1
|
Cox LA(T. Risk Analysis Implications of Dose-Response Thresholds for NLRP3 Inflammasome-Mediated Diseases: Respirable Crystalline Silica and Lung Cancer as an Example. Dose Response 2019; 17:1559325819836900. [PMID: 31168301 PMCID: PMC6484684 DOI: 10.1177/1559325819836900] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammation mediates an extraordinarily wide range of diseases. Recent progress in understanding intracellular inflammasome assembly, priming, activation, cytokine signaling, and interactions with mitochondrial reactive oxygen species, lysosome disruption, cell death, and prion-like polymerization and spread of inflammasomes among cells, has potentially profound implications for dose-response modeling. This article discusses mechanisms of exposure concentration and duration thresholds for NOD-like receptor protein 3 (NLRP3)-mediated inflammatory responses and develops a simple biomathematical model of the onset of exposure-related tissue-level chronic inflammation and resulting disease risks, focusing on respirable crystalline silica (RCS) and lung cancer risk as an example. An inflammation-mediated 2-stage clonal expansion model of RCS-induced lung cancer is proposed that explains why relatively low estimated concentrations of RCS (eg, <1 mg/m3) do not increase lung cancer risk and why even high occupational concentrations increase risk only modestly (typically relative risk <2). The model of chronic inflammation implies a dose-response threshold for excess cancer risk, in contrast to traditional linear-no-threshold assumptions. If this implication is correct, then concentrations of crystalline silica (or amphibole asbestos fibers, or other environmental challenges that act via the NLRP3 inflammasome) below the threshold do not cause chronic inflammation and resulting elevated risks of inflammation-mediated diseases.
Collapse
|
2
|
Beckett EM, Cyrs WD, Abelmann A, Monnot AD, Gaffney SH, Finley BL. Derivation of an occupational exposure limit for diacetyl using dose-response data from a chronic animal inhalation exposure study. J Appl Toxicol 2019; 39:688-701. [PMID: 30620996 DOI: 10.1002/jat.3757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022]
Abstract
Occupational exposure limits (OELs) have been previously proposed for diacetyl; however, most of these values are based on worker cohort studies that are known to have several limitations and confounders. In this analysis, an 8 hour time-weighted average (TWA) OEL for diacetyl was derived based on data from a chronic, 2 year animal inhalation study recently released by the US National Toxicology Program. In that study, complete histopathology was conducted on male and female mice and rats exposed to 0, 12.5, 25 or 50 ppm diacetyl. Several responses in the lower respiratory tract of rats (the more sensitive species) were chosen as the critical endpoints of interest. Benchmark concentration (BMC) modeling of these endpoints was used to estimate BMC values associated with a 10% extra risk (BMC10 ) and the associated 95% lower confidence bound (BMCL10 ), which were subsequently converted to human equivalent concentrations (HECs) using a computational fluid dynamics-physiologically based pharmacokinetic (CFD-PBPK) model to account for interspecies dosimetry differences. A composite uncertainty factor of 8.0 was applied to the human equivalent concentration values to yield 8 hour TWA OEL values with a range of 0.16-0.70 ppm. The recommended 8 hour TWA OEL for diacetyl vapor of 0.2 ppm, based on minimal severity of bronchiolar epithelial hyperplasia in the rat, is practical and health-protective.
Collapse
|
3
|
Oliveira PA, Gil da Costa RM, Vasconcelos-Nóbrega C, Arantes-Rodrigues R, Pinto-Leite R. Challenges within vitroandin vivoexperimental models of urinary bladder cancer for novel drug discovery. Expert Opin Drug Discov 2016; 11:599-607. [DOI: 10.1080/17460441.2016.1174690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Wood CE, Hukkanen RR, Sura R, Jacobson-Kram D, Nolte T, Odin M, Cohen SM. Scientific and Regulatory Policy Committee (SRPC) Review*. Toxicol Pathol 2015; 43:760-75. [DOI: 10.1177/0192623315576005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Increased cell proliferation is a central key event in the mode of action for many non-genotoxic carcinogens, and quantitative cell proliferation data play an important role in the cancer risk assessment of many pharmaceutical and environmental compounds. Currently, there is limited unified information on assay standards, reference values, targeted applications, study design issues, and quality control considerations for proliferation data. Here, we review issues in measuring cell proliferation indices, considerations for targeted studies, and applications within current risk assessment frameworks. As the regulatory environment moves toward more prospective evaluations based on quantitative pathway-based models, standardization of proliferation assays will become an increasingly important part of cancer risk assessment. To help address this development, we also discuss the potential role for proliferation data as a component of alternative carcinogenicity testing models. This information should improve consistency of cell proliferation methods and increase efficiency of targeted testing strategies.
Collapse
Affiliation(s)
- Charles E. Wood
- U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | | | | | - David Jacobson-Kram
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Current Affiliation: NDA Partners, LLC, Rochelle, Virginia, USA
| | - Thomas Nolte
- Boehringer Ingelheim Pharma GmbH & Co., KG Development, Biberach an der Riss, Germany
| | | | | |
Collapse
|
5
|
Janakiram NB, Mohammed A, Zhang Y, Brewer M, Bryant T, Lightfoot S, Steele VE, Rao CV. Chemopreventive efficacy of raloxifene, bexarotene, and their combination on the progression of chemically induced colon adenomas to adenocarcinomas in rats. Cancer Prev Res (Phila) 2013; 6:1251-61. [PMID: 24080207 DOI: 10.1158/1940-6207.capr-13-0249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogen receptor (ER)-β signaling is associated positively in colon tumor progression, whereas downregulation or loss of function of retinoid X receptor (RXR)-α occurs in colon tumors. The chemopreventive efficacies of the estrogen antagonist raloxifene and the selective RXR agonist bexarotene were tested individually and in combination, during promotion and progression stages of colon tumorigenesis. Colon tumors were induced in male F344 rats with azoxymethane and at early adenoma stage, groups of rats (36 or 45 per group) were fed diets containing raloxifene (1.5 or 3 ppm), bexarotene (50 or 100 ppm), or their low-dose combinations for 40 weeks. Raloxifene or bexarotene alone significantly suppressed colon adenocarcinoma formation in terms of multiplicities (mean ± SE): control, 3.59 ± 0.25; 1.5 ppm raloxifene, 2.51 ± 0.29 (P < 0.004); 3 ppm raloxifene, 2.14 ± 0.28 (P < 0.0001); 50 ppm bexarotene, 2.25 ± 0.32 (P < 0.001); 100 ppm bexarotene, 2.1 ± 0.27 (P < 0.0001); and 1.5 ppm raloxifene + 50 ppm bexarotene, 1.57 ± 0.21 (P < 0.0001). The low-dose combination caused significant (56%) inhibition of adenocarcinomas as compared with control diet fed rats. Tumors exposed to raloxifene, bexarotene and/or the combination showed significant suppression of proliferating cell nuclear antigen, cyclin D1, and β-catenin with an increased apoptotic cells (3-fold) and p21 expression (3.8-fold) as compared tumors of rats fed control diet. The combination of low doses of raloxifene and bexarotene significantly suppressed the progression of colonic adenomas to adenocarcinomas and may be useful for colon cancer prevention and/or treatment in high-risk individuals.
Collapse
Affiliation(s)
- Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1203, Oklahoma City, OK 73104.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hoenerhoff MJ, Pandiri AR, Snyder SA, Hong HHL, Ton TV, Peddada S, Shockley K, Witt K, Chan P, Rider C, Kooistra L, Nyska A, Sills RC. Hepatocellular carcinomas in B6C3F1 mice treated with Ginkgo biloba extract for two years differ from spontaneous liver tumors in cancer gene mutations and genomic pathways. Toxicol Pathol 2013; 41:826-41. [PMID: 23262642 PMCID: PMC4799723 DOI: 10.1177/0192623312467520] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ginkgo biloba leaf extract (GBE) has been used for centuries in traditional Chinese medicine and today is used as an herbal supplement touted for improving neural function and for its antioxidant and anticancer effects. Herbal supplements have the potential for consumption over extended periods of time, with a general lack of sufficient data on long-term carcinogenicity risk. Exposure of B6C3F1 mice to GBE in the 2-year National Toxicology Program carcinogenicity bioassay resulted in a dose-dependent increase in hepatocellular tumors, including hepatocellular carcinoma (HCC). We show that the mechanism of hepatocarcinogenesis in GBE exposed animals is complex, involving alterations in H-ras and Ctnnb1 mutation spectra, WNT pathway dysregulation, and significantly altered gene expression associated with oncogenesis, HCC development, and chronic xenobiotic and oxidative stress compared to spontaneous HCC. This study provides a molecular context for the genetic changes associated with hepatocarcinogenesis in GBE exposed mice and illustrates the marked differences between these tumors and those arising spontaneously in the B6C3F1 mouse. The molecular changes observed in HCC from GBE-treated animals may be of relevance to those seen in human HCC and other types of cancer, and provide important data on potential mechanisms of GBE hepatocarcinogenesis.
Collapse
Affiliation(s)
- Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences and National Toxicology Program, Research Triangle Park, NC 27519, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Ettlin RA, Kuroda J, Plassmann S, Prentice DE. Successful drug development despite adverse preclinical findings part 1: processes to address issues and most important findings. J Toxicol Pathol 2010; 23:189-211. [PMID: 22272031 PMCID: PMC3234634 DOI: 10.1293/tox.23.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Accepted: 09/06/2010] [Indexed: 01/08/2023] Open
Abstract
Unexpected adverse preclinical findings (APFs) are not infrequently encountered during drug development. Such APFs can be functional disturbances such as QT prolongation, morphological toxicity or carcinogenicity. The latter is of particular concern in conjunction with equivocal genotoxicity results. The toxicologic pathologist plays an important role in recognizing these effects, in helping to characterize them, to evaluate their risk for man, and in proposing measures to mitigate the risk particularly in early clinical trials. A careful scientific evaluation is crucial while termination of the development of a potentially useful drug must be avoided. This first part of the review discusses processes to address unexpected APFs and provides an overview over typical APFs in particular classes of drugs. If the mode of action (MoA) by which a drug candidate produces an APF is known, this supports evaluation of its relevance for humans. Tailor-made mechanistic studies, when needed, must be planned carefully to test one or several hypotheses regarding the potential MoA and to provide further data for risk evaluation. Safety considerations are based on exposure at no-observed-adverse-effect levels (NOAEL) of the most sensitive and relevant animal species and guide dose escalation in clinical trials. The availability of early markers of toxicity for monitoring of humans adds further safety to clinical studies. Risk evaluation is concluded by a weight of evidence analysis (WoE) with an array of parameters including drug use, medical need and alternatives on the market. In the second part of this review relevant examples of APFs will be discussed in more detail.
Collapse
Affiliation(s)
- Robert A. Ettlin
- Ettlin Consulting Ltd., 14 Mittelweg, 4142 Muenchenstein,
Switzerland
| | - Junji Kuroda
- KISSEI Pharmaceutical Co., Ltd., 2320–1 Maki, Hotaka, Azumino,
Nagano 399-8305, Japan
| | - Stephanie Plassmann
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| | - David E. Prentice
- PreClinical Safety (PCS) Consultants Ltd., 7 Gartenstrasse, 4132
Muttenz, Switzerland
| |
Collapse
|
8
|
An enhanced 13-week bioassay: an alternative to the 2-year bioassay to screen for human carcinogenesis. ACTA ACUST UNITED AC 2009; 62:497-502. [PMID: 19616417 DOI: 10.1016/j.etp.2009.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/27/2009] [Indexed: 12/17/2022]
Abstract
The 2-year rodent bioassay has become the standard carcinogenicity screen for chemicals, despite concerns of costs, time, and excessive doses. More importantly, there are increasing concerns regarding its relevance to human carcinogenic risk, especially for non-DNA reactive chemicals. Cancer risk can be increased either by direct damage to DNA (DNA reactivity) or by increased cell proliferation. Utilizing the scientific basis for mode of action analysis in the framework that has been developed for extrapolating to human relevance, a short-term screen is proposed as a replacement for the 2-year bioassay. Chemicals are evaluated for DNA reactivity, immunosuppression, and estrogenic activity, known mechanisms of human carcinogenesis, by in vitro and/or in vivo tests. The chemical can then be evaluated for toxicity and/or increased cell proliferation in target tissues. This relies primarily on evaluation of organ weights and histopathology, and also utilizes data from blood and urine chemistries and DNA-labeling indices. Significant concern is raised regarding the relevance of evaluation of tissues that are present in rats or mice but not humans, and the relevance of proliferative responses in rodent endocrine tissues. In developing alternative procedures to evaluate chemicals for possible carcinogenic activity in humans, it is important not to rely on the 2-year rodent bioassay for validation of the new procedure. It is time to discontinue the performance of the 2-year rodent bioassay.
Collapse
|
9
|
Ceder R, Merne M, Staab CA, Nilsson JA, Höög JO, Dressler D, Engelhart K, Grafström RC. The application of normal, SV40 T-antigen-immortalised and tumour-derived oral keratinocytes, under serum-free conditions, to the study of the probability of cancer progression as a result of environmental exposure to chemicals. Altern Lab Anim 2008; 35:621-39. [PMID: 18186669 DOI: 10.1177/026119290703500603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In vitro models are currently not considered to be suitable replacements for animals in experiments to assess the multiple factors that underlie the development of cancer as a result of environmental exposure to chemicals. An evaluation was conducted on the potential use of normal keratinocytes, the SV40 T-antigen-immortalised keratinocyte cell line, SVpgC2a, and the carcinoma cell line, SqCC/Y1, alone and in combination, and under standardised serum-free culture conditions, to study oral cancer progression. In addition, features considered to be central to cancer development as a result of environmental exposure to chemicals, were analysed. Genomic expression, and enzymatic and functional data from the cell lines reflected many aspects of the transition of normal tissue epithelium, via dysplasia, to full malignancy. The composite cell line model develops aberrances in proliferation, terminal differentiation and apoptosis, in a similar manner to oral cancer progression in vivo. Transcript and protein profiling links aberrations in multiple gene ontologies, molecular networks and tumour biomarker genes (some proposed previously, and some new) in oral carcinoma development. Typical specific changes include the loss of tumour-suppressor p53 function and of sensitivity to retinoids. Environmental agents associated with the aetiology of oral cancer differ in their requirements for metabolic activation, and cause toxic effects to cells in both the normal and the transformed states. The results suggest that the model might be useful for studies on the sensitivity of cells to chemicals at different stages of cancer progression, including many aspects of the integrated roles of cytotoxicity and genotoxicity. Overall, the properties of the SVpgC2a and SqCC/Y1 cell lines, relative to normal epithelial cells in monolayer or organotypic culture, support their potential applicability to mechanistic studies on cancer risk factors, including, in particular, the definition of critical toxicity effects and dose-effect relationships.
Collapse
Affiliation(s)
- Rebecca Ceder
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Seely JC, Hard GC. Chronic Progressive Nephropathy (CPN) in the Rat: Review of Pathology and Relationship to Renal Tumorigenesis. J Toxicol Pathol 2008. [DOI: 10.1293/tox.21.199] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Frijters R, Verhoeven S, Alkema W, van Schaik R, Polman J. Literature-based compound profiling: application to toxicogenomics. Pharmacogenomics 2007; 8:1521-34. [DOI: 10.2217/14622416.8.11.1521] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Introduction: To reduce continuously increasing costs in drug development, adverse effects of drugs need to be detected as early as possible in the process. In recent years, compound-induced gene expression profiling methodologies have been developed to assess compound toxicity, including Gene Ontology term and pathway over-representation analyses. The objective of this study was to introduce an additional approach, in which literature information is used for compound profiling to evaluate compound toxicity and mode of toxicity. Methods: Gene annotations were built by text mining in Medline abstracts for retrieval of co-publications between genes, pathology terms, biological processes and pathways. This literature information was used to generate compound-specific keyword fingerprints, representing over-represented keywords calculated in a set of regulated genes after compound administration. To see whether keyword fingerprints can be used for assessment of compound toxicity, we analyzed microarray data sets of rat liver treated with 11 hepatotoxicants. Results: Analysis of keyword fingerprints of two genotoxic carcinogens, two nongenotoxic carcinogens, two peroxisome proliferators and two randomly generated gene sets, showed that each compound produced a specific keyword fingerprint that correlated with the experimentally observed histopathological events induced by the individual compounds. By contrast, the random sets produced a flat aspecific keyword profile, indicating that the fingerprints induced by the compounds reflect biological events rather than random noise. A more detailed analysis of the keyword profiles of diethylhexylphthalate, dimethylnitrosamine and methapyrilene (MPy) showed that the differences in the keyword fingerprints of these three compounds are based upon known distinct modes of action. Visualization of MPy-linked keywords and MPy-induced genes in a literature network enabled us to construct a mode of toxicity proposal for MPy, which is in agreement with known effects of MPy in literature. Conclusion: Compound keyword fingerprinting based on information retrieved from literature is a powerful approach for compound profiling, allowing evaluation of compound toxicity and analysis of the mode of action.
Collapse
Affiliation(s)
- Raoul Frijters
- Radboud University Nijmegen Medical Centre, Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences (NCMLS), PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Stefan Verhoeven
- Organon NV, Department of Molecular Design & Informatics, PO Box 20, 5340 BH Oss, The Netherlands
| | - Wynand Alkema
- Organon NV, Department of Molecular Design & Informatics, PO Box 20, 5340 BH Oss, The Netherlands
| | - René van Schaik
- Radboud University Nijmegen Medical Centre, Centre for Molecular and Biomolecular Informatics (CMBI), Nijmegen Centre for Molecular Life Sciences (NCMLS), PO Box 9101, 6500 HB Nijmegen, The Netherlands
- Organon NV, Department of Molecular Design & Informatics, PO Box 20, 5340 BH Oss, The Netherlands
| | - Jan Polman
- Organon NV, Department of Molecular Design & Informatics, PO Box 20, 5340 BH Oss, The Netherlands
| |
Collapse
|
12
|
Ellinger-Ziegelbauer H, Stuart B, Wahle B, Bomann W, Ahr HJ. Comparison of the expression profiles induced by genotoxic and nongenotoxic carcinogens in rat liver. Mutat Res 2005; 575:61-84. [PMID: 15890375 DOI: 10.1016/j.mrfmmm.2005.02.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 01/20/2005] [Accepted: 02/23/2005] [Indexed: 05/02/2023]
Abstract
Application of recently developed gene expression techniques using microarrays in toxicological studies (toxicogenomics) facilitate the interpretation of a toxic compound's mode of action and may also allow the prediction of selected toxic effects based on gene expression changes. In order to test this hypothesis, we investigated whether carcinogens at doses known to induce liver tumors in the 2-year rat bioassay deregulate characteristic sets of genes in a short term in vivo study and whether these deregulated genes represent defined biological pathways. Male Wistar rats were dosed with the four nongenotoxic hepatocarcinogens methapyrilene (MPy, 60 mg/kg/day), diethylstilbestrol (DES, 10 mg/kg/day), Wy-14643 (Wy, 60 mg/kg/day), and piperonylbutoxide (PBO, 1200 mg/kg/day). After 1, 3, 7, and 14 days, the livers were taken for histopathological evaluation and for analysis of the gene expression profiles on Affymetrix RG_U34A arrays. The expression profile of the four nongenotoxic carcinogens were compared to the profiles of the four genotoxic carcinogens 2-nitrofluorene (2-NF), dimethylnitrosamine (DMN), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), and aflatoxin B1 (AB1) from a similar study reported previously. By using statistical and clustering tools characteristically deregulated genes were extracted and functionally classified. Distinct cellular pathways were affected by the nongenotoxic carcinogens compared to the genotoxic carcinogens which at least partly correlated with the two-stage model of carcinogenesis. Characteristic to genotoxic carcinogens were a DNA damage response and the activation of proliferative and survival signaling. Nongenotoxic carcinogens showed responses to oxidative DNA or protein damage, as well as cell cycle progression and signs of regeneration. Many of the gene alterations found with the nongenotoxic carcinogens imply compound-specific mechanisms. Although neither a single gene nor a single pathway will be sufficient to discriminate the two classes of carcinogens, it became evident that combinations of pathway-associated gene expression profiles may be used to predict a genotoxic or nongenotoxic carcinogenic potential of a compound in short-term studies.
Collapse
Affiliation(s)
- Heidrun Ellinger-Ziegelbauer
- Bayer Healthcare AG, Department of Molecular and Genetic Toxicology, Aprather Weg 18a, 42096 Wuppertal, Germany.
| | | | | | | | | |
Collapse
|
13
|
Brent RL. Utilization of juvenile animal studies to determine the human effects and risks of environmental toxicants during postnatal developmental stages. ACTA ACUST UNITED AC 2004; 71:303-20. [PMID: 15505806 DOI: 10.1002/bdrb.20020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Toxicology studies utilizing animals and in vitro cellular or tissue preparations have been used to study the toxic effects and mechanism of action of drugs and chemicals and to determine the effective and safe dose of drugs in humans and the risk of toxicity from chemical exposures. Testing in animals could be improved if animal dosing using the mg/kg basis was abandoned and drugs and chemicals were administered to compare the effects of pharmacokinetically and toxicokinetically equivalent serum levels in the animal model and human. Because alert physicians or epidemiology studies, not animal studies, have discovered most human teratogens and toxicities in children, animal studies play a minor role in discovering teratogens and agents that are deleterious to infants and children. In vitro studies play even a less important role, although they are helpful in describing the cellular or tissue effects of the drugs or chemicals and their mechanism of action. One cannot determine the magnitude of human risks from in vitro studies when they are the only source of toxicology data. METHODS Toxicology studies on adult animals is carried out by pharmaceutical companies, chemical companies, the Food and Drug Administration (FDA), many laboratories at the National Institutes of Health, and scientific investigators in laboratories throughout the world. Although there is a vast amount of animal toxicology studies carried out on pregnant animals and adult animals, there is a paucity of animal studies utilizing newborn, infant, and juvenile animals. This deficiency is compounded by the fact that there are very few toxicology studies carried out in children. That is one reason why pregnant women and children are referred to as "therapeutic orphans." RESULTS When animal studies are carried out with newborn and developing animals, the results demonstrate that generalizations are less applicable and less predictable than the toxicology studies in pregnant animals. Although many studies show that infants and developing animals may have difficulty in metabolizing drugs and are more vulnerable to the toxic effects of environmental chemicals, there are exceptions that indicate that infants and developing animals may be less vulnerable and more resilient to some drugs and chemicals. In other words, the generalization indicating that developing animals are always more sensitive to environmental toxicants is not valid. For animal toxicology studies to be useful, animal studies have to utilize modern concepts of pharmacokinetics and toxicokinetics, as well as "mechanism of action" (MOA) studies to determine whether animal data can be utilized for determining human risk. One example is the inability to determine carcinogenic risks in humans for some drugs and chemicals that produce tumors in rodents, When the oncogenesis is the result of peroxisome proliferation, a reaction that is of diminished importance in humans. CONCLUSIONS Scientists can utilize animal studies to study the toxicokinetic and toxicodynamic aspects of drugs and environmental toxicants. But they have to be carried out with the most modern techniques and interpreted with the highest level of scholarship and objectivity. Threshold exposures, no-adverse-effect level (NOAEL) exposures, and toxic effects can be determined in animals, but have to be interpreted with caution when applying them to the human. Adult problems in growth, endocrine dysfunction, neurobehavioral abnormalities, and oncogenesis may be related to exposures to drugs, chemicals, and physical agents during development and may be fruitful areas for investigation. Maximum permissible exposures have to be based on data, not on generalizations that are applied to all drugs and chemicals. Epidemiology studies are still the best methodology for determining the human risk and the effects of environmental toxicants. Carrying out these focused studies in developing humans will be difficult. Animal studies may be our only alternative for answering many questions with regard to specific postnatal developmental vulnerabilities.
Collapse
Affiliation(s)
- Robert L Brent
- Thomas Jefferson University, Alfred I. duPont Hospital for Children, Laboratory of Clinical and Environmental Teratology, Wilmington, Delaware 19899, USA.
| |
Collapse
|
14
|
Meek ME, Beauchamp R, Long G, Moir D, Turner L, Walker M. Chloroform: exposure estimation, hazard characterization, and exposure-response analysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2002; 5:283-334. [PMID: 12162870 DOI: 10.1080/10937400290070080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Chloroform has been assessed as a Priority Substance under the Canadian Environmental Protection Act. The general population in Canada is exposed to chloroform principally through inhalation of indoor air, particularly during showering, and through ingestion of tap water. Data on concentrations of chloroform in various media were sufficient to serve as the basis for development of deterministic and probabilistic estimates of exposure for the general population in Canada. On the basis of data acquired principally in studies in experimental animals, chloroform causes hepatic and renal tumors in mice and renal tumors in rats. The weight of evidence indicates that chloroform is likely carcinogenic only at concentrations that induce the obligatory precursor lesions of cytotoxicity and proliferative regenerative response. Since this cytotoxicity is primarily related to rates of formation of reactive, oxidative metabolites, dose response has been characterized in the context of rates of formation of reactive metabolites in the target tissue. Results presented here are from a "hybrid" physiologically based pharmacokinetic (PBPK) animal model that was revised to permit its extension to humans. The relevant measure of exposure response, namely, the mean rate of metabolism in humans associated with a 5% increase in tumor risk (TC05), was estimated on the basis of this PBPK model and compared with tissue dose measures resulting from 24-h multimedia exposure scenarios for Canadians based on midpoint and 95th percentiles for concentrations in outdoor air, indoor air, air in the shower compartment, air in the bathroom after showering, tap water, and food. Nonneoplastic effects observed most consistently at lowest concentrations or doses following repeated exposures of rats and mice to chloroform are cytotoxicity and regenerative proliferation. As for cancer, target organs are the liver and kidney. In addition, chloroform has induced nasal lesions in rats and mice exposed by both inhalation and ingestion at lowest concentrations or doses. The mean rate of metabolism associated with a 5% increase in fatty cysts estimated on the basis of the PBPK model was compared with tissue dose measures resulting from the scenarios already described, and lowest concentrations reported to induce cellular proliferation in the nasal cavities of rats and mice were compared directly with midpoint and 95th percentile estimates of concentrations of chloroform in indoor air in Canada. The degree of confidence in the underlying database and uncertainties in estimates of exposure and in characterization of hazard and dose response are delineated.
Collapse
Affiliation(s)
- M E Meek
- Existing Substances Division, Environmental Health Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Currently, the majority of substances tested in lifetime bioassays in rodents are not mutagenic and, therefore, at the most weakly carcinogenic, generally by epigenetic mechanisms. It thus appears obvious that only marginal increases of tumour incidences can be expected in lifetime bioassays and that, therefore, every aspect of a potential carcinogenic effect must be thoroughly evaluated. This paper describes a series of key factors, which should be looked at in order to exclude that the lifetime bioassay in question is flawed for design, technical or qualification reasons. It also provides some hints whether there is indeed a real effect and not just a variation of the spontaneous tumour incidences. Tumour findings must be seen in the context of the animal model, the pharmcokinetics and pharmcodynamics of the test substance, as well as any other observation in the present or other studies with the test substance, including non-tumour findings and--in particular--potential precursor lesions and effects on feed intake and survival. The possibility that the observed carcinogenic effects may be species-specific and not relevant for man is discussed. It is also important to check what findings are reported with similar substances or substances with the same pharmacological effect. Data from additional investigations on material of the same study and/or mechanistic studies are often needed to support the final risk assessment.
Collapse
Affiliation(s)
- R A Ettlin
- Novartis Pharma AG, WKL-125.1514, CH-4002 Basel, Switzerland.
| | | |
Collapse
|
16
|
Riley RT, Enongene E, Voss KA, Norred WP, Meredith FI, Sharma RP, Spitsbergen J, Williams DE, Carlson DB, Merrill AH. Sphingolipid perturbations as mechanisms for fumonisin carcinogenesis. ENVIRONMENTAL HEALTH PERSPECTIVES 2001; 109 Suppl 2:301-8. [PMID: 11359699 PMCID: PMC1240679 DOI: 10.1289/ehp.01109s2301] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
There is a great deal of evidence that altered sphingolipid metabolism is associated with fumonisin-induced animal diseases including increased apoptotic and oncotic necrosis, and carcinogenesis in rodent liver and kidney. The biochemical consequences of fumonisin disruption of sphingolipid metabolism most likely to alter cell regulation are increased free sphingoid bases and their 1-phosphates, alterations in complex sphingolipids, and decreased ceramide (CER) biosynthesis. Because free sphingoid bases and CER can induce cell death, the fumonisin inhibition of CER synthase can inhibit cell death induced by CER but promote free sphingoid base-induced cell death. Theoretically, at any time the balance between the intracellular concentration of effectors that protect cells from apoptosis (decreased CER, increased sphingosine 1-phosphate) and those that induce apoptosis (increased CER, free sphingoid bases, altered fatty acids) will determine the cellular response. Because the balance between the rates of apoptosis and proliferation is important in tumorigenesis, cells sensitive to the proliferative effect of decreased CER and increased sphingosine 1-phosphate may be selected to survive and proliferate when free sphingoid base concentration is not growth inhibitory. Conversely, when the increase in free sphingoid bases exceeds a cell's ability to convert sphinganine/sphingosine to dihydroceramide/CER or their sphingoid base 1-phosphate, then free sphingoid bases will accumulate. In this case cells that are sensitive to sphingoid base-induced growth arrest will die and insensitive cells will survive. If the cells selected to die are normal phenotypes and the cells selected to survive are abnormal, then cancer risk will increase.
Collapse
Affiliation(s)
- R T Riley
- USDA-Agricultural Research Service, Athens, Georgia, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hard GC, Whysner J, English JC, Zang E, Williams GM. Relationship of hydroquinone-associated rat renal tumors with spontaneous chronic progressive nephropathy. Toxicol Pathol 1997; 25:132-43. [PMID: 9125771 DOI: 10.1177/019262339702500202] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hydroquinone exposure has been reported by the National Toxicology Program (NTP) to produce renal tubule adenomas and to exacerbate spontaneous chronic progressive nephropathy (CPN) in male F344 rats. A mechanism for hydroquinone-related tumorigenesis has not been established, but CPN is known to involve, and hydroquinone produces, enhanced renal tubule cell proliferation. Through an independent review of the renal histopathology from the NTP study, the grade of CPN and the presence of atypical tubule hyperplasia and adenomas was evaluated. Hydroquinone exposure in males at 50 mg/kg, produced a statistically significant increase in the grade of CPN. At 0, 25, and 50 mg/kg, 0/44, 4/49, and 15/51 male rats had either atypical tubule hyperplasias or adenomas; all were within areas of severe or end-stage CPN and were statistically significantly associated with CPN grade. Additionally, there was a dose-related increase in profiles believed to represent new tubule proliferation within areas of advanced CPN, as well as an apparent expansion of these into unusual complex tubule profiles in end-stage kidneys of the high-dose male group. In summary, this histopathological review suggest a mechanism for hydroquinone-related adenoma formation that includes enhancement of the severity of CPN coupled with stimulation of tubule proliferation.
Collapse
Affiliation(s)
- G C Hard
- American Health Foundation, Valhalla, New York 10595, USA
| | | | | | | | | |
Collapse
|