1
|
Hu X, Pan K, Zhao M, Lv J, Wang J, Zhang X, Liu Y, Song Y, Gudmundson AT, Edden RA, Ren F, Zhang T, Gao F. Brain extended and closed forms glutathione levels decrease with age and extended glutathione is associated with visuospatial memory. Neuroimage 2024; 293:120632. [PMID: 38701994 PMCID: PMC11315812 DOI: 10.1016/j.neuroimage.2024.120632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024] Open
Abstract
During aging, the brain is subject to greater oxidative stress (OS), which is thought to play a critical role in cognitive impairment. Glutathione (GSH), as a major antioxidant in the brain, can be used to combat OS. However, how brain GSH levels vary with age and their associations with cognitive function is unclear. In this study, we combined point-resolved spectroscopy and edited spectroscopy sequences to investigate extended and closed forms GSH levels in the anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), and occipital cortex (OC) of 276 healthy participants (extended form, 166 females, age range 20-70 years) and 15 healthy participants (closed form, 7 females, age range 26-56 years), and examined their relationships with age and cognitive function. The results revealed decreased extended form GSH levels with age in the PCC among 276 participants. Notably, the timecourse of extended form GSH level changes in the PCC and ACC differed between males and females. Additionally, positive correlations were observed between extended form GSH levels in the PCC and OC and visuospatial memory. Additionally, a decreased trend of closed form GSH levels with age was also observed in the PCC among 15 participants. Taken together, these findings enhance our understanding of the brain both closed and extended form GSH time course during normal aging and associations with sex and memory, which is an essential first step for understanding the neurochemical underpinnings of healthy aging.
Collapse
Affiliation(s)
- Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Keyu Pan
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Jiali Lv
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Xiaofeng Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Yulu Song
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aaron T. Gudmundson
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A.E. Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| | - Tao Zhang
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Institute for Medical Dataology, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jing-wu Road No. 324, Jinan 250021, China
| |
Collapse
|
2
|
Sadeghzadeh J, Hosseini L, Mobed A, Zangbar HS, Jafarzadeh J, Pasban J, Shahabi P. The Impact of Cerebral Ischemia on Antioxidant Enzymes Activity and Neuronal Damage in the Hippocampus. Cell Mol Neurobiol 2023; 43:3915-3928. [PMID: 37740074 PMCID: PMC11407731 DOI: 10.1007/s10571-023-01413-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Cerebral ischemia and subsequent reperfusion, leading to reduced blood supply to specific brain areas, remain significant contributors to neurological damage, disability, and mortality. Among the vulnerable regions, the subcortical areas, including the hippocampus, are particularly susceptible to ischemia-induced injuries, with the extent of damage influenced by the different stages of ischemia. Neural tissue undergoes various changes and damage due to intricate biochemical reactions involving free radicals, oxidative stress, inflammatory responses, and glutamate toxicity. The consequences of these processes can result in irreversible harm. Notably, free radicals play a pivotal role in the neuropathological mechanisms following ischemia, contributing to oxidative stress. Therefore, the function of antioxidant enzymes after ischemia becomes crucial in preventing hippocampal damage caused by oxidative stress. This study explores hippocampal neuronal damage and enzymatic antioxidant activity during ischemia and reperfusion's early and late stages.
Collapse
Affiliation(s)
- Jafar Sadeghzadeh
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ahmad Mobed
- Physical Medicine and Rehabilitation Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jaber Jafarzadeh
- Department of Community Nutrition Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Jamshid Pasban
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Parviz Shahabi
- Department of Physiology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
3
|
Mohammed DF, Madlool HA, Faris M, Shalan BH, Hasan HH, Azeez NF, Abbas FH. Harnessing inorganic nanomaterials for chemodynamic cancer therapy. Nanomedicine (Lond) 2022; 17:1891-1906. [PMID: 36647807 DOI: 10.2217/nnm-2022-0187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The most important aspect of chemodynamic therapy (CDT) is the harnessing of Fenton or Fenton-like chemistry for cancer therapy within the tumor microenvironment, which occurs because of the moderate acidity and overexpressed H2O2 in the tumor microenvironment. Hydroxyl radicals (•OH) produced within tumor cells via Fenton and Fenton-like reactions cause cancer cell death. Reactive oxygen species-mediated CDT demonstrates a desired anticancer impact without the need for external stimulation or the development of drug resistance. Cancer therapy based on CDT is known as a viable cancer therapy modality. This review discusses the most recent CDT advancements and provides some typical instances. As a result, potential methods for further improving CDT efficiency under the guidance of Fenton chemistry are offered.
Collapse
Affiliation(s)
- Dhelal F Mohammed
- Department of Pharmacy, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Hussein A Madlool
- Radiological Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Mohammed Faris
- Department of Dentistry, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Bashar Hadi Shalan
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Huda Hadi Hasan
- Department of Business Administration, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Nidaa F Azeez
- Department of Medical Physics, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fatima Hashim Abbas
- Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| |
Collapse
|
4
|
Murali M, Shivanandappa T. Endosulfan causes oxidative stress in the liver and brain that involves inhibition of NADH dehydrogenase and altered antioxidant enzyme status in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113593. [PMID: 35567928 DOI: 10.1016/j.ecoenv.2022.113593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Endosulfan, a neurotoxic, highly persistent organochlorine insecticide, is known for its acute and chronic toxicity. We have shown that a single sublethal dose of endosulfan caused high induction of oxidative stress in the liver and brain by altering the antioxidant status, as shown by reduction in the antioxidant enzymes SOD, GPx, GST, GR along with increased ROS and lipid peroxidation. The cerebral region in the brain showed a higher level of oxidative stress than the cerebellum, revealing differential sensitivity of the brain regions to endosulfan. Depletion of natural antioxidants causes the imbalance of redox status in cells, and the role of mitochondrial distress causally related to the cellular oxidative stress in vivo is not well understood. We have shown that reduction in the mitochondrial NADH dehydrogenase activity in the brain is associated with the induction of ROS in endosulfan-treated rats. Although oxidative stress is induced in both the liver and brain, the oxidative damage to the brain has implications for the toxic outcome in view of the brain's lower antioxidant defenses and high oxygen consumption.
Collapse
Affiliation(s)
- Megha Murali
- Department of Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Department of Zoology, University of Mysore, Manasagangotri, Mysore 570006, India
| | - T Shivanandappa
- Department of Food Protectants and Infestation Control, CSIR-Central Food Technological Research Institute, Mysore 570020, Karnataka, India; Department of Zoology, University of Mysore, Manasagangotri, Mysore 570006, India.
| |
Collapse
|
5
|
Tripathi SS, Kumar R, Bissoyi A, Rizvi SI. Baicalein may act as a caloric restriction mimetic candidate to improve the anti-oxidant profile in a natural rodent model of aging. Rejuvenation Res 2022; 25:70-78. [PMID: 35316094 DOI: 10.1089/rej.2021.0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Caloric restriction (CR) is the most effective intervention for extending the life span of vertebrate and invertebrate aging models.. CRMs, which are synthetic or natural chemicals that mimic the biochemical, hormonal, and physiological consequences of calorie restriction, are being researched for anti-aging benefits. Baicalein is a plant-derived polyphenol that has the potential of anti-oxidant, anti-inflammatory, and autophagy inducer. The objective of this study is to evaluate the anti-aging, anti-inflammatory, and antioxidant role of Baicalein in erythrocyte membrane and plasma, and evaluate the efficacy of Baicalein to act as a CRM candidate. MATERIALS AND METHODS The present study evaluates the effect of Baicalein on aging biomarkers in normal and aged rats. We study various pro- and anti-oxidant markers, erythrocyte membrane transporters, and eryptosis. RESULTS Baicalein supplementation in male Wistar rats significantly alleviated pro-oxidant markers and improved anti-oxidant profile. Improvement was also observed in age-induced alterations in membrane transporters, and eryptosis. CONCLUSION Based on the above observations we conclude that Baicalein has the potential to maintain extracellular ROS levels and redox homeostasis during the aging process, an effect which is similar to CR. Thus Baicalein may be a potent CRM candidate for anti-aging interventions.
Collapse
Affiliation(s)
- Shambhoo Sharan Tripathi
- University of Allahabad, Department of Biochemistry, Fauclty of Science, UNIVERSITY OF ALLAHABAD, PRYAGRAJ, Uttar Pradesh, India, 211002;
| | - Raushan Kumar
- University of Allahabad, Department of Biochemistry, Allahabad, Uttar Pradesh, India;
| | - Akalabya Bissoyi
- 2Institute of Biochemistry, Food Science and Nutrition, The Hebrew University of Jerusalem, Rehovot-7610001, , Rehovot, Israel;
| | - Syed Ibrahim Rizvi
- University of Allahabad, Department of Biochemistry, faculty of Science, Allahabad, Uttar Pradesh, India, 211002.,India;
| |
Collapse
|
6
|
Taheri F, Sattari E, Hormozi M, Ahmadvand H, Bigdeli MR, Kordestani-Moghadam P, Anbari K, Milanizadeh S, Moghaddasi M. Dose-Dependent Effects of Astaxanthin on Ischemia/Reperfusion Induced Brain Injury in MCAO Model Rat. Neurochem Res 2022; 47:1736-1750. [DOI: 10.1007/s11064-022-03565-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
7
|
Mishra E, Thakur MK. Alterations in hippocampal mitochondrial dynamics are associated with neurodegeneration and recognition memory decline in old male mice. Biogerontology 2022; 23:251-271. [PMID: 35266060 DOI: 10.1007/s10522-022-09960-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/25/2022] [Indexed: 12/18/2022]
Abstract
Mitochondrial dynamics is a key process that modulates the ultrastructure, quality and function of mitochondria. It is disrupted in numerous major neurodegenerative disorders including Parkinson's, Alzheimer's and Huntington's disease. Mitochondrial dysfunction has been correlated with the loss of memory. Previous studies suggest the involvement of Vdac1 and Drp1 in outer mitochondrial membrane permeabilization and promotion of mitochondrial fragmentation through Drp1 phosphorylation at S616. However, alterations in mitochondrial dynamics with respect to aging, memory loss and neurodegeneration remain unexplored. Therefore, the present study focuses on the involvement of mitochondrial dynamics in neurodegeneration and recognition memory decline during aging. The recognition memory decline was validated by the novel object recognition test and measurement of hippocampal Arc protein level during aging. The ultrastructure analysis revealed a decline in mitochondrial length and area, while an increase in the number of fragmented, round and disrupted mitochondria in the hippocampus during aging. Disruption was also evident in mitochondrial cristae and membrane with advancing age. The change in mitochondrial morphology was corroborated by an increase in the expression of phospho-Drp1 (S616) and Cyt-c proteins but decline in Mfn2, LC3B, Vdac1, Bcl-XL and Bcl-2 proteins in the hippocampus during aging. Taken together, our findings reveal that an increase in the expression of phospho-Drp1 (S616) and decrease in Mfn2 and LC3B proteins in the hippocampus bring about a reduction in mitochondrial length and area, and rise in mitochondrial fragmentation leading to reduced neuronal cell density, increased neurodegeneration and recognition memory decline in old male mice. Diagram depicts the increase in hippocampal mitochondrial fragmentation during aging of mice. Increased mitochondrial fragmentation causes distorted mitochondrial function such as decrease in ATP/ADP transportation due to decrease in Vdac1 protein level and increase in oxidative damage. These alterations result in hippocampal neurodegeneration and consequently impairment in recognition memory during aging.
Collapse
Affiliation(s)
- Ela Mishra
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Mahendra Kumar Thakur
- Biochemistry and Molecular Biology Laboratory, Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
8
|
Kumar N, Yadav M, Kumar A, Kadian M, Kumar S. Neuroprotective effect of hesperidin and its combination with coenzyme Q10 on an animal model of ketamine-induced psychosis: behavioral changes, mitochondrial dysfunctions, and oxidative stress. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Psychosis is a complex mental illness divided by positive symptoms, negative symptoms, and cognitive decline. Clinically available medicines are associated with some serious side effects which limit their use. Treatment with flavonoids has been associated with delayed onset and development, decreased risk, or increased improvement of various neuropsychiatric disorders including psychosis with negligible side effects.
Therefore, the present study was aimed to investigate the protective effects of hesperidin (flavonoid) alone or its combination with coenzyme Q10 against ketamine-induced psychotic symptoms in mice.
Results
Ketamine (50 mg/kg, i.p.) was given for 21 days to induce psychosis in Laca mice of either sex. Locomotor activity and stereotypic behaviors, immobility duration (forced swim test), and increased transfer latency (elevated plus maze) were performed to test the effect of hesperidin (50 mg/kg, 100 mg/kg, 200 mg/kg, p.o.) and coenzyme Q10 (20 mg/kg, 40 mg/kg, p.o.) and combination of hesperidin + coenzyme Q10 followed by biochemical and mitochondrial complexes assays. For 21 days, ketamine (50 mg/kg, i.p.) administration significantly produced increased locomotor activity and stereotypic behaviors (positive symptoms), increased immobility duration (negative symptoms) and cognitive deficits (increases transfer latency) weakens oxidative defense and mitochondrial function. Further, 21 days’ administration of hesperidin and coenzyme Q10 significantly reversed the ketamine-induced psychotic behavioral changes and biochemical alterations and mitochondrial dysfunction in the discrete areas (prefrontal cortex and hippocampus) of mice brains. The potential effect of these drugs was comparable to olanzapine treatment. Moreover, the combination of hesperidin with coenzyme Q10 and or a combination of hesperidin + coenzyme Q10 + olanzapine treatment did not produce a significant effect compared to their per se effect in ketamine-treated animals.
Conclusions
The study revealed that hesperidin alone or in combination with coenzyme Q10 could reduce psychotic symptoms and improve mitochondrial functions and antioxidant systems in mice, suggesting neuroprotective effects against psychosis.
Collapse
|
9
|
Hupfeld KE, Hyatt HW, Alvarez Jerez P, Mikkelsen M, Hass CJ, Edden RAE, Seidler RD, Porges EC. In Vivo Brain Glutathione is Higher in Older Age and Correlates with Mobility. Cereb Cortex 2021; 31:4576-4594. [PMID: 33959751 PMCID: PMC8408448 DOI: 10.1093/cercor/bhab107] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/25/2021] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Brain markers of oxidative damage increase with advancing age. In response, brain antioxidant levels may also increase with age, although this has not been well investigated. Here, we used edited magnetic resonance spectroscopy to quantify endogenous levels of glutathione (GSH, one of the most abundant brain antioxidants) in 37 young [mean: 21.8 (2.5) years; 19 female] and 23 older adults [mean: 72.8 (8.9) years; 19 female]. Accounting for age-related atrophy, we identified higher frontal and sensorimotor GSH levels for the older compared with the younger adults. For the older adults only, higher sensorimotor (but not frontal) GSH was correlated with poorer balance and gait. This suggests a regionally specific relationship between higher brain oxidative stress levels and motor performance declines with age. We suggest these findings reflect an upregulation of GSH in response to increasing brain oxidative stress with normal aging. Together, these results provide insight into age differences in brain antioxidant levels and implications for motor function.
Collapse
Affiliation(s)
- K E Hupfeld
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - H W Hyatt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - P Alvarez Jerez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - M Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - C J Hass
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
| | - R A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - R D Seidler
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32603, USA
- Department of Neurology, University of Florida, Gainesville, FL 32611, USA
| | - E C Porges
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32603, USA
| |
Collapse
|
10
|
Krishna H, Avinash K, Shivakumar A, Al-Tayar NGS, Shrestha AK. A quantitative method for the detection and validation of catalase activity at physiological concentration in human serum, plasma and erythrocytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119358. [PMID: 33486434 DOI: 10.1016/j.saa.2020.119358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A novel method has been proposed to develop a simple, rapid, sensitive and affordable chromogenic attempt for the quantification of catalase (CAT) activity in blood samples. The method is based on the oxidation of pyrocatechol (PC) to give quinone form which by oxidative coupling with aminyl radical of 4-aminoantipyrine (4-AAP) resulting from H2O2/CAT to produce a pink colored quinone-imine product with λmax = 530 nm in a 100 mmol/L of tris buffer of pH 9.8 at room temperature (30 °C). The linearity of CAT assay was between 0.316 and 10 U/mL. The accuracy ranges for CAT having concentrations of 1.25, 5 and 7.5 μmol/L were 89-105.52, 90-107%, and 91-104.58% respectively. Within-run and between-run precision studies showed CV's of 1.98-3.02% (n = 7) and 2.97-4.40% (n = 7), respectively. The detection and quantification limits of CAT were 0.12 and 0.225 μmol/L, respectively. The Michaelis-Menten constant and maximum velocity of the reaction was Km = 1.052 mM and Vmax = 0.168 μmol/min, respectively. The present method provides a convenient means for investigating the usefulness of CAT measurements in biological sample assessing the potential for free radical-induced pathology.
Collapse
Affiliation(s)
- Honnur Krishna
- Department of Chemistry, S. D. V. S. Sangh's S. S. Arts College and T. P. Science Institute, Sankeshwar, Belagavi 591313, India.
| | | | - Anantharaman Shivakumar
- PG Department of Chemistry and Research Centre, St. Philomena's College (Autonomous), Bangalore-Mysore Road, Bannimantap, Mysore 570015, India.
| | | | | |
Collapse
|
11
|
Silveira EMS, Santos MCQ, da Silva TCB, Silva FBO, Machado CV, Elias L, Kolberg A, Kroth A, Partata WA. Aging and low-intensity exercise change oxidative biomarkers in brain regions and radiographic measures of femur of Wistar rats. ACTA ACUST UNITED AC 2020; 53:e9237. [PMID: 32401926 PMCID: PMC7228549 DOI: 10.1590/1414-431x20209237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
We investigated changes in oxidative biomarkers in brain regions such as brainstem, cerebellum, and cerebral cortex of 3-, 6-, 18-, 24-, and 30-month-old rats. We also assessed the effects of low-intensity exercise on these biomarkers in these regions of 6-, 18-, and 24-month-old rats that started exercise on a treadmill at 3, 15, and 21 months of age, respectively. Radiographic images of the femur were taken for all rats. A total of 25 rats (age: twelve 6-, ten 18-, ten 24-, and three 30-month-old rats) were used. Lipid hydroperoxide levels increased in cerebellum at 18 months. Total antioxidant activity exhibited lowest values in brainstem at 3 months. Superoxide dismutase activity did not exhibit significant changes during aging. Total thiol content exhibited lowest values in brain regions of 24- and 30-month-old rats. Exercise reduced total thiol content in brainstem at 6 months, but no change occurred in other regions and other ages. Femur increased its length and width and cortical thickness with advancing age. No change occurred in medullary width. Radiolucency increased and sclerosis was found in cortical and medullary bone with advancing age. Exercise reduced radiolucency and medullary sclerosis. Therefore, aging differentially changed oxidative biomarkers in different brain regions and radiographic measures of the femur. Low-intensity exercise only ameliorated some radiographic measurements of femur. Since the present study possessed limitations (small number of rats per group), a beneficial effect of regular low-intensity exercise on oxidative markers in brain cannot be ruled out.
Collapse
Affiliation(s)
- E M S Silveira
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - M C Q Santos
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T C B da Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - F B O Silva
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - C V Machado
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Elias
- Graduada em Medicina Veterinária, Fundação Educacional Dom André Arcoverde (UNIFAA), Centro Universitário de Valença, Valença, RJ, Brasil
| | - A Kolberg
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A Kroth
- Área Ciências da Vida, Universidade do Oeste de Santa Catarina, Joaçaba, SC, Brasil
| | - W A Partata
- Laboratório de Neurobiologia Comparada, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| |
Collapse
|
12
|
Baranauskaite J, Sadauskiene I, Liekis A, Kasauskas A, Lazauskas R, Zlabiene U, Masteikova R, Kopustinskiene DM, Bernatoniene J. Natural Compounds Rosmarinic Acid and Carvacrol Counteract Aluminium-Induced Oxidative Stress. Molecules 2020; 25:E1807. [PMID: 32326410 PMCID: PMC7221925 DOI: 10.3390/molecules25081807] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 12/11/2022] Open
Abstract
Aluminum accumulation, glutathione (GSH) and malondialdehyde (MDA) concentrations as well as catalase (CAT) and superoxide dismutase (SOD) activities were determined in erythrocytes and brain and liver homogenates of BALB/c mice treated with Al3+ (7.5 mg/kg/day (0.15 LD50) as AlCl3 (37.08 mg/kg/day), whereas HCl (30.41 mg/kg/day) was used as Cl- control, the treatments were performed for 21 days, i.p., in the presence and absence of rosmarinic acid (0.2805 mg/kg/day (0.05 LD50), 21 days, i.g.) or carvacrol (0.0405 mg/kg/day (0.05 LD50), 21 days, i.g.). The treatment with AlCl3 increased GSH concentration in erythrocytes only slightly and had no effect on brain and liver homogenates. Rosmarinic acid and carvacrol strongly increased GSH concentration in erythrocytes but decreased it in brain and liver homogenates. However, AlCl3 treatment led to Al accumulation in mice blood, brain, and liver and induced oxidative stress, assessed based on MDA concentration in the brain and liver. Both rosmarinic acid and carvacrol were able to counteract the negative Al effect by decreasing its accumulation and protecting tissues from lipid peroxidation. AlCl3 treatment increased CAT activity in mice brain and liver homogenates, whereas the administration of either rosmarinic acid or carvacrol alone or in combination with AlCl3 had no significant effect on CAT activity. SOD activity remained unchanged after all the treatments in our study. We propose that natural herbal phenolic compounds rosmarinic acid and carvacrol could be used to protect brain and liver against aluminum induced oxidative stress leading to lipid peroxidation.
Collapse
Affiliation(s)
- Juste Baranauskaite
- Department of Analytical and Toxicological Chemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Ilona Sadauskiene
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Arunas Liekis
- Neuroscience Institute, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania; (I.S.); (A.L.)
| | - Arturas Kasauskas
- Department of Biochemistry, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Robertas Lazauskas
- Institute of Physiology and Pharmacology, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Ugne Zlabiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Ruta Masteikova
- Department of Pharmaceutics, University of Veterinary and Pharmaceutical Sciences Brno, 61242 Brno, Czech Republic;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Medical Academy, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania
| |
Collapse
|
13
|
Sang Y, Cao F, Li W, Zhang L, You Y, Deng Q, Dong K, Ren J, Qu X. Bioinspired Construction of a Nanozyme-Based H 2O 2 Homeostasis Disruptor for Intensive Chemodynamic Therapy. J Am Chem Soc 2020; 142:5177-5183. [PMID: 32100536 DOI: 10.1021/jacs.9b12873] [Citation(s) in RCA: 373] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The insufficient intracellular H2O2 level in tumor cells is closely associated with the limited efficacy of chemodynamic therapy (CDT). Despite tremendous efforts, engineering CDT agents with a straightforward and secure H2O2 supplying ability remains a great challenge. Inspired by the balance of H2O2 generation and elimination in cancer cells, herein, a nanozyme-based H2O2 homeostasis disruptor is fabricated to elevate the intracellular H2O2 level through facilitating H2O2 production and restraining H2O2 elimination for enhanced CDT. In the formulation, the disruptor with superoxide dismutase-mimicking activity can convert O2•- to H2O2, promoting the production of H2O2. Simultaneously, the suppression of catalase activity and depletion of glutathione by the disruptor weaken the transformation of H2O2 to H2O. Thus, the well-defined system could perturb the H2O2 balance and give rise to the accumulation of H2O2 in cancer cells. The raised H2O2 level would ultimately amplify the Fenton-like reaction-based CDT efficiency. Our work not only paves a way to engineer alternative CDT agents with a H2O2 supplying ability for intensive CDT but also provides new insights into the construction of bioinspired materials.
Collapse
Affiliation(s)
- Yanjuan Sang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Fangfang Cao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Lu Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100039, People's Republic of China
| | - Yawen You
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Qingqing Deng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| |
Collapse
|
14
|
Majumder P, Blacker TS, Nolan LS, Duchen MR, Gale JE. Multiphoton NAD(P)H FLIM reveals metabolic changes in individual cell types of the intact cochlea upon sensorineural hearing loss. Sci Rep 2019; 9:18907. [PMID: 31827194 PMCID: PMC6906381 DOI: 10.1038/s41598-019-55329-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022] Open
Abstract
An increasing volume of data suggests that changes in cellular metabolism have a major impact on the health of tissues and organs, including in the auditory system where metabolic alterations are implicated in both age-related and noise-induced hearing loss. However, the difficulty of access and the complex cyto-architecture of the organ of Corti has made interrogating the individual metabolic states of the diverse cell types present a major challenge. Multiphoton fluorescence lifetime imaging microscopy (FLIM) allows label-free measurements of the biochemical status of the intrinsically fluorescent metabolic cofactors NADH and NADPH with subcellular spatial resolution. However, the interpretation of NAD(P)H FLIM measurements in terms of the metabolic state of the sample are not completely understood. We have used this technique to explore changes in metabolism associated with hearing onset and with acquired (age-related and noise-induced) hearing loss. We show that these conditions are associated with altered NAD(P)H fluorescence lifetimes, use a simple cell model to confirm an inverse relationship between τbound and oxidative stress, and propose such changes as a potential index of oxidative stress applicable to all mammalian cell types.
Collapse
Affiliation(s)
- Paromita Majumder
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.
| | - Thomas S Blacker
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK. .,Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK. .,Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Lisa S Nolan
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK
| | - Michael R Duchen
- Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jonathan E Gale
- UCL Ear Institute, University College London, Grays Inn Road, London, WC1X 8EE, UK.,Research Department of Cell & Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
15
|
Liu S, Tian R, Xu J, Wang L, Sun J, Jiang X, Wang T, Li X, Luo Q, Liu J. Cucurbit[8]uril-based supramolecular nanocapsules with a multienzyme-cascade antioxidative effect. Chem Commun (Camb) 2019; 55:13820-13823. [PMID: 31664274 DOI: 10.1039/c9cc07085k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A supramolecular nanocapsule was constructed by the ternary host-guest complexation of azobenzene (Azo) and methylviologen (MV) to cucurbit[8]uril (CB[8]) and the subsequent self-assembly. The supramolecular nanocapsule with both glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities can mimic the intracellular enzymatic reactive oxygen species (ROS) defense system.
Collapse
Affiliation(s)
- Shengda Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Kalin R, Koksal Z, Kalin P, Karaman M, Gulcin İ, Ozdemir H. In vitro effects of standard antioxidants on lactoperoxidase enzyme–A molecular docking approach. J Biochem Mol Toxicol 2019; 34:e22421. [DOI: 10.1002/jbt.22421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/08/2019] [Accepted: 10/28/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Ramazan Kalin
- Department of Basic Science, Faculty of ScienceErzurum Technical UniversityErzurum Turkey
| | - Zeynep Koksal
- Department of Chemistry, Faculty of Engineering and Natural SciencesIstanbul Medeniyet UniversityIstanbul Turkey
| | - Pinar Kalin
- Department of Chemistry, Faculty of ScienceAtaturk UniversityErzurum Turkey
| | - Muhammet Karaman
- Department of Molecular Biology and Genetics, Faculty of Arts and ScienceKilis 7 Aralik UniversityKilis Turkey
| | - İlhami Gulcin
- Department of Chemistry, Faculty of ScienceAtaturk UniversityErzurum Turkey
| | - Hasan Ozdemir
- Department of Chemistry, Faculty of ScienceAtaturk UniversityErzurum Turkey
| |
Collapse
|
17
|
Rainio MJ, Margus A, Lehmann P, Helander M, Lindström L. Effects of a glyphosate-based herbicide on survival and oxidative status of a non-target herbivore, the Colorado potato beetle (Leptinotarsa decemlineata). Comp Biochem Physiol C Toxicol Pharmacol 2019; 215:47-55. [PMID: 30316832 DOI: 10.1016/j.cbpc.2018.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 01/20/2023]
Abstract
Glyphosate is the globally most used herbicide against a wide range of weeds. Glyphosate has been considered safe to animals as it mainly targets physiological pathways in plants. However, recent toxicological studies have revealed that glyphosate can cause various toxic effects also on animals. In this study, we investigated the direct toxic effects of a glyphosate-based herbicide (GBH, Roundup® Bio) on 1) survival and 2) oxidative status of a non-target herbivore by using Colorado potato beetles (Leptinotarsa decemlineata), originating from Poland and USA, as model species. Larvae were randomly divided into three groups: 1) high concentration (100% Roundup Bio, 360 g/l), 2) low concentration (1.5% Roundup Bio) and 3) control group (water). Larvae were exposed to Roundup for different time periods: 2 h, 24 h, 48 h, 72 h and 96 h. Larval survival decreased in the group treated with high concentration of GBH compared to controls, whereas the low concentration group did not differ from the control group. GBH treatment had no association with oxidative status biomarkers (i.e. catalase, superoxide dismutase, glutathione-S-transferase, glutathione and glutathione related enzymes), but increased lipid hydroperoxide levels after 2 h exposure, suggesting increased oxidative damage soon after the exposure. Larvae of different origin also differed in their oxidative status, indicating population-dependent differences in antioxidant defence system. Environmentally relevant concentrations of GBH are not likely to affect larval survival, but high concentrations can reduce survival and increase oxidative damage of non-target herbivores. Also, populations of different origin and pesticide usage history can differ in their tolerance to GBH.
Collapse
Affiliation(s)
- Miia J Rainio
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Aigi Margus
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| | - Philipp Lehmann
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland; Department of Zoology, University of Stockholm, 106 91 Stockholm, Sweden.
| | - Marjo Helander
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Leena Lindström
- Department of Biological and Environmental Science, University of Jyväskylä, FI-40014 Jyväskylä, Finland.
| |
Collapse
|
18
|
Biochemical deficits and cognitive decline in brain aging: Intervention by dietary supplements. J Chem Neuroanat 2019; 95:70-80. [DOI: 10.1016/j.jchemneu.2018.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 01/23/2023]
|
19
|
Nikray N, Karimi I, Siavashhaghighi Z, Becker LA, Mofatteh MM. An effort toward molecular biology of food deprivation induced food hoarding in gonadectomized NMRI mouse model: focus on neural oxidative status. BMC Neurosci 2018; 19:59. [PMID: 30249177 PMCID: PMC6154416 DOI: 10.1186/s12868-018-0461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Environmental uncertainty, such as food deprivation, may alter internal milieu of nervous system through various mechanisms. In combination with circumstances of stress or aging, high consumption of unsaturated fatty acids and oxygen can make neural tissues sensitive to oxidative stress (OS). For adult rats, diminished level of gonadal steroid hormones accelerates OS and may result in special behavioral manifestations. This study was aimed to partially answer the question whether OS mediates trade-off between food hoarding and food intake (fat hoarding) in environmental uncertainty (e.g., fluctuations in food resource) within gonadectomized mouse model in the presence of food deprivation-induced food hoarding behavior. Results Hoarding behavior was not uniformly expressed in all male mice that exposed to food deprivation. Extended phenotypes including hoarder and non-hoarder mice stored higher and lower amounts of food respectively as compared to that of low-hoarder mice (normal phenotype) after food deprivation. Results showed that neural oxidative status was not changed in the presence of hoarding behavior in gonadectomized mice regardless of tissue type, however, glutathione levels of brain tissues were increased in the presence of hoarding behavior. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde in brain tissues of gonadectomized mice were also seen. Conclusions Although, food deprivation-induced hoarding behavior is a strategic response to food shortage in mice, it did not induce the same amount of hoarding across all colony mates. Hoarding behavior, in this case, is a response to the environmental uncertainty of food shortage, therefore is not an abnormal behavior. Hoarding behavior induced neural OS with regard to an increase in brain glutathione levels but failed to show other markers of neural OS. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde levels in brain tissues of gonadectomized mice could be a hallmark of debilitated antioxidative defense and more lipid peroxidation due to reduced amount of gonadal steroid hormones during aging.
Collapse
Affiliation(s)
- Noushin Nikray
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran. .,Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Iran.
| | | | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| | - Mohammad Mehdi Mofatteh
- Department of Accounting, School of Economics and Accounting, Islamic Azad University South Tehran Branch, Tehran, Iran
| |
Collapse
|
20
|
Protective Role of UCP2 in Oxidative Stress and Apoptosis during the Silent Phase of an Experimental Model of Epilepsy Induced by Pilocarpine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6736721. [PMID: 30159115 PMCID: PMC6109463 DOI: 10.1155/2018/6736721] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/02/2018] [Indexed: 12/30/2022]
Abstract
Neuroprotection is a desirable process in many neurological disorders, yet complex mechanisms involved in this field are not completely understood. The pilocarpine epilepsy model causes potent, seizure-induced excitotoxicity cell death and mitochondria impairment. The present study is aimed at investigating the role of UCP2, a ROS negative regulator, in the neuroprotection after cholinergic insult. Our data demonstrated that UCP2 expression was augmented in the rat hippocampus 3 days after status epilepticus (SE), reaching a peak on the fifth day, then returning to basal levels. Concomitantly, phospho-AKT expression levels were higher in the hippocampus during the early silent phase (5 days after SE). Additionally, it was demonstrated that the blockade of UCP2 by antisense oligonucleotides (ASO) in SE rats successfully diminished both UCP2 mRNA and protein contents. SE ASO rats presented increased mitochondrial proapoptotic factor expression, caspase-3 activity, inflammatory cytokine expression, and ROS formation. Moreover, ASO treatment diminished p-AKT expression and antioxidant enzyme activities after pilocarpine insult. In conclusion, the present results highlight the neuroprotective actions of UCP2, acting in the inhibition of apoptotic factors and oxidative stress, to increase neuron survival after SE onset.
Collapse
|
21
|
Koksal Z, Kalin R, Gulcin I, Ozdemir H. Inhibitory effects of selected pesticides on peroxidases purified by affinity chromatography. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2018.1424197] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Zeynep Koksal
- Faculty of Engineering and Natural Sciences, Department of Chemistry, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ramazan Kalin
- Faculty of Science, Department of Basic Science, Erzurum Technical University, Erzurum, Turkey
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Ilhami Gulcin
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| | - Hasan Ozdemir
- Faculty of Science, Department of Chemistry, Ataturk University, Erzurum, Turkey
| |
Collapse
|
22
|
Chonpathompikunlert P, Boonruamkaew P, Sukketsiri W, Hutamekalin P, Sroyraya M. The antioxidant and neurochemical activity of Apium graveolens L. and its ameliorative effect on MPTP-induced Parkinson-like symptoms in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:103. [PMID: 29558946 PMCID: PMC5859653 DOI: 10.1186/s12906-018-2166-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Apium graveolens L. is a traditional Chinese medicine prescribed as a treatment for hypertension, gout, and diabetes. This study aimed to determine the neuroprotective effects of A. graveolens extract against a Parkinson's disease (PD) model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in C57BL/6 mice. METHODS Male C57BL/6 mice treated with MPTP were orally dosed with A. graveolens extract daily for 21 days. Behavioral tests, including a rotarod apparatus, a narrow beam test, a drag test, a grid walk test, a swimming test, and a resting tremor evaluation, were performed. Thereafter, the mice were sacrificed, and monoamine oxidase A and B activity, lipid peroxidation activity, and superoxide anion levels were measured. Immunohistochemical staining of tyrosine hydroxylase was performed to identify dopaminergic neurons. RESULTS We found that treatment with A. graveolens at dose of 375 mg/kg demonstrated the highest effect and led to significant improvements in behavioral performance, oxidative stress parameters, and monoamine oxidase A and B activity compared with the untreated group (p < 0.05). Moreover, the extract increased the number of neurons immunopositive for tyrosine hydroxylase expression compared with MPTP alone or MPTP with a positive control drug (p < 0.05). CONCLUSIONS We speculated that A. graveolens ameliorated behavioral performance by mediating neuroprotection against MPTP-induced PD via antioxidant effects, related neurotransmitter pathways and an increase in the number of dopaminergic neurons.
Collapse
|
23
|
Lysophosphatidic acid increases in vitro maturation efficiency via uPA-uPAR signaling pathway in cumulus cells. Theriogenology 2018; 113:197-207. [PMID: 29554602 DOI: 10.1016/j.theriogenology.2018.02.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 11/23/2022]
Abstract
Lysophosphatidic acid (LPA) is a phospholipid-derived signaling molecule with biological activities, such as stimulating cell proliferation, differentiation and migration. In the present study, we examined the effect of LPA on porcine oocytes during in vitro maturation (IVM) and subsequent embryonic development following parthenogenetic activation (PA) and in vitro fertilization (IVF). During IVM, the maturation medium was supplemented with various concentrations of LPA (0, 10, 30, and 60 μM). After 42 h of IVM, the 30 μM LPA-treated group showed a significant (P <0.05) increase in nuclear maturation and intracellular glutathione (GSH) levels compared with the other groups. The 30 μM LPA-treated group exhibited a significant decrease in intracellular reactive oxygen species (ROS) levels compared with the other groups. In PA, the 30 μM LPA-treated group had significantly higher cleavage (CL) and blastocyst (BL) rates compared with those of the other LPA-treated groups. In IVF, the 30 μM LPA-treated group had significantly higher CL and BL rates than the other LPA-treated groups. The expression of the developmental competence gene (proliferating cell nuclear antigen, PCNA) in the oocytes and cumulus cells of the individuals in the 30 μM LPA-treated group was significantly increased compared with the control group. In addition, the specific expression of urokinase Plasminogen Activator (uPA) and uPA Receptor (uPAR) in cumulus cells was significantly increased in the 30 μM LPA-treated group. The western blotting results revealed that LPA improves the activities of p38 mitogen-activated protein kinase (MAPK) and epidermal growth factor (EGF) by enhanced phosphorylation. In conclusion, treatment with 30 μM LPA during IVM promotes enhances the EGF-EGFR signaling pathway, resulting in cumulus cell expansion. And then, this treatment improves the developmental potential of PA and IVF porcine embryos by enhancing nuclear and cytoplasmic maturation and reducing ROS.
Collapse
|
24
|
Bhatt D, Vyas K, Singh S, John P, Soni I. Tartrazine induced neurobiochemical alterations in rat brain sub-regions. Food Chem Toxicol 2018; 113:322-327. [DOI: 10.1016/j.fct.2018.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/22/2017] [Accepted: 02/06/2018] [Indexed: 11/27/2022]
|
25
|
Phenolic alkaloid oleracein E attenuates oxidative stress and neurotoxicity in AlCl3-treated mice. Life Sci 2017; 191:211-218. [DOI: 10.1016/j.lfs.2017.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/01/2017] [Accepted: 10/16/2017] [Indexed: 01/19/2023]
|
26
|
Boonruamkaew P, Chonpathompikunlert P, Vong LB, Sakaue S, Tomidokoro Y, Ishii K, Tamaoka A, Nagasaki Y. Chronic treatment with a smart antioxidative nanoparticle for inhibition of amyloid plaque propagation in Tg2576 mouse model of Alzheimer's disease. Sci Rep 2017. [PMID: 28630497 PMCID: PMC5476667 DOI: 10.1038/s41598-017-03411-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The present study aimed to assess whether our newly developed redox nanoparticle (RNPN) that has antioxidant potential decreases Aβ levels or prevents Aβ aggregation associated with oxidative stress. The transgenic Tg2576 Alzheimer’s disease (AD) mice were used to investigate the effect of chronic ad libitum drinking of RNPN solution for 6 months, including memory and learning functions, antioxidant activity, and amyloid plaque aggregation. The results showed that RNPN-treated mice had significantly attenuated cognitive deficits of both spatial and non-spatial memories, reduced oxidative stress of lipid peroxide, and DNA oxidation. RNPN treatment increased the percent inhibition of superoxide anion and glutathione peroxidase activity, neuronal densities in the cortex and hippocampus, decreased Aβ(1-40), Aβ(1-42) and gamma (γ)-secretase levels, and reduced Aβ plaque observed using immunohistochemistry analysis and thioflavin S staining. Our results suggest that RNPN may be a promising candidate for AD therapy because of its antioxidant properties and reduction in Aβ aggregation, thereby suppressing its adverse side effect.
Collapse
Affiliation(s)
- Phetcharat Boonruamkaew
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80161, Thailand
| | - Pennapa Chonpathompikunlert
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,College of Alternative Medicine, Chandrakasem Rajabhat University, 39/1 Ratchadaphisek Road, Khwaeng Chantharakasem, Chatuchak Districk, Bangkok, 10900, Thailand
| | - Long Binh Vong
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.,Department of Biochemistry, Faculty of Biology and Biotechnology, University of Science, Vietnam National University Ho Chi Minh City (VNU-HCM), Ho Chi Minh City, 702500, Vietnam
| | - Sho Sakaue
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yasushi Tomidokoro
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuhiro Ishii
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Tamaoka
- Institute of Clinical Medicine, Department of Neurology, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8575, Japan.,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Sciences, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan. .,Satellite Laboratory, International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Sciences (NIMS), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan.
| |
Collapse
|
27
|
Wang P, Sun H, Liu D, Jiao Z, Yue S, He X, Xia W, Ji J, Xiang L. Protective effect of a phenolic extract containing indoline amides from Portulaca oleracea against cognitive impairment in senescent mice induced by large dose of D-galactose /NaNO 2. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:252-259. [PMID: 28363525 DOI: 10.1016/j.jep.2017.03.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Portulaca oleracea L. is a potherb and also a widely used traditional Chinese medicine. In accordance with its nickname "longevity vegetable", pharmacological study demonstrated that this plant possessed antioxidant, anti-aging, and cognition-improvement function. Active principles pertaining to these functions of P. oleracea need to be elucidated. AIM OF THE STUDY The present study evaluated the effect of a phenolic extract (PAAs) from P. oleracea which contained specific antioxidant indoline amides on cognitive impairment in senescent mice. MATERIALS AND METHODS PAAs was prepared through AB-8 macroporous resin column chromatography. Total phenol content was determined using colorimetric method, and contents of indoline amides were determined using HPLC-UV method. Senescent Kunming mice with cognitive dysfunction were established by intraperitoneal injection of D-galactose (D-gal, 1250mg/kg/day) and NaNO2 (90mg/kg/day) for 8 weeks, L-PAAs (360mg/kg/day), H-PAAs (720mg/kg/day), and nootropic drug piracetam (PA, 400mg/kg/day) as the positive control were orally administered. Spatial learning and memory abilities were evaluated by Morris water maze experiment. Activities of AChE, SOD, CAT, and levels of GSH and MDA in the brain or plasma were measured. Hippocampal morphology was observed by HE staining. RESULTS Chronic treatment of large dose of D-gal/NaNO2 significantly reduced lifespan, elevated AChE activity, decreased CAT activity, compensatorily up-regulated SOD activity and GSH level, increased MDA level, induced neuronal damage in hippocampal CA1, CA3 and CA4 regions, and impaired cognitive function. Similar to PA, PAAs prolonged the lifespan and improved spatial memory ability. Moreover, PAAs improved learning ability. H-PAAs significantly reversed compensatory increase in SOD activity to the normal level, elevated serum CAT activity, and reduced MDA levels in brain and plasma, more potent than L-PAAs. Besides these, PAAs evidently inhibited hippocampal neuronal damage. However, it had no effect on brain AChE activity. CONCLUSION PAAs as the bioactive principles of P. oleracea attenuated oxidative stress, improved survival rate, and enhanced cognitive function in D-gal/NaNO2-induced senile mice, similar to piracetam. This phenolic extract provides a promising candidate for prevention of aging and aging-related cognitive dysfunction in clinic.
Collapse
Affiliation(s)
- Peipei Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; Suzhou Psychiatric Hospital, Suzhou 215008, China
| | - Hongxiang Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Dianyu Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Zezhao Jiao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Su Yue
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiuquan He
- School of Medicine, Shandong University, Jinan 250012, China
| | - Wen Xia
- Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lan Xiang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
28
|
Targeting antioxidant enzyme expression as a therapeutic strategy for ischemic stroke. Neurochem Int 2016; 107:23-32. [PMID: 28043837 DOI: 10.1016/j.neuint.2016.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/05/2016] [Accepted: 12/17/2016] [Indexed: 11/24/2022]
Abstract
During ischemic stroke, neurons and glia are subjected to damage during the acute and neuroinflammatory phases of injury. Production of reactive oxygen species (ROS) from calcium dysregulation in neural cells and the invasion of activated immune cells are responsible for stroke-induced neurodegeneration. Scientists have failed thus far to identify antioxidant-based drugs that can enhance neural cell survival and improve recovery after stroke. However, several groups have demonstrated success in protecting against stroke by increasing expression of antioxidant enzymes in neural cells. These enzymes, which include but are not limited to enzymes in the glutathione peroxidase, catalase, and superoxide dismutase families, degrade ROS that otherwise damage cellular components such as DNA, proteins, and lipids. Several groups have identified cellular therapies including neural stem cells and human umbilical cord blood cells, which exert neuroprotective and oligoprotective effects through the release of pro-survival factors that activate PI3K/Akt signaling to upregulation of antioxidant enzymes. Other studies demonstrate that treatment with soluble factors released by these cells yield similar changes in enzyme expression after stroke. Treatment with the cytokine leukemia inhibitory factor increases the expression of peroxiredoxin IV and metallothionein III in glia and boosts expression of superoxide dismutase 3 in neurons. Through cell-specific upregulation of these enzymes, LIF and other Akt-inducing factors have the potential to protect multiple cell types against damage from ROS during the early and late phases of ischemic damage.
Collapse
|
29
|
Sukketsiri W, Chonpathompikunlert P, Tanasawet S, Choosri N, Wongtawatchai T. Effects of Apium graveolens Extract on the Oxidative Stress in the Liver of Adjuvant-Induced Arthritic Rats. Prev Nutr Food Sci 2016; 21:79-84. [PMID: 27390722 PMCID: PMC4935245 DOI: 10.3746/pnf.2016.21.2.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/03/2016] [Indexed: 01/18/2023] Open
Abstract
Apium graveolens Linn. (Apiaceae) is an indigenous plant of the North and South Americas, Southern Europe, and Asia and has been widely used as a food or a traditional medicine for treatment of inflammation and arthritis. The purpose of this study was to investigate the antioxidant effects of a methanolic extract of A. graveolens (AGE) against liver oxidative stress in an adjuvant-induced arthritic rat model. The AGE (250, 500, and 1,000 mg/kg) was given orally for 24 consecutive days after induction by injecting complete Freund's adjuvant. Liver and spleen weights were recorded. The superoxide anion level, total peroxide (TP), glutathione peroxidase (GPx) activity, superoxide dismutase (SOD) activity, total antioxidant status, and oxidative stress index (OSI) were also measured. AGE treatment significantly decreased the levels of the superoxide anion, TP, and OSI whereas the GPx and SOD activities significantly increased in the liver of the arthritic rats. These results indicated that AGE showed an ameliorative effect against liver oxidative stress in adjuvant-induced arthritic rats by reducing the generation of liver free radicals and increasing the liver antioxidant enzyme activity.
Collapse
Affiliation(s)
- Wanida Sukketsiri
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Songkhla 90112,
Thailand
| | | | - Supita Tanasawet
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112,
Thailand
| | - Nutjanat Choosri
- Department of Pharmacology, Faculty of Science, Prince of Songkla University, Songkhla 90112,
Thailand
| | - Tulaporn Wongtawatchai
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla 90112,
Thailand
| |
Collapse
|
30
|
Ahn JH, Chen BH, Shin BN, Lee TK, Cho JH, Kim IH, Park JH, Lee JC, Tae HJ, Lee CH, Won MH, Lee YL, Choi SY, Hong S. Comparison of catalase immunoreactivity in the hippocampus between young, adult and aged mice and rats. Mol Med Rep 2016; 14:851-6. [PMID: 27221506 PMCID: PMC4929834 DOI: 10.3892/mmr.2016.5300] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
Catalase (CAT) is an important antioxidant enzyme and is crucial in modulating synaptic plasticity in the brain. In this study, CAT expression as well as neuronal distribution was compared in the hippocampus among young, adult and aged mice and rats. Male ICR mice and Sprague Dawley rats were used at postnatal month (PM) 1, PM 6 and PM 24 as the young, adult and aged groups, respectively (n=14/group). CAT expression was examined by immunohistochemistry and western blot analysis. In addition, neuronal distribution was examined by NeuN immunohistochemistry. In the present study, the mean number of NeuN-immunoreactive neurons was marginally decreased in mouse and rat hippocampi during aging, although this change was not identified to be significantly different. However, CAT immunoreactivity was significantly increased in pyramidal and granule neurons in the adult mouse and rat hippocampi and was significantly decreased in the aged mouse and rat hippocampi compared with that in the young animals. CAT protein levels in the hippocampus were also lowest in the aged mouse and rat hippocampus. These results indicate that CAT expression is significantly decreased in the hippocampi of aged animals and decreased CAT expression may be closely associated with aging.
Collapse
Affiliation(s)
- Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam-do 31116, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Seongkweon Hong
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
31
|
Wang PP, Sun HX, Liu CJ, Hu MH, He XQ, Yue S, Jiao ZZ, Xiang L. Racemic oleracein E increases the survival rate and attenuates memory impairment in D-galactose/NaNO₂-induced senescent mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:460-467. [PMID: 27064004 DOI: 10.1016/j.phymed.2016.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/06/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Compounds that possess a pyrrolidone skeleton are a rich resource for the discovery of nootropic drugs. Oleracein E (OE), which possesses both tetrahydroisoquinoline and pyrrolidone skeletons, was first isolated from the medicinal plant Portulaca oleracea L. and was thought to be an active component in the cognition-improvement effect induced by this herb. The aim of this study was to investigate the effect of OE on cognitive impairment in senescent mice and its underlying mechanism of action. METHOD Senescent Kunming mice were established by the intraperitoneal injection of D-galactose (D-gal, 1250 mg/kg/d) and NaNO2 (90 mg/kg/d) for 8 weeks. OE (3 mg/kg/d, 15 mg/kg/d) was orally administered for 8 weeks, and the nootropic drug piracetam (PA, 400 mg/kg/d) was used as a positive control. A Morris water maze was used to assess cognitive ability. GSH and MDA levels and T-AOC, SOD, and CAT activities in the brain or plasma were determined. Hippocampal morphology was observed by HE staining, and expression of the anti-apoptotic protein Bcl-2 and the pro-apoptotic proteins Bax and Caspase-3 was observed by immunohistochemical staining. RESULTS Large-dosage treatments with D-gal/NaNO2 for 8 weeks significantly reduced survival, impaired spatial memory capacity, compensatorily up-regulated GSH level and T-AOC and SOD activities, decreased CAT activity, and induced hippocampal neuronal damage and apoptosis as reflected by the apparent low expression of Bcl-2 and high expression of Bax and Caspase-3. OE significantly prolonged lifespan and was more potent than PA. Similar to PA, OE at 15 mg/kg/d improved memory capacity. The underlying mechanism of action was related to the reversal of abnormal brain antioxidant biomarkers (GSH, T-AOC, and SOD) to normal levels and the inhibition of hippocampal neuronal apoptosis. CONCLUSION OE from P. oleracea is an active compound for improving cognitive function and is also a candidate nootropic drug for the treatment of age-related dementia.
Collapse
Affiliation(s)
- Pei-Pei Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China; Suzhou Psychiatric Hospital, Suzhou 215008, China
| | - Hong-Xiang Sun
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ce-Jia Liu
- Jinan Hongjitang Pharmaceutical Co. Ltd, Jinan 250100, China
| | - Ming-Hong Hu
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Xiu-Quan He
- School of Medicine, Shandong University, Jinan 250012, China
| | - Su Yue
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Ze-Zhao Jiao
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China
| | - Lan Xiang
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China.
| |
Collapse
|
32
|
Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew Chem Int Ed Engl 2016; 55:6646-50. [DOI: 10.1002/anie.201600868] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| |
Collapse
|
33
|
Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J, Qu X. Self-Assembly of Multi-nanozymes to Mimic an Intracellular Antioxidant Defense System. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600868] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Zhen Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Chaoqun Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Enguo Ju
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
- University of Chinese Academy of Sciences; Beijing 100039 P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun Jilin 130022 P.R. China
| |
Collapse
|
34
|
Tong J, Fitzmaurice PS, Moszczynska A, Mattina K, Ang LC, Boileau I, Furukawa Y, Sailasuta N, Kish SJ. Do glutathione levels decline in aging human brain? Free Radic Biol Med 2016; 93:110-7. [PMID: 26845616 DOI: 10.1016/j.freeradbiomed.2016.01.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 11/22/2022]
Abstract
For the past 60 years a major theory of "aging" is that age-related damage is largely caused by excessive uncompensated oxidative stress. The ubiquitous tripeptide glutathione is a major antioxidant defense mechanism against reactive free radicals and has also served as a marker of changes in oxidative stress. Some (albeit conflicting) animal data suggest a loss of glutathione in brain senescence, which might compromise the ability of the aging brain to meet the demands of oxidative stress. Our objective was to establish whether advancing age is associated with glutathione deficiency in human brain. We measured reduced glutathione (GSH) levels in multiple regions of autopsied brain of normal subjects (n=74) aged one day to 99 years. Brain GSH levels during the infancy/teenage years were generally similar to those in the oldest examined adult group (76-99 years). During adulthood (23-99 years) GSH levels remained either stable (occipital cortex) or increased (caudate nucleus, frontal and cerebellar cortices). To the extent that GSH levels represent glutathione antioxidant capacity, our postmortem data suggest that human brain aging is not associated with declining glutathione status. We suggest that aged healthy human brains can maintain antioxidant capacity related to glutathione and that an age-related increase in GSH levels in some brain regions might possibly be a compensatory response to increased oxidative stress. Since our findings, although suggestive, suffer from the generic limitations of all postmortem brain studies, we also suggest the need for "replication" investigations employing the new (1)H MRS imaging procedures in living human brain.
Collapse
Affiliation(s)
- Junchao Tong
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| | | | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Katie Mattina
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8; Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Lee-Cyn Ang
- Division of Neuropathology, London Health Sciences Centre, University of Western Ontario, London, Ontario, Canada
| | - Isabelle Boileau
- Addiction Imaging Research Group, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Yoshiaki Furukawa
- Department of Neurology, Juntendo Tokyo Koto Geriatric Medical Center, and Faculty of Medicine, University and Post Graduate University of Juntendo, Tokyo, Japan
| | - Napapon Sailasuta
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Stephen J Kish
- Human Brain Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario, Canada M5T 1R8
| |
Collapse
|
35
|
Redox Nanoparticle Therapeutics for Acetaminophen-Induced Hepatotoxicity in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4984597. [PMID: 27073589 PMCID: PMC4814705 DOI: 10.1155/2016/4984597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/30/2016] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to evaluate the hepatoprotective effect of an antioxidative nanoparticle (RNP(N)) recently developed against APAP-induced hepatotoxicity in mice. The effects of oral administration of RNP(N) to APAP-treated mice were assessed for various biochemical liver function parameters: alanine transaminase (ALT) activity, aspartate transaminase (AST) activity, alkaline phosphatase (ALP) activity, prothrombin time, and serum albumin (ALB) level. The treatment effects were assessed in terms of free radical parameters: malondialdehyde (MDA) accumulation, glutathione peroxidase (GPx) activity, % inhibition of superoxide anion (O2 (-∙)), and histopathological examination. The N-acetylcysteine (NAC)-treated group exhibited an enhanced prothrombin time relative to the control group, while RNP(N) did not prolong prothrombin time. The RNP(N)-treated animals exhibited lower levels of ALT, AST, and ALP, while increased ALB levels were measured in these animals compared to those in the other groups. The RNP(N)-treated animals furthermore exhibited improved MDA levels, GPx activity, and % inhibition of O2 (-∙), which relate to oxidative damage. Histological staining of liver tissues from RNP(N)-treated animals did not reveal any microscopic changes relative to the other groups. The findings of this study suggest that RNP(N) possesses effective hepatoprotective properties and does not exhibit the notable adverse effects associated with NAC treatment.
Collapse
|
36
|
Liu C, Li X, Lu B. The Immp2l mutation causes age-dependent degeneration of cerebellar granule neurons prevented by antioxidant treatment. Aging Cell 2016; 15:167-76. [PMID: 26616244 PMCID: PMC4717271 DOI: 10.1111/acel.12426] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2015] [Indexed: 12/04/2022] Open
Abstract
Reactive oxygen species are implicated in age‐associated neurodegeneration, although direct in vivo evidence is lacking. We recently showed that mice with a mutation in the Inner Mitochondrial Membrane Peptidase 2‐like (Immp2l) gene had elevated levels of mitochondrial superoxide, impaired fertility and age‐associated phenotypes, including kyphosis and ataxia. Here we show that ataxia and cerebellar hypoplasia occur in old mutant mice (> 16 months). Cerebellar granule neurons (CGNs) are significantly underrepresented; Purkinje cells and cells in the molecular layer are not affected. Treating mutant mice with the mitochondria‐targeted antioxidant SkQ1 from 6 weeks to 21 months protected cerebellar granule neurons. Apoptotic granule neurons were observed in mutant mice but not in age‐matched normal control mice or SkQ1‐treated mice. Old mutant mice showed increased serum protein carbonyl content, cerebellar 4‐hydroxynonenal (HNE), and nitrotyrosine modification compared to old normal control mice. SOD2 expression was increased in Purkinje cells but decreased in granule neurons of old mutant mice. Mitochondrial marker protein VDAC1 also was decreased in CGNs of old mutant mice, suggesting decreased mitochondrial number. SkQ1 treatment decreased HNE and nitrotyrosine modification, and restored SOD2 and VDAC1 expression in CGNs of old mutant mice. Neuronal expression of nitric oxide synthase was increased in cerebella of young mutant mice but decreased in old mutant mice. Our work provides evidence for a causal role of oxidative stress in neurodegeneration of Immp2l mutant mice. The Immp2l mutant mouse model could be valuable in elucidating the role of oxidative stress in age‐associated neurodegeneration.
Collapse
Affiliation(s)
- Chunlian Liu
- Department of Center for Reproductive Medicine General Hospital Ningxia Medical University Ningxia 750004 China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education Ningxia Medical University Ningxia 750004 China
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
| | - Xue Li
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
- Department of Pathology Beijing Chao‐Yang Hospital Capital Medical University Beijing China
| | - Baisong Lu
- Wake Forest University Health Sciences Institute for Regenerative Medicine Winston‐Salem NC 27157 USA
| |
Collapse
|
37
|
Oxidative stress and antioxidant status in a lizard Phrynocephalus vlangalii at different altitudes or acclimated to hypoxia. Comp Biochem Physiol A Mol Integr Physiol 2015; 190:9-14. [DOI: 10.1016/j.cbpa.2015.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/13/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022]
|
38
|
Jerobin J, Makwana P, Suresh Kumar RS, Sundaramoorthy R, Mukherjee A, Chandrasekaran N. Antibacterial activity of neem nanoemulsion and its toxicity assessment on human lymphocytes in vitro. Int J Nanomedicine 2015; 10 Suppl 1:77-86. [PMID: 26491309 PMCID: PMC4599620 DOI: 10.2147/ijn.s79983] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neem (Azadirachta indica) is recognized as a medicinal plant well known for its antibacterial, antimalarial, antiviral, and antifungal properties. Neem nanoemulsion (NE) (O/W) is formulated using neem oil, Tween 20, and water by high-energy ultrasonication. The formulated neem NE showed antibacterial activity against the bacterial pathogen Vibrio vulnificus by disrupting the integrity of the bacterial cell membrane. Despite the use of neem NE in various biomedical applications, the toxicity studies on human cells are still lacking. The neem NE showed a decrease in cellular viability in human lymphocytes after 24 hours of exposure. The neem NE at lower concentration (0.7-1 mg/mL) is found to be nontoxic while it is toxic at higher concentrations (1.2-2 mg/mL). The oxidative stress induced by the neem NE is evidenced by the depletion of catalase, SOD, and GSH levels in human lymphocytes. Neem NE showed a significant increase in DNA damage when compared to control in human lymphocytes (P<0.05). The NE is an effective antibacterial agent against the bacterial pathogen V. vulnificus, and it was found to be nontoxic at lower concentrations to human lymphocytes.
Collapse
Affiliation(s)
- Jayakumar Jerobin
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - Pooja Makwana
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | - R S Suresh Kumar
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, VIT University, Vellore, Tamil Nadu, India
| | | |
Collapse
|
39
|
Hwang SU, Jeon Y, Yoon JD, Cai L, Kim E, Yoo H, Kim KJ, Park KM, Jin M, Kim H, Hyun SH. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J Reprod Dev 2015; 61:549-57. [PMID: 26370787 PMCID: PMC4685221 DOI: 10.1262/jrd.2015-049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Ganglioside is an acidic glycosphingolipid with sialic acids residues. This study was performed to investigate the effect and mechanism of ganglioside GT1b in porcine oocytes in the process of in vitro maturation (IVM) and preimplantation development. Metaphase II (MII) rates were significantly (P < 0.05) different between the control group and the 5 nM GT1b treatment group. Intracellular glutathione (GSH) levels in oocytes matured with 5 nM and 20 nM and GT1b decreased significantly (P < 0.05). The 10 nM group showed a significant (P < 0.05) decrease in intracellular reactive oxygen species (ROS) levels compared with the control group. Subsequently, the level of intracellular Ca(2+) in oocytes treated with different concentrations of GT1b was measured. Intracellular Ca(2+) was significantly (P < 0.05) increased with a higher concentration of GT1b in a dose-dependent manner. Real-time PCR was performed and showed that the expression of bradykinin 2 receptor (B2R) and calcium/calmodulin-dependent protein kinase II delta (CaMKIIδ) in cumulus cells was significantly (P < 0.05) decreased in the 20 nM GT1b treatment group. Treatment with 5 nM GT1b significantly (P < 0.05) decreased the expression of CaMKIIδ. In oocytes, treatment with 5 nM GT1b significantly (P < 0.05) decreased CaMKIIγ and POU5F1 (POU domain, class 5, transcription factor 1). However, treatment with 20 nM GT1b significantly (P < 0.05) increased the expression of POU5F1. Finally, embryonic developmental data showed no significant differences in the two experiments (parthenogenesis and in vitro fertilization). In conclusion, the results of the present study indicated that GT1b plays an important role in increasing the nuclear maturation rate and decreasing the intracellular ROS levels during IVM. However, GT1b inhibited maturation of the cytoplasm by maintaining intracellular Ca(2+) in the process of oocyte maturation regardless of the cell cycle stage. Therefore, GT1b is thought to act on another mechanism that controls intracellular Ca(2+).
Collapse
Affiliation(s)
- Seon-Ung Hwang
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University, Chungbuk 362-763, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chitty KM, Lagopoulos J, Hickie IB, Hermens DF. A longitudinal proton magnetic resonance spectroscopy study investigating oxidative stress as a result of alcohol and tobacco use in youth with bipolar disorder. J Affect Disord 2015; 175:481-7. [PMID: 25679204 DOI: 10.1016/j.jad.2015.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
Abstract
Alcohol and tobacco have been suggested to be "aggravating factors" for neuroprogression in bipolar disorder (BD), however the impact of these substances on the underlying neurobiology is limited. Oxidative stress is a key target for research into neuroprogression in BD and in accordance with this model, our previous cross-sectional studies have found that risky alcohol and tobacco use in BD is associated with increased oxidative stress, investigated via in vivo glutathione (GSH) measured by proton magnetic resonance spectroscopy ((1)H-MRS) in the anterior cingulate cortex (ACC). What remains unknown is whether the negative impact on GSH levels can be modified as a result of limiting alcohol and tobacco use. Thirty BD patients were included in the study. (1)H-MRS and tobacco and alcohol measures were conducted at baseline and follow-up assessments (15.5±4.6 months apart). Pearson׳s correlations were performed between percentage change in GSH concentration and changes in alcohol/tobacco use. Regression analyses were then conducted to further explore the significant correlations. An increase in GSH was associated with a decrease in alcohol consumption (r=-0.381, p<0.05) and frequency of tobacco use (-0.367, p=0.05). Change in alcohol consumption, tobacco use and age were significant predictors of change in GSH concentration (F (3, 26)=3.69, p<0.05). Due to the high comorbidity of alcohol and tobacco use in the sample, the individual effects of these substances on GSH levels could not be determined. This study offers longitudinal evidence that changing risky drinking patterns and tobacco use early in the course of BD is associated with improvements in antioxidant capacity, and therefore may be specific targets for early intervention and prevention of neuroprogression in BD.
Collapse
Affiliation(s)
- Kate M Chitty
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia.
| | - Jim Lagopoulos
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| | - Ian B Hickie
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| | - Daniel F Hermens
- Clinical Research Unit, Brain and Mind Research Institute, The University of Sydney, Sydney, Australia
| |
Collapse
|
41
|
Bellassoued K, Van Pelt J, Elfeki A. Neurotoxicity in rats induced by the poisonous dreamfish (Sarpa salpa). PHARMACEUTICAL BIOLOGY 2015; 53:286-295. [PMID: 25243872 DOI: 10.3109/13880209.2014.916311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
CONTEXT Consumption of Sarpa salpa Linn. (Sparidae) in certain periods of the year is inadvisable because it can cause central nervous system disorders resulting in sea food poisoning. AIMS The present study assesses the cytotoxic effects of compounds, not-yet identified, present in the organ extracts of S. salpa, collected in autumn, the period corresponding to the peak in human health problems. MATERIALS AND METHODS The toxicity was assessed by mouse bioassay of aqueous extract of the fish organs. Wistar rats received daily extracts of different organs of S. salpa by gastric gavage for 7 d (0.3 mL of extract/100 g body weight BW). The dose of tissue extracts of viscera, liver, brain, and flesh of S. salpa administered to rats was as follows: 172, 313, 2050, and 2660 mg/kg BW, respectively. No deaths occurred during the period of treatment. RESULTS The lethal dose (LD50) determined for the crude ciguatoxin (neurotoxins) extracts of viscera, liver, brain, and flesh of S. salpa was as follows: 1.2, 2.2, 14.4, and 18.6 g/kg mouse, respectively. Changes in locomotor activity during the first 2 h and failure in breathing and no evident signs of gastrointestinal problems were recorded. We observed (1) induction of oxidative stress, indicated by an increase in lipid peroxidation (TBARS) in groups that received extracts of liver (+425%) or viscera (+433%), and a significant decrease in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 13%, 25%, and 25% (LT: animals receiving liver extracts) and by 16%, 26%, and 27% (VT: animals receiving viscera extracts), respectively. In contrast, the administration of extracts of flesh and brain induced an increase in antioxidant enzyme activities (SOD, CAT, and GPx) in cerebral cortex tissue by 26%, 23%, and 44% (FT: flesh extract) and 28%, 24%, and 46% (BT: brain extract), respectively; (2) a significant decrease for acetylcholinesterase (AChE) activity in cerebral cortex was recorded in FT, BT, LT, and VT by 27, 34, 58, and 78%, respectively. Moreover, a significant decrease of AChE activity in plasma was recorded in FT, BT, LT, and VT by 16, 21, 38, and 48%, respectively; (3) the histological findings confirmed the biochemical results. CONCLUSIONS Liver and especially the visceral part of S. salpa presented toxicity, which clearly indicates the danger of using this fish as food.
Collapse
Affiliation(s)
- Khaled Bellassoued
- Animal Ecophysiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax , Sfax , Tunisia and
| | | | | |
Collapse
|
42
|
Ye ZW, Zhang J, Townsend DM, Tew KD. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochim Biophys Acta Gen Subj 2014; 1850:1607-21. [PMID: 25445706 DOI: 10.1016/j.bbagen.2014.11.010] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Within cells, there is a narrow concentration threshold that governs whether reactive oxygen species (ROS) induce toxicity or act as second messengers. SCOPE OF REVIEW We discuss current understanding of how ROS arise, facilitate cell signaling, cause toxicities and disease related to abnormal cell differentiation and those (primarily) sulfur based pathways that provide nucleophilicity to offset these effects. PRIMARY CONCLUSIONS Cellular redox homeostasis mediates a plethora of cellular pathways that determine life and death events. For example, ROS intersect with GSH based enzyme pathways to influence cell differentiation, a process integral to normal hematopoiesis, but also affecting a number of diverse cell differentiation related human diseases. Recent attempts to manage such pathologies have focused on intervening in some of these pathways, with the consequence that differentiation therapy targeting redox homeostasis has provided a platform for drug discovery and development. GENERAL SIGNIFICANCE The balance between electrophilic oxidative stress and protective biomolecular nucleophiles predisposes the evolution of modern life forms. Imbalances of the two can produce aberrant redox homeostasis with resultant pathologies. Understanding the pathways involved provides opportunities to consider interventional strategies. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
Affiliation(s)
- Zhi-Wei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA
| | - Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 274 Calhoun Street MSC 141, Charleston, SC 29425-1410, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, 70 President St., DD410, Charleston, SC 29425, USA.
| |
Collapse
|
43
|
Yainoy S, Houbloyfa P, Eiamphungporn W, Isarankura-Na-Ayudhya C, Prachayasittikul V. Engineering of chimeric catalase-Angiopep-2 for intracellular protection of brain endothelial cells against oxidative stress. Int J Biol Macromol 2014; 68:60-6. [DOI: 10.1016/j.ijbiomac.2014.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 03/13/2014] [Accepted: 04/14/2014] [Indexed: 12/13/2022]
|
44
|
Li M, You TZ, Zhu WJ, Qu JP, Liu C, Zhao B, Xu SW, Li S. Antioxidant response and histopathological changes in brain tissue of pigeon exposed to avermectin. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:1241-1254. [PMID: 23943211 DOI: 10.1007/s10646-013-1112-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Avermectins (AVMs) are the active components of some insecticidal and nematicidal products used in agriculture and veterinary medicine for the prevention of parasitic diseases. Residues of AVM drugs or their metabolites in livestock feces have toxic effects on non-target aquatic and terrestrial organisms. In this study, oxidative stress responses and pathological changes on pigeon brain tissues and serum after subchronic exposure to AVM for 30, 60 and 90 days were investigated. The decrease in antioxidant enzyme (superoxide dismutase, SOD and glutathione peroxidase, GSH-Px) activities and increase in methane dicarboxylic aldehyde content in a dose-time-dependent manner in the brain and serum of pigeon were observed. The protein carbonyl content, an indicator of protein oxidation, and DNA-protein crosslink coefficient were significantly augmented with dose-time-dependent properties. The microscopic structures of the cerebrum, cerebellum and optic lobe altered obviously, the severity of which increased with the concentration of AVM and exposure time. The results imply that AVM could induce oxidative damage to the brain tissue and serum of pigeon. The information presented in this study is helpful to understand the mechanism of AVM-induced oxidative stress in birds.
Collapse
Affiliation(s)
- Ming Li
- Department of Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Cardoso S, Santos RX, Correia SC, Carvalho C, Santos MS, Baldeiras I, Oliveira CR, Moreira PI. Insulin-induced recurrent hypoglycemia exacerbates diabetic brain mitochondrial dysfunction and oxidative imbalance. Neurobiol Dis 2012; 49:1-12. [PMID: 22940631 DOI: 10.1016/j.nbd.2012.08.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 07/21/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022] Open
Abstract
Intensive insulin therapy can prevent or slow the progression of long-term diabetes complications but, at the same time, it increases the risk for episodes of severe hypoglycemia. In our study, we used a protocol intended to mimic the levels of blood glucose that occur in type 1 diabetic patients under an intensive insulin therapy. Streptozotocin (STZ)-induced diabetic rats were treated subcutaneously with twice-daily insulin injections for 2weeks to induce hypoglycemic episodes. Brain cortical and hippocampal mitochondria were isolated and mitochondrial bioenergetics (respiratory chain and phosphorylation system) and oxidative status parameters (malondialdehyde (MDA) levels, mitochondrial aconitase activity and enzymatic and non-enzymatic antioxidant defenses) were analyzed. The protein levels of synaptophysin, a marker of synaptic integrity, and caspase 9 activity were also evaluated in cortical and hippocampal homogenates. Brain cortical mitochondria isolated from hyper- and recurrent hypoglycemic animals presented higher levels of MDA and α-tocopherol together with an increased glutathione disulfide reductase activity, lower manganese superoxide dismutase (MnSOD) activity and glutathione-to-glutathione disulfide (GSH/GSSG) ratio. No significant alterations were found in cortical mitochondrial respiratory chain and oxidative phosphorylation system. Hippocampal mitochondria from both experimental groups presented an impaired oxidative phosphorylation system characterized by a decreased mitochondrial energization potential and ATP levels and higher repolarization lag phase. In addition, higher MDA levels and decreased GSH/GSSG, α-tocopherol levels, and aconitase, glutathione peroxidase and MnSOD activities were observed in both groups of animals. Hippocampal mitochondria from recurrent hypoglycemic animals also showed an impairment of the respiratory chain characterized by a lower state 3 of respiration, respiratory control ratio and ADP/O index, and a higher state 4 of respiration. Additionally, a non-statistically significant decrease in synaptophysin protein levels was observed in cortical homogenates from recurrent hypoglycemic rats as well as in hippocampal homogenates from hyperglycemic and recurrent hypoglycemic rats. An increase in caspase 9 activity was also observed in hippocampal homogenates from hyperglycemic and recurrent hypoglycemic animals. Our results show that mitochondrial dysfunction induced by long-term hyperglycemic effects is exacerbated by recurrent hypoglycemia, which may compromise the function and integrity of brain cells.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Renato X Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Sónia C Correia
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Maria S Santos
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Inês Baldeiras
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Laboratory of Neurochemistry, Coimbra University Hospital, Portugal; Neurology Department, Faculty of Medicine, University of Coimbra, Portugal
| | - Catarina R Oliveira
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.
| |
Collapse
|
46
|
Rojas P, Montes P, Rojas C, Serrano-García N, Rojas-Castañeda JC. Effect of a phytopharmaceutical medicine, Ginko biloba extract 761, in an animal model of Parkinson's disease: therapeutic perspectives. Nutrition 2012; 28:1081-8. [PMID: 22817828 DOI: 10.1016/j.nut.2012.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/17/2012] [Accepted: 03/10/2012] [Indexed: 12/31/2022]
Abstract
Ginkgo Biloba extract 761 (EGb 761) is a patented and well-defined mixture of active compounds extracted from Ginkgo biloba leaves. This extract contains two main groups of active compounds, flavonoids (24%) and terpenoids (6%). EGb 761 is used clinically to treat dementia and vaso-occlusive and cochleovestibular disorders. This extract has neuroprotective effects, exerted probably by means of its antioxidant function. Parkinson's disease (PD) is a neurodegenerative disorder that affects 2% of the population older than 60 y. It produces a progressive loss of dopaminergic neurons and depletion of dopamine (DA), leading to movement impairment. The production of reactive oxygen species, which act as mediators of oxidative damage, is linked to PD. This disease is routinely treated with the DA precursor, L-3,4-dihydroxyphenylalanine. However, this produces severe side effects, and its neurotoxic properties can be due to a free radical production. Thus, administration of antioxidant drugs might be used to prevent neuronal death produced by oxidative mechanisms. The use of synthetic antioxidants has decreased because of their suspected activity as carcinogenic promoters. We describe the studies related to the antioxidant effect of EGb 761 in an animal model of PD. It has been shown that EGb761 can provide a neuroprotective/neurorecovery effect against the damage to midbrain DA neurons in an animal model of PD. EGb 761 also has been found to lessen the impairment of locomotion, correlating with an increase of DA and other morphologic and biochemical parameters related to its antioxidant effect in an animal model of PD. These studies suggest it as an alternative in the future treatment of PD.
Collapse
Affiliation(s)
- Patricia Rojas
- Laboratory of Neurotoxicology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, México, D.F., Mexico.
| | | | | | | | | |
Collapse
|
47
|
Effects of experimentally induced maternal hypothyroidism and hyperthyroidism on the development of rat offspring: II—The developmental pattern of neurons in relation to oxidative stress and antioxidant defense system. Int J Dev Neurosci 2012; 30:517-37. [PMID: 22664656 DOI: 10.1016/j.ijdevneu.2012.04.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/30/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
|
48
|
Sommavilla M, Sánchez-Villarejo MV, Almansa I, Sánchez-Vallejo V, Barcia JM, Romero FJ, Miranda M. The effects of acute ethanol exposure and ageing on rat brain glutathione metabolism. Free Radic Res 2012; 46:1076-81. [DOI: 10.3109/10715762.2012.688963] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Schisandrin B as a hormetic agent for preventing age-related neurodegenerative diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:250825. [PMID: 22666518 PMCID: PMC3359732 DOI: 10.1155/2012/250825] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/24/2012] [Accepted: 03/06/2012] [Indexed: 11/17/2022]
Abstract
Oxidative stress and mitochondrial dysfunction have been implicated in the pathogenesis of neurodegenerative diseases, with the latter preceding the appearance of clinical symptoms. The energy failure resulting from mitochondrial dysfunction further impedes brain function, which demands large amounts of energy. Schisandrin B (Sch B), an active ingredient isolated from Fructus Schisandrae, has been shown to afford generalized tissue protection against oxidative damage in various organs, including the brain, of experimental animals. Recent experimental findings have further demonstrated that Sch B can protect neuronal cells against oxidative challenge, presumably by functioning as a hormetic agent to sustain cellular redox homeostasis and mitoenergetic capacity in neuronal cells. The combined actions of Sch B offer a promising prospect for preventing or possibly delaying the onset of neurodegenerative diseases, as well as enhancing brain health.
Collapse
|
50
|
Liu X, Zeng A, Song T, Li L, Yang F, Wang Q, Wu B, Liu Y, Zhi X. Hypocholesterolemic Effects of N-[(2-Hydroxy-3-N,N-Dimethylhexadecyl Ammonium)Propyl] Chitosan Chloride in High-Fat-Diet-Induced Rats. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1107-14. [DOI: 10.1163/092050611x575540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaofei Liu
- a Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China.
| | - Anrong Zeng
- b Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Tao Song
- c Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Lin Li
- d Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Fan Yang
- e Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Qi Wang
- f Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Bo Wu
- g Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Yunfei Liu
- h Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaona Zhi
- i Department of Polymer Materials Science and Engineering, College of Materials Science and Engineering, Tianjin University, Tianjin 300072, P. R. China; Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|