1
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Shah A, Tauseef I, Yameen MA, Haleem SK, Haq S, Shoukat S. In-vivo toxicity and therapeutic efficacy of Paeonia emodi-mediated zinc oxide nanoparticles: In-vitro study. Microsc Res Tech 2021; 85:181-192. [PMID: 34390521 DOI: 10.1002/jemt.23894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023]
Abstract
This study was planned to explore the in-vitro and in-vivo therapeutic significance of Paeonia emodi-mediated zinc oxide nanoparticles (ZnO NPs) against the Staphylococcus aureus and Escherichia coli. The texture parameters were derived from nitrogen adsorption-desorption data using Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods, and the surface area (SBET ) was found to be 214 m2 /g with a pore size of 2.3 nm. The crystallographic parameters were investigated through X-ray diffraction analysis, and the calculated crystallite size is 29.13 nm. The microstructure was examined through transmission and scanning electron microscopies (TEM and SEM, respectively), and the average particle size estimated from a TEM image is 44.40 nm. The chemical composition and attached function groups were identified through energy-dispersive X-ray and Fourier transform infrared spectroscopies. The in-vitro minimum inhibitory concentration (MIC) for both bacterial species results was found less than 2 μg/ml. The tolerance limit of mouse models was evaluated by the inoculation of different concentrations of ZnO suspension where the concentration above 23 ppm was proved lethal. The maximum infection was caused in mouse models by inoculation of 3 × 107 CFUs (Colony forming unit) of the both bacterial species. The concentration higher than 3 × 107 CFUs led to the ultimate death of the mice. The histopathological and hematological studies reveal that the after simultaneous inoculation of both ZnO NPs and bacterial suspensions (tolerated amount), no/negligible infection was found in the mice model.
Collapse
Affiliation(s)
- Amreen Shah
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, Pakistan
| | - Muhammad Arfat Yameen
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | | | - Sirajul Haq
- Department of Chemistry, University of Azad Jammu and Kashmir, Muzffarabad, Pakistan
| | - Sabeena Shoukat
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
3
|
In-Vitro and In-Vivo Tolerance and Therapeutic Investigations of Phyto-Fabricated Iron Oxide Nanoparticles against Selected Pathogens. TOXICS 2021; 9:toxics9050105. [PMID: 34066825 PMCID: PMC8150543 DOI: 10.3390/toxics9050105] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/14/2022]
Abstract
The Paeonia emodi (P. emodi)-mediated iron oxide nanoparticles (Fe2O3 NPs) were screened for in-vitro and in-vivo antibacterial activity against the Staphylococcus aureus (S. aureus) (ATCC #: 6538) and Escherichia coli (E. coli) (ATCC #:15224). The synthesized Fe2O3 NPs were characterized via nitrogen adsorption-desorption process, X-ray diffractometer (XRD), transmission and scanning electron microscopies (TEM and SEM), energy dispersive X-ray (EDX) and Fourier transform infrared (FTIR) spectroscopies. The SBET was found to be 94.65 m2/g with pore size of 2.99 nm, whereas the average crystallite and particles size are 23 and 27.64 nm, respectively. The 4 μg/mL is the MIC that inhibits the growth of E. coli, whereas those for S. aureus are below the detection limit (<1.76 μg/mL). The tolerance limit of the mice model was inspected by injecting different concentration of Fe2O3 NPs and bacteria suspensions. The 14 ppm suspension was the tolerated dose and the concentration above were proved lethal. The most severe infection was induced in mice with injection of 3 × 107 CFUs of both bacteria, while the inoculation of higher concentrations of bacterial suspensions resulted in the mice's death. The histopathological and hematological studies reveals that the no/negligible infection was found in the mice exposed to the simultaneous inoculation of Fe2O3 NPs (14 ppm) and bacterial suspensions (3 × 107 CFUs).
Collapse
|
4
|
Kathpalia H, Prabhu V, Kathe K, Juvekar S, Shidhaye S. Formulation strategies for effective delivery of Primaquine. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Souto EB, Dias-Ferreira J, Craveiro SA, Severino P, Sanchez-Lopez E, Garcia ML, Silva AM, Souto SB, Mahant S. Therapeutic Interventions for Countering Leishmaniasis and Chagas's Disease: From Traditional Sources to Nanotechnological Systems. Pathogens 2019; 8:pathogens8030119. [PMID: 31374930 PMCID: PMC6789685 DOI: 10.3390/pathogens8030119] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 02/02/2023] Open
Abstract
The incidence of neglected diseases in tropical countries, such as Leishmaniasis and Chagas's disease, is attributed to a set of biological and ecological factors associated with the socioeconomic context of developing countries and with a significant burden to health care systems. Both Leishmaniasis and Chagas's disease are caused by different protozoa and develop diverse symptoms, which depend on the specific species infecting man. Currently available drugs to treat these disorders have limited therapeutic outcomes, frequently due to microorganisms' drug resistance. In recent years, significant efforts have been made towards the development of innovative drug delivery systems aiming to improve bioavailability and pharmacokinetic profiles of classical drug therapy. This paper discusses the key facts of Leishmaniasis and Chagas's disease, the currently available pharmacological therapies and the new drug delivery systems for conventional drugs.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - João Dias-Ferreira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sara A Craveiro
- Faculty of Health Sciences, University Fernando Pessoa, Rua Carlos da Maia, 296, Paranhos, 4200-150 Porto, Portugal
| | - Patrícia Severino
- Laboratory of Nanotechnology and Nanomedicine (LNMED), Institute of Technology and Research (ITP), Av. Murilo Dantas, 300, Aracaju 49010-390, Brazil
- University of Tiradentes (UNIT), Industrial Biotechnology Program, Av. Murilo Dantas 300, Aracaju 49032-490, Brazil
| | - Elena Sanchez-Lopez
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Maria L Garcia
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), University of Barcelona, 08028 Barcelona, Spain
| | - Amélia M Silva
- Departamento de Biologia e Ambiente, Universidade de Trás-os-Montes e Alto Douro (UTAD), P.O. Box 1013; 5001-801 Vila Real, Portugal
- Centro de Investigação e de Tecnologias Agro-Ambientais e Biológicas (CITAB-UTAD), 5001-801 Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of Braga Hospital, Sete Fontes, 4710-243 São Victor, Braga, Portugal
| | - Sheefali Mahant
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana 124001, India
| |
Collapse
|
6
|
Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Shakeel K, Raisuddin S, Ali S, Imam SS, Rahman MA, Jain GK, Ahmad FJ. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J Liposome Res 2017; 29:35-43. [DOI: 10.1080/08982104.2017.1410173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kashif Shakeel
- Department of Pharmaceutics, Jamia Hamdard, New Delhi, India
- Faculty of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi, India
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard, New Delhi, India
| | - Sadath Ali
- Azad Institute of Pharmacy and Research, Lucknow, India
| | - Syed Sarim Imam
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | | | | | | |
Collapse
|
8
|
Thakkar M, Brijesh S. Physicochemical investigation and in vivo activity of anti-malarial drugs co-loaded in Tween 80 niosomes. J Liposome Res 2017; 28:315-321. [DOI: 10.1080/08982104.2017.1376684] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Miloni Thakkar
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Biological Sciences, C. B. Patel Research Centre, Mumbai, India
| | - S. Brijesh
- Sunandan Divatia School of Science, NMIMS (Deemed-to-be) University, Biological Sciences, C. B. Patel Research Centre, Mumbai, India
| |
Collapse
|
9
|
Functionalized PLA-PEG nanoparticles targeting intestinal transporter PepT1 for oral delivery of acyclovir. Int J Pharm 2017; 529:357-370. [DOI: 10.1016/j.ijpharm.2017.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/05/2017] [Accepted: 07/08/2017] [Indexed: 01/12/2023]
|
10
|
Heurtault B, Legrand P, Mosqueira V, Devissaguet JP, Barratt G, Bories C. The antileishmanial properties of surface-modified, primaquine-loaded nanocapsules tested against intramacrophagic Leishmania donovani amastigotes in vitro. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.2001.11813665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Ravikumara NR, Bharadwaj M, Madhusudhan B. Tamoxifen citrate-loaded poly(d,l) lactic acid nanoparticles: Evaluation for their anticancer activity in vitro and in vivo. J Biomater Appl 2016; 31:755-772. [PMID: 27664187 DOI: 10.1177/0885328216670561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The optimization of tamoxifen citrate entrapment and its release from biodegradable poly(d,l) lactic acid nanoparticles are prepared by modified spontaneous emulsification solvent diffusion method. Since the addition of tamoxifen citrate induces the formation of drug crystals from nanoparticle suspension the influence of several parameters on tamoxifen citrate encapsulation was investigated. In vitro studies for cytotoxicity, DNA ladder, and the expression of Bcl-2-Bax expression were also investigated for MCF-7 and MDA-MB-231 cells after the addition of tamoxifen citrate alone and tamoxifen citrate-poly(d,l) lactic acid-nanoparticles (encapsulated tamoxifen citrate). From results, it was noticed that the size and zeta potential of the drug loaded nanoparticles were not differed much in their physicochemical properties from drug free counterparts. The drug-loaded and drug-free nanoparticles exhibited size of in between 271.4 and 282.7 nm and zeta potential of -34 to -27.4 mV, respectively. There was significant increase in drug incorporation in the particles noticed in dichloromethane + methanol system in comparison to acetone + methanol and ethyl acetate + methanol systems. The drug was partly released from the nanoparticles after 48 h of incubation at 37℃. From Fourier transform infrared spectroscopy and differential scanning calorimetry data demonstrated drug-polymer characteristics within the nanoparticles and unincorporated drug that appeared in the form of crystals from polarized microscopic study. MCF-7 and MDA-MB-231 cells were more sensitive to tamoxifen citrate-poly(d,l) lactic acid-nanoparticles than tamoxifen citrate alone. DNA ladder and the expression of Bax to Bcl-2 ratio were much higher in tamoxifen citrate encapsulated in nanoparticles than that in tamoxifen citrate alone. These results demonstrated the feasibility of encapsulation of tamoxifen citrate and its enhanced efficiency in vitro and in vivo studies.
Collapse
Affiliation(s)
- N R Ravikumara
- Department of Biochemistry, P.G. Centre, Research Center for Nanoscience and Technology, Kuvempu University, Shivagangotri, Davangere, India
| | - Mausumi Bharadwaj
- Institute of Cytology and Preventive Oncology Noida, Uttar Pradesh, India
| | | |
Collapse
|
12
|
Rajera R, Nagpal K, Singh SK, Mishra DN. Toxicological study of the Primaquine phosphate loaded chitosan nanoparticles in mice. Int J Biol Macromol 2013; 62:18-24. [DOI: 10.1016/j.ijbiomac.2013.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/11/2013] [Indexed: 11/27/2022]
|
13
|
Asthana S, Gupta PK, Chaurasia M, Dube A, Chourasia MK. Polymeric colloidal particulate systems: intelligent tools for intracellular targeting of antileishmanial cargos. Expert Opin Drug Deliv 2013; 10:1633-51. [PMID: 24147603 DOI: 10.1517/17425247.2013.838216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Targeted cargo delivery systems can overcome drawbacks associated with antileishmanials delivery, by defeating challenges of physiological barriers. Various colloidal particulate systems have been developed in the past; few of them even achieved success in the market, but still are limited in some ways. AREAS COVERED This review is focused on the pathobiology of leishmaniasis, interactions of particulate systems with biological environment, targeting strategies along with current conventional and vaccine therapies with special emphasis on polymeric nanotechnology for effective antileishmanial cargo delivery. EXPERT OPINION The problems concerned with limited accessibility of chemotherapeutic cargos in conventional modes to Leishmania-harboring macrophages, their toxicity, and resistant parasitic strain development can be sorted out through target-specific delivery of cargos. Vaccination is another therapeutic approach employing antigen alone or adjuvant combinations delivered by means of a carrier, and can provide preventive measures against human leishmaniasis (HL). Therefore, there is an urgent need of designing site-specific antileishmanial cargo carriers for safe and effective management of HL. Among various colloidal carriers, polymeric particulate systems hold tremendous potential as an effective delivery tool by providing control over spatial and temporal distribution of cargos after systemic or localized administration along with enhancing their stability profile at a comparatively cost-effective price leading to improved chances of commercial applicability.
Collapse
Affiliation(s)
- Shalini Asthana
- CSIR-Central Drug Research Institute, CDRI communication No. 8523, Pharmaceutics Division , Lucknow-226031, UP , India +91 522 2612411 18 ; +91 522 2623405 ;
| | | | | | | | | |
Collapse
|
14
|
Bertol CD, Oliveira PR, Kuminek G, Rauber GS, Stulzer HK, Silva MAS. Increased bioavailability of primaquine using poly(ethylene oxide) matrix extended-release tablets administered to beagle dogs. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2012; 105:475-84. [PMID: 22185941 DOI: 10.1179/2047773211y.0000000003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Primaquine (PQ) is used for the radical cure of Plasmodium vivax malaria and can cause serious side effects in some individuals. The development of an extended-release dosage with poly(ethylene oxide) as a hydrophilic polymer has been investigated to improve drug efficacy and tolerability. The aim of this study was to evaluate in vivo a new extended-release formulation of PQ (60 mg). The formulation was administered to beagle dogs and plasma PQ concentrations were compared to a conventional immediate-release formulation of PQ (60 mg). The evaluation was carried out using a validated high-performance liquid chromatography method using solid-phase extraction. Total PQ exposure in beagle dogs was 2.2 times higher (area under curve of 12 193 versus 5678 ng h/ml) and the elimination half-life of PQ was a 19-fold greater (12.95 hours versus 0.68 hours) with the extended-release tablets compared with the immediate-release tablets. These findings suggest that the extended-release formulation of PQ merits further evaluation for the treatment of P. vivax malaria and/or chemoprophylaxis.
Collapse
Affiliation(s)
- C D Bertol
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Santa Catarina, Trindade, 88040-900 Florianópolis-SC, Brazil.
| | | | | | | | | | | |
Collapse
|
15
|
Biochemically altered human erythrocytes as a carrier for targeted delivery of primaquine: an in vitro study. Arch Pharm Res 2011; 34:563-71. [PMID: 21544721 DOI: 10.1007/s12272-011-0406-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/30/2010] [Accepted: 09/06/2010] [Indexed: 10/18/2022]
Abstract
The aim of this study was to investigate human erythrocytes as a carrier for targeted drug delivery of primaquine (PQ). The process of PQ loading in human erythrocytes, as well as the effect of PQ loading on the oxidative status of erythrocytes, was also studied. At PQ concentrations of 2, 4, 6, and 8 mg/mL and an incubation time of 2 h, the ratios of the concentrations of PQ entrapped in erythrocytes to that in the incubation medium were 0.515, 0.688, 0.697 and 0.788, respectively. The maximal decline of erythrocyte reduced glutathione content was observed at 8 mg/mL of PQ compared with native erythrocytes p < 0.001. In contrast, malondialdehyde and protein carbonyl were significantly increased in cells loaded with PQ (p < 0.001). Furthermore, osmotic fragility of PQ carrier erythrocytes was increased in comparison with unloaded cells. Electron microscopy revealed spherocyte formation with PQ carrier erythrocytes. PQ-loaded cells showed sustained drug release over a 48 h period. Erythrocytes were loaded with PQ successfully, but there were some biochemical as well as physiological changes that resulted from the effect of PQ on the oxidative status of drug-loaded erythrocytes. These changes may result in favorable targeting of PQ-loaded cells to reticulo-endothelial organs. The relative impact of these changes remains to be explored in ongoing animal studies.
Collapse
|
16
|
Mora-Huertas CE, Fessi H, Elaissari A. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv Colloid Interface Sci 2011; 163:90-122. [PMID: 21376297 DOI: 10.1016/j.cis.2011.02.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/28/2011] [Accepted: 02/04/2011] [Indexed: 12/01/2022]
Abstract
Solvent displacement and emulsification-diffusion are the methods used most often for preparing biodegradable submicron particles. The major difference between them is the procedure, which results from the total or partial water miscibility of the organic solvents used. This review is devoted to a critical and a comparative analysis based on the mechanistic aspects of particle formation and reported data on the influence of operating conditions, polymers, stabilizing agents and solvents on the size and zeta-potential of particles. In addition, a systematic study was carried out experimentally in order to obtain experimental data not previously reported and compare the data pertaining to the different methods. Thus the discussion of the behaviors reported in the light of the results obtained from the literature takes into account a wide range of theoretical and practical information. This leads to discussion on the formation mechanism of the particles and provides criteria for selecting the adequate method and raw materials for satisfying specific objectives in submicron particle design.
Collapse
|
17
|
Gupta S, Pal A, Vyas SP. Drug delivery strategies for therapy of visceral leishmaniasis. Expert Opin Drug Deliv 2010; 7:371-402. [PMID: 20201740 DOI: 10.1517/17425240903548232] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Visceral leishmaniasis (VL) is the most overwhelming type of leishmaniasis associated with the poverty of developing countries and usually mortal if untreated. Most of the conventionally used dosage forms offer us the shortcomings of toxic side effects and emergence of drug resistance. Several efforts have been made to overcome the barriers involved in the treatment of VL. Colloidal carriers extensively represent the drug delivery systems (DDSs) for intracellular localization of antileishmanial compounds in macrophage-rich organs such as liver, spleen and bone marrow. These DDSs offer superior therapeutic efficacy over the conventional treatment in terms of site-specific drug delivery with reduced side effects. However, after 35 years of research in the field, AmBisome (Amphotericin B liposome for injection, Astellas Pharma US, Inc.) is the only DDS used against the VL. AREAS COVERED IN THIS REVIEW A literature search was performed (for drugs and DDSs against VL) on PubMed and through Google. WHAT THE READER WILL GAIN This review aims to describe the pathophysiology of VL and its current conventional treatment with special reference to DDSs designed against VL. TAKE HOME MESSAGE On reviewing the conventional drugs and DDSs developed against VL, it is concluded that advances in the field of targeted drug delivery can result in more efficient strategies for the therapy of VL.
Collapse
Affiliation(s)
- Swati Gupta
- Nanomedicine Research Center, Department of Pharmaceutics, ISF College of Pharmacy, Moga (PB), India.
| | | | | |
Collapse
|
18
|
Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2010; 62:378-93. [PMID: 19922750 DOI: 10.1016/j.addr.2009.11.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Accepted: 09/14/2009] [Indexed: 12/31/2022]
Abstract
There is an urgent need for new strategies to combat infectious diseases in developing countries. Many pathogens have evolved to elude immunity and this has limited the utility of current therapies. Additionally, the emergence of co-infections and drug resistant pathogens has increased the need for advanced therapeutic and diagnostic strategies. These challenges can be addressed with therapies that boost the quality and magnitude of an immune response in a predictable, designable fashion that can be applied for wide-spread use. Here, we discuss how biomaterials and specifically nanoscale delivery vehicles can be used to modify and improve the immune system response against infectious diseases. Immunotherapy of infectious disease is the enhancement or modulation of the immune system response to more effectively prevent or clear pathogen infection. Nanoscale vehicles are particularly adept at facilitating immunotherapeutic approaches because they can be engineered to have different physical properties, encapsulated agents, and surface ligands. Additionally, nanoscaled point-of-care diagnostics offer new alternatives for portable and sensitive health monitoring that can guide the use of nanoscale immunotherapies. By exploiting the unique tunability of nanoscale biomaterials to activate, shape, and detect immune system effector function, it may be possible in the near future to generate practical strategies for the prevention and treatment of infectious diseases in the developing world.
Collapse
|
19
|
Santos-Magalhães NS, Mosqueira VCF. Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 2010; 62:560-75. [PMID: 19914313 DOI: 10.1016/j.addr.2009.11.024] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2009] [Indexed: 12/24/2022]
Abstract
Despite the fact that we live in an era of advanced technology and innovation, infectious diseases, like malaria, continue to be one of the greatest health challenges worldwide. The main drawbacks of conventional malaria chemotherapy are the development of multiple drug resistance and the non-specific targeting to intracellular parasites, resulting in high dose requirements and subsequent intolerable toxicity. Nanosized carriers have been receiving special attention with the aim of minimizing the side effects of drug therapy, such as poor bioavailability and the selectivity of drugs. Several nanosized delivery systems have already proved their effectiveness in animal models for the treatment and prophylaxis of malaria. A number of strategies to deliver antimalarials using nanocarriers and the mechanisms that facilitate their targeting to Plasmodium spp.-infected cells are discussed in this review. Taking into account the peculiarities of malaria parasites, the focus is placed particularly on lipid-based (e.g., liposomes, solid lipid nanoparticles and nano and microemulsions) and polymer-based nanocarriers (nanocapsules and nanospheres). This review emphasizes the main requirements for developing new nanotechnology-based carriers as a promising choice in malaria treatment, especially in the case of severe cerebral malaria.
Collapse
|
20
|
Phanapavudhikul P, Shen S, Ng WK, Tan RBH. Formulation of Fe3O4/Acrylate Co-Polymer Nanocomposites as Potential Drug Carriers. Drug Deliv 2008; 15:177-83. [DOI: 10.1080/10717540801952597] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Joshi M, Pathak S, Sharma S, Patravale V. Solid microemulsion preconcentrate (NanOsorb) of artemether for effective treatment of malaria. Int J Pharm 2008; 362:172-8. [DOI: 10.1016/j.ijpharm.2008.06.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 06/04/2008] [Accepted: 06/11/2008] [Indexed: 11/26/2022]
|
22
|
Romero EL, Morilla MJ. Drug delivery systems against leishmaniasis? Still an open question. Expert Opin Drug Deliv 2008; 5:805-23. [DOI: 10.1517/17425247.5.7.805] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Singh KK, Vingkar SK. Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 2008; 347:136-43. [PMID: 17709216 DOI: 10.1016/j.ijpharm.2007.06.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 11/19/2022]
Abstract
Primaquine (PQ) is one of the most widely used antimalarial and is the only available drug till date to combat relapsing form of malaria especially in case of Plasmodium vivax and Plasmodium ovale. Primaquine acts specifically on the pre-erythrocytic schizonts which are concentrated predominantly in the liver and causes relapse after multiplication. However application of PQ in higher doses is limited by severe tissue toxicity including hematological and GI related side effects which are needed to be minimized. Lipid nanoemulsion has been widely explored for parenteral delivery of drugs. Primaquine when incorporated into oral lipid nanoemulsion having particle size in the range of 10-200 nm showed effective antimalarial activity against Plasmodium bergheii infection in swiss albino mice at a 25% lower dose level as compared to conventional oral dose. Lipid nanoemulsion of primaquine exhibited improved oral bioavailability and was taken up preferentially by the liver with drug concentration higher at least by 45% as compared with the plain drug.
Collapse
Affiliation(s)
- Kamalinder K Singh
- C.U. Shah College of Pharmacy, S.N.D.T. Women's University, Santacruz (W), Mumbai 400049, India.
| | | |
Collapse
|
24
|
Radwan MA, Aboul-Enein HY. In vitro release and stereoselective disposition of flurbiprofen loaded to poly(D,L-lactide-co-glycolide) nanoparticles in rats. Chirality 2004; 16:119-25. [PMID: 14712475 DOI: 10.1002/chir.10314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flurbiprofen (FL) is a chiral 2-arylpropionate used clinically as the racemate (rac-FL). This study was undertaken to investigate the influence of sustained release formulation on the pharmacokinetics of flurbiprofen enantiomers (-) -R-FL and (+)-S-FL. Therefore, a stereoselective high-performance liquid chromatographic (HPLC) method was developed and validated for the rapid, quantitative determination of (-)-R-FL and (+)-S-FL in rat plasma. Flurbiprofen-loaded poly(D,L-lactide-co-glycolide) nanoparticles (rac-FL-PLGA) were prepared by in emulsion-solvent evaporation technique. Optimum conditions for rac-FL-PLGA nanoparticle preparation were considered, and the in vitro release of rac-FL, R-FL, and S-FL were followed up to 48 h in phosphate buffer (pH 7.4). The three tested formulations revealed approximately zero-order release of either (-)-R-FL or S-FL up to 24 h with r >/= 0.97.Surprisingly, there was no significant difference between t(50%) of the three formulations (21.6 +/- 1.1 h). The stereoselective disposition of the sustained release rac-FL deliverv system was investigated in rats. There was a rapid release of R-FL, S-FL, or rac-FL followed by a slower one and C(max) values were observed after 2.5 +/- 2.5, 8.3 +/- 3.4 and 8.86 +/- 3.6 h of (-)-R-FL, (+)-S-FL, and rac-FL, respectively, after nanoparticle administration. PLGA nanoparticles increased the mean retention time (MRT) of S-FL by 2.7-fold, from 6.8 to 16.3 h, compared to rac-FL. Although the dose of rac-FL-PLGA nanoparticles was only 2.5 times higher than that of the drug in the suspension, the mean (+)-S-FL concentration after 12 h was 3.4 times higher in the case of nanoparticles than after the free form, 10.35 +/- 1.6 and 3.04 +/- 1.1 mg/l, respectively. The area under the concentration-time curve (AUC) values of (+)-S-FL and rac-FL were about 2.5-fold higher after the nanoparticles compared to suspension, while the AUC of the (-)-R-FL was about 3.5 times higher. This difference may indicate that the two enantiomers have different absorption kinetics. The present study provides evidence that the sorption of racemic flurbiprofen to PLGA nanoparticles was successful in maintaining (at least up to 12 h) elevated plasma drug concentrations of (+)-S-FL in rats. Chirality 16:119-125, 2004.
Collapse
Affiliation(s)
- Mahasen A Radwan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | | |
Collapse
|
25
|
Cauchetier E, Deniau M, Fessi H, Astier A, Paul M. Atovaquone-loaded nanocapsules: influence of the nature of the polymer on their in vitro characteristics. Int J Pharm 2003; 250:273-81. [PMID: 12480292 DOI: 10.1016/s0378-5173(02)00556-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Nanocapsules with atovaquone concentration of 1,000 micrograms/ml were prepared according to the interfacial deposition technique using different polymers: poly- epsilon -caprolactone (PECL), poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLAGA). The following characteristics of nanoparticles were determined: percentage of encapsulation of atovaquone, percentage of encapsulation of benzyl benzoate (BB), nanoparticle size, nanoparticle wall thickness, suspension pH, and in vitro stability. The different formulations showed similar characteristics: maximal percentage of encapsulation (100%), particle size of approximately 230 nm, neutral pH and wall thickness of approximately 20 nm. The type of polymer used was the main factor influencing stability, in decreasing order: PECL>PLA>PLAGA. No release of atovaquone or benzylbenzoate was noted with PECL nanoparticles over 4 months. Release of atovaquone (25.9%) was found with PLA nanoparticles at 4 months. Release of both atovaquone (18.9%) and benzylbenzoate (54.2%) was noted with PLAGA nanoparticles from the third month, indicating a disruption of the nanoparticle membrane.
Collapse
Affiliation(s)
- Emmanuelle Cauchetier
- Laboratoire de Pharmacotechnie, Service Pharmacie, C.H.U. Henri Mondor, 94010 Créteil, France.
| | | | | | | | | |
Collapse
|
26
|
Konan YN, Gurny R, Allémann E. Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm 2002; 233:239-52. [PMID: 11897428 DOI: 10.1016/s0378-5173(01)00944-9] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The feasibility of producing sterile and freeze-dried polyester nanoparticles was investigated. Various poly(D,L-lactide-co-glycolide) and poly(D,L-lactide) were selected as biodegradable polymers. Using the salting-out procedure, process parameters were optimized to obtain sub-200 nm particles. After purification, the nanoparticle suspensions containing different lyoprotectants were sterilized by filtration. Freeze-drying was performed using vials covered with 0.22 microm membrane filters in order to preserve the suspensions from bacterial contamination. Sterility was assessed on the final product according to pharmacopoeial requirements using the membrane filtration method. With all polymers tested, sub-200 nm particles could be obtained. Nanoparticles with a size as low as 102 nm were prepared with good reproducibility and narrow size distribution. Upon freeze-drying, it appeared that complete redispersion of all types of polyester nanoparticles could be obtained in presence of the lyoprotectants tested such as saccharides while aggregation was observed without lyoprotectant. Sterility testing showed no microbial contamination indicating that sterile nanoparticulate formulations have been achieved.
Collapse
Affiliation(s)
- Yvette N Konan
- School of Pharmacy, University of Geneva, 30, quai Ernest Ansermet, CH-1211 Geneva 4 , Switzerland
| | | | | |
Collapse
|
27
|
Gautier S, Grudzielski N, Goffinet G, de Hassonville SH, Delattre L, Jérĵme R. Preparation of poly(D,L-lactide) nanoparticles assisted by amphiphilic poly(methyl methacrylate-co-methacrylic acid) copolymers. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2002; 12:429-50. [PMID: 11436978 DOI: 10.1163/156856201750195306] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
When co-precipitated with amphiphilic copolymers from DMSO, poly(D,L-lactide) (PLA) can be readily converted into stable sub-200 nm nanoparticles by addition of an aqueous phase, free of any polymeric stabilizers such as poly(vinyl alcohol) or Poloxamer. In this work, the ability of random poly(methyl methacrylate-co-methacrylic acid) copolymers (PMMA-co-MA) to stabilize PLA nanoparticles was demonstrated, and the properties of PLA/PMMA-co-MA nanoparticles were investigated. When co-precipitated with PMMA-co-MA, PLA was totally converted into nanoparticles using a polymer concentration in DMSO (Cp) below 17.6 mg ml(-1), and a PMMA-co-MA proportion above a critical value depending on the content of MA repeating units (X). For instance, the lowest PMMA-co-MA proportion required was 0.9 mg mg(-1) PLA for X = 12%, and 0.5 mg mg(-1) PLA for X = 25% (for C(PLA) = 16 mg ml(-1) DMSO). The nanoparticle diameter was essentially independent of X, the proportion of PMMA-co-MA, and the PLA molecular weight, except for oligomers for which the nanoparticle diameter was smaller. It decreased when the organic phase was diluted (126 +/- 13 nm for Cp = 17.6 mg ml(-1), and 81 +/- 5 nm for C(P) = 5.6 mg ml(-1)). The time-dependence of the stability and the degradation of PLA/PMMA-co-MA nanoparticles was discussed. One of the main advantages of this technique is the ability to control surface properties and to bring functional groups to otherwise non-functionalized PLA nanoparticles. To illustrate this, a conjugate of PMMA-co-MA25 and biotin was synthesized, and used to prepare biotinylated nanoparticles that could be detected by fluorescence and transmission electron microscopy after infiltration into ligatured rat small intestine.
Collapse
Affiliation(s)
- S Gautier
- Center for Education and Research on Macromolecules, University of Liege, Belgium.
| | | | | | | | | | | |
Collapse
|
28
|
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70:1-20. [PMID: 11166403 DOI: 10.1016/s0168-3659(00)00339-4] [Citation(s) in RCA: 2072] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review presents the most outstanding contributions in the field of biodegradable polymeric nanoparticles used as drug delivery systems. Methods of preparation, drug loading and drug release are covered. The most important findings on surface modification methods as well as surface characterization are covered from 1990 through mid-2000.
Collapse
Affiliation(s)
- K S Soppimath
- Department of Chemistry, Polymer Research Group, Karnatak University, Dharwad 580 003, India
| | | | | | | |
Collapse
|
29
|
Torres-Santos EC, Rodrigues JM, Moreira DL, Kaplan MA, Rossi-Bergmann B. Improvement of in vitro and in vivo antileishmanial activities of 2', 6'-dihydroxy-4'-methoxychalcone by entrapment in poly(D,L-lactide) nanoparticles. Antimicrob Agents Chemother 1999; 43:1776-8. [PMID: 10390243 PMCID: PMC89364 DOI: 10.1128/aac.43.7.1776] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The inhibition of intracellular Leishmania amazonensis growth by 2', 6'-dihydroxy-4'-methoxychalcone (DMC) isolated from Piper aduncum was further enhanced after encapsulation of DMC in polymeric nanoparticles. Encapsulated DMC also showed increased antileishmanial activity in infected BALB/c mice, as evidenced by significantly smaller lesions and fewer parasites in the lesions.
Collapse
Affiliation(s)
- E C Torres-Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
30
|
Paul M, Durand R, Boulard Y, Fusaï T, Fernandez C, Rivollet D, Deniau M, Astier A. Physicochemical characteristics of pentamidine-loaded polymethacrylate nanoparticles: implication in the intracellular drug release in Leishmania major infected mice. J Drug Target 1998; 5:481-90. [PMID: 9783679 DOI: 10.3109/10611869808997874] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This work describes the preparation, the physicochemical properties, the tolerance and the intracellular trafficking of pentamidine loaded nanoparticles. Pentamidine was bound to the polymer by ionic interaction. This interaction involved the carboxylic acid functions of methacrylic acid (10% of the polymer) and the amine groups of the drug. Pentamidine fixation and release were pH dependent. An acidic pH led to a decrease of fixation or a release. At pH 5, which is the pH value of lysosomes and parasitophorous vacuoles, the release reached up to 50%. At this pH value, pentamidine is ionized and therefore can not traverse the biological membranes. Unloaded nanoparticles and pentamidine-loaded nanoparticles were tested in vitro on U937 cells and no cytotoxicity was observed. In vivo, in Leishmania infected mice, no significant weight loss was found. Ultrastructural studies showed the different steps of drug loaded nanoparticles trafficking inside Leismania-infected Küpffer cells. The nanoparticle uptake by macrophagic cells led to the location of nanoparticles inside phagocytosis vacuoles which fused with primary lysosomes to form secondary lysosomes. Ultimate fusion of secondary lysosomes containing nanoparticles with parasitophorous vacuoles was also observed. Nanoparticles were identified close to amastigotes but internalization by the parasite was not observed.
Collapse
Affiliation(s)
- M Paul
- Laboratoire de Pharmacotechnie, Service Pharmacie, CHU H. Mondor, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Marchais H, Benali S, Irache JM, Tharasse-Bloch C, Lafont O, Orecchioni AM. Entrapment efficiency and initial release of phenylbutazone from nanocapsules prepared from different polyesters. Drug Dev Ind Pharm 1998; 24:883-8. [PMID: 9876542 DOI: 10.3109/03639049809088536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Several formulations of poly(epsilon-caprolactone) (PCL), poly(lactic acid) (PLA), and poly(lactic-co-glycolic acid) (PLGA) nanocapsules containing phenylbutazone were prepared according to the interfacial deposition technique. These formulations differed in the type of polymer used to form the shell of the nanocapsules. Analysis of particle size distribution and encapsulation efficiency of the nanocapsules revealed that the type and molecular weight of polyester used were the main factors influencing these properties. PLA had the highest encapsulation efficiency with the best reproducibility. From in vitro release studies, a small amount of drug release was observed at pH 7.4. However, in the gastric medium, an important burst effect occurred and was highest with the PLGAs and lowest with PCL, suggesting that drug release from these systems is affected by the type of polymer and the environmental conditions. The two formulations of phenylbutazone-loaded nanocapsules should be evaluated based on PCL and PLA in vivo in order to determine to what extent they are able to reduce the local side effects of this drug.
Collapse
Affiliation(s)
- H Marchais
- Laboratoire de Pharmacochimie et Biopharmacie (EA DRED 1295), Université de Rouen, Saint Etienne du Rouvray, France.
| | | | | | | | | | | |
Collapse
|
32
|
Paul M, Laatiris A, Fessi H, Dufeu B, Durand R, Deniau M, Astier A. Pentamidine-loaded poly(D,L-lactide) nanoparticles: Adsorption and drug release. Drug Dev Res 1998. [DOI: 10.1002/(sici)1098-2299(199802)43:2<98::aid-ddr2>3.0.co;2-k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
Paul M, Fessi H, Laatiris A, Boulard Y, Durand R, Deniau M, Astier A. Pentamidine-loaded poly(d,l-lactide) nanoparticles: physicochemical properties and stability work. Int J Pharm 1997. [DOI: 10.1016/s0378-5173(97)00291-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Espuelas M, Legrand P, Irache J, Gamazo C, Orecchioni A, Devissaguet JP, Ygartua P. Poly(ε-caprolacton) nanospheres as an alternative way to reduce amphotericin B toxicity. Int J Pharm 1997. [DOI: 10.1016/s0378-5173(97)00194-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|