1
|
Diani E, Cecchetto R, Tonon E, Mantoan M, Lotti V, Lagni A, Palmisano A, Piccaluga PP, Gibellini D. Omsk Hemorrhagic Fever Virus: A Comprehensive Review from Epidemiology to Diagnosis and Treatment. Microorganisms 2025; 13:426. [PMID: 40005791 PMCID: PMC11858464 DOI: 10.3390/microorganisms13020426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Omsk hemorrhagic fever virus (OHFV) is the etiological agent of a poorly studied acute viral disease, causing several epidemic waves observed in the western Siberia regions of Omsk, Kurgan, Novosibirsk, and Tyumen. OHFV is a flavivirus and shares structural and morphological features with tick-borne encephalitis (TBE) complex viruses. The disease's symptoms show high variability, from flu-like symptoms, hyperesthesia, and petechial rush in the upper body to high fever and hemorrhagic manifestations, with a fatality rate of about 1%. The real number of OHFV-infected people is still unknown due to the difficulties in diagnosis and the presence of asymptomatic patients that lead to an underestimation of the total cases. Little is known about the viral infection dynamics at the molecular and cellular levels, the viral involvement in immune escape, cellular pathways alteration, or metabolic influence. It is noteworthy that no clinical trials have currently been performed for effective and specific drug treatments. In this review, we will give an overview of OHFV interactions with humans and animals, diagnostic tools, and drug treatments. We aim to highlight the importance of a frequently undiagnosed or misdiagnosed viral infection that might also even cause severe clinical manifestations such as meningitis and hemorrhage, in order to point out the need to develop new research studies, new diagnostic tools, and new treatments for OHFV.
Collapse
Affiliation(s)
- Erica Diani
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
- UOC Microbiology Unit, AOUI Verona, 37134 Verona, Italy
| | - Riccardo Cecchetto
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
- UOC Microbiology Unit, AOUI Verona, 37134 Verona, Italy
| | - Emil Tonon
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
- UOC Microbiology Unit, AOUI Verona, 37134 Verona, Italy
| | - Marco Mantoan
- Department of Diagnostics and Public Health, Section of Hygiene and Preventive, Environmental and Occupational Medicine, University of Verona, 37134 Verona, Italy;
| | - Virginia Lotti
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
| | - Anna Lagni
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
| | - Asia Palmisano
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
| | - Pier Paolo Piccaluga
- Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Bologna University School of Medicine, 40138 Bologna, Italy
| | - Davide Gibellini
- Department of Diagnostics and Public Health, Microbiology Section, University of Verona, 37134 Verona, Italy; (R.C.); (E.T.); (V.L.); (A.L.); (A.P.); (D.G.)
- UOC Microbiology Unit, AOUI Verona, 37134 Verona, Italy
| |
Collapse
|
2
|
Miao Y, Zheng Y, Wang T, Yi W, Zhang N, Zhang W, Zheng Z. Breast milk transmission and involvement of mammary glands in tick-borne flavivirus infected mice. J Virol 2024; 98:e0170923. [PMID: 38305156 PMCID: PMC10949448 DOI: 10.1128/jvi.01709-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Tick-borne flaviviruses (TBFs) are transmitted to humans through milk and tick bites. Although a case of possible mother-to-child transmission of tick-borne encephalitis virus (TBEV) through breast milk has been reported, this route has not been confirmed in experimental models. Therefore, in this study, using type I interferon receptor-deficient A129 mice infected with Langat virus (LGTV), we aimed to demonstrate the presence of infectious virus in the milk and mammary glands of infected mice. Our results showed viral RNA of LGTV in the pup's stomach milk clots (SMCs) and blood, indicating that the virus can be transmitted from dam to pup through breast milk. In addition, we observed that LGTV infection causes tissue lesions in the mammary gland, and viral particles were present in mammary gland epithelial cells. Furthermore, we found that milk from infected mice could infect adult mice via the intragastric route, which has a milder infection process, longer infection time, and a lower rate of weight loss than other modes of infection. Specifically, we developed a nano-luciferase-LGTV reporter virus system to monitor the dynamics of different infection routes and observed dam-to-pup infection using in vivo bioluminescence imaging. This study provides comprehensive evidence to support breast milk transmission of TBF in mice and has helped provide useful data for studying TBF transmission routes.IMPORTANCETo date, no experimental models have confirmed mother-to-child transmission of tick-borne flavivirus (TBF) through breastfeeding. In this study, we used a mouse model to demonstrate the presence of infectious viruses in mouse breast milk and mammary gland epithelial cells. Our results showed that pups could become infected through the gastrointestinal route by suckling milk, and the infection dynamics could be monitored using a reporter virus system during breastfeeding in vivo. We believe our findings have provided substantial evidence to understand the underlying mechanism of breast milk transmission of TBF in mice, which has important implications for understanding and preventing TBF transmission in humans.
Collapse
Affiliation(s)
- Yuanjiu Miao
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ting Wang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, National Health Commission (NHC) Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfu Yi
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nailou Zhang
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Wanpo Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhenhua Zheng
- Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
3
|
Shah T, Li Q, Wang B, Baloch Z, Xia X. Geographical distribution and pathogenesis of ticks and tick-borne viral diseases. Front Microbiol 2023; 14:1185829. [PMID: 37293222 PMCID: PMC10244671 DOI: 10.3389/fmicb.2023.1185829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/04/2023] [Indexed: 06/10/2023] Open
Abstract
Ticks are obligatory hematophagous arthropods that harbor and transmit infectious pathogens to humans and animals. Tick species belonging to Amblyomma, Ixodes, Dermacentor, and Hyalomma genera may transmit certain viruses such as Bourbon virus (BRBV), Dhori virus (DHOV), Powassan virus (POWV), Omsk hemorrhagic fever virus (OHFV), Colorado tick fever virus (CTFV), Crimean-Congo hemorrhagic fever virus (CCHFV), Heartland virus (HRTV), Kyasanur forest disease virus (KFDV), etc. that affect humans and certain wildlife. The tick vectors may become infected through feeding on viraemic hosts before transmitting the pathogen to humans and animals. Therefore, it is vital to understand the eco-epidemiology of tick-borne viruses and their pathogenesis to optimize preventive measures. Thus this review summarizes knowledge on some medically important ticks and tick-borne viruses, including BRBV, POWV, OHFV, CTFV, CCHFV, HRTV, and KFDV. Further, we discuss these viruses' epidemiology, pathogenesis, and disease manifestations during infection.
Collapse
Affiliation(s)
- Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Provincial Center for Molecular Medicine, Kunming, China
| |
Collapse
|
4
|
Rajak A, Kumar JS, Dhankher S, Sandhya V, Kiran S, Golime R, Dash PK. Development and application of a recombinant Envelope Domain III protein based indirect human IgM ELISA for Kyasanur forest disease virus. Acta Trop 2022; 235:106623. [DOI: 10.1016/j.actatropica.2022.106623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/01/2022]
|
5
|
Broeckel RM, Feldmann F, McNally KL, Chiramel AI, Sturdevant GL, Leung JM, Hanley PW, Lovaglio J, Rosenke R, Scott DP, Saturday G, Bouamr F, Rasmussen AL, Robertson SJ, Best SM. A pigtailed macaque model of Kyasanur Forest disease virus and Alkhurma hemorrhagic disease virus pathogenesis. PLoS Pathog 2021; 17:e1009678. [PMID: 34855915 PMCID: PMC8638978 DOI: 10.1371/journal.ppat.1009678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) and the closely related Alkhurma hemorrhagic disease virus (AHFV) are emerging flaviviruses that cause severe viral hemorrhagic fevers in humans. Increasing geographical expansion and case numbers, particularly of KFDV in southwest India, class these viruses as a public health threat. Viral pathogenesis is not well understood and additional vaccines and antivirals are needed to effectively counter the impact of these viruses. However, current animal models of KFDV pathogenesis do not accurately reproduce viral tissue tropism or clinical outcomes observed in humans. Here, we show that pigtailed macaques (Macaca nemestrina) infected with KFDV or AHFV develop viremia that peaks 2 to 4 days following inoculation. Over the course of infection, animals developed lymphocytopenia, thrombocytopenia, and elevated liver enzymes. Infected animals exhibited hallmark signs of human disease characterized by a flushed appearance, piloerection, dehydration, loss of appetite, weakness, and hemorrhagic signs including epistaxis. Virus was commonly present in the gastrointestinal tract, consistent with human disease caused by KFDV and AHFV where gastrointestinal symptoms (hemorrhage, vomiting, diarrhea) are common. Importantly, RNAseq of whole blood revealed that KFDV downregulated gene expression of key clotting factors that was not observed during AHFV infection, consistent with increased severity of KFDV disease observed in this model. This work characterizes a nonhuman primate model for KFDV and AHFV that closely resembles human disease for further utilization in understanding host immunity and development of antiviral countermeasures.
Collapse
MESH Headings
- Animals
- Chlorocebus aethiops
- Cytokines/blood
- Disease Models, Animal
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/pathology
- Encephalitis, Tick-Borne/virology
- Female
- HEK293 Cells
- Hemorrhagic Fevers, Viral/immunology
- Hemorrhagic Fevers, Viral/pathology
- Hemorrhagic Fevers, Viral/virology
- Humans
- Lymph Nodes/virology
- Macaca nemestrina
- Vero Cells
- Viremia
Collapse
Affiliation(s)
- Rebecca M. Broeckel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Kristin L. McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Abhilash I. Chiramel
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Gail L. Sturdevant
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jacqueline M. Leung
- Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Patrick W. Hanley
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Angela L. Rasmussen
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Center for Global Health Science and Security, Georgetown University, Washington, District of Columbia, United States of America
| | - Shelly J. Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Sonja M. Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
6
|
Low mammalian species richness is associated with Kyasanur Forest disease outbreak risk in deforested landscapes in the Western Ghats, India. One Health 2021; 13:100299. [PMID: 34430695 PMCID: PMC8367838 DOI: 10.1016/j.onehlt.2021.100299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 02/06/2023] Open
Abstract
Kyasanur forest disease virus (KFDV) is a rapidly expanding tick-borne zoonotic virus with natural foci in the forested region of the Western Ghats of South India. The Western Ghats is one of the world's most important biodiversity hotspots and, like many such areas of high biodiversity, is under significant pressure from anthropogenic landscape change. The current study sought to quantify mammalian species richness using ensemble models of the distributions of a sample of species extant in the Western Ghats and to explore its association with KFDV outbreaks, as well as the modifying effects of deforestation on this association. Species richness was quantified as a composite of individual species' distributions, as derived from ensembles of boosted regression tree, random forest, and generalised additive models. Species richness was further adjusted for the potential biotic constraints of sympatric species. Both species richness and forest loss demonstrated strong positive associations with KFDV outbreaks, however forest loss substantially modified the association between species richness and outbreaks. High species richness was associated with increased KFDV risk but only in areas of low forest loss. In contrast, lower species richness was associated with increased KFDV risk in areas of greater forest loss. This relationship persisted when species richness was adjusted for biotic constraints at the taluk-level. In addition, the taluk-level species abundances of three monkey species (Macaca radiata, Semnopithecus hypoleucus, and Semnopithecus priam) were also associated with outbreaks. These results suggest that increased monitoring of wildlife in areas of significant habitat fragmentation may add considerably to critical knowledge gaps in KFDV epidemiology and infection ecology and should be incorporated into novel One Health surveillance development for the region. In addition, the inclusion of some primate species as sentinels of KFDV circulation into general wildlife surveillance architecture may add further value.
Collapse
|
7
|
Hrnková J, Schneiderová I, Golovchenko M, Grubhoffer L, Rudenko N, Černý J. Role of Zoo-Housed Animals in the Ecology of Ticks and Tick-Borne Pathogens-A Review. Pathogens 2021; 10:210. [PMID: 33669161 PMCID: PMC7919684 DOI: 10.3390/pathogens10020210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/11/2022] Open
Abstract
Ticks are ubiquitous ectoparasites, feeding on representatives of all classes of terrestrial vertebrates and transmitting numerous pathogens of high human and veterinary medical importance. Exotic animals kept in zoological gardens, ranches, wildlife parks or farms may play an important role in the ecology of ticks and tick-borne pathogens (TBPs), as they may serve as hosts for local tick species. Moreover, they can develop diseases of varying severity after being infected by TBPs, and theoretically, can thus serve as reservoirs, thereby further propagating TBPs in local ecosystems. The definite role of these animals in the tick-host-pathogen network remains poorly investigated. This review provides a summary of the information currently available regarding ticks and TBPs in connection to captive local and exotic wildlife, with an emphasis on zoo-housed species.
Collapse
Affiliation(s)
- Johana Hrnková
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| | - Irena Schneiderová
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 2 128 00 Prague, Czech Republic
| | - Marina Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
- Faculty of Sciences, University of South Bohemia, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic
| | - Natalie Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; (M.G.); (L.G.); (N.R.)
| | - Jiří Černý
- Centre for Infectious Animal Diseases and Zoonoses, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
- Department of Animal Science and Food Processing, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 6, 165 00 Suchdol, Czech Republic;
| |
Collapse
|
8
|
Kyasanur Forest Disease and Alkhurma Hemorrhagic Fever Virus-Two Neglected Zoonotic Pathogens. Microorganisms 2020; 8:microorganisms8091406. [PMID: 32932653 PMCID: PMC7564883 DOI: 10.3390/microorganisms8091406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) and Alkhurma hemorrhagic fever virus (AHFV) are tick-borne flaviviruses that cause life-threatening hemorrhagic fever in humans with case fatality rates of 3-5% for KFDV and 1-20% for AHFV, respectively. Both viruses are biosafety level 4 pathogens due to the severity of disease they cause and the lack of effective countermeasures. KFDV was discovered in India and is restricted to parts of the Indian subcontinent, whereas AHFV has been found in Saudi Arabia and Egypt. In recent years, both viruses have spread beyond their original endemic zones and the potential of AHFV to spread through ticks on migratory birds is a public health concern. While there is a vaccine with limited efficacy for KFDV used in India, there is no vaccine for AHFV nor are there any therapeutic concepts to combat infections with these viruses. In this review, we summarize the current knowledge about pathogenesis, vector distribution, virus spread, and infection control. We aim to bring attention to the potential public health threats posed by KFDV and AHFV and highlight the urgent need for the development of effective countermeasures.
Collapse
|
9
|
Patil DR, Yadav PD, Shete A, Chaubal G, Mohandas S, Sahay RR, Jain R, Mote C, Kumar S, Kaushal H, Kore P, Patil S, Majumdar T, Fulari S, Suryawanshi A, Kadam M, Pardeshi PG, Lakra R, Sarkale P, Mourya DT. Study of Kyasanur forest disease viremia, antibody kinetics, and virus infection in target organs of Macaca radiata. Sci Rep 2020; 10:12561. [PMID: 32724103 PMCID: PMC7387489 DOI: 10.1038/s41598-020-67599-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
The present manuscript deals with experimental infections of bonnet macaques (Macaca radiata) to study disease progression for better insights into the Kyasanur Forest Disease (KFD) pathogenesis and transmission. Experimentally, 10 monkeys were inoculated with KFD virus (KFDV) (high or low dose) and were regularly monitored and sampled for various body fluids and tissues at preset time points. We found that only 2 out of the 10 animals showed marked clinical signs becoming moribund, both in the low dose group, even though viremia, virus shedding in the secretions and excretions were evident in all inoculated monkeys. Anti-KFDV immunoglobulin (Ig)M antibody response was observed around a week after inoculation and anti-KFDV IgG antibody response after two weeks. Anaemia, leucopenia, thrombocytopenia, monocytosis, increase in average clotting time, and reduction in the serum protein levels were evident. The virus could be re-isolated from the skin during the viremic period. The persistence of viral RNA in the gastrointestinal tract and lymph nodes was seen up to 53 and 81 days respectively. Neuro-invasion was observed only in moribund macaques. Re-challenge with the virus after 21 days of initial inoculation in a monkey did not result in virus shedding or immune response boosting.
Collapse
Affiliation(s)
- Dilip R Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Pragya D Yadav
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Anita Shete
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Gouri Chaubal
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Sreelekshmy Mohandas
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Rima R Sahay
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Rajlaxmi Jain
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Chandrashekhar Mote
- Department of Veterinary Pathology, Krantisinh Nana Patil College of Veterinary Science, Shirwal, Maharashtra, India
| | - Sandeep Kumar
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Himanshu Kaushal
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Pravin Kore
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Savita Patil
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Triparna Majumdar
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Siddharam Fulari
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Annasaheb Suryawanshi
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Manoj Kadam
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Prachi G Pardeshi
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Rajen Lakra
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Prasad Sarkale
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Devendra T Mourya
- Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India.
| |
Collapse
|
10
|
Walsh MG, Mor SM, Maity H, Hossain S. Forest loss shapes the landscape suitability of Kyasanur Forest disease in the biodiversity hotspots of the Western Ghats, India. Int J Epidemiol 2020; 48:1804-1814. [PMID: 31740967 DOI: 10.1093/ije/dyz232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Anthropogenic pressure in biodiversity hotspots is increasingly recognized as a major driver of the spillover and expansion of zoonotic disease. In the Western Ghats region of India, a devastating tick-borne zoonosis, Kyasanur Forest disease (KFD), has been expanding rapidly beyond its endemic range in recent decades. It has been suggested that anthropogenic pressure in the form of land use changes that lead to the loss of native forest may be directly contributing to the expanding range of KFD, but clear evidence has not yet established the association between forest loss and KFD risk. METHODS The current study sought to investigate the relationship between KFD landscape suitability and both forest loss and mammalian species richness, to inform its epidemiology and infection ecology. A total of 47 outbreaks of KFD between 1 January 2012 and 30 June 2019 were modelled as an inhomogeneous Poisson process. RESULTS Both forest loss [relative risk (RR) = 1.83; 95% confidence interval (CI) 1.33-2.51] and mammalian species richness (RR = 1.29; 95% CI 1.16-1.42) were strongly associated with increased risk of KFD and dominated its landscape suitability. CONCLUSIONS These results provide the first evidence of a clear association between increasing forest loss and risk for KFD. Moreover, the findings also highlight the importance of forest loss in areas of high biodiversity. Therefore, this evidence provides strong support for integrative approaches to public health which incorporate conservation strategies simultaneously protective of humans, animals and the environment.
Collapse
Affiliation(s)
- Michael G Walsh
- University of Sydney, Faculty of Medicine and Health, Marie Bashir Institute for Infectious Diseases and Biosecurity, Westmead, NSW, Australia.,University of Sydney, Faculty of Medicine and Health, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Siobhan M Mor
- University of Liverpool, Faculty of Health and Life Sciences, Institute of Infection and Global Health, Liverpool, UK.,University of Sydney, Faculty of Science, School of Veterinary Science, Camperdown, NSW, Australia
| | - Hindol Maity
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shah Hossain
- Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
11
|
Chakraborty S, Andrade FCD, Ghosh S, Uelmen J, Ruiz MO. Historical Expansion of Kyasanur Forest Disease in India From 1957 to 2017: A Retrospective Analysis. GEOHEALTH 2019; 3:44-55. [PMID: 32159030 PMCID: PMC7007137 DOI: 10.1029/2018gh000164] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/18/2018] [Accepted: 01/04/2019] [Indexed: 06/10/2023]
Abstract
A highly infectious tick-borne virus causes Kyasanur Forest disease (KFD), which has been expanding in recent decades in India. Current studies do not provide an updated understanding of the disease trends and its expansion in India. We address this gap in the literature through a detailed review to reveal the annual historic expansion of KFD cases across the span of years from 1957 to 2017. In addition, we explore the factors that may have led to the geographic expansion of KFD. The annual numbers of cases of KFD among humans are estimated using peer-reviewed journal articles, Pro-MED database, historical and archived newspapers, and government reports, technical reports, publications, and medical websites. From 1957 to 2017, there were an estimated 9,594 cases of KFD within 16 districts in India. The most significant human outbreaks of the disease were in the years 1957-1958 (681 cases), 1983-1984 (2,589 cases), 2002-2003 (1,562 cases), and 2016-2017 (809 cases). In 2015, KFD appeared in Goa. In 2016, new cases emerged in Belgaum, a district in Karnataka state, and in the Sindhudurg district in Maharashtra state. The processes by which KFD persists and spreads are not clear, but demographic, socioeconomic, political, and environmental factors seem to play a role.
Collapse
Affiliation(s)
- S. Chakraborty
- Department of Kinesiology and Community HealthUniversity of Illinois at Urbana‐ChampaignChampaignILUSA
| | - F. C. D. Andrade
- School of Social WorkUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - S. Ghosh
- Entomology Laboratory, Parasitology Division, ICAR‐ Indian Veterinary Research InstituteIzatnagarUPIndia
| | - J. Uelmen
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - M. O. Ruiz
- College of Veterinary MedicineUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
12
|
Shah SZ, Jabbar B, Ahmed N, Rehman A, Nasir H, Nadeem S, Jabbar I, Rahman ZU, Azam S. Epidemiology, Pathogenesis, and Control of a Tick-Borne Disease- Kyasanur Forest Disease: Current Status and Future Directions. Front Cell Infect Microbiol 2018; 8:149. [PMID: 29868505 PMCID: PMC5954086 DOI: 10.3389/fcimb.2018.00149] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022] Open
Abstract
In South Asia, Haemaphysalis spinigera tick transmits Kyasanur Forest Disease Virus (KFDV), a flavivirus that causes severe hemorrhagic fever with neurological manifestations such as mental disturbances, severe headache, tremors, and vision deficits in infected human beings with a fatality rate of 3-10%. The disease was first reported in March 1957 from Kyasanur forest of Karnataka (India) from sick and dying monkeys. Since then, between 400 and 500 humans cases per year have been recorded; monkeys and small mammals are common hosts of this virus. KFDV can cause epizootics with high fatality in primates and is a level-4 virus according to the international biosafety rules. The density of tick vectors in a given year correlates with the incidence of human disease. The virus is a positive strand RNA virus and its genome was discovered to code for one polyprotein that is cleaved post-translationally into 3 structural proteins (Capsid protein, Envelope Glycoprotein M and Envelope Glycoprotein E) and 7 non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). KFDV has a high degree of sequence homology with most members of the TBEV serocomplex. Alkhurma virus is a KFDV variant sharing a sequence similarity of 97%. KFDV is classified as a NIAID Category C priority pathogen due to its extreme pathogenicity and lack of US FDA approved vaccines and therapeutics; also, the infectious dose is currently unknown for KFD. In India, formalin-inactivated KFDV vaccine produced in chick embryo fibroblast is being used. Nevertheless, further efforts are required to enhance its long-term efficacy. KFDV remains an understudied virus and there remains a lack of insight into its pathogenesis; moreover, specific treatment to the disease is not available to date. Environmental and climatic factors involved in disseminating Kyasanur Forest Disease are required to be fully explored. There should be a mapping of endemic areas and cross-border veterinary surveillance needs to be developed in high-risk regions. The involvement of both animal and health sector is pivotal for circumscribing the spread of this disease to new areas.
Collapse
Affiliation(s)
- Syed Z. Shah
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Basit Jabbar
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Nadeem Ahmed
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Anum Rehman
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Hira Nasir
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sarooj Nadeem
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Iqra Jabbar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Zia ur Rahman
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Shafiq Azam
- Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
13
|
Kato F, Ishida Y, Kawakami A, Takasaki T, Saijo M, Miura T, Hishiki T. Evaluation of Macaca radiata as a non-human primate model of Dengue virus infection. Sci Rep 2018; 8:3421. [PMID: 29467430 PMCID: PMC5821881 DOI: 10.1038/s41598-018-21582-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/07/2018] [Indexed: 01/07/2023] Open
Abstract
Dengue virus (DENV) causes a wide range of illnesses in humans, including dengue fever and dengue haemorrhagic fever. Current animal models of DENV infection are limited for understanding infectious diseases in humans. Bonnet monkeys (Macaca radiata), a type of Old World monkey, have been used to study experimental and natural infections by flaviviruses, but Old World monkeys have not yet been used as DENV infection models. In this study, the replication levels of several DENV strains were evaluated using peripheral blood mononuclear cells. Our findings indicated that DENV-4 09-48 strain, isolated from a traveller returning from India in 2009, was a highly replicative virus. Three bonnet monkeys were infected with 09-48 strain and antibody responses were assessed. DENV nonstructural protein 1 antigen was detected and high viraemia was observed. These results indicated that bonnet monkeys and 09-48 strain could be used as a reliable primate model for the study of DENV.
Collapse
Affiliation(s)
- Fumihiro Kato
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuki Ishida
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiko Kawakami
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomohiko Takasaki
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.,Kanagawa Prefectural Institute of Public Health, Kanagawa, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan. .,Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|
14
|
Holbrook MR. Historical Perspectives on Flavivirus Research. Viruses 2017; 9:E97. [PMID: 28468299 PMCID: PMC5454410 DOI: 10.3390/v9050097] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 12/21/2022] Open
Abstract
The flaviviruses are small single-stranded RNA viruses that are typically transmitted by mosquito or tick vectors. These "arboviruses" are found around the world and account for a significant number of cases of human disease. The flaviviruses cause diseases ranging from mild or sub-clinical infections to lethal hemorrhagic fever or encephalitis. In many cases, survivors of neurologic flavivirus infections suffer long-term debilitating sequelae. Much like the emergence of West Nile virus in the United States in 1999, the recent emergence of Zika virus in the Americas has significantly increased the awareness of mosquito-borne viruses. The diseases caused by several flaviviruses have been recognized for decades, if not centuries. However, there is still a lot that is unknown about the flaviviruses as the recent experience with Zika virus has taught us. The objective of this review is to provide a general overview and some historical perspective on several flaviviruses that cause significant human disease. In addition, available medical countermeasures and significant gaps in our understanding of flavivirus biology are also discussed.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, USA.
| |
Collapse
|
15
|
Magden ER, Mansfield KG, Simmons JH, Abee CR. Nonhuman Primates. LABORATORY ANIMAL MEDICINE 2015:771-930. [DOI: 10.1016/b978-0-12-409527-4.00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
16
|
Smith DR, Holbrook MR, Gowen BB. Animal models of viral hemorrhagic fever. Antiviral Res 2014; 112:59-79. [PMID: 25448088 DOI: 10.1016/j.antiviral.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/24/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022]
Abstract
The term "viral hemorrhagic fever" (VHF) designates a syndrome of acute febrile illness, increased vascular permeability and coagulation defects which often progresses to bleeding and shock and may be fatal in a significant percentage of cases. The causative agents are some 20 different RNA viruses in the families Arenaviridae, Bunyaviridae, Filoviridae and Flaviviridae, which are maintained in a variety of animal species and are transferred to humans through direct or indirect contact or by an arthropod vector. Except for dengue, which is transmitted among humans by mosquitoes, the geographic distribution of each type of VHF is determined by the range of its animal reservoir. Treatments are available for Argentine HF and Lassa fever, but no approved countermeasures have been developed against other types of VHF. The development of effective interventions is hindered by the sporadic nature of most infections and their occurrence in geographic regions with limited medical resources. Laboratory animal models that faithfully reproduce human disease are therefore essential for the evaluation of potential vaccines and therapeutics. The goal of this review is to highlight the current status of animal models that can be used to study the pathogenesis of VHF and test new countermeasures.
Collapse
Affiliation(s)
- Darci R Smith
- Southern Research Institute, Frederick, MD 21701, United States.
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, United States
| | - Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322, United States
| |
Collapse
|
17
|
Sawatsky B, McAuley AJ, Holbrook MR, Bente DA. Comparative pathogenesis of Alkhumra hemorrhagic fever and Kyasanur forest disease viruses in a mouse model. PLoS Negl Trop Dis 2014; 8:e2934. [PMID: 24922308 PMCID: PMC4055546 DOI: 10.1371/journal.pntd.0002934] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (AHFV) are genetically closely-related, tick-borne flaviviruses that cause severe, often fatal disease in humans. Flaviviruses in the tick-borne encephalitis (TBE) complex typically cause neurological disease in humans whereas patients infected with KFDV and AHFV predominately present with hemorrhagic fever. A small animal model for KFDV and AHFV to study the pathogenesis and evaluate countermeasures has been lacking mostly due to the need of a high biocontainment laboratory to work with the viruses. To evaluate the utility of an existing mouse model for tick-borne flavivirus pathogenesis, we performed serial sacrifice studies in BALB/c mice infected with either KFDV strain P9605 or AHFV strain Zaki-1. Strikingly, infection with KFDV was completely lethal in mice, while AHFV caused no clinical signs of disease and no animals succumbed to infection. KFDV and high levels of pro-inflammatory cytokines were detected in the brain at later time points, but no virus was found in visceral organs; conversely, AHFV Zaki-1 and elevated levels of cytokines were found in the visceral organs at earlier time points, but were not detected in the brain. While infection with either virus caused a generalized leukopenia, only AHFV Zaki-1 induced hematologic abnormalities in infected animals. Our data suggest that KFDV P9605 may have lost its ability to cause hemorrhagic disease as the result of multiple passages in suckling mouse brains. However, likely by virtue of fewer mouse passages, AHFV Zaki-1 has retained the ability to replicate in visceral organs, cause hematologic abnormalities, and induce pro-inflammatory cytokines without causing overt disease. Given these striking differences, the use of inbred mice and the virus passage history need to be carefully considered in the interpretation of animal studies using these viruses. Kyasanur Forest disease virus (KFDV) and Alkhumra hemorrhagic fever virus (AHFV) are tick-borne flaviviruses that cause severe hemorrhagic disease in humans. The pathogenesis of the disease is still not very well understood mostly due to the lack of suitable animal models. Despite sharing a high degree of genetic sequence similarity, KFDV replicates primarily in the brain and is uniformly lethal for BALB/c mice. In contrast, AHFV does not cause clinically overt signs in mice, replicates in the visceral organs, and induces pro-inflammatory cytokines and hematological changes. Given the striking differences in pathogenesis and tissue tropism, the use of inbred mice as well as the passage history of the virus needs to be carefully considered in the interpretation of animal studies using these viruses.
Collapse
Affiliation(s)
- Bevan Sawatsky
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander J. McAuley
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michael R. Holbrook
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, Untied States of America
- National Institute of Allergy and Infectious Diseases, Integrated Research Facility, Frederick, Maryland, United States of America
| | - Dennis A. Bente
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Yu C, Achazi K, Möller L, Schulzke JD, Niedrig M, Bücker R. Tick-borne encephalitis virus replication, intracellular trafficking, and pathogenicity in human intestinal Caco-2 cell monolayers. PLoS One 2014; 9:e96957. [PMID: 24820351 PMCID: PMC4018392 DOI: 10.1371/journal.pone.0096957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/13/2014] [Indexed: 12/27/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most important vector-borne viruses in Europe and Asia. Its transmission mainly occurs by the bite of an infected tick. However, consuming milk products from infected livestock animals caused TBEV cases. To better understand TBEV transmission via the alimentary route, we studied viral infection of human intestinal epithelial cells. Caco-2 cells were used to investigate pathological effects of TBEV infection. TBEV-infected Caco-2 monolayers showed morphological changes including cytoskeleton rearrangements and cytoplasmic vacuolization. Ultrastructural analysis revealed dilatation of the rough endoplasmic reticulum and further enlargement to TBEV containing caverns. Caco-2 monolayers maintained an intact epithelial barrier with stable transepithelial electrical resistance (TER) during early stage of infection. Concomitantly, viruses were detected in the basolateral medium, implying a transcytosis pathway. When Caco-2 cells were pre-treated with inhibitors of cellular pathways of endocytosis TBEV cell entry was efficiently blocked, suggesting that actin filaments (Cytochalasin) and microtubules (Nocodazole) are important for PI3K-dependent (LY294002) virus endocytosis. Moreover, experimental fluid uptake assay showed increased intracellular accumulation of FITC-dextran containing vesicles. Immunofluorescence microscopy revealed co-localization of TBEV with early endosome antigen-1 (EEA1) as well as with sorting nexin-5 (SNX5), pointing to macropinocytosis as trafficking mechanism. In the late phase of infection, further evidence was found for translocation of virus via the paracellular pathway. Five days after infection TER was slightly decreased. Epithelial barrier integrity was impaired due to increased epithelial apoptosis, leading to passive viral translocation. These findings illuminate pathomechanisms in TBEV infection of human intestinal epithelial cells and viral transmission via the alimentary route.
Collapse
Affiliation(s)
- Chao Yu
- Centre for Biological Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Robert Koch Institute, Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Möller
- Centre for Biological Threats and Special Pathogens, ZBS 4: Advanced Light and Electron Microscopy, Robert Koch Institute, Berlin, Germany
| | - Joerg D. Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Division of Nutritional Medicine, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, German
- * E-mail:
| | - Matthias Niedrig
- Centre for Biological Threats and Special Pathogens, ZBS 1: Highly Pathogenic Viruses, Robert Koch Institute, Berlin, Germany
| | - Roland Bücker
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Division of Nutritional Medicine, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, German
| |
Collapse
|
19
|
Belikov SI, Kondratov IG, Potapova UV, Leonova GN. The relationship between the structure of the tick-borne encephalitis virus strains and their pathogenic properties. PLoS One 2014; 9:e94946. [PMID: 24740396 PMCID: PMC3989262 DOI: 10.1371/journal.pone.0094946] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is transmitted to vertebrates by taiga or forest ticks through bites, inducing disease of variable severity. The reasons underlying these differences in the severity of the disease are unknown. In order to identify genetic factors affecting the pathogenicity of virus strains, we have sequenced and compared the complete genomes of 34 Far-Eastern subtype (FE) TBEV strains isolated from patients with different disease severity (Primorye, the Russian Far East). We analyzed the complete genomes of 11 human pathogenic strains isolated from the brains of dead patients with the encephalitic form of the disease (Efd), 4 strains from the blood of patients with the febrile form of TBE (Ffd), and 19 strains from patients with the subclinical form of TBE (Sfd). On the phylogenetic tree, pathogenic Efd strains formed two clusters containing the prototype strains, Senzhang and Sofjin, respectively. Sfd strains formed a third separate cluster, including the Oshima strain. The strains that caused the febrile form of the disease did not form a separate cluster. In the viral proteins, we found 198 positions with at least one amino acid residue substitution, of which only 17 amino acid residue substitutions were correlated with the variable pathogenicity of these strains in humans and they authentically differed between the groups. We considered the role of each amino acid substitution and assumed that the deletion of 111 amino acids in the capsid protein in combination with the amino acid substitutions R16K and S45F in the NS3 protease may affect the budding process of viral particles. These changes may be the major reason for the diminished pathogenicity of TBEV strains. We recommend Sfd strains for testing as attenuation vaccine candidates.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- 5' Untranslated Regions/genetics
- Amino Acid Sequence
- Amino Acid Substitution
- Animals
- Base Sequence
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- China
- Encephalitis Viruses, Tick-Borne/classification
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/pathogenicity
- Encephalitis, Tick-Borne/blood
- Encephalitis, Tick-Borne/virology
- Genetic Structures
- Genome, Viral/genetics
- Geography
- Humans
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Protein Structure, Tertiary
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Russia
- Sequence Homology, Amino Acid
- Serine Endopeptidases/chemistry
- Serine Endopeptidases/genetics
- Viral Nonstructural Proteins/chemistry
- Viral Nonstructural Proteins/genetics
- Virulence/genetics
Collapse
Affiliation(s)
- Sergei I. Belikov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Ilya G. Kondratov
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Ulyana V. Potapova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Galina N. Leonova
- Research Institute of Epidemiology and Microbiology, Siberian Branch, Russian Academy of Medical Sciences, Vladivostok, Russia
| |
Collapse
|
20
|
Zivcec M, Safronetz D, Feldmann H. Animal models of tick-borne hemorrhagic Fever viruses. Pathogens 2013; 2:402-21. [PMID: 25437041 PMCID: PMC4235721 DOI: 10.3390/pathogens2020402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 12/22/2022] Open
Abstract
Tick-borne hemorrhagic fever viruses (TBHFV) are detected throughout the African and Eurasian continents and are an emerging or re-emerging threat to many nations. Due to the largely sporadic incidences of these severe diseases, information on human cases and research activities in general have been limited. In the past decade, however, novel TBHFVs have emerged and areas of endemicity have expanded. Therefore, the development of countermeasures is of utmost importance in combating TBHFV as elimination of vectors and interrupting enzootic cycles is all but impossible and ecologically questionable. As in vivo models are the only way to test efficacy and safety of countermeasures, understanding of the available animal models and the development and refinement of animal models is critical in negating the detrimental impact of TBHFVs on public and animal health.
Collapse
Affiliation(s)
- Marko Zivcec
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg R3E 0J9, Canada.
| | - David Safronetz
- Laboratory of Virology Division of Intramural Research, National Institute Allergy and Infectious Disease, National Institutes of Health, Rocky Mountain Laboratories, Hamilton 59840, Montana, USA.
| | - Heinz Feldmann
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg R3E 0J9, Canada.
| |
Collapse
|
21
|
Shah KV, Dandawate CN, Bhatt PN. Kyasanur forest disease virus: viremia and challenge studies in monkeys with evidence of cross-protection by Langat virus infection. F1000Res 2012; 1:61. [PMID: 24627765 PMCID: PMC3924949 DOI: 10.12688/f1000research.1-61.v1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2012] [Indexed: 11/20/2022] Open
Abstract
Kyasanur Forest Disease Virus (KFDV), discovered in 1957, is a member of the tick-borne encephalitis virus (TBEV) complex. Diseases caused by members of the TBEV complex occur in many parts of the world. KFDV produces a hemorrhagic fever in humans in South India and fatal illnesses in both species of monkeys in the area, the black faced langur (Presbytis entellus) and the bonnet macaque (Macaca radiata). Experimental infection of the langur and the bonnet macaque with early mouse passage KFDV strain P9605 resulted in a viremia of up to 11 days duration, peak viremia titers as high as 10
9, and death in 82 = 100% of the animals. Prolonged passage of the KFDV strain P9605 in monkey kidney tissue culture resulted in a markedly reduced virulence of the virus for both species; peak viremia titers in monkeys decreased by 2.5 to 4.0 log LD 50 (p= 0.001), and the mortality decreased to 10% (p= 0.001). In challenge experiments, monkeys previously infected with tissue-culture-adapted KFDV, or with the related Langat virus from Malaysia, were fully protected against virulent KFDV. These studies in non-human primates lend support to the idea that a live virus vaccine from a member of the TBEV complex may be broadly protective against infections by other members of the TBEV complex.
Collapse
Affiliation(s)
- Keerti V Shah
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | | - Pravin N Bhatt
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
22
|
Holbrook MR. Kyasanur forest disease. Antiviral Res 2012; 96:353-62. [PMID: 23110991 DOI: 10.1016/j.antiviral.2012.10.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/21/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
In the spring of 1957, an outbreak of severe disease was documented in people living near the Kyasanur forest in Karnataka state, India, which also affected wild nonhuman primates. Collection of samples from dead animals and the use of classical virological techniques led to the isolation of a previously unrecognized virus, named Kyasanur forest disease virus (KFDV), which was found to be related to the Russian spring-summer encephalitis (RSSE) complex of tick-borne viruses. Further evaluation found that KFD, which frequently took the form of a hemorrhagic syndrome, differed from most other RSSE virus infections, which were characterized by neurologic disease. Its association with illness in wild primates was also unique. Hemaphysalis spinigera was identified as the probable tick vector. Despite an estimated annual incidence in India of 400-500 cases, KFD is historically understudied. Most of what is known about the disease comes from studies in the late 1950s and early 1960s by the Virus Research Center in Pune, India and their collaborators at the Rockefeller Foundation. A report in ProMED in early 2012 indicated that the number of cases of KFD this year is possibly the largest since 2005, reminding us that there are significant gaps in our knowledge of the disease, including many aspects of its pathogenesis, the host response to infection and potential therapeutic options. A vaccine is currently in use in India, but efforts could be made to improve its long-term efficacy.
Collapse
Affiliation(s)
- Michael R Holbrook
- NIAID Integrated Research Facility, 8200 Research Plaza, Ft. Detrick, Frederick, MD 21702, United States.
| |
Collapse
|
23
|
Abstract
Omsk haemorrhagic fever is an acute viral disease prevalent in some regions of western Siberia in Russia. The symptoms of this disease include fever, headache, nausea, severe muscle pain, cough, and moderately severe haemorrhagic manifestations. A third of patients develop pneumonia, nephrosis, meningitis, or a combination of these complications. The only treatments available are for control of symptoms. No specific vaccine has been developed, although the vaccine against tick-borne encephalitis might provide a degree of protection against Omsk haemorrhagic fever virus. The virus is transmitted mainly by Dermacentor reticulatus ticks, but people are mainly infected after contact with infected muskrats (Ondatra zibethicus). Muskrats are very sensitive to Omsk haemorrhagic fever virus. The introduction of this species to Siberia in the 1930s probably led to viral emergence in this area, which had previously seemed free from the disease. Omsk haemorrhagic fever is, therefore, an example of a human disease that emerged owing to human-mediated disturbance of an ecological niche. We review the biological properties of the virus, and the epidemiological and clinical characteristics of Omsk haemorrhagic fever.
Collapse
Affiliation(s)
- Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic.
| | | | | | | |
Collapse
|
24
|
Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Med Infect Dis 2010; 8:213-22. [DOI: 10.1016/j.tmaid.2010.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 05/25/2010] [Indexed: 01/01/2023]
|
25
|
Anatomical aspects of the male reproductive system in the bonnet monkey (Macaca radiata). Anat Sci Int 2009; 84:53-60. [DOI: 10.1007/s12565-008-0007-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 08/27/2008] [Indexed: 11/26/2022]
|
26
|
Süss J, Dobler G, Zöller G, Essbauer S, Pfeffer M, Klaus C, Liebler-Tenorio EM, Gelpi E, Stark B, Hotzel H. Genetic characterisation of a tick-borne encephalitis virus isolated from the brain of a naturally exposed monkey (Macaca sylvanus). Int J Med Microbiol 2008. [DOI: 10.1016/j.ijmm.2008.02.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Abstract
Macaques have served as models for more than 70 human infectious diseases of diverse etiologies, including a multitude of agents—bacteria, viruses, fungi, parasites, prions. The remarkable diversity of human infectious diseases that have been modeled in the macaque includes global, childhood, and tropical diseases as well as newly emergent, sexually transmitted, oncogenic, degenerative neurologic, potential bioterrorism, and miscellaneous other diseases. Historically, macaques played a major role in establishing the etiology of yellow fever, polio, and prion diseases. With rare exceptions (Chagas disease, bartonellosis), all of the infectious diseases in this review are of Old World origin. Perhaps most surprising is the large number of tropical (16), newly emergent (7), and bioterrorism diseases (9) that have been modeled in macaques. Many of these human diseases (e.g., AIDS, hepatitis E, bartonellosis) are a consequence of zoonotic infection. However, infectious agents of certain diseases, including measles and tuberculosis, can sometimes go both ways, and thus several human pathogens are threats to nonhuman primates including macaques. Through experimental studies in macaques, researchers have gained insight into pathogenic mechanisms and novel treatment and vaccine approaches for many human infectious diseases, most notably acquired immunodeficiency syndrome (AIDS), which is caused by infection with human immunodeficiency virus (HIV). Other infectious agents for which macaques have been a uniquely valuable resource for biomedical research, and particularly vaccinology, include influenza virus, paramyxoviruses, flaviviruses, arenaviruses, hepatitis E virus, papillomavirus, smallpox virus, Mycobacteria, Bacillus anthracis, Helicobacter pylori, Yersinia pestis, and Plasmodium species. This review summarizes the extensive past and present research on macaque models of human infectious disease.
Collapse
Affiliation(s)
- Murray B Gardner
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
28
|
Prakash S, Prithiviraj E, Suresh S. Developmental changes of seminiferous tubule in prenatal, postnatal and adult testis of bonnet monkey (Macaca radiata). Anat Histol Embryol 2008; 37:19-23. [PMID: 18197895 DOI: 10.1111/j.1439-0264.2007.00789.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper is a part of our study on the male reproductive system of bonnet monkey. The developmental changes in testis of bonnet monkey were studied qualitatively and quantitatively, at the light microscopy level. Testicular development appears to primarily involve tubular growth that starts immediately after birth. There is a gradual increase in the number of tubules in the prenatal to neonatal stage in testis, without an increase in the volume. Increase in the number of tubules in the neonatal testis was achieved by an increase in the length of the tubules and reduction in the interstitial proportion. Scattered spermatogonial cells in the tubules of neonatal testis indicate the rapid growth rate of the tubules. Increase in tubular length along with diameter seems to be a continuous process until puberty. This is the first report on the developmental changes in the testis during fetal, postnatal and adult stages in the bonnet monkey.
Collapse
Affiliation(s)
- S Prakash
- Department of Anatomy, Dr. Arcot Lakshmanasamy Mudaliar Postgraduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, India.
| | | | | |
Collapse
|
29
|
Holbrook MR, Gowen BB. Animal models of highly pathogenic RNA viral infections: encephalitis viruses. Antiviral Res 2007; 78:69-78. [PMID: 18031836 DOI: 10.1016/j.antiviral.2007.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/09/2007] [Accepted: 10/11/2007] [Indexed: 12/11/2022]
Abstract
The highly pathogenic RNA viruses that cause encephalitis include a significant number of emerging or re-emerging viruses that are also considered potential bioweapons. Many of these viruses, including members of the family Flaviviridae, the genus Alphavirus in the family Togaviridae, and the genus Henipavirus in the family Paramyxoviridae, circulate widely in their endemic areas, where they are transmitted by mosquitoes or ticks. They use a variety of vertebrate hosts, ranging from birds to bats, in their natural life cycle. As was discovered in the United States, the introduction of a mosquito-borne encephalitis virus such as West Nile virus can cause significant health and societal concerns. There are no effective therapeutics for treating diseases caused by any of these viruses and there is limited, if any, vaccine availability for most. In this review we provide a brief summary of the current status of animal models used to study highly pathogenic encephalitic RNA viruses for the development of antiviral therapeutics and vaccines.
Collapse
Affiliation(s)
- Michael R Holbrook
- Department of Pathology, 301 University Boulevard, University of Texas Medical Branch, Galveston, TX 77555-0609, United States.
| | | |
Collapse
|
30
|
Gowen BB, Holbrook MR. Animal models of highly pathogenic RNA viral infections: hemorrhagic fever viruses. Antiviral Res 2007; 78:79-90. [PMID: 18036672 DOI: 10.1016/j.antiviral.2007.10.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Revised: 10/08/2007] [Accepted: 10/10/2007] [Indexed: 02/08/2023]
Abstract
A diverse group of highly pathogenic RNA viruses cause a severe multisystemic illness in humans commonly referred to as viral hemorrhagic fever (VHF). Although they can vary widely in clinical presentation, all VHFs share certain features that include intense fever, malaise, bleeding and shock. Effective antiviral therapies for most of the VHFs are lacking. Complicating development of intervention strategies is the relative infrequency and unpredictability of VHF outbreaks making human clinical trials extremely challenging or unfeasible. Therefore, animal models that can recapitulate human disease are essential to the development of effective antivirals and vaccines. In general, a good animal model of VHF will demonstrate systemic dispersion of the virus through infection of mononuclear phagocytes and dendritic cells, which induces the release of inflammatory mediators that increase vascular permeability and facilitate coagulation. The culmination of this process leads to significant loss of plasma volume and terminal hypovolemic shock. Although it is clear that nonhuman primate models are the most faithful to human disease, the more accessible and less costly rodent models, including those based on infection with related surrogate viruses, can reproduce certain components of VHF and can serve as suitable preclinical models for initial development of effective countermeasures. Such models are sufficient for testing of drugs that directly block viral replication, but may be inadequate for evaluating therapies that depend for their success on the activation or inhibition of host responses.
Collapse
Affiliation(s)
- Brian B Gowen
- Institute for Antiviral Research and Department of Animal, Dairy, and Veterinary Sciences, Utah State University, Logan, UT 84322-5600, USA.
| | | |
Collapse
|
31
|
Süss J, Gelpi E, Klaus C, Bagon A, Liebler-Tenorio EM, Budka H, Stark B, Müller W, Hotzel H. Tickborne encephalitis in naturally exposed monkey (Macaca sylvanus). Emerg Infect Dis 2007; 13:905-7. [PMID: 17553233 PMCID: PMC2792843 DOI: 10.3201/eid1306.061173] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We describe tickborne encephalitis (TBE) in a monkey (Macaca sylvanus) after natural exposure in an area at risk for TBE. TBE virus was present in the brain and could be identified as closely related to the European subtype, strain Neudoerfl.
Collapse
Affiliation(s)
- Jochen Süss
- Friedrich-Loeffler-Institute, Jena, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Kyasanur forest disease (KFD) was first recognised as a febrile illness in the Shimoga district of Karnataka state of India. The causative agent, KFD virus (KFDV), is a highly pathogenic member in the family Flaviviridae, producing a haemorrhagic disease in infected human beings. KFD is a zoonotic disease and has so far been localised only in a southern part of India. The exact cause of its emergence in the mid 1950s is not known. A variant of KFDV, characterised serologically and genetically as Alkhurma haemorrhagic fever virus (AHFV), has been recently identified in Saudi Arabia. KFDV and AHFV share 89% sequence homology, suggesting common ancestral origin. Homology modelling of KFDV envelope (E) protein exhibited a structure similar to those of other flaviviruses, suggesting a common mechanism of virus-cell fusion. The possible mechanism of receptor-ligand interaction involved in infection by KFDV may resemble that of other flavivirses. Present understanding is that KFDV may be persisting silently in several regions of India and that antigenic and structural differences from other tick borne viruses may be related to the unique host specificity and pathogenicity of KFDV. From January 1999 through January 2005, an increasing number of KFD cases have been detected in Karnataka state of Indian subcontinent despite routine vaccination, suggesting insufficient efficacy of the current vaccine protocol. However, the exact cause of the increase of KFD cases needs further investigation. Considering the requirement of safer and more effective vaccines in general, there is clearly a need for developing an alternative vaccine as well as a rapid diagnostic system for KFD. The changing ecology of the prime focus of the KFD also warrants attention, as it may lead to establishment of the disease in newer localities, never reported before.
Collapse
Affiliation(s)
- Priyabrata Pattnaik
- Virology Division, Defence Research and Development Establishment, Gwalior, India.
| |
Collapse
|
33
|
Schmaljohn C, Custer D, VanderZanden L, Spik K, Rossi C, Bray M. Evaluation of tick-borne encephalitis DNA vaccines in monkeys. Virology 1999; 263:166-74. [PMID: 10544091 DOI: 10.1006/viro.1999.9918] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tick-borne encephalitis is usually caused by infection with one of two flaviviruses: Russian spring summer encephalitis virus (RSSEV) or Central European encephalitis virus (CEEV). We previously demonstrated that gene gun inoculation of mice with naked DNA vaccines expressing the prM and E genes of these viruses resulted in long-lived homologous and heterologous protective immunity (Schmaljohn et al., 1997). To further evaluate these vaccines, we inoculated rhesus macaques by gene gun with the RSSEV or CEEV vaccines or with both DNA vaccines and compared resulting antibody titers with those obtained by vaccination with a commercial, formalin-inactivated vaccine administered at the human dose. Vaccinations were given at days 0, 30, and 70. All of the vaccines elicited antibodies detected by ELISA and by plaque-reduction neutralization tests. The neutralizing antibody responses persisted for at least 15 weeks after the final vaccination. Because monkeys are not uniformly susceptible to tick-borne encephalitis, the protective properties of the vaccines were assessed by passive transfer of monkey sera to mice and subsequent challenge of the mice with RSSEV or CEEV. One hour after transfer, mice that received 50 microl of sera from monkeys vaccinated with both DNA vaccines had circulating neutralizing antibody levels <20-80. All of these mice were protected from challenge with RSSEV or CEEV. Mice that received 10 microl of sera from monkeys vaccinated with the individual DNA vaccines, both DNA vaccines, or a commercial vaccine were partially to completely protected from RSSEV or CEEV challenge. These data suggest that DNA vaccines may offer protective immunity to primates similar to that obtained with a commercial inactivated-virus vaccine.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- Biolistics
- Drug Evaluation, Preclinical
- Encephalitis Viruses, Tick-Borne/immunology
- Encephalitis, Tick-Borne/immunology
- Encephalitis, Tick-Borne/prevention & control
- Europe
- Female
- Immunization, Passive
- Macaca mulatta
- Mice
- Mice, Inbred BALB C
- Neutralization Tests
- Russia
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Inactivated/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- C Schmaljohn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702, USA.
| | | | | | | | | | | |
Collapse
|