1
|
Papadimitriou‐Tsantarliotou A, Avgeros C, Konstantinidou M, Vizirianakis IS. Analyzing the role of ferroptosis in ribosome-related bone marrow failure disorders: From pathophysiology to potential pharmacological exploitation. IUBMB Life 2024; 76:1011-1034. [PMID: 39052023 PMCID: PMC11580388 DOI: 10.1002/iub.2897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Within the last decade, the scientific community has witnessed the importance of ferroptosis as a novel cascade of molecular events leading to cellular decisions of death distinct from apoptosis and other known forms of cell death. Notably, such non- apoptotic and iron-dependent regulated cell death has been found to be intricately linked to several physiological processes as well as to the pathogenesis of various diseases. To this end, recent data support the notion that a potential molecular connection between ferroptosis and inherited bone marrow failure (IBMF) in individuals with ribosomopathies may exist. In this review, we suggest that in ribosome-related IBMFs the identified mutations in ribosomal proteins lead to changes in the ribosome composition of the hematopoietic progenitors, changes that seem to affect ribosomal function, thus enhancing the expression of some mRNAs subgroups while reducing the expression of others. These events lead to an imbalance inside the cell as some molecular pathways are promoted while others are inhibited. This disturbance is accompanied by ROS production and lipid peroxidation, while an additional finding in most of them is iron accumulation. Once lipid peroxidation and iron accumulation are the two main characteristics of ferroptosis, it is possible that this mechanism plays a key role in the manifestation of IBMF in this type of disease. If this molecular mechanism is further confirmed, new pharmacological targets such as ferroptosis inhibitors that are already exploited for the treatment of other diseases, could be utilized to improve the treatment of ribosomopathies.
Collapse
Affiliation(s)
| | - Chrysostomos Avgeros
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Maria Konstantinidou
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of PharmacyAristotle University of ThessalonikiThessalonikiGreece
- Department of Health Sciences, School of Life and Health SciencesUniversity of NicosiaNicosiaCyprus
| |
Collapse
|
2
|
Yang F, Guo X, Bao Y, Li R. The role of ribosomal DNA methylation in embryonic development, aging and diseases. Epigenetics Chromatin 2024; 17:23. [PMID: 39085958 PMCID: PMC11290161 DOI: 10.1186/s13072-024-00548-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
The ribosomal DNA (rDNA) constitutes a remarkably conserved DNA sequence within species, located in the area of the nucleolus, and responsible for coding three major types of rRNAs (18S, 5.8S and 28S). While historical investigations into rDNA focused on its structure and coding capabilities, recent research has turned to explore its functional roles in various biological processes. In this review, we summarize the main findings of rDNA methylation with embryonic development, aging and diseases in multiple species, including epigenetic alterations, related biological processes and potential applications of rDNA methylation. We present an overview of current related research and identify gaps in this field.
Collapse
Affiliation(s)
- Fei Yang
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xutong Guo
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rujiao Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing, 100101, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Kim JH, Nagaraja R, Ogurtsov AY, Noskov VN, Liskovykh M, Lee HS, Hori Y, Kobayashi T, Hunter K, Schlessinger D, Kouprina N, Shabalina SA, Larionov V. Comparative analysis and classification of highly divergent mouse rDNA units based on their intergenic spacer (IGS) variability. NAR Genom Bioinform 2024; 6:lqae070. [PMID: 38881577 PMCID: PMC11177557 DOI: 10.1093/nargab/lqae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Ribosomal DNA (rDNA) repeat units are organized into tandem clusters in eukaryotic cells. In mice, these clusters are located on at least eight chromosomes and show extensive variation in the number of repeats between mouse genomes. To analyze intra- and inter-genomic variation of mouse rDNA repeats, we selectively isolated 25 individual rDNA units using Transformation-Associated Recombination (TAR) cloning. Long-read sequencing and subsequent comparative sequence analysis revealed that each full-length unit comprises an intergenic spacer (IGS) and a ∼13.4 kb long transcribed region encoding the three rRNAs, but with substantial variability in rDNA unit size, ranging from ∼35 to ∼46 kb. Within the transcribed regions of rDNA units, we found 209 variants, 70 of which are in external transcribed spacers (ETSs); but the rDNA size differences are driven primarily by IGS size heterogeneity, due to indels containing repetitive elements and some functional signals such as enhancers. Further evolutionary analysis categorized rDNA units into distinct clusters with characteristic IGS lengths; numbers of enhancers; and presence/absence of two common SNPs in promoter regions, one of which is located within promoter (p)RNA and may influence pRNA folding stability. These characteristic features of IGSs also correlated significantly with 5'ETS variant patterns described previously and associated with differential expression of rDNA units. Our results suggest that variant rDNA units are differentially regulated and open a route to investigate the role of rDNA variation on nucleolar formation and possible associations with pathology.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Ramaiah Nagaraja
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Alexey Y Ogurtsov
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir N Noskov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Mikhail Liskovykh
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Hee-Sheung Lee
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Yutaro Hori
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- The University of Tokyo, Laboratory of Genome Regeneration, Tokyo 113-0032, Japan
| | - Kent Hunter
- National Cancer Institute, Laboratory of Cancer Biology and Genetics, Bethesda, MD, USA
| | - David Schlessinger
- National Institute of Aging, Laboratory of Genetics and Genomics, Baltimore, MD, USA
| | - Natalay Kouprina
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Vladimir Larionov
- National Cancer Institute, Developmental Therapeutics Branch, Bethesda, MD, USA
| |
Collapse
|
4
|
Lafita-Navarro MC, Conacci-Sorrell M. Nucleolar stress: From development to cancer. Semin Cell Dev Biol 2023; 136:64-74. [PMID: 35410715 PMCID: PMC9883801 DOI: 10.1016/j.semcdb.2022.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/29/2022] [Accepted: 04/02/2022] [Indexed: 02/06/2023]
Abstract
The nucleolus is a large nuclear membraneless organelle responsible for ribosome biogenesis. Ribosomes are cytoplasmic macromolecular complexes comprising RNA and proteins that link amino acids together to form new proteins. The biogenesis of ribosomes is an intricate multistep process that involves the transcription of ribosomal DNA (rDNA), the processing of ribosomal RNA (rRNA), and the assembly of rRNA with ribosomal proteins to form active ribosomes. Nearly all steps necessary for ribosome production and maturation occur in the nucleolus. Nucleolar shape, size, and number are directly linked to ribosome biogenesis. Errors in the steps of ribosomal biogenesis are sensed by the nucleolus causing global alterations in nucleolar function and morphology. This phenomenon, known as nucleolar stress, can lead to molecular changes such as stabilization of p53, which in turn activates cell cycle arrest or apoptosis. In this review, we discuss recent work on the association of nucleolar stress with degenerative diseases and developmental defects. In addition, we highlight the importance of de novo nucleotide biosynthesis for the enhanced nucleolar activity of cancer cells and discuss targeting nucleotide biosynthesis as a strategy to activate nucleolar stress to specifically target cancer cells.
Collapse
Affiliation(s)
- M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
5
|
Dörner K, Ruggeri C, Zemp I, Kutay U. Ribosome biogenesis factors-from names to functions. EMBO J 2023; 42:e112699. [PMID: 36762427 PMCID: PMC10068337 DOI: 10.15252/embj.2022112699] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/13/2022] [Accepted: 01/19/2023] [Indexed: 02/11/2023] Open
Abstract
The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.
Collapse
Affiliation(s)
- Kerstin Dörner
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,Molecular Life Sciences Ph.D. Program, Zurich, Switzerland
| | - Chiara Ruggeri
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland.,RNA Biology Ph.D. Program, Zurich, Switzerland
| | - Ivo Zemp
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ulrike Kutay
- Department of Biology, Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Naesens L, Muppala S, Acharya D, Nemegeer J, Bogaert D, Lee JH, Staes K, Debacker V, De Bleser P, De Bruyne M, De Baere E, van Gent M, Liu G, Lambrecht BN, Staal J, Kerre T, Beyaert R, Maelfait J, Tavernier SJ, Gack MU, Haerynck F. GTF3A mutations predispose to herpes simplex encephalitis by disrupting biogenesis of the host-derived RIG-I ligand RNA5SP141. Sci Immunol 2022; 7:eabq4531. [PMID: 36399538 PMCID: PMC10075094 DOI: 10.1126/sciimmunol.abq4531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Herpes simplex virus 1 (HSV-1) infects several billion people worldwide and can cause life-threatening herpes simplex encephalitis (HSE) in some patients. Monogenic defects in components of the type I interferon system have been identified in patients with HSE, emphasizing the role of inborn errors of immunity underlying HSE pathogenesis. Here, we identify compound heterozygous loss-of-function mutations in the gene GTF3A encoding for transcription factor IIIA (TFIIIA), a component of the RNA polymerase III complex, in a patient with common variable immunodeficiency and HSE. Patient fibroblasts and GTF3A gene-edited cells displayed impaired HSV-1-induced innate immune responses and enhanced HSV-1 replication. Chromatin immunoprecipitation sequencing analysis identified the 5S ribosomal RNA pseudogene 141 (RNA5SP141), an endogenous ligand of the RNA sensor RIG-I, as a transcriptional target of TFIIIA. GTF3A mutant cells exhibited diminished RNA5SP141 expression and abrogated RIG-I activation upon HSV-1 infection. Our work unveils a crucial role for TFIIIA in transcriptional regulation of a cellular RIG-I agonist and shows that GTF3A genetic defects lead to impaired cell-intrinsic anti-HSV-1 responses and can predispose to HSE.
Collapse
Affiliation(s)
- Leslie Naesens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Santoshi Muppala
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
| | - Dhiraj Acharya
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Josephine Nemegeer
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signaling and Cell death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Delfien Bogaert
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Jung-Hyun Lee
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Katrien Staes
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Veronique Debacker
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Pieter De Bleser
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Marieke De Bruyne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Bart N. Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jens Staal
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Tessa Kerre
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Hematology, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Jonathan Maelfait
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Molecular Signaling and Cell death, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Simon J. Tavernier
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Laboratory of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port St Lucie, FL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Filomeen Haerynck
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Primary Immunodeficiency Research Lab, Center for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
7
|
Ford D. Ribosomal heterogeneity - A new inroad for pharmacological innovation. Biochem Pharmacol 2020; 175:113874. [PMID: 32105657 DOI: 10.1016/j.bcp.2020.113874] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
The paradigm of ribosome usage in protein translation has shifted from a stance proposed as scientists began to unpick the genetic code that each mRNA was partnered by its own, unique ribosome to a rapid reversal of this view that ribosomes are completely interchangeable and simply recruited to mRNAs from a completely homogenous cellular pool. Evidence that the ribosomal proteome, ribosomal gene transcriptome and ribosome protein and RNA modifications differ between cells and tissues points to the fact that ribosomes are heterogeneous in their composition and have a degree of specialisation in their function. It has also been posited that the tissue-specificity of ribosome diseases provides an indication of functional ribosome heterogeneity, but there are substantial caveats to this interpretation. Only now have proteomic technologies developed to a level enabling accurate stoichiometric comparison of the abundance of specific ribosomal proteins in actively translating ribosomes and to measure protein in non-denatured ribosomes. This poises the field for the provocation that ribosome heterogeneity offers a novel and powerful inroad for the pharmacological targeting of disease. Such ribosome-targeted treatments may extend beyond specific ribosomopathies through strategies such as targeting features of ribosomes that are unique to diseased cells, particularly cancer cells, or to activated immune cells, as well as augmenting the action of other drugs through weakening the production of new proteins in target tissues. We may also be able to harness the potential power in ribosome diversity and specialism to better tune synthetic biology for the production of pharmaceutical proteins.
Collapse
Affiliation(s)
- Dianne Ford
- Northumbria University, Northumberland Building, Northumberland Road, Newcastle upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
8
|
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life. Mol Cell 2018; 71:364-374. [PMID: 30075139 PMCID: PMC6092941 DOI: 10.1016/j.molcel.2018.07.018] [Citation(s) in RCA: 307] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/08/2018] [Accepted: 07/16/2018] [Indexed: 12/24/2022]
Abstract
The ribosome has recently transitioned from being viewed as a passive, indiscriminate machine to a more dynamic macromolecular complex with specialized roles in the cell. Here, we discuss the historical milestones from the discovery of the ribosome itself to how this ancient machinery has gained newfound appreciation as a more regulatory participant in the central dogma of gene expression. The first emerging examples of direct changes in ribosome composition at the RNA and protein level, coupled with an increased awareness of the role individual ribosomal components play in the translation of specific mRNAs, is opening a new field of study centered on ribosome-mediated control of gene regulation. In this Perspective, we discuss our current understanding of the known functions for ribosome heterogeneity, including specialized translation of individual transcripts, and its implications for the regulation and expression of key gene regulatory networks. In addition, we suggest what the crucial next steps are to ascertain the extent of ribosome heterogeneity and specialization and its importance for regulation of the proteome within subcellular space, across different cell types, and during multi-cellular organismal development.
Collapse
Affiliation(s)
- Naomi R Genuth
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA; Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Maria Barna
- Department of Developmental Biology, Stanford University, Stanford, CA, 94305, USA; Department of Genetics, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
9
|
Isobe M, Nunome M, Katakura K, Suzuki H. Evolutionary Dynamics of Copy Number and Meiotic Recombination in Murine 5S rDNA: Possible Involvement of Natural Selection. J Mol Evol 2018; 86:312-323. [PMID: 29947946 DOI: 10.1007/s00239-018-9848-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/06/2018] [Indexed: 11/26/2022]
Abstract
We investigated evolutionary trends of the 5S ribosomal RNA gene in the house mouse, Mus musculus. First, we assessed the 5S cluster and copy numbers in eight laboratory strains by pulsed-field gel electrophoresis. The copy numbers in seven lines were estimated to be around 130-170 copies per cluster, with 63 copies in the remaining strain, implying that the copy number can change drastically and has been maintained under certain evolutionary constraints at ~ 140 copies. Second, we addressed the frequency of meiotic recombination mediated by the 5S cluster by performing a mating experiment with laboratory strains, and found that the 5S cluster did not accelerate recombination events. Third, we surveyed recombination events of the 5S-containing chromosome region in wild mice from the Japanese Islands, where the two subspecies lineages, M. m. castaneus and M. m. musculus, are historically mingled, and found that the influence of the 5S cluster on meiotic recombination was limited. Finally, we examined the nucleotide diversity of six genes in the neighboring regions of the 5S cluster and found reduced genetic diversity in the regions on both sides of the cluster, suggesting the involvement of either positive or background selection in the population-level sequence similarity of the 5S clusters. Therefore, the mouse 5S genes are considered to be evolving toward sequence similarity within a given cluster by certain intrachromosomal mechanisms and toward sharing of a specific 5S cluster within a population by certain selective processes.
Collapse
Affiliation(s)
- Miyu Isobe
- Graduate School of Earth Science, Hokkaido University, North 10, West 5, Sapporo, 060-0810, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, 464-8601, Japan
| | - Ken Katakura
- Graduate School of Veterinary Medicine, Hokkaido University, North 18, West 9, Sapporo, 060-0818, Japan
| | - Hitoshi Suzuki
- Graduate School of Earth Science, Hokkaido University, North 10, West 5, Sapporo, 060-0810, Japan.
| |
Collapse
|
10
|
Xie Q, Li C, Song X, Wu L, Jiang Q, Qiu Z, Cao H, Yu K, Wan C, Li J, Yang F, Huang Z, Niu B, Jiang Z, Zhang T. Folate deficiency facilitates recruitment of upstream binding factor to hot spots of DNA double-strand breaks of rRNA genes and promotes its transcription. Nucleic Acids Res 2017; 45:2472-2489. [PMID: 27924000 PMCID: PMC5389733 DOI: 10.1093/nar/gkw1208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/22/2016] [Indexed: 12/24/2022] Open
Abstract
The biogenesis of ribosomes in vivo is an essential process for cellular functions. Transcription of ribosomal RNA (rRNA) genes is the rate-limiting step in ribosome biogenesis controlled by environmental conditions. Here, we investigated the role of folate antagonist on changes of DNA double-strand breaks (DSBs) landscape in mouse embryonic stem cells. A significant DSB enhancement was detected in the genome of these cells and a large majority of these DSBs were found in rRNA genes. Furthermore, spontaneous DSBs in cells under folate deficiency conditions were located exclusively within the rRNA gene units, representing a H3K4me1 hallmark. Enrichment H3K4me1 at the hot spots of DSB regions enhanced the recruitment of upstream binding factor (UBF) to rRNA genes, resulting in the increment of rRNA genes transcription. Supplement of folate resulted in a restored UBF binding across DNA breakage sites of rRNA genes, and normal rRNA gene transcription. In samples from neural tube defects (NTDs) with low folate level, up-regulation of rRNA gene transcription was observed, along with aberrant UBF level. Our results present a new view by which alterations in folate levels affects DNA breakage through epigenetic control leading to the regulation of rRNA gene transcription during the early stage of development.
Collapse
Affiliation(s)
- Qiu Xie
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Caihua Li
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Xiaozhen Song
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Lihua Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Qian Jiang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Haiyan Cao
- Department of Laboratory Medicine, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kaihui Yu
- Department of Pathophysiology, Guangxi Medical University, Guangxi 530021, China
| | - Chunlei Wan
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | - Jianting Li
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Feng Yang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Zebing Huang
- Genesky Biotechnologies Inc, Shanghai 200120, China
| | - Bo Niu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| | | | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics-Peking University Teaching Hospital, Beijing 100020, China
| |
Collapse
|
11
|
Regulation of Cellular Dynamics and Chromosomal Binding Site Preference of Linker Histones H1.0 and H1.X. Mol Cell Biol 2016; 36:2681-2696. [PMID: 27528617 DOI: 10.1128/mcb.00200-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/08/2016] [Indexed: 01/01/2023] Open
Abstract
Linker histones play important roles in the genomic organization of mammalian cells. Of the linker histone variants, H1.X shows the most dynamic behavior in the nucleus. Recent research has suggested that the linker histone variants H1.X and H1.0 have different chromosomal binding site preferences. However, it remains unclear how the dynamics and binding site preferences of linker histones are determined. Here, we biochemically demonstrated that the DNA/nucleosome and histone chaperone binding activities of H1.X are significantly lower than those of other linker histones. This explains why H1.X moves more rapidly than other linker histones in vivo Domain swapping between H1.0 and H1.X suggests that the globular domain (GD) and C-terminal domain (CTD) of H1.X independently contribute to the dynamic behavior of H1.X. Our results also suggest that the N-terminal domain (NTD), GD, and CTD cooperatively determine the preferential binding sites, and the contribution of each domain for this determination is different depending on the target genes. We also found that linker histones accumulate in the nucleoli when the nucleosome binding activities of the GDs are weak. Our results contribute to understanding the molecular mechanisms of dynamic behaviors, binding site selection, and localization of linker histones.
Collapse
|
12
|
The 5S rDNA in two Abracris grasshoppers (Ommatolampidinae: Acrididae): molecular and chromosomal organization. Mol Genet Genomics 2016; 291:1607-13. [PMID: 27106499 DOI: 10.1007/s00438-016-1204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 10/21/2022]
Abstract
The 5S ribosomal DNA (rDNA) sequences are subject of dynamic evolution at chromosomal and molecular levels, evolving through concerted and/or birth-and-death fashion. Among grasshoppers, the chromosomal location for this sequence was established for some species, but little molecular information was obtained to infer evolutionary patterns. Here, we integrated data from chromosomal and nucleotide sequence analysis for 5S rDNA in two Abracris species aiming to identify evolutionary dynamics. For both species, two arrays were identified, a larger sequence (named type-I) that consisted of the entire 5S rDNA gene plus NTS (non-transcribed spacer) and a smaller (named type-II) with truncated 5S rDNA gene plus short NTS that was considered a pseudogene. For type-I sequences, the gene corresponding region contained the internal control region and poly-T motif and the NTS presented partial transposable elements. Between the species, nucleotide differences for type-I were noticed, while type-II was identical, suggesting pseudogenization in a common ancestor. At chromosomal point to view, the type-II was placed in one bivalent, while type-I occurred in multiple copies in distinct chromosomes. In Abracris, the evolution of 5S rDNA was apparently influenced by the chromosomal distribution of clusters (single or multiple location), resulting in a mixed mechanism integrating concerted and birth-and-death evolution depending on the unit.
Collapse
|
13
|
Chairi H, Gonzalez LR. Structure and Organization of the Engraulidae Family U2 snRNA: An Evolutionary Model Gene? J Mol Evol 2015; 80:209-18. [PMID: 25838107 DOI: 10.1007/s00239-015-9674-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 03/27/2015] [Indexed: 01/01/2023]
Abstract
The U2 snRNA multigene family has been analyzed in four species of the Engraulidae family--Engraulis encrasicolus, Engraulis mordax, Engraulis ringens, and Engraulis japonicas--with the object of understanding more about the structure of this multigene family in these pelagic species and studying their phylogenetic relationships. The results showed that the cluster of this gene family in the Engraulis genus is formed by the U2-U5 snRNA with highly conserved sequences of mini- and micro-satellites, such as (CTGT)n, embedded downstream of the transcription unit; findings indicate that this gene family evolved following the concerted model. The phylogenetic analysis of the non-transcribed spacer of cluster U2-U5 snDNA in the 4 species showed that the sequences of the species E. encrasicolus and E. japonicus are closely related; these two are genetically close to E. mordax and slightly more distant from E. ringens. The data obtained by molecular analysis of U2-U5 snDNA and their secondary structure, with the presence of the micro-satellite (CTGT)n and mini-satellites, show clearly that the species E. encrasicolus and E. japonicus are closely related and would be older than E. mordax and E. ringens.
Collapse
Affiliation(s)
- Hicham Chairi
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, CACYTMAR, Universidad de Cádiz, Polígono Río San Pedro, s/n, 11510, Puerto Real, Cádiz, Spain
| | | |
Collapse
|
14
|
Tchurikov NA, Fedoseeva DM, Sosin DV, Snezhkina AV, Melnikova NV, Kudryavtseva AV, Kravatsky YV, Kretova OV. Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. J Mol Cell Biol 2014; 7:366-82. [PMID: 25280477 PMCID: PMC4524424 DOI: 10.1093/jmcb/mju038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 08/23/2014] [Indexed: 12/25/2022] Open
Abstract
DNA double-strand breaks (DSBs) are involved in many cellular mechanisms, including replication, transcription, and genome rearrangements. The recent observation that hot spots of DSBs in human chromosomes delimit DNA domains that possess coordinately expressed genes suggests a strong relationship between the organization of transcription patterns and hot spots of DSBs. In this study, we performed mapping of hot spots of DSBs in a human 43-kb ribosomal DNA (rDNA) repeated unit. We observed that rDNA units corresponded to the most fragile sites in human chromosomes and that these units possessed at least nine specific regions containing clusters of extremely frequently occurring DSBs, which were located exclusively in non-coding intergenic spacer (IGS) regions. The hot spots of DSBs corresponded to only a specific subset of DNase-hypersensitive sites, and coincided with CTCF, PARP1, and HNRNPA2B1 binding sites, and H3K4me3 marks. Our rDNA-4C data indicate that the regions of IGS containing the hot spots of DSBs often form contacts with specific regions in different chromosomes, including the pericentromeric regions, as well as regions that are characterized by H3K27ac and H3K4me3 marks, CTCF binding sites, ChIA-PET and RIP signals, and high levels of DSBs. The data suggest a strong link between chromosome breakage and several different mechanisms of epigenetic regulation of gene expression.
Collapse
Affiliation(s)
- Nickolai A Tchurikov
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Daria M Fedoseeva
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Dmitri V Sosin
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Anastasia V Snezhkina
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Nataliya V Melnikova
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Anna V Kudryavtseva
- Group of Postgenomic Studies, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Yuri V Kravatsky
- Laboratory of DNA-Protein Interactions, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| | - Olga V Kretova
- Department of Epigenetic Mechanisms of Gene Expression Regulation, Engelhardt Institute of Molecular Biology, Moscow 119334, Russia
| |
Collapse
|
15
|
Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity (Edinb) 2013; 111:410-21. [PMID: 23838690 DOI: 10.1038/hdy.2013.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 11/08/2022] Open
Abstract
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Collapse
|
16
|
Bompfünewerer AF, Flamm C, Fried C, Fritzsch G, Hofacker IL, Lehmann J, Missal K, Mosig A, Müller B, Prohaska SJ, Stadler BMR, Stadler PF, Tanzer A, Washietl S, Witwer C. Evolutionary patterns of non-coding RNAs. Theory Biosci 2012; 123:301-69. [PMID: 18202870 DOI: 10.1016/j.thbio.2005.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/24/2005] [Indexed: 01/04/2023]
Abstract
A plethora of new functions of non-coding RNAs (ncRNAs) have been discovered in past few years. In fact, RNA is emerging as the central player in cellular regulation, taking on active roles in multiple regulatory layers from transcription, RNA maturation, and RNA modification to translational regulation. Nevertheless, very little is known about the evolution of this "Modern RNA World" and its components. In this contribution, we attempt to provide at least a cursory overview of the diversity of ncRNAs and functional RNA motifs in non-translated regions of regular messenger RNAs (mRNAs) with an emphasis on evolutionary questions. This survey is complemented by an in-depth analysis of examples from different classes of RNAs focusing mostly on their evolution in the vertebrate lineage. We present a survey of Y RNA genes in vertebrates and study the molecular evolution of the U7 snRNA, the snoRNAs E1/U17, E2, and E3, the Y RNA family, the let-7 microRNA (miRNA) family, and the mRNA-like evf-1 gene. We furthermore discuss the statistical distribution of miRNAs in metazoans, which suggests an explosive increase in the miRNA repertoire in vertebrates. The analysis of the transcription of ncRNAs suggests that small RNAs in general are genetically mobile in the sense that their association with a hostgene (e.g. when transcribed from introns of a mRNA) can change on evolutionary time scales. The let-7 family demonstrates, that even the mode of transcription (as intron or as exon) can change among paralogous ncRNA.
Collapse
|
17
|
|
18
|
Vierna J, Jensen KT, Martínez-Lage A, González-Tizón AM. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity (Edinb) 2011; 107:127-42. [PMID: 21364693 DOI: 10.1038/hdy.2010.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.
Collapse
Affiliation(s)
- J Vierna
- Department of Molecular and Cell Biology, Evolutionary Biology Group (GIBE), Universidade da Coruña, La Coruña, Spain.
| | | | | | | |
Collapse
|
19
|
Vizoso M, Vierna J, González-Tizón AM, Martínez-Lage A. The 5S rDNA Gene Family in Mollusks: Characterization of Transcriptional Regulatory Regions, Prediction of Secondary Structures, and Long-Term Evolution, with Special Attention to Mytilidae Mussels. J Hered 2011; 102:433-47. [DOI: 10.1093/jhered/esr046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
20
|
Mani I, Kumar R, Singh M, Nagpure NS, Kushwaha B, Srivastava PK, Rao DSK, Lakra WS. Nucleotide variation and physical mapping of ribosomal genes using FISH in genus Tor (Pisces, Cyprinidae). Mol Biol Rep 2010; 38:2637-47. [PMID: 21104144 DOI: 10.1007/s11033-010-0405-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Accepted: 11/08/2010] [Indexed: 10/18/2022]
Abstract
Molecular cytogenetic studies were carried out for localization of 18S and 5S ribosomal DNAs on chromosomes of three cyprinid fish species viz., T. khudree, T. mussullah and T. mosal mahanadicus using two color fluorescence in situ hybridization (FISH). All the species typically possessed 100 diploid chromosomes with minor variation in karyo-morphology. The 18S rDNA signals were observed on two pair of chromosomes in T. khudree and T. mussullah, and three pairs in T. mosal mahanadicus. The location of 18S signals also showed affinity to silver nitrate and chromomycin A3 staining. Similarly, variation in localization of 5S rDNA among the three species has been detected with the presence of FISH signals on one pair of chromosome in T. khudree and T. mussullah, and on two pairs in T. mosal mahanadicus. These molecular markers could be used as species specific markers for taxonomic identification and can further add in understanding the dynamics of genome organization and karyotypic evolution of these species. The 18S rDNA region was sequenced that generated 1811, 1810 and 1776 bp long 18S sequence in T. khudree, T. mussullah and T. mosal mahanadicus, respectively. The 18S rDNA sequence showed 95-98% identity among the subject species. Similarly, 5S sequencing generated 203 bp long fragments in these species with 100% identity in coding and 9.63% variability in non-transcribed spacer regions. The nucleotide sequence variations could be used for understanding the genetic diversity and will add new informative characters in comparative genomics. These results, in general, would enhance the value and interpretation of ecological assessment data for conservation of Tor species.
Collapse
Affiliation(s)
- Indra Mani
- National Bureau of Fish Genetic Resources, Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, U.P., India
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ardura A, Pola IG, Linde AR, Garcia-Vazquez E. DNA-based methods for species authentication of Amazonian commercial fish. Food Res Int 2010. [DOI: 10.1016/j.foodres.2010.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Freire R, Arias A, Insua AM, Méndez J, Eirín-López JM. Evolutionary dynamics of the 5S rDNA gene family in the mussel Mytilus: mixed effects of birth-and-death and concerted evolution. J Mol Evol 2010; 70:413-26. [PMID: 20386892 DOI: 10.1007/s00239-010-9341-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 03/30/2010] [Indexed: 11/24/2022]
Abstract
In higher eukaryotes, the gene family encoding the 5S ribosomal RNA (5S rRNA) has been used (together with histones) to showcase the archetypal example of a gene family subject to concerted evolution. However, recent studies have revealed conspicuous features challenging the predictions of this model, including heterogeneity of repeat units, the presence of functional 5S gene variants as well as the existence of 5S rDNA divergent pseudogenes lacking traces of homogenization. In the present work, we have broadened the scope in the evolutionary study of ribosomal gene families by studying the 5S rRNA family in mussels, a model organism which stands out among other animals due to the heterogeneity it displays regarding sequence and organization. To this end, 48 previously unknown 5S rDNA units (coding and spacer regions) were sequenced in five mussel species, leading to the characterization of two new types of units (referred to here as small-beta 5S rDNA and gamma-5S rDNA) coexisting in the genome with alpha and beta rDNA units. The intense genetic dynamics of this family is further supported by the first description of an association between gamma-5S rDNA units and tRNA genes. Molecular evolutionary and phylogenetic analyses revealed an extensive lack of homology among spacer sequences belonging to different rDNA types, suggesting the presence of independent evolutionary pathways leading to their differentiation. Overall, our results suggest that the long-term evolution of the 5S rRNA gene family in mussels is most likely mediated by a mixed mechanism involving the generation of genetic diversity through birth-and-death, followed by a process of local homogenization resulting from concerted evolution in order to maintain the genetic identities of the different 5S units, probably after their transposition to independent chromosomal locations.
Collapse
Affiliation(s)
- Ruth Freire
- XENOMAR Group, Departamento de Biología Celular y Molecular, Facultade de Ciencias, Universidade da Coruña, Campus de A Zapateira s/n, A Coruña, Spain
| | | | | | | | | |
Collapse
|
23
|
Vierna J, González-Tizón AM, Martínez-Lage A. Long-term evolution of 5S ribosomal DNA seems to be driven by birth-and-death processes and selection in Ensis razor shells (Mollusca: Bivalvia). Biochem Genet 2009; 47:635-44. [PMID: 19633948 DOI: 10.1007/s10528-009-9255-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 05/20/2009] [Indexed: 11/28/2022]
Abstract
A study of nucleotide sequence variation of 5S ribosomal DNA from six Ensis species revealed that several 5S ribosomal DNA variants, based on differences in their nontranscribed spacers (NTS), occur in Ensis genomes. The 5S rRNA gene was not very polymorphic, compared with the NTS region. The phylogenetic analyses performed showed a between-species clustering of 5S ribosomal DNA variants. Sequence divergence levels between variants were very large, revealing a lack of sequence homogenization. These results strongly suggest that the long-term evolution of Ensis 5S ribosomal DNA is driven by birth-and-death processes and selection.
Collapse
Affiliation(s)
- Joaquín Vierna
- Department of Molecular and Cell Biology, Evolutionary Biology Group (GIBE), Universidade da Coruña, A Zapateira s/n, La Coruña 15071, Spain.
| | | | | |
Collapse
|
24
|
Molecular organization of 5S rDNA in sharks of the genus Rhizoprionodon: insights into the evolutionary dynamics of 5S rDNA in vertebrate genomes. Genet Res (Camb) 2009; 91:61-72. [PMID: 19220932 DOI: 10.1017/s0016672308009993] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we attempted a molecular characterization of the 5S rDNA in two closely related species of carcharhiniform sharks, Rhizoprionodon lalandii and Rhizoprionodon porosus, as well as a further comparative analysis of available data on lampreys, several fish groups and other vertebrates. Our data show that Rhizoprionodon sharks carry two 5S rDNA classes in their genomes: a short repeat class (termed class I) composed of approximately 185 bp repeats, and a large repeat class (termed class II) arrayed in approximately 465 bp units. These classes were differentiated by several base substitutions in the 5S coding region and by completely distinct non-transcribed spacers (NTS). In class II, both species showed a similar composition for both the gene coding region and the NTS region. In contrast, class I varied extensively both within and between the two shark species. A comparative analysis of 5S rRNA gene sequences of elasmobranchs and other vertebrates showed that class I is closely related to the bony fishes, whereas the class II gene formed a separate cartilaginous clade. The presence of two variant classes of 5S rDNA in sharks likely maintains the tendency for dual ribosomal classes observed in other fish species. The present data regarding the 5S rDNA organization provide insights into the dynamics and evolution of this multigene family in the fish genome, and they may also be useful in clarifying aspects of vertebrate genome evolution.
Collapse
|
25
|
Rocco L, Russo C, Stingo V, Aprea G, Odierna G. Characterisation of 5S rDNA inGasterosteus aculeatus(Teleostei, Gasterosteidae). ACTA ACUST UNITED AC 2009. [DOI: 10.1080/11250009909356266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
José López-Piñón M, Freire R, Insua A, Méndez J. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in some scallops (Bivalvia: Pectinidae). Hereditas 2008; 145:9-19. [DOI: 10.1111/j.0018-0661.2008.2034.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
27
|
Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol Cell Biol 2008; 28:3573-88. [PMID: 18378697 DOI: 10.1128/mcb.00087-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In mammals, small multigene families generate spliceosomal U snRNAs that are nearly as abundant as rRNA. Using the tandemly repeated human U2 genes as a model, we show by footprinting with DNase I and permanganate that nearly all sequences between the enhancer-like distal sequence element and the initiation site are protected during interphase whereas the upstream half of the U2 snRNA coding region is exposed. We also show by chromatin immunoprecipitation that the SNAPc complex, which binds the TATA-like proximal sequence element, is removed at metaphase but remains bound under conditions that induce locus-specific metaphase fragility of the U2 genes, such as loss of CSB, BRCA1, or BRCA2 function, treatment with actinomycin D, or overexpression of the tetrameric p53 C terminus. We propose that the U2 snRNA promoter establishes a persistently open state to facilitate rapid reinitiation and perhaps also to bypass TFIIH-dependent promoter melting; this open state would then be disassembled to allow metaphase chromatin condensation.
Collapse
|
28
|
José López-Piñón M, Freire R, Insua A, Méndez J. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in some scallops (Bivalvia: Pectinidae). Hereditas 2008. [DOI: 10.1111/j.2007.0018-0661.02034x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Stults DM, Killen MW, Pierce HH, Pierce AJ. Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genes Dev 2008; 18:13-8. [PMID: 18025267 PMCID: PMC2134781 DOI: 10.1101/gr.6858507] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 09/17/2007] [Indexed: 01/21/2023]
Abstract
The finishing of the Human Genome Project largely completed the detailing of human euchromatic sequences; however, the most highly repetitive regions of the genome still could not be assembled. The 12 gene clusters producing the structural RNA components of the ribosome are critically important for cellular viability, yet fall into this unassembled region of the Human Genome Project. To determine the extent of human variation in ribosomal RNA gene content (rDNA) and patterns of rDNA cluster inheritance, we have determined the physical lengths of the rDNA clusters in peripheral blood white cells of healthy human volunteers. The cluster lengths exhibit striking variability between and within human individuals, ranging from 50 kb to >6 Mb, manifest essentially complete heterozygosity, and provide each person with their own unique rDNA electrophoretic karyotype. Analysis of these rDNA fingerprints in multigenerational human families demonstrates that the rDNA clusters are subject to meiotic rearrangement at a frequency >10% per cluster, per meiosis. With this high intrinsic recombinational instability, the rDNA clusters may serve as a unique paradigm of potential human genomic plasticity.
Collapse
Affiliation(s)
- Dawn M. Stults
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40515, USA
| | - Michael W. Killen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky 40515, USA
| | - Heather H. Pierce
- Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40515, USA
| | - Andrew J. Pierce
- Department of Microbiology, Immunology and Molecular Genetics, Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40515, USA
| |
Collapse
|
30
|
Cross I, Rebordinos L. 5S rDNA and U2 snRNA are linked in the genome of Crassostrea angulata and Crassostrea gigas oysters: does the (CT)n.(GA)n microsatellite stabilize this novel linkage of large tandem arrays? Genome 2007; 48:1116-9. [PMID: 16391680 DOI: 10.1139/g05-075] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rRNA genes from 2 species of the Ostreidae family, Crassostrea angulata and Crassostrea gigas, were molecularly characterized. The genes were amplified, cloned, and sequenced. The results revealed a 5S rDNA tandem array with a nucleotide sequence in an inverted position within the nontranscribed spacer region that corresponded to the U2 small nuclear RNA (snRNA) gene. The sequence analysis indicated that both genes could be functionally active. The presence of the microsatellite (CT)n x (GA)n at the 3' end of both genes and the possible involvement of concerted evolution are discussed.
Collapse
Affiliation(s)
- I Cross
- Laboratorio de Genética, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Spain
| | | |
Collapse
|
31
|
Reina JH, Azzouz TN, Hernandez N. Maf1, a new player in the regulation of human RNA polymerase III transcription. PLoS One 2006; 1:e134. [PMID: 17205138 PMCID: PMC1762419 DOI: 10.1371/journal.pone.0000134] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Accepted: 12/05/2006] [Indexed: 11/18/2022] Open
Abstract
Background Human RNA polymerase III (pol III) transcription is regulated by several factors, including the tumor suppressors P53 and Rb, and the proto-oncogene c-Myc. In yeast, which lacks these proteins, a central regulator of pol III transcription, called Maf1, has been described. Maf1 is required for repression of pol III transcription in response to several signal transduction pathways and is broadly conserved in eukaryotes. Methodology/Principal Findings We show that human endogenous Maf1 can be co-immunoprecipitated with pol III and associates in vitro with two pol III subunits, the largest subunit RPC1 and the α-like subunit RPAC2. Maf1 represses pol III transcription in vitro and in vivo and is required for maximal pol III repression after exposure to MMS or rapamycin, treatments that both lead to Maf1 dephosphorylation. Conclusions/Significance These data suggest that Maf1 is a major regulator of pol III transcription in human cells.
Collapse
|
32
|
Rocco L, Costagliola D, Fiorillo M, Tinti F, Stingo V. Molecular and chromosomal analysis of ribosomal cistrons in two cartilaginous fish, Taeniura lymma and Raja montagui (Chondrichthyes, Batoidea). Genetica 2005; 123:245-53. [PMID: 15954495 DOI: 10.1007/s10709-004-2451-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We used silver nitrate staining, CMA3 and FISH to study the chromosomal localization of both the major ribosomal genes and the nucleolar organizer regions as well as that of the minor ribosomal genes (5S rDNA) in two species of Batoidea, Taeniura lymma (Dasyatidae) and Raja montagui (Rajidae). In both species, all the metaphases examined showed the presence of multiple NOR-bearing sites, while the gene for 5S rRNA proved to be localized on two chromosome pairs. Furthermore, one of the two 5S rDNA sites in T. lymma was shown to be co-localized with the major ribosomal cluster. The presence of multiple nucleolar organizer regions in the two species might be interpreted as being the result of intraspecific polymorphisms, or as a phenomenon of the amplified transposition of mobile elements of the genome. We also determined the nucleotide sequence of the 5S rRNA gene, consisting of 564 bp in R. montagui and 612 bp in T. lymma. We also found TATA-like and (TGC)n trinucleotides, (CA)n dinucleotides and (GTGA)n tetranucleotides, which probably influence gene regulation.
Collapse
Affiliation(s)
- L Rocco
- Department of Life Sciences, Second University of Naples, Via Vivaldi 43, 81100 - Caserta, Italy.
| | | | | | | | | |
Collapse
|
33
|
Robles F, de la Herrán R, Ludwig A, Rejón CR, Rejón MR, Garrido-Ramos MA. Genomic organization and evolution of the 5S ribosomal DNA in the ancient fish sturgeon. Genome 2005; 48:18-28. [PMID: 15729393 DOI: 10.1139/g04-077] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ribosomal DNA in sturgeon is informative when analyzed at the molecular level because it bears unique characteristics that are, to a certain extent, ancestral within vertebrates. In this paper, we examine the structure and the molecular evolution of the 5S ribosomal DNA (rDNA) region in 13 sturgeon species, comparing both the 5S ribosomal RNA (rRNA) genes and the non-transcribed spacer (NTS) sequences between the coding regions. We have found that different NTS and 5S gene variants are intermixed in the 5S rDNA arrays of the different sturgeon species and that all variants are ancestral, having been maintained over many millions of years. Using predictive models, we have found similar levels of sequence diversity in the coding regions, as well as in the non-coding region, but fixed interspecific differences are underrepresented for 5S genes. However, contrary to the expectations, we have not found fixed differences between NTS sequences when comparing many pairs of species. Specifically, when they belong to the same phylogeographic clade of the four into which the sturgeon is divided, but fixation of mutations and divergence is found between species belonging to different phylogeographic clades. Our results suggest that the evolution of the two parts of the 5S rDNA region cannot be explained exclusively as the outcome of a balance between mutational, homogenizing (i.e., gene conversion as a predominant force in sturgeon), and selective forces. Rather, they suggest that other factors (i.e., hybridization) might be superimposed over those forces and thus could to some extent be masking their effects.
Collapse
Affiliation(s)
- Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Spain
| | | | | | | | | | | |
Collapse
|
34
|
Freire R, Insua A, Méndez J. Cerastodermaglaucum5S ribosomal DNA: characterization of the repeat unit, divergence with respect toCerastoderma edule, and PCR–RFLPs for the identification of both cockles. Genome 2005; 48:427-42. [PMID: 16121240 DOI: 10.1139/g04-123] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 5S rDNA repeat unit of the cockle Cerastoderma glaucum from the Mediterranean and Baltic coasts was PCR amplified and sequenced. The length of the units was 539–568 bp, of which 120 bp were assigned to the 5S rRNA gene and 419–448 bp to the spacer region, and the G/C content was 46%–49%, 54%, and 44%–47%, respectively. Two types of units (A and B), differing in the spacer, were distinguished based on the percentage of differences and clustering in phylogenetic trees. A PCR assay with specific primers for each unit type indicated that the occurrence of both units is not restricted to the sequenced individuals. The 5S rDNA units of C. glaucum were compared with new and previously reported sequences of Cerastoderma edule. The degree of variation observed in C. edule was lower than that in C. glaucum and evidence for the existence of units A and B in C. edule was not found. The two cockles have the same coding region but displayed numerous fixed differences in the spacer region and group separately in the phylogenetic trees. Digestion of the 5S rDNA PCR product with the restriction enzymes HaeIII and EcoRV revealed two RFLPs useful for cockle identification.Key words: Cerastoderma, cockle identification, 5S ribosomal DNA, nontranscribed spacer variation, PCR-RFLP.
Collapse
Affiliation(s)
- Ruth Freire
- Departamento de Biología Celular y Molecular, Universidade de Coruña, Spain
| | | | | |
Collapse
|
35
|
Schmid M, Nanda I, Hoehn H, Schartl M, Haaf T, Buerstedde JM, Arakawa H, Caldwell RB, Weigend S, Burt DW, Smith J, Griffin DK, Masabanda JS, Groenen MAM, Crooijmans RPMA, Vignal A, Fillon V, Morisson M, Pitel F, Vignoles M, Garrigues A, Gellin J, Rodionov AV, Galkina SA, Lukina NA, Ben-Ari G, Blum S, Hillel J, Twito T, Lavi U, David L, Feldman MW, Delany ME, Conley CA, Fowler VM, Hedges SB, Godbout R, Katyal S, Smith C, Hudson Q, Sinclair A, Mizuno S. Second report on chicken genes and chromosomes 2005. Cytogenet Genome Res 2005; 109:415-79. [PMID: 15905640 DOI: 10.1159/000084205] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- M Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Rooney AP, Ward TJ. Evolution of a large ribosomal RNA multigene family in filamentous fungi: birth and death of a concerted evolution paradigm. Proc Natl Acad Sci U S A 2005; 102:5084-9. [PMID: 15784739 PMCID: PMC555991 DOI: 10.1073/pnas.0409689102] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes, the primary components of the ribosome are encoded by multicopy nuclear ribosomal RNA (rRNA) genes: 28/26S, 18S, 5.8S, and 5S. Copies of these genes are typically localized within tandem arrays and homogenized within a genome. As a result, nuclear rRNA gene families have become a paradigm of concerted evolution. In filamentous fungi of the subphylum Pezizomycotina, 5S rRNA genes exist as a large and dispersed multigene family, with between 50 and 100 copies per genome. To determine whether these genes defy the concerted evolution paradigm, we examined the patterns of evolution of these genes by using sequences from the complete genomes of four species. Analyses of these sequences revealed (i) multiple 5S gene types within a genome, (ii) interspecies clustering of gene types, (iii) multiple identical gene types shared among species, (iv) multiple pseudogenes within a genome, and (v) presence/absence variation of individual 5S copies in comparisons of closely related species. These results demonstrate that the 5S family in these species is characterized by birth-and-death evolution under strong purifying selection. Furthermore, our results suggest that birth-and-death evolution occurs at different rates in the genera examined, and that the multiplication and movement of 5S genes across the genome are highly dynamic. As such, we hypothesize that a mechanism resembling retroposition controls 5S rRNA gene amplification, dispersal, and integration in the genomes of filamentous fungi.
Collapse
Affiliation(s)
- Alejandro P Rooney
- Microbial Genomics and Bioprocessing Research Unit, Agricultural Research Service, US Department of Agriculture, Peoria, IL 61604, USA.
| | | |
Collapse
|
37
|
Daniels LM, Delany ME. Molecular and cytogenetic organization of the 5S ribosomal DNA array in chicken (Gallus gallus). Chromosome Res 2004; 11:305-17. [PMID: 12906126 DOI: 10.1023/a:1024008522122] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 5S ribosomal (r) RNA genes encode a small (approximately 120-bp) highly-conserved component of the large ribosomal subunit. The objective of the present research was to study the molecular and cytogenetic organization of the chicken 5S rDNA. A predominant 2.2-kb gene (5Salpha) consisting of a coding and intergenic spacer (IGS) region was identified in ten research and commercial populations. A variant gene repeat of 0.6kb (5Sbeta) was observed in some of the populations. Genetic linkage analysis and cytogenetic localization by fluorescence in-situ hybridization assigned the 5S rDNA to chromosome 9. The 5S rDNA array was determined to be 80.2 +/- 7.0 kb upon electrophoretic sizing following EcoRV digestion. Sequence analysis of 5Salpha IGS regions revealed considerable conservation between chicken subspecies (98.4% identity) as well as homology with vertebrate Pol III promoter and regulatory sequence motifs. Minor intraindividual sequence variation within 1000 bp of IGS was observed in four cloned Red Jungle Fowl (Gallus gallus gallus) 5Salpha repeats (95.5% identity in this region). Sequence comparisons between IGS regions of 5Salpha and 5Sbeta genes indicated two short continuous (>20bp) and many short non-continuous homologous regions as well as other conserved features such as promoter and termination motifs.
Collapse
Affiliation(s)
- Laura M Daniels
- Department of Animal Science, 2131D Meyer Hall, One Shields Avenue, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
38
|
Messias LHV, Ferreira DC, Wasko AP, Oliveira C, Foresti F, Martins C. 5S rDNA organization in the fish Synbranchus marmoratus (Synbranchidae, Synbranchiformes). Hereditas 2004; 139:228-31. [PMID: 15061806 DOI: 10.1111/j.1601-5223.2003.01759.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Luciano Henrique Vieira Messias
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, 18618-000, Botucatu, São Paulo, Brazil. E-mail:
| | | | | | | | | | | |
Collapse
|
39
|
Moen PT, Johnson CV, Byron M, Shopland LS, de la Serna IL, Imbalzano AN, Lawrence JB. Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell 2003; 15:197-206. [PMID: 14617810 PMCID: PMC307540 DOI: 10.1091/mbc.e03-06-0388] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Previous studies have shown that in a given cell type, certain active genes associate with SC-35 domains, nuclear regions rich in RNA metabolic factors and excluded from heterochromatin. This organization is not seen for all active genes; therefore, it is important to determine whether and when this locus-specific organization arises during development and differentiation of specific cell types. Here, we investigate whether gene organization relative to SC-35 domains is cell type specific by following several muscle and nonmuscle genes in human fibroblasts, committed but proliferative myoblasts, and terminally differentiated muscle. Although no change was seen for other loci, two muscle genes (Human beta-cardiac myosin heavy chain and myogenin) became localized to the periphery of an SC-35 domain in terminally differentiated muscle nuclei, but not in proliferative myoblasts or in fibroblasts. There was no apparent change in gene localization relative to either the chromosome territory or the heterochromatic compartment; thus, the gene repositioning seemed to occur specifically with respect to SC-35 domains. This gene relocation adjacent to a prominent SC-35 domain was recapitulated in mouse 3T3 cells induced into myogenesis by introduction of MyoD. Results demonstrate a cell type-specific reorganization of specific developmentally regulated loci relative to large domains of RNA metabolic factors, which may facilitate developmental regulation of genome expression.
Collapse
Affiliation(s)
- Phillip T Moen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Gale JM, Romero CP, Tafoya GB, Conia J. Application of optical trapping for cells grown on plates: optimization of PCR and fidelity of DNA sequencing of p53 gene from a single cell. Clin Chem 2003; 49:415-24. [PMID: 12600953 DOI: 10.1373/49.3.415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Optical trapping has traditionally been used to visually select and isolate nonadherent cells grown in suspension because cells grown in monolayers will rapidly reattach to surfaces if suspended in solution. We explored methods to slow cell reattachment that are also compatible with high-fidelity PCR. METHODS Using HeLa cells grown on plates and suspended after trypsinization, we measured the efficiency of capture by retention and movement of the cell by the laser. Success for removing a captured cell by pipette was determined by PCR amplification of the 5S rRNA gene. After optimizing PCR amplification of a 2049-bp region of the p53 gene, we determined PCR fidelity by DNA sequencing. RESULTS Addition of bovine serum albumin to suspended cells slowed reattachment from seconds to minutes and allowed efficient trapping. The success rate of removing a cell from the trap by pipette to a PCR tube was 91.5%. The 5S PCR assay also revealed that DNA and RNA that copurify with polymerases could give false-positive results. Sequence analysis of four clones derived from a single cell showed only three polymerase errors in 7200 bp of sequence read and revealed difficulties in reading the correct number in a run of 16 A:T. Comparison of the HeLa and wild-type human sequences revealed several previously unreported base differences and an (A:T)(n) length polymorphism in p53 introns. CONCLUSIONS These results represent the first use of optical trapping on adherent cells and demonstrate the high accuracy of DNA sequencing that can be achieved from a single cell.
Collapse
Affiliation(s)
- James M Gale
- Department of Cell Biology and Physiology, Steve Schiff Center for Skin Cancer University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
41
|
Martins C, Galetti PM. Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 2002; 111:439-46. [PMID: 11841188 DOI: 10.1023/a:1013799516717] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this paper we describe Southern blot hybridization results probed with 5S rRNA genes for several Neotropical fish species representing different taxonomic groups. All the studied species showed a general trend with the 5S rDNA tandem repeats organized in two distinct size-classes. At the same time, data on 5S rDNA organization in fish genome were summarized. Previous information on the organization and evolution of 5S rRNA gene arrays in the genome of this vertebrate group are in agreement with the Southern results here presented. Sequences obtained for several fish species have revealed the occurrence of two distinct 5S rDNA classes characterized by distinct nontranscribed spacer sequences, which are clustered in different chromosomes in some species. Moreover, the 5S rDNA loci are generally distributed in an interstitial position in the chromosomes and they are usually not syntenic to the 45S rDNA. The presence of two classes of 5S rDNA in several non-related fish species suggests that this could be a common condition for the 5S rRNA gene organization in the fish genome.
Collapse
Affiliation(s)
- C Martins
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | | |
Collapse
|
42
|
Carrera E, García T, Céspedes A, González I, Fernández A, Asensio LM, Hernández PE, Martín R. Differentiation of smoked
Salmo salar
,
Oncorhynchus mykiss
and
Brama raii
using the nuclear marker 5S rDNA. Int J Food Sci Technol 2001. [DOI: 10.1046/j.1365-2621.2000.00404.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Esther Carrera
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | | | - Ana Céspedes
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Isabel González
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Alicia Fernández
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Luis M. Asensio
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Pablo E. Hernández
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| | - Rosario Martín
- Departamento de Nutrición y Bromatología III, Facultad de Veterinaria, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
43
|
Martins C, Galetti PM. Organization of 5S rDNA in species of the fish Leporinus: two different genomic locations are characterized by distinct nontranscribed spacers. Genome 2001; 44:903-10. [PMID: 11681615 DOI: 10.1139/g01-069] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To address understanding the organization of the 5S rRNA multigene family in the fish genome, the nucleotide sequence and organization array of 5S rDNA were investigated in the genus Leporinus, a representative freshwater fish group of South American fauna. PCR, subgenomic library screening, genomic blotting, fluorescence in situ hybridization, and DNA sequencing were employed in this study. Two arrays of 5S rDNA were identified for all species investigated, one consisting of monomeric repeat units of around 200 bp and another one with monomers of 900 bp. These 5S rDNA arrays were characterized by distinct NTS sequences (designated NTS-I and NTS-II for the 200- and 900-bp monomers, respectively); however, their coding sequences were nearly identical. The 5S rRNA genes were clustered in two chromosome loci, a major one corresponding to the NTS-I sites and a minor one corresponding to the NTS-II sites. The NTS-I sequence was variable among Leporinus spp., whereas the NTS-II was conserved among them and even in the related genus Schizodon. The distinct 5S rDNA arrays might characterize two 5S rRNA gene subfamilies that have been evolving independently in the genome.
Collapse
Affiliation(s)
- C Martins
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista, São Paulo, Brazil.
| | | |
Collapse
|
44
|
Hallenberg C, Frederiksen S. Effect of mutations in the upstream promoter on the transcription of human 5S rRNA genes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1520:169-73. [PMID: 11513959 DOI: 10.1016/s0167-4781(01)00264-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The human 5S rRNA gene has a 12-mer external promoter, the D box, localized about 30 bp upstream the coding sequence. By site directed mutagenesis 58 different D box promoter mutants were made. While some mutations in the D box allowed full transcription, other mutations decreased the transcriptional activity to 20-50% compared to the bona fide gene, showing the importance of this external promoter in transcription initiation. A number of maxi 5S rRNA genes were constructed from bona fide genes and D box mutated clones. Transfection of HeLa cells with maxi 5S rRNA genes showed that the D box is also important for 5S rRNA gene expression in vivo. Evidence from different eukaryotic cells suggests that expression of 5S rRNA genes is regulated by external promoters in addition to the internal control region.
Collapse
Affiliation(s)
- C Hallenberg
- Department of Medical Biochemistry and Genetics, Biochemistry Laboratory B, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark
| | | |
Collapse
|
45
|
Martins C, Wasko AP, Oliveira C, Wright JM. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the Tilapiine cichlid fish, Oreochromis niloticus. Hereditas 2001; 133:39-46. [PMID: 11206852 DOI: 10.1111/j.1601-5223.2000.00039.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Collapse
Affiliation(s)
- C Martins
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | |
Collapse
|
46
|
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, et alLander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J. Initial sequencing and analysis of the human genome. Nature 2001; 409:860-921. [PMID: 11237011 DOI: 10.1038/35057062] [Show More Authors] [Citation(s) in RCA: 14991] [Impact Index Per Article: 624.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human genome holds an extraordinary trove of information about human development, physiology, medicine and evolution. Here we report the results of an international collaboration to produce and make freely available a draft sequence of the human genome. We also present an initial analysis of the data, describing some of the insights that can be gleaned from the sequence.
Collapse
Affiliation(s)
- E S Lander
- Whitehead Institute for Biomedical Research, Center for Genome Research, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
García Lacarra T. Author's reply. Int J Food Sci Technol 2001. [DOI: 10.1046/j.1365-2621.2001.00480.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Jensen LR, Frederiksen S. The 5S rRNA genes in Macaca fascicularis are organized in two large tandem repeats. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:537-42. [PMID: 10899597 DOI: 10.1016/s0167-4781(00)00139-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The 5S rRNA genes in Macaca fascicularis are organized in tandem repeats which are unusually large and complex. The tandem repeats consist of a 7.3 kb DNA fragment with two 5S rRNA genes linked to a 4.3 kb fragment with one gene. The total number of genes in the repeats is 50-100 per haploid genome. The 5S rDNA has an external promoter, the D box, in the same position relative to transcription start as the human gene but is transcribed less efficiently than a human 5S rRNA gene in a HeLa cell extract.
Collapse
Affiliation(s)
- L R Jensen
- Biochemistry Laboratory B, Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 N, Copenhagen, Denmark
| | | |
Collapse
|
49
|
Yu A, Fan HY, Liao D, Bailey AD, Weiner AM. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 2000; 5:801-10. [PMID: 10882116 DOI: 10.1016/s1097-2765(00)80320-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- A Yu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|
50
|
Cloix C, Tutois S, Mathieu O, Cuvillier C, Espagnol MC, Picard G, Tourmente S. Analysis of 5S rDNA arrays in Arabidopsis thaliana: physical mapping and chromosome-specific polymorphisms. Genome Res 2000; 10:679-90. [PMID: 10810091 PMCID: PMC310874 DOI: 10.1101/gr.10.5.679] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/1999] [Accepted: 03/08/2000] [Indexed: 11/24/2022]
Abstract
A physical map of a pericentromeric region of chromosome 5 containing a 5S rDNA locus and spanning approximately 1000 kb was established using the CIC YAC clones. Three 5S rDNA arrays were resolved in this YAC contig by PFGE analysis and we have mapped different types of sequences between these three blocks. 5S rDNA units from each of these three arrays of chromosome 5, and from chromosomes 3 and 4, were isolated by PCR. A total of 38 new DNA sequences were obtained. Two types of 5S rDNA repeated units exist: the major variant with 0.5-kb repeats and one with short repeats (251 bp) only detected on YAC 11A3 from chromosome 3. Although the 38 sequences displayed noticeable heterogeneity, we were able to group them according to their 5S array origin. The presence of 5S array-specific variants was confirmed with the restriction polymorphism study of all the YACs carrying 5S units.
Collapse
MESH Headings
- Animals
- Arabidopsis/genetics
- Base Sequence
- Centromere/genetics
- Chromosomes, Artificial, Yeast
- Chromosomes, Fungal/chemistry
- Chromosomes, Fungal/genetics
- Contig Mapping
- DNA, Ribosomal/genetics
- Electrophoresis, Gel, Pulsed-Field
- Molecular Sequence Data
- Polymerase Chain Reaction
- Polymorphism, Genetic/genetics
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 5S/genetics
- Xenopus
Collapse
Affiliation(s)
- C Cloix
- Unité Mixte de Recherche, 6547 BIOMOVE, Université Blaise Pascal, 63177 Aubière Cedex, France
| | | | | | | | | | | | | |
Collapse
|