1
|
Ujiie H, Yamagami J, Takahashi H, Izumi K, Iwata H, Wang G, Sawamura D, Amagai M, Zillikens D. The pathogeneses of pemphigus and pemphigoid diseases. J Dermatol Sci 2021; 104:154-163. [PMID: 34916040 DOI: 10.1016/j.jdermsci.2021.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/22/2021] [Accepted: 11/06/2021] [Indexed: 12/21/2022]
Abstract
Autoimmune bullous diseases (AIBDs) are skin disorders which are mainly induced by autoantibodies against desmosomal or hemidesmosomal structural proteins. Previous studies using patients' samples and animal disease models identified target antigens and elucidated the mechanisms of blister formation. Pemphigus has been the subject of more active clinical and basic research than any other AIBD. These efforts have revealed the pathogenesis of pemphigus, which in turn has led to optimal diagnostic methods and novel therapies, such as rituximab. In bullous pemphigoid (BP), studies with passive-transfer mouse models using rabbit anti-mouse BP180 antibodies and studies with passive-transfer or active mouse models using autoantigen-humanized mice elucidated the immune reactions to BP180 in vivo. Recently, dipeptidyl peptidase-4 inhibitors have attracted attention as a trigger for BP. For epidermolysis bullosa acquisita (EBA), investigations using mouse models are actively under way and several molecules have been identified as targets for novel therapies. In this review, we give an overview and discussion of the recent progress in our understanding of the pathogenesis of pemphigus, BP, and EBA. Further studies on the breakdown of self-tolerance and on the identification of key molecules that are relevant to blister formation may expand our understanding of the etiology of AIBDs and lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Jun Yamagami
- Department of Dermatology, Tokyo Women's Medical University, Tokyo, Japan
| | - Hayato Takahashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Kentaro Izumi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Iwata
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Masayuki Amagai
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Detlef Zillikens
- Center for Research on Inflammation of the Skin (CRIS), University of Lübeck, Lübeck, Germany; Department of Dermatology, Allergology, and Venereology, University of Lübeck, Lübeck, Germany, University of Lübeck, Lübeck, Germany
| |
Collapse
|
2
|
Bieber K, Kridin K, Emtenani S, Boch K, Schmidt E, Ludwig RJ. Milestones in Personalized Medicine in Pemphigus and Pemphigoid. Front Immunol 2021; 11:591971. [PMID: 33505392 PMCID: PMC7829330 DOI: 10.3389/fimmu.2020.591971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/16/2020] [Indexed: 12/20/2022] Open
Abstract
Pemphigus and pemphigoid diseases are autoimmune bullous diseases characterized and caused by autoantibodies targeting adhesion molecules in the skin and/or mucous membranes. Personalized medicine is a new medical model that separates patients into different groups and aims to tailor medical decisions, practices, and interventions based on the individual patient`s predicted response or risk factors. An important milestone in personalized medicine in pemphigus and pemphigoid was achieved by verifying the autoimmune pathogenesis underlying these diseases, as well as by identifying and cloning several pemphigus/pemphigoid autoantigens. The latter has become the basis of the current, molecular-based diagnosis that allows the differentiation of about a dozen pemphigus and pemphigoid entities. The importance of autoantigen-identification in pemphigus/pemphigoid is further highlighted by the emergence of autoantigen-specific B cell depleting strategies. To achieve this goal, the chimeric antigen receptor (CAR) T cell technology, which is used for the treatment of certain hematological malignancies, was adopted, by generating chimeric autoantigen receptor (CAAR) T cells. In addition to these more basic science-driven milestones in personalized medicine in pemphigus and pemphigoid, careful clinical observation and epidemiology are again contributing to personalized medicine. The identification of clearly distinct clinical phenotypes in pemphigoid like the non-inflammatory and gliptin-associated bullous pemphigoid embodies a prominent instance of the latter. We here review these exciting developments in basic, translational, clinical, and epidemiological research in pemphigus and pemphigoid. Overall, we hereby aim to attract more researchers and clinicians to this highly interesting and dynamic field of research.
Collapse
Affiliation(s)
- Katja Bieber
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Shirin Emtenani
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| | - Ralf J. Ludwig
- Lübeck Institute of Experimental Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology and Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Fang H, Zhang Y, Li N, Wang G, Liu Z. The Autoimmune Skin Disease Bullous Pemphigoid: The Role of Mast Cells in Autoantibody-Induced Tissue Injury. Front Immunol 2018; 9:407. [PMID: 29545809 PMCID: PMC5837973 DOI: 10.3389/fimmu.2018.00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 02/14/2018] [Indexed: 01/09/2023] Open
Abstract
Bullous pemphigoid (BP) is an autoimmune and inflammatory skin disease associated with subepidermal blistering and autoantibodies directed against the hemidesmosomal components BP180 and BP230. Animal models of BP were developed by passively transferring anti-BP180 IgG into mice, which recapitulates the key features of human BP. By using these in vivo model systems, key cellular and molecular events leading to the BP disease phenotype are identified, including binding of pathogenic IgG to its target, complement activation of the classical pathway, mast cell degranulation, and infiltration and activation of neutrophils. Proteinases released by infiltrating neutrophils cleave BP180 and other hemidesmosome-associated proteins, causing DEJ separation. Mast cells and mast cell-derived mediators including inflammatory cytokines and proteases are increased in lesional skin and blister fluids of BP. BP animal model evidence also implicates mast cells in the pathogenesis of BP. However, recent studies questioned the pathogenic role of mast cells in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, and epidermolysis bullosa acquisita. This review highlights the current knowledge on BP pathophysiology with a focus on a potential role for mast cells in BP and mast cell-related critical issues needing to be addressed in the future.
Collapse
Affiliation(s)
- Hui Fang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Zhang
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Dermatology, The Second Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, China
| | - Ning Li
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Zhi Liu
- Department of Dermatology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
4
|
Chiriac MT, Licarete E, Sas AG, Rados AM, Lupan I, Chiriac AM, Speth H, Pop-Vancia V, Domsa I, Sesarman A, Popescu O, Sitaru C. Passive transfer of collagen XVII-specific antibodies induces sustained blistering disease in adult mice. Orphanet J Rare Dis 2013; 8:17. [PMID: 23360583 PMCID: PMC3582590 DOI: 10.1186/1750-1172-8-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/06/2012] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Bullous pemphigoid is a subepidermal blistering disorder associated with tissue-bound and circulating autoantibodies directed mainly to the hemidesmosomal component collagen XVII. While recapitulating the main immunopathological features of the human disease, frank skin blistering does not develop in the absence of skin rubbing in experimental pemphigoid models that have been established in neonatal mice. Moreover, due to their experimental design they only allow for short-term disease observation. In the present study we aimed to establish a model that reproduces the frank skin blistering seen in patients and allows for longer observation times. METHODS Rabbit and sheep antibodies specific to several fragments of collagen XVII were generated and the purified antibodies were passively transferred into adult mice. RESULTS Collagen XVII-specific IgG bound to the basal membrane of the skin and mucous membranes activating murine complement in vivo. Mice injected with collagen XVII-specific antibodies, in contrast to mice receiving control antibodies, developed frank skin blistering disease, reproducing human bullous pemphigoid at the clinical, histological and immunopathological levels. Titres of circulating IgG in the serum of mice correlated with the extent of the clinical disease. Mice receiving sheep antibodies specific to murine collagen XVII showed an early onset and a more active disease when compared to litter mates receiving specific rabbit antibodies. CONCLUSION This novel animal model for bullous pemphigoid should facilitate further investigations of the pathogenesis of bullous pemphigoid and the development of innovative therapies for this disease.
Collapse
Affiliation(s)
- Mircea Teodor Chiriac
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alexandra Gabriela Sas
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Andreea Maria Rados
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iulia Lupan
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Anca Mirela Chiriac
- Medical Clinic III, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Hilda Speth
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Vlad Pop-Vancia
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Iacob Domsa
- Medical Clinic IV, University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Sesarman
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
| | - Octavian Popescu
- Department of Biology, Babes-Bolyai University, Cluj-Napoca, Romania
- Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
- Institute of Biology, Romanian Academy, Bucharest, Romania
| | - Cassian Sitaru
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, Freiburg, Germany
- Department of Dermatology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Natsuga K, Nishie W, Shinkuma S, Ujiie H, Nishimura M, Sawamura D, Shimizu H. Antibodies to pathogenic epitopes on type XVII collagen cause skin fragility in a complement-dependent and -independent manner. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5792-9. [PMID: 22523387 DOI: 10.4049/jimmunol.1003402] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In bullous pemphigoid (BP), the most prevalent autoimmune blistering disease, type XVII collagen (COL17) is targeted by circulating autoantibodies. BP is thought to be an autoantibody-mediated complement-fixing blistering disease, and a juxtamembranous noncollagenous 16A (NC16A) domain spanning Glu(490) to Arg(566) was proved to be the main pathogenic region on COL17, although precise pathogenic epitopes within NC16A have not been elucidated. In this study, we showed that injection of rabbit IgG Abs targeting Asp(522) to Gln(545) induced skin fragility associated with in vivo deposition of IgG and complement in neonatal COL17-humanized mice. Notably, immunoadsorption of rabbit anti-NC16A IgG Ab with this epitope (Asp(522) to Gln(545)) or the anti-NC16A IgG administered together with the peptides of this epitope as a decoy ameliorated skin fragility in the injected neonatal COL17-humanized mice compared with the anti-NC16A IgG alone even though all of the mice showed both IgG and complement deposition. These results led us to investigate an additional, complement-independent mechanism of skin fragility in the mice injected with anti-COL17 Abs. The rabbit anti-NC16A IgG depleted the expression of COL17 in cultured normal human keratinocytes, whereas immunoadsorption of the same IgG with this epitope significantly suppressed the depletion effect. Moreover, passive transfer of F(ab')(2) fragments of the human BP or rabbit IgG Abs against COL17 demonstrated skin fragility in neonatal COL17-humanized mice. In summary, this study reveals the importance of Abs directed against distinct epitopes on COL17, which induce skin fragility in complement-dependent as well as complement-independent ways.
Collapse
Affiliation(s)
- Ken Natsuga
- Department of Dermatology, Hokkaido University Graduate School of Medicine, Sapporo 0608638, Japan.
| | | | | | | | | | | | | |
Collapse
|
6
|
Sesarman A, Oswald E, Chiriac MT, Csorba K, Vuta V, Feldrihan V, Baican A, Bruckner-Tuderman L, Sitaru C. Why human pemphigoid autoantibodies do not trigger disease by the passive transfer into mice? Immunol Lett 2012; 143:92-100. [PMID: 22305931 DOI: 10.1016/j.imlet.2012.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Revised: 01/05/2012] [Accepted: 01/12/2012] [Indexed: 01/26/2023]
|
7
|
Oswald E, Sesarman A, Franzke CW, Wölfle U, Bruckner-Tuderman L, Jakob T, Martin SF, Sitaru C. The flavonoid luteolin inhibits Fcγ-dependent respiratory burst in granulocytes, but not skin blistering in a new model of pemphigoid in adult mice. PLoS One 2012; 7:e31066. [PMID: 22328927 PMCID: PMC3273480 DOI: 10.1371/journal.pone.0031066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 01/01/2012] [Indexed: 11/29/2022] Open
Abstract
Bullous pemphigoid is an autoimmune blistering skin disease associated with autoantibodies against the dermal-epidermal junction. Passive transfer of antibodies against BP180/collagen (C) XVII, a major hemidesmosomal pemphigoid antigen, into neonatal mice results in dermal-epidermal separation upon applying gentle pressure to their skin, but not in spontaneous skin blistering. In addition, this neonatal mouse model precludes treatment and observation of diseased animals beyond 2-3 days. Therefore, in the present study we have developed a new disease model in mice reproducing the spontaneous blistering and the chronic course characteristic of the human condition. Adult mice were pre-immunized with rabbit IgG followed by injection of BP180/CXVII rabbit IgG. Mice pre-immunized against rabbit IgG and injected 6 times every second day with the BP180/CXVII-specific antibodies (n = 35) developed spontaneous sustained blistering of the skin, while mice pre-immunized and then treated with normal rabbit IgG (n = 5) did not. Blistering was associated with IgG and complement C3 deposits at the epidermal basement membrane and recruitment of inflammatory cells, and was partly dependent on Ly-6G-positive cells. We further used this new experimental model to investigate the therapeutic potential of luteolin, a plant flavonoid with potent anti-inflammatory and anti-oxidative properties and good safety profile, in experimental BP. Luteolin inhibited the Fcγ-dependent respiratory burst in immune complex-stimulated granulocytes and the autoantibody-induced dermal-epidermal separation in skin cryosections, but was not effective in suppressing the skin blistering in vivo. These studies establish a robust animal model that will be a useful tool for dissecting the mechanisms of blister formation and will facilitate the development of more effective therapeutic strategies for managing pemphigoid diseases.
Collapse
Affiliation(s)
- Eva Oswald
- Allergy Research Group, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
- Molecular Dermatology, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Alina Sesarman
- Molecular Dermatology, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Claus-Werner Franzke
- Molecular Dermatology, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Ute Wölfle
- Competence Centre Skintegral, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Leena Bruckner-Tuderman
- Molecular Dermatology, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
- Freiburg Institute for Advanced Studies, Freiburg, Germany
| | - Thilo Jakob
- Allergy Research Group, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Stefan F. Martin
- Allergy Research Group, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
| | - Cassian Sitaru
- Molecular Dermatology, Department of Dermatology, University Freiburg Medical Center, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| |
Collapse
|
8
|
|
9
|
Bieber K, Sun S, Ishii N, Kasperkiewicz M, Schmidt E, Hirose M, Westermann JÃ, Yu X, Zillikens D, Ludwig RJ. Animal models for autoimmune bullous dermatoses. Exp Dermatol 2010; 19:2-11. [DOI: 10.1111/j.1600-0625.2009.00948.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
JENKINS R, JONES SVAUGHAN, BLACK M. Conversion of pemphigoid gestationis to bullous pemphigoid- two refractory cases highlighting this association. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1996.d01-1047.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Abstract
Bullous pemphigoid (BP) is a blistering skin disease characterized by an autoimmune response to 2 hemidesmosomal proteins within the dermal-epidermal junction, designated BP180 and BP230. While BP230 localizes intracellularly and associates with the hemidesmosomal plaque, BP180 is a transmembrane glycoprotein with an extracellular domain. Most BP patients have autoantibodies binding to an immunodominant region of BP180, the noncollagenous 16A domain (NC16A), which is located extracellularly close to the transmembrane domain of the protein. Autoreactive T and B cell responses to BP180 have been found in patients with BP. Passive transfer of antibodies to the murine BP180 ectodomain triggers a blistering skin disease in mice that closely mimics human BP. Lesion formation in this animal model depends upon complement activation, mast cell degranulation and accumulation of neutrophils and eosinophils. Patients' autoantibodies to BP180 induce dermal-epidermal separation in cryosections of human skin when co-incubated with leukocytes. The loss of cell-matrix adhesion is mediated by proteinases released by granulocytes. The increased knowledge of the pathophysiology of BP should facilitate the development of novel therapeutic strategies for this disease.
Collapse
Affiliation(s)
- Michael Kasperkiewicz
- Department of Dermatology, University of Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| | | |
Collapse
|
12
|
Zone JJ, Taylor T, Hull C, Schmidt L, Meyer L. IgE basement membrane zone antibodies induce eosinophil infiltration and histological blisters in engrafted human skin on SCID mice. J Invest Dermatol 2007; 127:1167-74. [PMID: 17235329 DOI: 10.1038/sj.jid.5700681] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bullous pemphigoid (BP) is characterized by the deposition of IgG in the basement membrane zone, infiltration of eosinophils, and blister formation. The purpose of this study was to evaluate a potential role of IgE basement membrane antibodies in the histological findings of BP. LABD97 is a component of the shed ectodomain of bullous pemphigoid antigen 2. We have developed an IgE hybridoma to LABD97 antigen. This hybridoma was injected subcutaneously in SCID mice with engrafted human skin. A subcutaneous hybridoma secreting IgE antibodies developed. An IgE mouse hybridoma to trinitrophenyl was used as a control. Human grafts and mouse skin were examined grossly over 21 days, histologically, and immunopathologically at day 21 after injection of the hybridoma. A visible subcutaneous tumor developed in 10-14 days. Erythema and intense scratching developed 2-3 days before the tumor in test mice, but not in controls. At day 21, 16/16 test mice developed intense eosinophil infiltration and degranulation of the human mast cells within the grafts and 13/16 developed histological, but not clinically visible, basement membrane blisters. Human skin grafts of control mice and normal mouse skin on the test mice and control mice did not develop any histological abnormalities. IgE antibodies to LABD97 recapitulate the histological inflammatory process seen in BP.
Collapse
Affiliation(s)
- John J Zone
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, Utah 84132, USA.
| | | | | | | | | |
Collapse
|
13
|
Abstract
Autoimmune diseases are characterized by defined self-antigens, organ specificity, autoreactive T cells and/or autoantibodies that can transfer disease. Autoimmune blistering diseases are organ-specific autoimmune diseases associated with an immune response directed to structural proteins mediating cell-cell and cell-matrix adhesion in the skin. While both autoreactive T and B cells have been detected and characterized in patients with autoimmune blistering diseases, current evidence generally supports a pathogenic role of autoantibodies for blister formation. The immunopathology associated with blisters induced by autoantibodies relies on several mechanisms of action. Autoantibodies from patients with pemphigus diseases can exert a direct effect just by binding to their target mediated by steric hindrance and/or by triggering the transduction of a signal to the cell. In most subepidermal autoimmune blistering conditions, in addition to the binding to their target antigen, autoantibodies need to interact with factors of the innate immune system, including the complement system and inflammatory cells, in order to induce blisters. Generally, decisive progress has been made in the characterization of the mechanisms of blister formation in autoimmune skin diseases. However, various aspects, including the exact contribution of steric hindrance and signal transduction for pemphigus IgG-induced acantholysis or the fine tuning of the inflammatory cascade triggered by autoantibodies in some subepidermal blistering diseases, still need to be addressed. Understanding the mechanisms by which autoantibodies induce blisters should facilitate the development of more specific therapeutic strategies of autoimmune blistering diseases.
Collapse
Affiliation(s)
- Cassian Sitaru
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | |
Collapse
|
14
|
Zone JJ, Egan CA, Taylor TB, Meyer LJ. IgA autoimmune disorders: development of a passive transfer mouse model. J Investig Dermatol Symp Proc 2004; 9:47-51. [PMID: 14870985 DOI: 10.1111/j.1087-0024.2004.00840.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
IgA is present in the skin in several dermatoses, including dermatitis herpetiformis, linear IgA bullous dermatosis, and Henoch-Schoenlein purpura. The neutrophilic infiltration in the area of the IgA deposition suggests that IgA is responsible for the associated inflammatory events. The mechanism for this process is unproven, but is likely to involve IgA-mediated neutrophil chemotaxis with inhibition of chemotaxis by dapsone. Elucidation of the mechanism of IgA-mediated inflammation will require an animal model. We have established a model for linear IgA bullous dermatosis as a prototype disease to be studied. IgA mouse monoclonal antibodies against a linear IgA bullous dermatosis antigen have been passively transferred to SCID mice with human skin grafts. This has produced neutrophil infiltration and basement membrane vesiculation in 4 of 12 mice tested. We conclude that an animal model for the pathogenesis of IgA dermatoses with IgA deposition and inflammation can be produced by passive transfer of mouse IgA antibodies against a linear IgA antigen.
Collapse
Affiliation(s)
- John J Zone
- Veterans Administration Medical Center, Salt Lake City, Utah, USA.
| | | | | | | |
Collapse
|
15
|
Zillikens D, Schmidt E, Reimer S, Chimanovitch I, Hardt-Weinelt K, Rose C, Bröcker EB, Kock M, Boehncke WH. Antibodies to desmogleins 1 and 3, but not to BP180, induce blisters in human skin grafted onto SCID mice. J Pathol 2001; 193:117-24. [PMID: 11169524 DOI: 10.1002/1096-9896(2000)9999:9999<::aid-path742>3.0.co;2-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pemphigus and bullous pemphigoid (BP) are blistering skin diseases associated with IgG autoantibodies to desmosomal and hemidesmosomal components. When autoantibodies to desmogleins 1 and 3 from patients with pemphigus foliaceus (PF) and pemphigus vulgaris (PV) or rabbit antibodies against the murine hemidesmosomal component BP180 are passively transferred into neonatal mice, they induce blisters in the skin of the mice. To develop an animal model that would duplicate the findings in the skin of the patients more closely, full-thickness human skin from healthy volunteers was grafted onto SCID mice. Injection of the purified IgG fraction from the serum of PF and PV patients led to subcorneal and suprabasal splits in the human grafts and human IgG was deposited intercellularly in the upper and lower layers of the epidermis, respectively. Interestingly, anti-BP180 autoantibodies purified from the serum of BP patients and from a rabbit immunized with recombinant human BP180 strongly bound to the basement membrane zone of the grafts (n=32), fixed murine complement, led to the recruitment of neutrophils to the upper dermis of the graft, but did not induce subepidermal blisters. We report a novel experimental model for PF and PV which should greatly facilitate further studies to dissect the immunopathological mechanisms in these diseases. Specifically, this model can be used to identify pathogenically relevant epitopes on human desmogleins 1 and 3 and to develop novel strategies for the treatment of pemphigus.
Collapse
Affiliation(s)
- D Zillikens
- Department of Dermatology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
JENKINS R, JONES SVAUGHAN, BLACK M. Conversion of pemphigoid gestationis to bullous pemphigoid— two refractory cases highlighting this association. Br J Dermatol 1996. [DOI: 10.1111/j.1365-2133.1996.tb03838.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Liu Z, Giudice GJ, Swartz SJ, Fairley JA, Till GO, Troy JL, Diaz LA. The role of complement in experimental bullous pemphigoid. J Clin Invest 1995; 95:1539-44. [PMID: 7706459 PMCID: PMC295637 DOI: 10.1172/jci117826] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bullous pemphigoid (BP) is a blistering skin disease associated with an IgG autoimmune response directed against the ectodomain of the hemidesmosomal protein, BP180. An animal model of BP has recently been developed by our laboratory based on the passive transfer of rabbit antimurine BP180 antibodies into neonatal BALB/c mice. The experimental animals develop a blistering disease that reproduces all of the key immunopathological features of BP. In the present study we have investigated the role of complement in the pathogenesis of subepidermal blistering in the mouse model of BP. We demonstrate the following. (a) Rabbit anti-murine-BP180 IgG was effective in inducing cutaneous blisters in a C5-sufficient mouse strain, but failed to induce disease in the syngeneic C5-deficient strain; (b) neonatal BALB/c mice, pretreated with cobra venom factor to deplete complement, became resistant to the pathogenic effects of the anti-BP180 IgG; (c) F(ab')2 fragments generated from the anti-BP180 IgG exhibited no pathogenic activity in the mouse model; and (d) histologic evaluation of the skin of mice described in points b and c above showed minimal or no neutrophilic cell infiltration in the upper dermis. Thus, anti-BP180 antibodies trigger subepidermal blistering in this BP model via complement activation. This experimental model of BP should greatly facilitate future studies on the pathophysiology of autoantibody-mediated diseases of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Z Liu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Liu Z, Diaz LA, Troy JL, Taylor AF, Emery DJ, Fairley JA, Giudice GJ. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J Clin Invest 1993; 92:2480-8. [PMID: 7693763 PMCID: PMC288433 DOI: 10.1172/jci116856] [Citation(s) in RCA: 447] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Subepidermal blistering associated with the human skin diseases bullous pemphigoid and herpes gestationis has been thought to be an IgG autoantibody-mediated process; however, previous attempts to demonstrate the pathogenicity of patient autoantibodies have been unsuccessful. An immunodominant and potentially pathogenic epitope associated with these blistering diseases has recently been mapped to the extracellular domain of a human epidermal antigen, BP180. Patient autoantibodies that react with this well-defined antigenic site failed to crossreact with the murine form of this autoantigen and thus could not be assayed for pathogenicity in a conventional passive transfer mouse model. As an alternative, rabbit polyclonal antibodies were generated against a segment of the murine BP180 protein homologous with the human BP180 autoantibody-reactive site and were passively transferred into neonatal BALB/c mice. The injected animals developed a subepidermal blistering disease that closely mimicked bullous pemphigoid and herpes gestationis at the clinical, histological, and immunological levels. Autoantibodies that recognize the human BP180 ectodomain are therefore likely to play an initiatory role in the pathogenesis of bullous pemphigoid and herpes gestationis.
Collapse
Affiliation(s)
- Z Liu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee 53226
| | | | | | | | | | | | | |
Collapse
|