Expression of CAT8 is carbon source regulated and requires a functional Cat1p (Snf1p) protein kinase. The derepression defect of CAT8 in a cat1 mutant could be suppressed by a mutant Mig1p repressor protein. Derepression of CAT8 also requires a functional HAP2 gene, suggesting a regulatory connection between respiratory and gluconeogenic genes. Carbon source-dependent protein-CSRE complexes detected in a gel retardation analysis with wild-type extracts were absent in cat8 mutant extracts. However, similar experiments with an epitope-tagged CAT8 gene product in the presence of tag-specific antibodies gave evidence against a direct binding of Cat8p to the CSRE. A constitutively expressed GAL4-CAT8 fusion gene revealed a carbon source-dependent transcriptional activation of a UAS(GAL)-containing reporter gene. Activation mediated by Cat8p was no longer detectable in a cat1 mutant. Thus, biosynthetic control of CAT8 as well as transcriptional activation by Cat8p requires a functional Cat1p protein kinase. A model proposing CAT8 as a specific activator of a transcription factor(s) binding to the CSRE is discussed.
Collapse
Affiliation(s)
- A Rahner
- Institut für Mikrobiologie, Biochemie und Genetik, Lehrstuhl Biochemie, Universität Erlangen/Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|