1
|
Kang Y, Liu K, Chen Z, Guo J, Xiang K, Wu X, Jiang T, Chen J, Yan C, Jiang G, Wang Y, Zhang M, Xiang X, Dai H, Yang X. Healing with precision: A multi-functional hydrogel-bioactive glass dressing boosts infected wound recovery and enhances neurogenesis in the wound bed. J Control Release 2024; 370:210-229. [PMID: 38648955 DOI: 10.1016/j.jconrel.2024.04.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Chronic skin wounds, especially infected ones, pose a significant clinical challenge due to their increasing incidence and poor outcomes. The deteriorative microenvironment in such wounds, characterized by reduced extracellular matrix, impaired angiogenesis, insufficient neurogenesis, and persistent bacterial infection, has prompted the exploration of novel therapeutic strategies. In this study, we developed an injectable multifunctional hydrogel (GEL/BG@Cu + Mg) incorporating Gelatin-Tannic acid/ N-hydroxysuccinimide functionalized polyethylene glycol and Bioactive glass doped with copper and magnesium ions to accelerate the healing of infected wounds. The GEL/BG@Cu + Mg hydrogel composite demonstrates good biocompatibility, degradability, and rapid formation of a protective barrier to stop bleeding. Synergistic bactericidal effects are achieved through the photothermal properties of BG@Cu + Mg and sustained copper ions release, with the latter further promoting angiogenesis. Furthermore, the hydrogel enhances neurogenesis by stimulating axons and Schwann cells in the wound bed through the beneficial effects of magnesium ions. Our results demonstrate that the designed novel multifunctional hydrogel holds tremendous promise for treating infected wounds and allowing regenerative neurogenesis at the wound site, which provides a viable alternative for further improving clinical outcomes.
Collapse
Affiliation(s)
- Yu Kang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiahe Guo
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaituo Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaopei Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chenqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoyong Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yufeng Wang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Maojie Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xuejiao Xiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000, China.
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
2
|
Sankar S, Kodiveri Muthukaliannan G. Deciphering the crosstalk between inflammation and biofilm in chronic wound healing: Phytocompounds loaded bionanomaterials as therapeutics. Saudi J Biol Sci 2024; 31:103963. [PMID: 38425782 PMCID: PMC10904202 DOI: 10.1016/j.sjbs.2024.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/02/2024] Open
Abstract
In terms of the economics and public health, chronic wounds exert a significant detrimental impact on the health care system. Bacterial infections, which cause the formation of highly resistant biofilms that elude standard antibiotics, are the main cause of chronic, non-healing wounds. Numerous studies have shown that phytochemicals are effective in treating a variety of diseases, and traditional medicinal plants often include important chemical groups such alkaloids, phenolics, tannins, terpenes, steroids, flavonoids, glycosides, and fatty acids. These substances are essential for scavenging free radicals which helps in reducing inflammation, fending off infections, and hastening the healing of wounds. Bacterial species can survive in chronic wound conditions because biofilms employ quorum sensing as a communication technique which regulates the expression of virulence components. Fortunately, several phytochemicals have anti-QS characteristics that efficiently block QS pathways, prevent drug-resistant strains, and reduce biofilm development in chronic wounds. This review emphasizes the potential of phytocompounds as crucial agents for alleviating bacterial infections and promoting wound healing by reducing the inflammation in chronic wounds, exhibiting potential avenues for future therapeutic approaches to mitigate the healthcare burden provided by these challenging conditions.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
3
|
Sukmana BI, Margiana R, Almajidi YQ, Almalki SG, Hjazi A, Shahab S, Romero-Parra RM, Alazbjee AAA, Alkhayyat A, John V. Supporting wound healing by mesenchymal stem cells (MSCs) therapy in combination with scaffold, hydrogel, and matrix; State of the art. Pathol Res Pract 2023; 248:154575. [PMID: 37285734 DOI: 10.1016/j.prp.2023.154575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/09/2023]
Abstract
Non-healing wounds impose a huge annual cost on the survival of different countries and large populations in the world. Wound healing is a complex and multi-step process, the speed and quality of which can be changed by various factors. To promote wound healing, compounds such as platelet-rich plasma, growth factors, platelet lysate, scaffolds, matrix, hydrogel, and cell therapy, in particular, with mesenchymal stem cells (MSCs) are suggested. Nowadays, the use of MSCs has attracted a lot of attention. These cells can induce their effect by direct effect and secretion of exosomes. On the other hand, scaffolds, matrix, and hydrogels provide suitable conditions for wound healing and the growth, proliferation, differentiation, and secretion of cells. In addition to generating suitable conditions for wound healing, the combination of biomaterials and MSCs increases the function of these cells at the site of injury by favoring their survival, proliferation, differentiation, and paracrine activity. In addition, other compounds such as glycol, sodium alginate/collagen hydrogel, chitosan, peptide, timolol, and poly(vinyl) alcohol can be used along with these treatments to increase the effectiveness of treatments in wound healing. In this review article, we take a glimpse into the merging scaffolds, hydrogels, and matrix application with MSCs therapy to favor wound healing.
Collapse
Affiliation(s)
- Bayu Indra Sukmana
- Oral Biology Department, Lambung Mangkurat University, Banjarmasin, Indonesia
| | - Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia; Dr. Soetomo General Academic Hospital, Surabaya, Indonesia.
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Sana Shahab
- Department of Business Administration, College of Business Administration, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | | | - Afa Alkhayyat
- College of Pharmacy, the Islamic University, 54001 Najaf, Iraq
| | - Vivek John
- Uttaranchal Institute of Technology, Uttaranchal University, Dehradun 248007, India
| |
Collapse
|
4
|
Garabet W, Shabes P, Wolters KH, Rembe JD, Ibing W, Wagenhäuser MU, Simon F, Schelzig H, Oberhuber A. Effect of Gelatin-Based Hemostats on Fibroblasts and Relevant Growth Factors in Wound Healing. Gels 2023; 9:504. [PMID: 37367174 DOI: 10.3390/gels9060504] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/28/2023] Open
Abstract
Gelatin-based hemostats have been used in various surgical fields and showed advantageous effects on central aspects of wound healing when compared to cellulose-based hemostats. Nevertheless, the influence of gelatin-based hemostats on wound healing has not been fully explored yet. Hemostats were applied to fibroblast cell cultures for 5, 30, 60 min, 24 h, 7 and 14 days and measurements were taken at 3, 6, 12, 24 h and 7 or 14 days, respectively. Cell proliferation was quantified after different exposure times and a contraction assay was conducted to measure the extent of the extracellular matrix over time. We further assessed quantitative levels of vascular endothelial growth factor and basic fibroblast growth factor using enzyme-linked immunosorbent assay. Fibroblast counts decreased significantly at 7 and 14 days independent of the application duration (p < 0.001 for 5 min application). The gelatin-based hemostat did not have a negative impact on cell matrix contraction. After application of gelatin-based hemostat, the basic fibroblast growth factor did not change; yet, the vascular endothelial growth factor significantly increased after a prolonged 24 h application time when compared to controls or to a 6 h exposure (p < 0.05). Gelatin-based hemostats did not impair contraction of the extracellular matrix or growth factor production (vascular endothelial growth factor and basic fibroblast growth factor), while cell proliferation diminished at late time points. In conclusion, the gelatin-based material seems to be compatible with central aspects of wound healing. For further clinical assessment, future animal and human studies are necessary.
Collapse
Affiliation(s)
- Waseem Garabet
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Polina Shabes
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Katharina Henrika Wolters
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Julian-Dario Rembe
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Wiebke Ibing
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Udo Wagenhäuser
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Florian Simon
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hubert Schelzig
- Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Alexander Oberhuber
- Department of Vascular and Endovascular Surgery, University Hospital of Münster, 48149 Münster, Germany
| |
Collapse
|
5
|
Keni R, Begum F, Gourishetti K, Viswanatha GL, Nayak PG, Nandakumar K, Shenoy RR. Diabetic wound healing approaches: an update. J Basic Clin Physiol Pharmacol 2023; 34:137-150. [PMID: 34995024 DOI: 10.1515/jbcpp-2021-0340] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/19/2021] [Indexed: 01/01/2023]
Abstract
Diabetic wounds are of profound clinical importance. Despite immense efforts directed towards its management, it results in the development of amputations, following a diagnosis of diabetic foot. With a better understanding of the complexities of the microbalance involved in the healing process, researchers have developed advanced methods for the management of wounds as well as diagnostic tools (especially, for wound infections) to be delivered to clinics sooner. In this review, we address the newer developments that hope to drive the transition from bench to bedside in the coming decade.
Collapse
Affiliation(s)
- Raghuvir Keni
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farmiza Begum
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Karthik Gourishetti
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Pawan Ganesh Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rekha R Shenoy
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
6
|
Saki E, Murthy V, Khandanlou R, Wang H, Wapling J, Weir R. Optimisation of Calophyllum inophyllum seed oil nanoemulsion as a potential wound healing agent. BMC Complement Med Ther 2022; 22:285. [PMID: 36333789 PMCID: PMC9635111 DOI: 10.1186/s12906-022-03751-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
Background Efficient delivery systems of Calophyllum inophyllum seed oil (CSO) in the form of nanoemulsion were optimised to enhance its stability and ensure its therapeutic efficiency as a potential agent for various biomedical applications. Method Response Surface Methodology (RSM) was used to determine the effects of independent variables (oil, surfactant, water percentage and homogenisation time) on physicochemical characteristics, including droplet size, polydispersity index and turbidity. Results The optimised CSO nanoemulsion (CSONE) has a 46.68 nm particle size, 0.15 Polydispersity index value and 1.16 turbidity. After 4 weeks of storage at 5 ± 1 °C and 25 ± 1 °C, the CSONE was physically stable. The optimised CSO nanoemulsion showed enhancement in cell viability and wound healing in baby hamster kidney a clone BHK-21 (BSR) cells as compared to the CSO. The wound healing property of CSONE was higher than CSO. Conclusion Thus, our in vitro wound healing results demonstrated that CSO in the nanoemulsion form can promote wound healing by enhancing the proliferation and migration of epidermal cells. Graphical Abstract The coarse emulsion of Calophyllum inophyllum seed oil nano emulsion was prepared using high shear homogeniser techniques. The optimised CSONE with the droplet size of 46.68 nm was prepared from a mixture of CSO, Tween 80, and high pure water (HPW), then used for the biological investigation. The in vitro cell monolayer scratch assay revealed that CSONE in the lowest concentration of CSO resulted in 100% wound closure after 48 hrs. The optimised CSO nanoemulsion was found to be a promising and effective approach in the treatment of wounds by boosting the proliferation and migration of epidermal cells.
![]() Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03751-6.
Collapse
Affiliation(s)
- Elnaz Saki
- grid.1043.60000 0001 2157 559XCollege of Engineering, IT & Environment, Charles Darwin University, Casuarina campus, Darwin City, 0810 Australia
| | - Vinuthaa Murthy
- grid.1043.60000 0001 2157 559XCollege of Engineering, IT & Environment, Charles Darwin University, Casuarina campus, Darwin City, 0810 Australia
| | - Roshanak Khandanlou
- grid.1043.60000 0001 2157 559XCollege of Engineering, IT & Environment, Charles Darwin University, Casuarina campus, Darwin City, 0810 Australia
| | - Hao Wang
- grid.1043.60000 0001 2157 559XCollege of Engineering, IT & Environment, Charles Darwin University, Casuarina campus, Darwin City, 0810 Australia
| | - Johanna Wapling
- grid.1043.60000 0001 2157 559XMenzies School of Health Research, Charles Darwin University, Darwin City, Australia
| | - Richard Weir
- grid.483876.60000 0004 0394 3004Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade Northern Territory Government, Darwin City, Australia
| |
Collapse
|
7
|
Pourmadadi M, Rahmani E, Shamsabadipour A, Mahtabian S, Ahmadi M, Rahdar A, Díez-Pascual AM. Role of Iron Oxide (Fe 2O 3) Nanocomposites in Advanced Biomedical Applications: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3873. [PMID: 36364649 PMCID: PMC9653814 DOI: 10.3390/nano12213873] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials have demonstrated a wide range of applications and recently, novel biomedical studies are devoted to improving the functionality and effectivity of traditional and unmodified systems, either drug carriers and common scaffolds for tissue engineering or advanced hydrogels for wound healing purposes. In this regard, metal oxide nanoparticles show great potential as versatile tools in biomedical science. In particular, iron oxide nanoparticles with different shape and sizes hold outstanding physiochemical characteristics, such as high specific area and porous structure that make them idoneous nanomaterials to be used in diverse aspects of medicine and biological systems. Moreover, due to the high thermal stability and mechanical strength of Fe2O3, they have been combined with several polymers and employed for various nano-treatments for specific human diseases. This review is focused on summarizing the applications of Fe2O3-based nanocomposites in the biomedical field, including nanocarriers for drug delivery, tissue engineering, and wound healing. Additionally, their structure, magnetic properties, biocompatibility, and toxicity will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Erfan Rahmani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Shima Mahtabian
- Department of Materials Engineering, Shahreza Bramch, Islamic Azad University, Shahreza, Isfahan 61349-37333, Iran
| | - Mohammadjavad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 14174, Iran
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran
| | - Ana M. Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
8
|
Dall’Olio AJ, Matias GDSS, Carreira ACO, de Carvalho HJC, van den Broek Campanelli T, da Silva TS, da Silva MD, Abreu-Silva AL, Miglino MA. Biological Graft as an Innovative Biomaterial for Complex Skin Wound Treatment in Dogs: A Preliminary Report. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6027. [PMID: 36079408 PMCID: PMC9456771 DOI: 10.3390/ma15176027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Complex wounds in dogs are a recurrent problem in veterinary clinical application and can compromise skin healing; in this sense, tissue bioengineering focused on regenerative medicine can be a great ally. Decellularized and recellularized skin scaffolds are produced to be applied in different and complex canine dermal wounds in the present investigation. Dog skin fragments are immersed in a 0.5% sodium dodecyl sulfate (SDS) solution at room temperature and overnight at 4 °C for 12 days. Decellularized samples are evaluated by histological analysis, scanning electron microscopy (SEM) and gDNA quantification. Some fragments are also recellularized using mesenchymal stem cells (MSCs). Eight adult dogs are divided into three groups for the application of the decellularized (Group I, n = 3) and recellularized scaffolds (Group II, n = 3) on injured areas, and a control group (Group III, n = 2). Wounds are evaluated and measured during healing, and comparisons among the three groups are described. In 30- and 60-day post-grafting, the histopathological analysis of patients from Groups I and II shows similar patterns, tissue architecture preservation, epithelial hyperplasia, hyperkeratosis, edema, and mononuclear inflammatory infiltrate. Perfect integration between scaffolds and wounds, without rejection or contamination, are observed in both treated groups. According to these results, decellularized skin grafts may constitute a potential innovative and functional tool to be adopted as a promising dog cutaneous wound treatment. This is the first study that applies decellularized and recellularized biological skin grafts to improve the healing process in several complex wounds in dogs, demonstrating great potential for regenerative veterinary medicine progress.
Collapse
Affiliation(s)
- Adriano Jaskonis Dall’Olio
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Gustavo de Sá Schiavo Matias
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Claudia Oliveira Carreira
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | | | - Thais van den Broek Campanelli
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Thamires Santos da Silva
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Mônica Duarte da Silva
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| | - Ana Lúcia Abreu-Silva
- Department of Veterinary Pathology, State University of Maranhão, Maranhão 65055-150, Brazil
| | - Maria Angélica Miglino
- Surgery Department, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil
| |
Collapse
|
9
|
The Topical Effect of rhGDF-5 Embedded in a Collagen–Gelatin Scaffold for Accelerated Wound Healing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The application of exogenous growth factors such as the recombinant human growth and differentiation factor 5 (rhGDF-5) represents a major research topic with great potential for the treatment of complex wounds. In a randomized, controlled minipig study, the topical effect of rhGDF-5 on full-thickness skin defects was evaluated. A total of 60 deep dermal wounds were either treated with rhGDF-5 embedded in an innovative collagen scaffold or another commonly used collagen matrix or left untreated. Wound healing was analyzed by planimetric analysis to determine wound closure over time. After 21 days, the areas of the initial wounds were excised, and the newly formed tissue was examined histologically. In comparison to untreated wounds, all examined matrices accelerated dermal wound healing. The largest acceleration of wound healing was seen with the high-dose rhGDF-5-treated wounds, which, compared to the untreated wounds, accelerated wound healing by 2.58 days, improved the neoepidermal thickness by 32.40 µm, and increased the epidermal cell density by 44.88 cells. The innovative collagen scaffold delivered rhGDF-5 adequately, served as a template to guide proliferating and restructuring cells, and accelerated wound healing. Thus, this composite product offers a novel tool for developing effective wound dressings in regenerative medicine.
Collapse
|
10
|
Szondi DC, Wong JK, Vardy LA, Cruickshank SM. Arginase Signalling as a Key Player in Chronic Wound Pathophysiology and Healing. Front Mol Biosci 2021; 8:773866. [PMID: 34778380 PMCID: PMC8589187 DOI: 10.3389/fmolb.2021.773866] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.
Collapse
Affiliation(s)
- Denis C Szondi
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jason K Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Leah A Vardy
- Skin Research Institute of Singapore, ASTAR, Singapore, Singapore
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
11
|
Samadi A, Buro J, Dong X, Weinstein A, Lara DO, Celie KB, Wright MA, Gadijko MA, Galili U, Spector JA. Topical α-Gal Nanoparticles Enhance Wound Healing in Radiated Skin. Skin Pharmacol Physiol 2021; 35:31-40. [PMID: 34348342 DOI: 10.1159/000518015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/31/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Arash Samadi
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Justin Buro
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Xue Dong
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Andrew Weinstein
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Daniel O Lara
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Karel-Bart Celie
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Matthew A Wright
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Mariam A Gadijko
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Uri Galili
- Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jason A Spector
- Division of Plastic Surgery, Laboratory of Bioregenerative Medicine & Surgery, Weill Cornell Medicine, New York, New York, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Park SG, Li MX, Cho WK, Joung YK, Huh KM. Thermosensitive gallic acid-conjugated hexanoyl glycol chitosan as a novel wound healing biomaterial. Carbohydr Polym 2021; 260:117808. [PMID: 33712154 DOI: 10.1016/j.carbpol.2021.117808] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/13/2021] [Accepted: 02/09/2021] [Indexed: 01/11/2023]
Abstract
In the present study, a novel synthetic tissue adhesive material capable of sealing wounds without the use of any crosslinking agent was developed by conjugating thermosensitive hexanoyl glycol chitosan (HGC) with gallic acid (GA). The degree of N-gallylation was manipulated to prepare GA-HGCs with different GA contents. GA-HGCs demonstrated thermosensitive sol-gel transition behavior and formed irreversible hydrogels upon natural oxidation of the pyrogallol moieties in GA, possibly leading to GA-HGC crosslinks through intra/intermolecular hydrogen bonding and chemical bonds. The GA-HGC hydrogels exhibited self-healing properties, high compressive strength, strong tissue adhesive strength and biodegradability that were adjustable according to the GA content. GA-HGCs also presented excellent biocompatibility and wound healing effects. The results of in vivo wound healing efficacy studies on GA-HGC hydrogels indicated that they significantly promote wound closure and tissue regeneration by upregulating growth factors and recruiting fibroblasts compared to the untreated control group.
Collapse
Affiliation(s)
- Seul Gi Park
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Mei-Xian Li
- School of Textile and Clothing, Nantong University, Nantong 226019, China; Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Woo Kyung Cho
- Department of Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Yoon Ki Joung
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Kang Moo Huh
- Departments of Polymer Science and Engineering & Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
13
|
Gao C, Zhang L, Wang J, Jin M, Tang Q, Chen Z, Cheng Y, Yang R, Zhao G. Electrospun nanofibers promote wound healing: theories, techniques, and perspectives. J Mater Chem B 2021; 9:3106-3130. [PMID: 33885618 DOI: 10.1039/d1tb00067e] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the clinical strategies for treating chronic wounds are limited, especially when it comes to pain relief and rapid wound healing. Therefore, there is an urgent need to develop alternative treatment methods. This paper provides a systematic review on recent researches on how electrospun nanofiber scaffolds promote wound healing and how the electrospinning technology has been used for fabricating multi-dimensional, multi-pore and multi-functional nanofiber scaffolds that have greatly promoted the development of wound healing dressings. First, we provide a review on the four stages of wound healing, which is followed by a discussion on the evolvement of the electrospinning technology, what is involved in electrospinning devices, and factors affecting the electrospinning process. Finally, we present the possible mechanisms of electrospun nanofibers to promote wound healing, the classification of electrospun polymers, cell infiltration favoring fiber scaffolds, antibacterial fiber scaffolds, and future multi-functional scaffolds. Although nanofiber scaffolds have made great progress as a type of multi-functional biomaterial, major challenges still remain for commercializing them in a way that fully meets the needs of patients.
Collapse
Affiliation(s)
- Chen Gao
- College of Life Sciences, Anhui Medical University, Hefei 230022, Anhui, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li Y, Leng Q, Pang X, Shi H, Liu Y, Xiao S, Zhao L, Zhou P, Fu S. Therapeutic effects of EGF-modified curcumin/chitosan nano-spray on wound healing. Regen Biomater 2021; 8:rbab009. [PMID: 33738123 PMCID: PMC7955721 DOI: 10.1093/rb/rbab009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/11/2021] [Accepted: 01/23/2021] [Indexed: 12/20/2022] Open
Abstract
Dermal injury, including trauma, surgical incisions, and burns, remain the most prevalent socio-economical health care issue in the clinic. Nanomedicine represents a reliable administration strategy that can promote the healing of skin lesions, but the lack of effective drug delivery methods can limit its effectiveness. In this study, we developed a novel nano-drug delivery system to treat skin defects through spraying. We prepared curcumin-loaded chitosan nanoparticles modified with epidermal growth factor (EGF) to develop an aqueous EGF-modified spray (EGF@CCN) for the treatment of dermal wounds. In vitro assays showed that the EGF@CCN displayed low cytotoxicity, and that curcumin was continuously and slowly released from the EGF@CCN. In vivo efficacy on wound healing was then evaluated using full-thickness dermal defect models in Wistar rats, showing that the EGF@CCN had significant advantages in promoting wound healing. On day 12 post-operation, skin defects in the rats of the EGF@CCN group were almost completely restored. These effects were related to the activity of curcumin and EGF on skin healing, and the high compatibility of the nano formulation. We therefore conclude that the prepared nano-scaled EGF@CCN spray represents a promising strategy for the treatment of dermal wounds.
Collapse
Affiliation(s)
- Yue Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - QingQing Leng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - XianLun Pang
- Health Management Center, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Luzhou 646000, China
| | - Huan Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - YanLin Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - SuSu Xiao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy of Southwest Medical University, Luzhou 646000, China
| | - Ping Zhou
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
15
|
Sharma A, Khanna S, Kaur G, Singh I. Medicinal plants and their components for wound healing applications. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00202-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Abstract
Background
Wound is an anatomical and functional disruption of the skin following an injury. In response to the injury, wound healing is a complex process of tissue repair or remodeling. Historically, plants and plant-based constituents have been extensively used for the treatment and management of different types of wounds. In the current times, different types of biopolymers are being researched for developing economical, sustainable, stable, and effective delivery system for the treatment of wounds.
Main text
The present review article attempts to enlist medicinal plants which have been reported to be effective in the treatment of wounds. Plant constituent-based wound dressings have also been discussed systematically including patented formulations reported by different inventors.
Conclusion
The compiled data aims to update the researchers/scientists which will be helpful in providing them a directional view in understanding the role and importance of plant-based components for the treatment and management of wounds.
Collapse
|
16
|
Abstract
PURPOSE Autologous hemoderivative eye drops have a role in the management of persistent epithelial defects (PEDs), but their use may be limited by cost and availability. Finger-prick autologous blood (FAB) treatment uses whole capillary blood, obtained from a sterilized fingertip, as an alternative form of hemoderivative eye drop therapy. To date, 1 report has described the safe and effective use of FAB for dry eye and PEDs. We report the results of 10 eyes (10 patients) treated with FAB for PEDs. METHODS Ten patients with PEDs in 1 eye for a mean of 259 ± 201 days due to diabetic neurotrophic keratopathy (n = 3), herpetic keratitis (n = 3), postpenetrating keratoplasty (n = 1), keratoconjunctivitis sicca (n = 1), postradiotherapy (n = 1), and neuropathic ulcer (n = 1) were treated with FAB 4 times a day for 28 days in addition to conventional therapies. All patients had been unsuccessfully treated with conventional therapy before commencing on FAB. None of the patients had received any surgical treatment for PED. RESULTS At day 28, the PED had healed in 60% (n = 6) of the eyes. In 1 eye, the PED reduced in size by half. Thirty percent (n = 3) of patients had incomplete follow-up data at the end of the study. CONCLUSIONS FAB in combination with conventional treatment may be successfully used in the management of refractory PEDs. No adverse effects arising from FAB treatment were observed.
Collapse
|
17
|
Chakrabarti S, Mazumder B, Rajkonwar J, Pathak MP, Patowary P, Chattopadhyay P. bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep 2021; 11:3357. [PMID: 33558597 PMCID: PMC7870886 DOI: 10.1038/s41598-021-82888-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/25/2021] [Indexed: 01/30/2023] Open
Abstract
Burn injuries are most challenging to manage since it causes loss of the integrity of large portions of the skin leading to major disability or even death. Over the years, hydrogels are considered as a significant delivery system for wound treatment because of several advantages over other conventional formulations. We hypothesized that the bFGF-collagen-AgSD incorporated hydrogel formulation can accelerate the rate of burn healing in animal model and would promote fibroblast cell proliferation. Neovascularization and re-epithelialization is a hall mark of burn wound healing. In the present study, histopathological investigation and scanning electron microscopy of skin tissue of Wistar rats showed almost complete epithelialisation after 16 days in the treatment group. The developed hydrogel showed significantly accelerated wound closure compared with a standard and control group. The faster wound closure resulted from increased re-epithelialization and granulation tissue formation because of the presence of collagen and growth factor. Expressions of proteins such as TrkA, p- TrkA, ERK1/2, p-ERK1/2, NF-kβ, and p-NF-kβ involved in nerve growth factor (NGF) signalling pathway were analysed by western blot. All the findings obtained from this study indicated that the hydrogel can be considered as a promising delivery system against second degree burn by faster healing.
Collapse
Affiliation(s)
- Srijita Chakrabarti
- Defence Research Laboratory, Tezpur, Assam, 784 001, India
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | | | | | - Pompy Patowary
- Defence Research Laboratory, Tezpur, Assam, 784 001, India
| | | |
Collapse
|
18
|
Aslam S, Khan I, Jameel F, Zaidi MB, Salim A. Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: potential therapy for burn wounds. World J Stem Cells 2020; 12:1652-1666. [PMID: 33505606 PMCID: PMC7789118 DOI: 10.4252/wjsc.v12.i12.1652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired wound healing can be associated with different pathological states. Burn wounds are the most common and detrimental injuries and remain a major health issue worldwide. Mesenchymal stem cells (MSCs) possess the ability to regenerate tissues by secreting factors involved in promoting cell migration, proliferation and differentiation, while suppressing immune reactions. Preconditioning of MSCs with small molecules having cytoprotective properties can enhance the potential of these cells for their use in cell-based therapeutics. AIM To enhance the therapeutic potential of MSCs by preconditioning them with isorhamnetin for second degree burn wounds in rats. METHODS Human umbilical cord MSCs (hU-MSCs) were isolated and characterized by surface markers, CD105, vimentin and CD90. For preconditioning, hU-MSCs were treated with isorhamnetin after selection of the optimized concentration (5 µmol/L) by cytotoxicity analysis. The migration potential of these MSCs was analyzed by the in vitro scratch assay. The healing potential of normal, and preconditioned hU-MSCs was compared by transplanting these MSCs in a rat model of a second degree burn wound. Normal, and preconditioned MSCs (IH + MSCs) were transplanted after 72 h of burn injury and observed for 2 wk. Histological and gene expression analyses were performed on day 7 and 14 after cell transplantation to determine complete wound healing. RESULTS The scratch assay analysis showed a significant reduction in the scratch area in the case of IH + MSCs compared to the normal untreated MSCs at 24 h, while complete closure of the scratch area was observed at 48 h. Histological analysis showed reduced inflammation, completely remodeled epidermis and dermis without scar formation and regeneration of hair follicles in the group that received IH + MSCs. Gene expression analysis was time dependent and more pronounced in the case of IH + MSCs. Interleukin (IL)-1β, IL-6 and Bcl-2 associated X genes showed significant downregulation, while transforming growth factor β, vascular endothelial growth factor, Bcl-2 and matrix metallopeptidase 9 showed significant upregulation compared to the burn wound, showing increased angiogenesis and reduced inflammation and apoptosis. CONCLUSION Preconditioning of hU-MSCs with isorhamnetin decreases wound progression by reducing inflammation, and improving tissue architecture and wound healing. The study outcome is expected to lead to an improved cell-based therapeutic approach for burn wounds.
Collapse
Affiliation(s)
- Shazmeen Aslam
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Irfan Khan
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Fatima Jameel
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Midhat Batool Zaidi
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan
| | - Asmat Salim
- Stem Cell Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 74700, Sindh, Pakistan.
| |
Collapse
|
19
|
Bankoti K, Rameshbabu AP, Datta S, Goswami P, Roy M, Das D, Ghosh SK, Das AK, Mitra A, Pal S, Maulik D, Su B, Ghosh P, Basu B, Dhara S. Dual Functionalized Injectable Hybrid Extracellular Matrix Hydrogel for Burn Wounds. Biomacromolecules 2020; 22:514-533. [PMID: 33289564 DOI: 10.1021/acs.biomac.0c01400] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low strength and rapid biodegradability of acellular dermal matrix (ADM) restrict its wider clinical application as a rapid cell delivery platform in situ for management of burn wounds. Herein, the extracted ADM was modified by a dual cross-linking approach with ionic crosslinking using chitosan and covalent cross-linking using an iodine-modified 2,5-dihydro-2,5-dimethoxy-furan cross-linker, termed as CsADM-Cl. In addition, inherent growth factors and cytokines were found to be preserved in CsADM-Cl, irrespective of ionic/covalent crosslinking. CsADM-Cl demonstrated improvement in post crosslinking stiffness with a decreased biodegradation rate. This hybrid crosslinked hydrogel supported adhesion, proliferation, and migration of human foreskin-derived fibroblasts and keratinocytes. Also, the angiogenic potential of CsADM-Cl was manifested by chick chorioallantoic membrane assay. CsADM-Cl showed excellent antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, CsADM-Cl treated full thickness burn wounds and demonstrated rapid healing marked with superior angiogenesis, well-defined dermal-epidermal junctions, mature basket weave collagen deposition, and development of more pronounced secondary appendages. Altogether, the bioactive CsADM-Cl hydrogel established significant clinical potential to support wound healing as an apt injectable antibacterial matrix to encounter unmet challenges concerning critical burn wounds.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arun Prabhu Rameshbabu
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayanti Datta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Piyali Goswami
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Madhurima Roy
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Dipankar Das
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Sudip Kumar Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Analava Mitra
- Natural Products Research Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sagar Pal
- Polymer Chemistry Laboratory, Department of Applied Chemistry, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, India
| | - Dhrubajyoti Maulik
- Department of Surgery, Bankura Sammilani Medical College, Bankura 722102, India
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol BS1 2LY, U.K
| | - Paulomi Ghosh
- Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology (CSIR-IICB), 4, Raja S C Mullick Road, Kolkata 700032, India
| | - Bikramajit Basu
- Materials Research Center, Indian Institute of Science, Bangalore 560012, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
20
|
Ermolin VI, Mokhirev MA, Romanova EM. [The use of platelet rich plasma in bone-reconstructive in cranio-maxillo-facial surgery]. STOMATOLOGII︠A︡ 2020; 99:122-126. [PMID: 33034189 DOI: 10.17116/stomat202099051122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PRP-therapy - method, based on local application platelet rich plasma. Efficiency of this method is investigated and approved both in vitro and in vivo. PRP includes growth factors: platelet derived growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, vascular endothelial growth factor, which significantly accelerate regenerative process. PRP-therapy reduces pain syndrome, accelerates tissue regeneration and has an anti-inflammatory effect.
Collapse
Affiliation(s)
- V I Ermolin
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - M A Mokhirev
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| | - E M Romanova
- National Medical Research Center of Dentistry and Maxillofacial Surgery of Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
21
|
Salvaggio A, Magi GE, Rossi G, Tambella AM, Vullo C, Marchegiani A, Botto R, Palumbo Piccionello A. Effect of the topical Klox fluorescence biomodulation system on the healing of canine surgical wounds. Vet Surg 2020; 49:719-727. [PMID: 32212345 DOI: 10.1111/vsu.13415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/27/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To determine the effect of the Klox fluorescence biomodulation system (Phovia) on the healing of surgical wounds. STUDY DESIGN Prospective, blinded, controlled clinical trial. SAMPLE POPULATION Healthy dogs undergoing orthopedic surgery (n = 10). METHODS Half of the length of each surgical wound was treated with Phovia, and the remaining 50% was treated with saline solution on the first day after surgery and every 3 days until day 13. Wound healing of treated and control areas within each wound was evaluated via macroscopic assessment and histological and immunohistochemical analysis of treated and control wounds. RESULTS The areas treated with Phovia achieved lower histology scores (P = .001), consistent with complete re-epithelialization, less inflammation of the dermal layer, and greater and more regular deposition of collagen. According to immunohistochemistry, expression of factor VIII, epidural growth factor, decorin, collagen III, and Ki67 was increased in treated compared with untreated tissues. CONCLUSION Phovia therapy improved re-epithelialization, decreased dermal inflammation, and improved matrix formation in uncomplicated cutaneous incisional wounds by regulating the expression of key biological mediators. CLINICAL SIGNIFICANCE Phovia may be a beneficial adjunct to promote the healing of incisional wounds.
Collapse
Affiliation(s)
- Alberto Salvaggio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Gian Enrico Magi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Adolfo Maria Tambella
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Cecilia Vullo
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Riccardo Botto
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | |
Collapse
|
22
|
Mohanty C, Pradhan J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110751. [PMID: 32279771 DOI: 10.1016/j.msec.2020.110751] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2020] [Accepted: 02/15/2020] [Indexed: 12/24/2022]
Abstract
Bone-marrow-derived mesenchymal stem cells (MSCs) are of growing interest for the treatment of diabetic wound healing. However, they are often associated with poor proliferation and viability at the wounded site. Here, it is reported the use of human epidermal growth factor -curcumin bandage bioconjugate (EGF-Cur B) loaded with MSCs (MSCs-EGF-Cur B) at the wounded site for diabetic wound healing. Conjugation efficiency of EGF was determined by FTIR and XPS, surface morphology was analyzed by SEM and AFM and hydrophilicity by contact angle. Chemical integrity of curcumin with the polymeric matrix was studied by FTIR and, antiinflamatory and biocompatibility of EGF-Cur B were determined by TNF α ELISA and MTT study respectively. The culture of MSCs over EGF-Cur B enhanced MSC viability and expression of transcription factors associated with the maintenance of pluripotency and self-renewal (OCT¾, SOX2, and Nanog) as compared to MSCs grown in standard conditions. Its therapeutic effect was examined on diabetic full-thickness excisional wound model in terms of size and histological examination. Synergetic combinational approach especially when treated with MSCs-EGF-Cur B significantly enhanced wound closure by increasing granulation tissue formation, collagen deposition, and angiogenesis as compared to other groups. In conclusion, biocompatible therapeutic MSCs-EGF-Cur B might have great application for diabetic wound healing in the near future.
Collapse
Affiliation(s)
- Chandana Mohanty
- Institute of Life Sciences, Nalco Square, Bhubaneswar, India; School of Applied Science, KIIT University, Bhubaneswar, Odisha, India.
| | | |
Collapse
|
23
|
Tansathien K, Suriyaaumporn P, Charoenputtakhun P, Ngawhirunpat T, Opanasopit P, Rangsimawong W. Development of Sponge Microspicule Cream as a Transdermal Delivery System for Protein and Growth Factors from Deer Antler Velvet Extract. Biol Pharm Bull 2019; 42:1207-1215. [PMID: 31257296 DOI: 10.1248/bpb.b19-00158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sponge spicules are needle-like structures and used for dermabrasive treatment of the skin. This research aimed to develop an effective delivery system by using sponge spicules for enhancing skin permeation of bioactive proteins and growth factors from deer antler velvet (DAV). DAV was extracted by sonication and bioactivity studies were evaluated. The size of microspicules (MSs) was reduced and mixed with DAV extract cream. In vitro skin permeation was analyzed by using bovine serum albumin-fluorescein isothiocyanate conjugate (BSA-FITC) as a model macromolecular compound. For in vivo study, DAV extract formulations were applied on the skin of healthy humans, and effects were evaluated. Results showed that DAV extract containing proteins and growth factors increased the proliferation and migration of skin fibroblast cells. This extract was homogeneously mixed with spicule cream. Without blending, MS was 11.89 µm wide and 176.77 µm long; blending time exhibited short and broken MSs (MBs) for short blending (30 s) and fine powder (MF) for long blending (10 min). MS cream showed the highest permeation of BSA-FITC through the skin (2.26-fold enhancement), but it resulted in skin irritation. Therefore, MB cream that increased the permeation of BSA-FITC by 1.94-fold was not significantly different from MS formulations chosen for in vivo study. Applying DAV-containing MB cream on the skin for 14 d decreased the melanin content and erythema value but increased elasticity and hydration. Therefore, the MB-containing cream can enhance the macromolecule delivery through the skin, improve the skin properties, and avoid skin irritation.
Collapse
Affiliation(s)
| | | | | | | | - Praneet Opanasopit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University
| | - Worranan Rangsimawong
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University
| |
Collapse
|
24
|
Raghuram A, Singh A, Chang DK, Nunez M, Reece EM, Schultz BE. The Evolving Landscape of Gene Therapy in Plastic Surgery. Semin Plast Surg 2019; 33:167-172. [PMID: 31384232 DOI: 10.1055/s-0039-1693131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
With the rapid rise of personalized genomic sequencing and clustered regularly interspaced short palindromic repeat (CRISPR) technology, previous gaps in gene therapy are beginning to be bridged, paving the way for increasing clinical applicability. This article aims to provide an overview of the fundamentals of gene therapy and discuss future potential interventions relevant to plastic surgeons. These interventions include enhancing tissue regeneration and healing, as well as modifying disease processes in congenital anomalies. Though clinical applications are still on the horizon, a deeper understanding of these new advances will help plastic surgeons understand the current landscape of gene therapy and stay abreast of future opportunities.
Collapse
Affiliation(s)
| | - Aspinder Singh
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Daniel K Chang
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Mervin Nunez
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Edward M Reece
- Division of Plastic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | | |
Collapse
|
25
|
Shao Y, Dang M, Lin Y, Xue F. Evaluation of wound healing activity of plumbagin in diabetic rats. Life Sci 2019; 231:116422. [DOI: 10.1016/j.lfs.2019.04.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/08/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
26
|
Feldman DS, McCauley JF. Mesenchymal Stem Cells and Transforming Growth Factor-β₃ (TGF-β₃) to Enhance the Regenerative Ability of an Albumin Scaffold in Full Thickness Wound Healing. J Funct Biomater 2018; 9:jfb9040065. [PMID: 30441760 PMCID: PMC6306712 DOI: 10.3390/jfb9040065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/25/2018] [Accepted: 11/01/2018] [Indexed: 12/31/2022] Open
Abstract
Pressure ulcers are one of the most common forms of skin injury, particularly in the spinal cord injured (SCI). Pressure ulcers are difficult to heal in this population requiring at least six months of bed rest. Surgical treatment (grafting) is the fastest recovery time, but it still requires six weeks of bed rest plus significant additional costs and a high recurrence rate. A significant clinical benefit would be obtained by speeding the healing rate of a non-surgical treatment to close to that of surgical treatment (approximately doubling of healing rate). Current non-surgical treatment is mostly inactive wound coverings. The goal of this project was to look at the feasibility of doubling the healing rate of a full-thickness defect using combinations of three treatments, for the first time, each shown to increase healing rate: application of transforming growth factor-β3 (TGF-β3), an albumin based scaffold, and mesenchymal stem cells (MSCs). At one week following surgery, the combined treatment showed the greatest increase in healing rate, particularly for the epithelialization rate. Although the target level of a 100% increase in healing rate over the control was not quite achieved, it is anticipated that the goal would be met with further optimization of the treatment.
Collapse
Affiliation(s)
- Dale S Feldman
- Department of Biomedical Engineering, The University of Alabama at Birmingham, UAB, Birmingham, AL 25294, USA.
| | - John F McCauley
- Department of Biomedical Engineering, The University of Alabama at Birmingham, UAB, Birmingham, AL 25294, USA.
| |
Collapse
|
27
|
Fujihara C, Kanai Y, Masumoto R, Kitagaki J, Matsumoto M, Yamada S, Kajikawa T, Murakami S. Fibroblast growth factor‐2 inhibits CD40‐mediated periodontal inflammation. J Cell Physiol 2018; 234:7149-7160. [DOI: 10.1002/jcp.27469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Chiharu Fujihara
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Yu Kanai
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Risa Masumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Jirouta Kitagaki
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Masahiro Matsumoto
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Satoru Yamada
- Division of Periodontology and Endodontology Tohoku University Graduate School of Dentistry Miyagi Japan
| | - Tetsuhiro Kajikawa
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| | - Shinya Murakami
- Department of Periodontology Osaka University Graduate School of Dentistry Osaka Japan
| |
Collapse
|
28
|
Frelinger AL, Gerrits AJ, Neculaes VB, Gremmel T, Torres AS, Caiafa A, Carmichael SL, Michelson AD. Tunable activation of therapeutic platelet-rich plasma by pulse electric field: Differential effects on clot formation, growth factor release, and platelet morphology. PLoS One 2018; 13:e0203557. [PMID: 30256831 PMCID: PMC6157860 DOI: 10.1371/journal.pone.0203557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Activation of platelet-rich plasma (PRP) by pulse electric field (PEF) releases growth factors which promote wound healing (e.g., PDGF, VEGF for granulation, EGF for epithelialization). AIMS To determine after PEF activation of therapeutic PRP: 1) platelet gel strength; 2) profile of released growth factors; 3) alpha- and T-granule release; 4) platelet morphology. METHODS Concentrated normal donor PRP was activated by 5 μsec (long) monopolar pulse, ~4000 V/cm (PEF A) or 150 nsec (short) bipolar pulse, ~3000 V/cm (PEF B) in the presence of 2.5 mM (low) or 20 mM (high) added CaCl2. Clot formation was evaluated by thromboelastography (TEG). Surface exposure of alpha granule (P-selectin) and T-granule (TLR9 and protein disulfide isomerase [PDI]) markers were assessed by flow cytometry. Factors in supernatants of activated PRP were measured by ELISA. Platelet morphology was evaluated by transmission electron microscopy (TEM). RESULTS Time to initial clot formation was shorter with thrombin (<1 min) than with PEF A and B (4.4-8.7 min) but clot strength (elastic modulus, derived from TEG maximum amplitude) was greater with PEF B than with either thrombin or PEF A (p<0.05). Supernatants of PRP activated with PEF A had higher EGF levels than supernatants from all other conditions. In contrast, levels of PF4, PDGF, and VEGF in supernatants were not significantly different after PEF A, PEF B, and thrombin activation. T-granule markers (TLR9 and PDI) were higher after thrombin than after PEF A or B with low or high CaCl2. By TEM, platelets in PEF-treated samples retained a subset of granules suggesting regulated granule release. CONCLUSION Pulse length and polarity can be modulated to produce therapeutic platelet gels as strong or stronger than those produced by thrombin, and this is tunable to produce growth factor profiles enhanced in specific factors important for different stages of wound healing.
Collapse
Affiliation(s)
- Andrew L. Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (ALF); (VBN)
| | - Anja J. Gerrits
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - V. Bogdan Neculaes
- GE Global Research Center, Niskayuna, New York, United States of America
- * E-mail: (ALF); (VBN)
| | - Thomas Gremmel
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andrew S. Torres
- GE Global Research Center, Niskayuna, New York, United States of America
| | - Anthony Caiafa
- GE Global Research Center, Niskayuna, New York, United States of America
| | - Sabrina L. Carmichael
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan D. Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
29
|
In vivo efficiency of the collagen coated nanofibrous scaffold and their effect on growth factors and pro-inflammatory cytokines in wound healing. Eur J Pharmacol 2017; 814:45-55. [DOI: 10.1016/j.ejphar.2017.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 12/11/2022]
|
30
|
Distinctively Expressed Cytokines by Three Different Inflammation Cells and Their Interaction with Keratinocytes in Wound Healing. Inflammation 2017; 40:2151-2162. [DOI: 10.1007/s10753-017-0655-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Mohanty C, Sahoo SK. Curcumin and its topical formulations for wound healing applications. Drug Discov Today 2017; 22:1582-1592. [PMID: 28711364 DOI: 10.1016/j.drudis.2017.07.001] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 06/23/2017] [Accepted: 07/04/2017] [Indexed: 01/03/2023]
Abstract
Oxidative damage and inflammation have been identified, through clinical and preclinical studies, as the main causes of nonhealing chronic wounds. Reduction of persistent chronic inflammation by application of antioxidant and anti-inflammatory agents such as curcumin has been well studied. However, low aqueous solubility, poor tissue absorption, rapid metabolism and short plasma half-life have made curcumin unsuitable for systemic administration for better wound healing. Recently, various topical formulations of curcumin such as films, fibers, emulsion, hydrogels and different nanoformulations have been developed for targeted delivery of curcumin at wounded sites. In this review, we summarize and discuss different topical formulations of curcumin with emphasis on their wound-healing properties in animal models.
Collapse
Affiliation(s)
- Chandana Mohanty
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023, India
| | - Sanjeeb K Sahoo
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Orissa 751023, India.
| |
Collapse
|
32
|
Geesala R, Dhoke NR, Das A. Cox-2 inhibition potentiates mouse bone marrow stem cell engraftment and differentiation-mediated wound repair. Cytotherapy 2017; 19:756-770. [PMID: 28433514 DOI: 10.1016/j.jcyt.2017.03.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Engraftment of transplanted stem cells is often limited by cytokine and noncytokine proinflammatory mediators at the injury site. We examined the role of Cyclooxygenase-2 (Cox-2)-induced cytokine-mediated inflammation on engraftment of transplanted bone marrow stem cells (BMSCs) at the wound site. METHODS BMSCs isolated from male C57/BL6J mice were transplanted onto excisional splinting wounds in syngenic females in presence or absence of celecoxib, Cox-2 specific inhibitor (50 mg/kg, body weight [b wt]), to evaluate engraftment and wound closure. Inflammatory cell infiltration and temporal expression of inflammatory cytokines at the wound bed were determined using immunohistochemical and quantitative-real time polymerase chain reaction (qPCR) analysis, respectively. Mechanistic studies were performed on a murine macrophage cell line (J774.2) to evaluate the effect of interleukin (IL)-17A. RESULTS Celecoxib administration led to a significantly high percent of wound closure, cellular proliferation, collagen deposition, BMSCs engraftment and re-epithelialization at the wound site. Interestingly, recruitment of CD4+T cells and F4/80+ macrophages as well as BMSC transplantation induced up-regulation of Cox-2 and IL-17A gene expression levels were reverted by celecoxib administration. Exogenous supplementation of recombinant interleukin (rIL)-17 to J774.2 cells significantly increased proliferation and gene expression of cytokines -IL-1β, IL-6, IL-8, IL-18 and tumor necrosis factor (TNF)-α via nuclear translocation of nuclear factor kappa B (NFκB)p65/50 subunit. Conditioned media of rIL-17 treated J774.2 cells when supplemented to BMSCs depicted a dose-dependent increase in the number of apoptotic cells and proapoptotic protein expression that was perturbed by celecoxib or IL-17 neutralizing antibody. Finally, celecoxib led to a dose-dependent increase in BMSC differentiation into keratinocyte-like cells in vitro. CONCLUSION Celecoxib protects transplanted BMSCs from Cox-2/IL-17-induced inflammation and increases their engraftment, differentiation into keratinocytes and re-epithelialization thereby potentiating wound tissue repair.
Collapse
Affiliation(s)
- Ramasatyaveni Geesala
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific & Innovative Research, New Delhi, India
| | - Neha R Dhoke
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific & Innovative Research, New Delhi, India
| | - Amitava Das
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India; Academy of Scientific & Innovative Research, New Delhi, India.
| |
Collapse
|
33
|
Curcumin inhibits epigen and amphiregulin upregulated by 2,4,6-trinitrochlorobenzene associated with attenuation of skin swelling. Inflamm Res 2017; 66:663-678. [DOI: 10.1007/s00011-017-1048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/04/2017] [Accepted: 04/06/2017] [Indexed: 01/14/2023] Open
|
34
|
Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials 2017; 122:34-47. [DOI: 10.1016/j.biomaterials.2017.01.011] [Citation(s) in RCA: 917] [Impact Index Per Article: 114.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/31/2016] [Accepted: 01/10/2017] [Indexed: 01/16/2023]
|
35
|
Ramanathan G, Singaravelu S, Muthukumar T, Thyagarajan S, Rathore HS, Sivagnanam UT, Perumal PT. Fabrication of Arothron stellatus skin collagen film incorporated with Coccinia grandis as a durable wound construct. INT J POLYM MATER PO 2017. [DOI: 10.1080/00914037.2016.1252351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Thangavelu Muthukumar
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Gobong-ro, Iksan-city, Jeollabuk-Do, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone. Exp Cell Res 2016; 346:167-75. [DOI: 10.1016/j.yexcr.2016.07.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 01/13/2023]
|
38
|
Singaravelu S, Ramanathan G, Muthukumar T, Raja MD, Nagiah N, Thyagarajan S, Aravinthan A, P G, Natarajan TS, V N Geetha Selva G, Kim JH, Sivagnanam UT. Durable keratin-based bilayered electrospun mats for wound closure. J Mater Chem B 2016; 4:3982-3997. [PMID: 32263097 DOI: 10.1039/c6tb00720a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bilayered nanofibrous scaffold with rapid wound healing properties is found to be suitable for tissue regeneration applications. The objective of this study is to reveal the fabrication of a poly(3-hydroxybutyric acid) (P)-gelatin (G) nanofibrous mat through electrospinning, with a horn keratin-chitosan-based biosheet (KC) as a bilayered nanofibrous scaffold. The mupirocin (D)-loaded horn KC biosheet (KCD) acts as the primary layer over which PG nanofibers were electrospun to act as the secondary layer. It is shown that this engineered bilayered nanofibrous scaffold material (KC-PG) should fulfill the functions of the extracellular matrix (ECM) by elucidating its function in vitro and in vivo. The bilayered nanofibrous scaffold was designed to exhibit improved physiochemical, biological and mechanical properties, with better swelling and porosity for enhanced oxygen permeability, and it also exhibits an acceptable antibacterial property to prevent infection at the wound site. The bilayered nanofibrous scaffold assists in better biocompatibility towards fibroblast and keratinocyte cell lines. The morphology of the nanofibrous scaffold aids increased cell adhesion and proliferation with cell material interactions. This was elucidated with the help of in vitro fluorescence staining against both cell lines. The bilayered KCD-PG nanofibrous scaffold material gives accelerated wound healing efficiency during in vivo wound healing. The results showed the regulation of growth factors with enhanced collagen synthesis, thereby helping in faster wound healing.
Collapse
Affiliation(s)
- Sivakumar Singaravelu
- Bioproducts Lab, CSIR-Central Leather Research Institute, Chennai 600020, Tamilnadu, India.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Methods to study differences in cell mobility during skin wound healing in vitro. J Biomech 2016; 49:1381-1387. [DOI: 10.1016/j.jbiomech.2016.01.040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 01/19/2023]
|
40
|
Jamadagni PS, Jamadagni S, Mukherjee K, Upadhyay S, Gaidhani S, Hazra J. Experimental and histopathological observation scoring methods for evaluation of wound healing properties of Jatyadi Ghrita. Ayu 2016; 37:222-229. [PMID: 29491675 PMCID: PMC5822989 DOI: 10.4103/ayu.ayu_51_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Introduction: Jatyadi ghrita is a classical Ayurvedic formulation indicated in the treatment of various types of ulcers. Aim: The study was designed to explore the wound healing properties of Jatyadi Ghrita in diabetes - induced rats. Materials and Methods: In the present study, diabetes mellitus was induced to 6 to 8-week-old male Wistar rats by injecting streptozotocin cut 65 mg/kg body weight intravenously by 15 min prior to the administration of Nicotinamide at 230 mg/kg body weight intraperitoneally. Animals having diabetes were used for grouping namely, diabetic control (DC), Ghrita control (GC), positive control (PC), i.e., mupirocin HCl, Jatyadi Ghrita treatment and one group of non-DC. Full-thickness excision wound was created and diameter was recorded. Daily clinical observations were recorded. A wound scoring method was developed. Wound diameter and score were recorded on days 1, 2, 3, 5, 7, 9, 12, 14 and 15. Photographs were taken at the same time interval points. Body weight and feed consumption were recorded weekly. Animals were sacrificed at regular intervals to collect the wound area tissue for histopathology analysis. Obtained data was analyzed statistically. Results and Observation: It was observed that there was no significant difference in diameter and percent change in wound healing as compared to any control. However, clinical score and histopathological changes in Jatyadi Ghrita group were improved from the second day of the study as compared to control. Conclusion: This indicates that the drug has similar wound healing activity as compared to the modern drug mupirocin HCl.
Collapse
Affiliation(s)
- Pallavi S Jamadagni
- Animal/ Experimental Pathology, Regional Ayurveda Institute for Fundamental Research, Gandhi Bhavan Road, Kothrud, Pune, Maharashtra, India
| | - Shrirang Jamadagni
- Animal/ Experimental Pathology, Regional Ayurveda Institute for Fundamental Research, Gandhi Bhavan Road, Kothrud, Pune, Maharashtra, India
| | - Koyel Mukherjee
- Central Ayurveda Research Institute of Drug Development, Bidhannagar, Kolkata, West Bengal, India
| | - Sachchidanand Upadhyay
- Central Ayurveda Research Institute of Drug Development, Bidhannagar, Kolkata, West Bengal, India
| | - Sudesh Gaidhani
- Central Council for Research in Ayurvedic Sciences, Janakpuri, New Delhi, India
| | - Jayram Hazra
- Central Ayurveda Research Institute of Drug Development, Bidhannagar, Kolkata, West Bengal, India
| |
Collapse
|
41
|
Turner NJ, Badylak SF. The Use of Biologic Scaffolds in the Treatment of Chronic Nonhealing Wounds. Adv Wound Care (New Rochelle) 2015; 4:490-500. [PMID: 26244105 DOI: 10.1089/wound.2014.0604] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 10/28/2014] [Indexed: 01/15/2023] Open
Abstract
Significance: Injuries to the skin as a result of illness or injury, particularly chronic nonhealing wounds, present a major healthcare problem. Traditional wound care approaches attempt to control the underlying causes, such as infection and ischemia, while the application of wound dressings aims to modify a poorly healing wound environment into a microenvironment more closely resembling an acute wound allowing the body to heal the wound naturally. Recent Advances: Regenerative medicine approaches, such as the use of biologic scaffold materials comprising an intact extracellular matrix (ECM) or individual components of the ECM, are providing new therapeutic options that focus upon the provision of biochemical cues that alter the wound microenvironment to facilitate rapid restoration of normal skin architecture. Critical Issues: The incidence of chronic nonhealing wounds continues to increase. For example, between 15% and 20% of diabetics are likely to develop chronic, nonhealing foot wounds creating an increasing burden on healthcare systems worldwide. Future Directions: Developing a thorough understanding of wound microenvironment and the mechanisms by which biologic scaffolds work in vivo has the potential to markedly improve outcomes in the clinical translation for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Neill J. Turner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
42
|
Newsom EC, Connolly KL, Nehal KS. Facilitating Healing of Granulating Wounds: Dressings, Dermal Substitutes, and Other Methods. CURRENT DERMATOLOGY REPORTS 2015. [DOI: 10.1007/s13671-015-0108-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Biafine topical emulsion accelerates excisional and burn wound healing in mice. Arch Dermatol Res 2015; 307:583-94. [DOI: 10.1007/s00403-015-1559-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 02/28/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
44
|
Kim D, Kim SY, Mun SK, Rhee S, Kim BJ. Epidermal growth factor improves the migration and contractility of aged fibroblasts cultured on 3D collagen matrices. Int J Mol Med 2015; 35:1017-25. [PMID: 25647660 DOI: 10.3892/ijmm.2015.2088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/12/2015] [Indexed: 11/06/2022] Open
Abstract
Epidermal growth factor (EGF) plays a critical role in fibroblasts by stimulating the production of collagen and supports cell renewal through the interaction between keratinocytes and fibroblasts. It is well known that the contractile activity of fibroblasts is required for the remodeling of the extracellular matrix (ECM), which contributes to skin elasticity. However, the role of EGF in the contraction of aged fibroblasts under 3-dimensional (3D) culture conditions is not yet fully understood. In the present study, we demonstrated that young fibroblasts spread and proliferated more rapidly than aged fibroblasts under 2-dimensional (2D) culture conditions. Cell migration assay using a nested collagen matrix revealed that the migration of young fibroblasts was also greater than that of aged fibroblasts under 3D culture conditions. However, the addition of recombinant human EGF (rhEGF) resulted in the enhanced migration of aged fibroblasts; the migration rate was similar to that of the young fibroblasts. The aged fibroblasts showed decreased cluster formation compared with the young fibroblasts on the collagen matrix, which was improved by the addition of rhEGF. Furthermore, cell contraction assay revealed that the basal contractility of the aged fibroblasts was lower than that of the young fibroblasts; however, following treatment with rhEGF, the contractility was restored to levels similar or even higher to those of the young fibroblasts. Taken together, our results suggest that rhEGF is a potential renewal agent that acts to improve the migration and contraction of aged fibroblasts more efficiently than young fibroblasts under 3D culture conditions; thus, EGF may have valuable regenerative effects on aged skin.
Collapse
Affiliation(s)
- Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - So Young Kim
- Major in Biomedical Science, Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| | - Seog Kyun Mun
- Department of Otolaryngology-Head and Neck Surgery, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sangmyung Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, Republic of Korea
| | - Beom Joon Kim
- Major in Biomedical Science, Department of Medicine, Graduate School, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
45
|
|
46
|
Locally injected autologous platelet-rich plasma enhanced tissue perfusion and improved survival of long subdermal plexus skin flaps in dogs. Vet Comp Orthop Traumatol 2014; 27:379-86. [PMID: 25088504 DOI: 10.3415/vcot-14-02-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Distal flap necrosis remains a major complication in subdermal plexus (random) skin flaps. Platelet-rich plasma (PRP) has been shown to improve the survival of ischemic random skin flaps in rats. The objective of this study was to evaluate the effect of locally injected autologous PRP on the survival of long (5:1 length-to-width ratio) subdermal plexus skin flaps in dogs. METHODS A 2x10 cm subdermal plexus skin flap was created bilaterally on the abdominal wall of six Beagle dogs. One randomly selected side received 2.5 ml of fresh auto-logous PRP injected evenly between sutures underneath the flap, whereas the other side was left untreated (control). Skin flap survival was evaluated macroscopically, histologically and by laser-Doppler flowmetry measurements of tissue perfusion. RESULTS Flap percentage survival on day 10 (96.3% versus 74.5%; p = 0.046) and tissue perfusion (p <0.036) were significantly higher in PRP-treated flaps compared with controls. Histologically, there was less oedema in PRP-treated flaps compared to controls (p = 0.01), whereas collagen production and angiogenesis did not differ significantly between the two groups. CLINICAL SIGNIFICANCE The use of locally injected autologous PRP increases tissue perfusion and improves the survival of long subdermal plexus skin flaps in dogs.
Collapse
|
47
|
Adenovirus-mediated expression of keratinocyte growth factor promotes secondary flap necrotic wound healing in an extended animal model. Aesthetic Plast Surg 2013; 37:1023-33. [PMID: 23949128 DOI: 10.1007/s00266-013-0200-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 07/16/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND No effective treatments have been found for flap necrosis. Animal models that focus on the initial flap viability are inappropriate for necrotic wound studies. Keratinocyte growth factor (KGF) promotes keratinocyte proliferation with stronger activity and fewer complications and thus may be useful for necrotic flap wound healing. METHODS Rats with modified flap necrosis were randomly divided into four groups. An adenoviral vector expressing KGF was injected subdermally in the back of the animals after necrosis began. The expression and effect of KGF was assessed by real-time polymerase chain reaction, enzyme-linked immunoassay, and transwell, and wound healing was monitored. RESULTS The plasmid and adenovirus were able to express KGF and stimulate epithelial cell growth (p = 0.029). Histology showed that the necrosis healed fastest in the KGF administration group than in the control groups (p < 0.01). The adenovirus-mediated KGF (Ad-KGF) group had the thickest epithelium on days 15 (p = 0.044) and 25 (p = 0.014). The KGF level in the blood serum soared 10 and 15 days postoperatively (p < 0.01) but returned to baseline by day 25 (p = 0.561). The KGF mRNA levels in vivo increased dramatically in the Ad-KGF group (p = 0.037). CONCLUSIONS The extended flap model is applicable in necrotic wound study. Keratinocyte growth factor can promote secondary necrotic flap wound healing, and administration of KGF can be achieved by an adenoviral vector.
Collapse
|
48
|
Koob TJ, Rennert R, Zabek N, Massee M, Lim JJ, Temenoff JS, Li WW, Gurtner G. Biological properties of dehydrated human amnion/chorion composite graft: implications for chronic wound healing. Int Wound J 2013; 10:493-500. [PMID: 23902526 PMCID: PMC4228928 DOI: 10.1111/iwj.12140] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Human amnion/chorion tissue derived from the placenta is rich in cytokines and growth factors known to promote wound healing; however, preservation of the biological activities of therapeutic allografts during processing remains a challenge. In this study, PURION® (MiMedx, Marietta, GA) processed dehydrated human amnion/chorion tissue allografts (dHACM, EpiFix®, MiMedx) were evaluated for the presence of growth factors, interleukins (ILs) and tissue inhibitors of metalloproteinases (TIMPs). Enzyme-linked immunosorbent assays (ELISA) were performed on samples of dHACM and showed quantifiable levels of the following growth factors: platelet-derived growth factor-AA (PDGF-AA), PDGF-BB, transforming growth factor α (TGFα), TGFβ1, basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), placental growth factor (PLGF) and granulocyte colony-stimulating factor (GCSF). The ELISA assays also confirmed the presence of IL-4, 6, 8 and 10, and TIMP 1, 2 and 4. Moreover, the relative elution of growth factors into saline from the allograft ranged from 4% to 62%, indicating that there are bound and unbound fractions of these compounds within the allograft. dHACM retained biological activities that cause human dermal fibroblast proliferation and migration of human mesenchymal stem cells (MSCs) in vitro. An in vivo mouse model showed that dHACM when tested in a skin flap model caused mesenchymal progenitor cell recruitment to the site of implantation. The results from both the in vitro and in vivo experiments clearly established that dHACM contains one or more soluble factors capable of stimulating MSC migration and recruitment. In summary, PURION® processed dHACM retains its biological activities related to wound healing, including the potential to positively affect four distinct and pivotal physiological processes intimately involved in wound healing: cell proliferation, inflammation, metalloproteinase activity and recruitment of progenitor cells. This suggests a paracrine mechanism of action for dHACM when used for wound healing applications.
Collapse
|
49
|
Nayak BS, Ramdeen R, Adogwa A, Ramsubhag A, Marshall JR. Wound-healing potential of an ethanol extract of Carica papaya (Caricaceae) seeds. Int Wound J 2012; 9:650-655. [PMID: 22296524 PMCID: PMC7950972 DOI: 10.1111/j.1742-481x.2011.00933.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Carica papaya L. (Linn) (Caricaceae) is traditionally used to treat various skin disorders, including wounds. It is widely used in developing countries as an effective and readily available treatment for various wounds, particularly burns. This study evaluated the wound-healing and antimicrobial activity of C. papaya seed extract. Ethanol extract of C. papaya seed (50 mg/kg/day) was evaluated for its wound-healing activity in Sprague-Dawley rats using excision wound model. Animals were randomly divided into four groups of six each (group 1 served as control, group 2 treated with papaya seed extract, group 3 treated with a standard drug mupirocin and papaya seed extract (1:1 ratio) and group 4 treated with a mupirocin ointment. Rate of wound contraction and hydroxyproline content were determined to assess the wound-healing activity of the seed extract. The group 2 animals showed a significant decrease in wound area of 89% over 13 days when compared with groups 1 (82%), 3 (86%) and 4 (84%) respectively. The hydroxyproline content was significantly higher with the granulation tissue obtained from group 2 animals which were treated with C. papaya seed extract. Histological analysis of granulation tissue of the group 2 animals showed the deposition of well-organized collagen. The extract exhibited antimicrobial activity against Salmonella choleraesuis and Staphylococcus aureus. Our results suggest that C. papaya promotes significant wound healing in rats and further evaluation for this activity in humans is suggested.
Collapse
Affiliation(s)
- Bijoor Shivananda Nayak
- Department of Preclinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine.
| | | | | | | | | |
Collapse
|
50
|
Marques M, Brown S, Correia-Sá I, D S Cordeiro MN, Rodrigues-Pereira P, Gonçalves-Rodrigues A, Amarante J. The impact of triamcinolone acetonide in early breast capsule formation in a rabbit model. Aesthetic Plast Surg 2012; 36:986-94. [PMID: 22476517 DOI: 10.1007/s00266-012-9888-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/27/2012] [Indexed: 01/31/2023]
Abstract
BACKGROUND The etiology and clinical treatment of capsular contracture remain unresolved as the causes may be multifactorial. Triamcinolone acetonide applied in the pocket during surgery was reported to be ineffective in prevention of capsular contracture. However, if injected 4-6 weeks after surgery or as a treatment for capsular contracture, decreased applanation tonometry measurements and pain were observed. It was assumed that intraoperative application of triamcinolone was not effective because its effect does not last long enough. However, betadine, antibiotics, and fibrin were found to be effective in preventing capsular contracture with intraoperative applications and are more effective in the early phases of wound healing than in later stages. The role of triamcinolone acetonide in capsule formation is unknown. The purpose of this study was to determine if triamcinolone acetonide modulates breast capsule formation or capsular contracture in the early phases of wound healing in a rabbit model. METHODS Rabbits (n=19) were implanted with one tissue expander and two breast implants and were killed at 4 weeks. Implant pocket groups were (1) Control (n=10) and (2) Triamcinolone (n=9). Pressure/volume curves and histological, immunological, and microbiological evaluations were performed. Operating room air samples and contact skin samples were collected for microbiological evaluation. RESULTS In the triamcinolone group, a decreased capsular thickness, mild and mononuclear inflammation, and negative or mild angiogenesis were observed. There were no significant differences in intracapsular pressure, fusiform cell density, connective tissue, organization of collagen fibers, and microbiological results between the groups. There was no significant difference in the dialysate levels of IL-8 and TNF-α, but correlation between IL-8 and TNF-α was observed. CONCLUSION Triamcinolone acetonide during breast implantation influences early capsule formation and may reduce capsular contracture. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors at www.springer.com/00266.
Collapse
Affiliation(s)
- Marisa Marques
- Faculty of Medicine, University of Oporto, Porto, Portugal,
| | | | | | | | | | | | | |
Collapse
|