1
|
Van Hook MJ, McCool S. Enhanced Synaptic Inhibition in the Dorsolateral Geniculate Nucleus in a Mouse Model of Glaucoma. eNeuro 2024; 11:ENEURO.0263-24.2024. [PMID: 38937109 PMCID: PMC11242868 DOI: 10.1523/eneuro.0263-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024] Open
Abstract
Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feedforward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the γ-aminobutyric acid (GABA)A-α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling pointed to an ∼1.4-fold increase in GABA receptors at postsynaptic inhibitory synapses, although several pieces of evidence indicate a nonuniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
- Departments of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska 68198
| | - Shaylah McCool
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, Nebraska 68198
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
2
|
Van Hook MJ, McCool S. Nonuniform scaling of synaptic inhibition in the dorsolateral geniculate nucleus in a mouse model of glaucoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587036. [PMID: 38586044 PMCID: PMC10996666 DOI: 10.1101/2024.03.27.587036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elevated intraocular pressure (IOP) triggers glaucoma by damaging the output neurons of the retina called retinal ganglion cells (RGCs). This leads to the loss of RGC signaling to visual centers of the brain such as the dorsolateral geniculate nucleus (dLGN), which is critical for processing and relaying information to the cortex for conscious vision. In response to altered levels of activity or synaptic input, neurons can homeostatically modulate postsynaptic neurotransmitter receptor numbers, allowing them to scale their synaptic responses to stabilize spike output. While prior work has indicated unaltered glutamate receptor properties in the glaucomatous dLGN, it is unknown whether glaucoma impacts dLGN inhibition. Here, using DBA/2J mice, which develop elevated IOP beginning at 6-7 months of age, we tested whether the strength of inhibitory synapses on dLGN thalamocortical relay neurons is altered in response to the disease state. We found an enhancement of feed-forward disynaptic inhibition arising from local interneurons along with increased amplitude of quantal inhibitory synaptic currents. A combination of immunofluorescence staining for the GABA A -α1 receptor subunit, peak-scaled nonstationary fluctuation analysis, and measures of homeostatic synaptic scaling indicated this was the result of an approximately 1.4-fold increase in GABA receptor number at post-synaptic inhibitory synapses, although several pieces of evidence strongly indicate a non-uniform scaling across inhibitory synapses within individual relay neurons. Together, these results indicate an increase in inhibitory synaptic strength in the glaucomatous dLGN, potentially pointing toward homeostatic compensation for disruptions in network and neuronal function triggered by increased IOP. Significance Statement Elevated eye pressure in glaucoma leads to loss of retinal outputs to the dorsolateral geniculate nucleus (dLGN), which is critical for relaying information to the cortex for conscious vision. Alterations in neuronal activity, as could arise from excitatory synapse loss, can trigger homeostatic adaptations to synaptic function that attempt to maintain activity within a meaningful dynamic range, although whether this occurs uniformly at all synapses within a given neuron or is a non-uniform process is debated. Here, using a mouse model of glaucoma, we show that dLGN inhibitory synapses undergo non-uniform upregulation due to addition of post-synaptic GABA receptors. This is likely to be a neuronal adaptation to glaucomatous pathology in an important sub-cortical visual center.
Collapse
|
3
|
Proddutur A, Nguyen S, Yeh CW, Gupta A, Santhakumar V. Reclusive chandeliers: Functional isolation of dentate axo-axonic cells after experimental status epilepticus. Prog Neurobiol 2023; 231:102542. [PMID: 37898313 PMCID: PMC10842856 DOI: 10.1016/j.pneurobio.2023.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs. Dentate AACs show high-frequency, non-adapting firing but lack persistent firing in the absence of input and have higher rheobase than basket cells suggesting that AACs can respond reliably to network activity. Early after pilocarpine-induced status epilepticus (SE), dentate AACs receive fewer spontaneous excitatory and inhibitory synaptic inputs and have significantly lower maximum firing frequency. Paired recordings and spatially localized optogenetic stimulation revealed that SE reduced the amplitude of unitary synaptic inputs from AACs to granule cells without altering reliability, short-term plasticity, or AIS GABA reversal potential. These changes compromised AAC-dependent shunting of granule cell firing in a multicompartmental model. These early post-SE changes in AAC physiology would limit their ability to receive and respond to input, undermining a critical brake on the dentate throughput during epileptogenesis.
Collapse
Affiliation(s)
- Archana Proddutur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Susan Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Chia-Wei Yeh
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Akshay Gupta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, NJ 07103, USA; Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
4
|
Proddutur A, Nguyen S, Yeh CW, Gupta A, Santhakumar V. RECLUSIVE CHANDELIERS: FUNCTIONAL ISOLATION OF DENTATE AXO-AXONIC CELLS AFTER EXPERIMENTAL STATUS EPILEPTICUS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.01.560378. [PMID: 37873292 PMCID: PMC10592856 DOI: 10.1101/2023.10.01.560378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Axo-axonic cells (AACs) provide specialized inhibition to the axon initial segment (AIS) of excitatory neurons and can regulate network output and synchrony. Although hippocampal dentate AACs are structurally altered in epilepsy, physiological analyses of dentate AACs are lacking. We demonstrate that parvalbumin neurons in the dentate molecular layer express PTHLH, an AAC marker, and exhibit morphology characteristic of AACs. Dentate AACs show high-frequency, non-adapting firing but lack persistent firing in the absence of input and have higher rheobase than basket cells suggesting that AACs can respond reliably to network activity. Early after pilocarpine-induced status epilepticus (SE), dentate AACs receive fewer spontaneous excitatory and inhibitory synaptic inputs and have significantly lower maximum firing frequency. Paired recordings and spatially localized optogenetic stimulation revealed that SE reduced the amplitude of unitary synaptic inputs from AACs to granule cells without altering reliability, short-term plasticity, or AIS GABA reversal potential. These changes compromised AAC-dependent shunting of granule cell firing in a multicompartmental model. These early post-SE changes in AAC physiology would limit their ability to receive and respond to input, undermining a critical brake on the dentate throughput during epileptogenesis.
Collapse
Affiliation(s)
- Archana Proddutur
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Susan Nguyen
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Chia-Wei Yeh
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Akshay Gupta
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California 92521
| |
Collapse
|
5
|
Jain A, Woolley CS. Mechanisms That Underlie Expression of Estradiol-Induced Excitatory Synaptic Potentiation in the Hippocampus Differ between Males and Females. J Neurosci 2023; 43:1298-1309. [PMID: 36650060 PMCID: PMC9987570 DOI: 10.1523/jneurosci.2080-19.2023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
17β-estradiol (E2) is synthesized in the hippocampus of both sexes and acutely potentiates excitatory synapses in each sex. Previously, we found that the mechanisms for initiation of E2-induced synaptic potentiation differ between males and females, including in the molecular signaling involved. Here, we used electrical stimulation and two-photon glutamate uncaging in hippocampal slices from adult male and female rats to investigate whether the downstream consequences of distinct molecular signaling remain different between the sexes or converge to the same mechanism(s) of expression of potentiation. This showed that synaptic activity is necessary for expression of E2-induced potentiation in females but not males, which paralleled a sex-specific requirement in females for calcium-permeable AMPARs (cpAMPARs) to stabilize potentiation. Nonstationary fluctuation analysis of two-photon evoked unitary synaptic currents showed that the postsynaptic component of E2-induced potentiation occurs either through an increase in AMPAR conductance or in nonconductive properties of AMPARs (number of channels × open probability) and never both at the same synapse. In females, most synapses (76%) were potentiated via increased AMPAR conductance, whereas in males, more synapses (60%) were potentiated via an increase in nonconductive AMPAR properties. Inhibition of cpAMPARs eliminated E2-induced synaptic potentiation in females, whereas some synapses in males were unaffected by cpAMPAR inhibition; these synapses in males potentiated exclusively via increased AMPAR nonconductive properties. This sex bias in expression mechanisms of E2-induced synaptic potentiation underscores the concept of latent sex differences in mechanisms of synaptic plasticity in which the same outcome in each sex is achieved through distinct underlying mechanisms.SIGNIFICANCE STATEMENT Estrogens are synthesized in the brains of both sexes and potentiate excitatory synapses to the same degree in each sex. Despite this apparent similarity, the molecular signaling that initiates estrogen-induced synaptic potentiation differs between the sexes. Here we show that these differences extend to the mechanisms of expression of synaptic potentiation and result in distinct patterns of postsynaptic neurotransmitter receptor modulation in each sex. Such latent sex differences, in which the same outcome is achieved through distinct underlying mechanisms in males versus females, indicate that molecular mechanisms targeted for drug development may differ between the sexes even in the absence of an overt sex difference in behavior or disease.
Collapse
Affiliation(s)
- Anant Jain
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| | - Catherine S Woolley
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208
| |
Collapse
|
6
|
Zhou L, Wang K, Xu Y, Dong BB, Wu DC, Wang ZX, Wang XT, Cai XY, Yang JT, Zheng R, Chen W, Shen Y, Wei JS. A patient-derived mutation of epilepsy-linked LGI1 increases seizure susceptibility through regulating K v1.1. Cell Biosci 2023; 13:34. [PMID: 36804022 PMCID: PMC9940402 DOI: 10.1186/s13578-023-00983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/04/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that functional LGI1 is secreted by excitatory neurons, GABAergic interneurons, and astrocytes, and regulates AMPA-type glutamate receptor-mediated synaptic transmission by binding ADAM22 and ADAM23. However, > 40 LGI1 mutations have been reported in familial ADLTE patients, more than half of which are secretion-defective. How these secretion-defective LGI1 mutations lead to epilepsy is unknown. RESULTS We identified a novel secretion-defective LGI1 mutation from a Chinese ADLTE family, LGI1-W183R. We specifically expressed mutant LGI1W183R in excitatory neurons lacking natural LGI1, and found that this mutation downregulated Kv1.1 activity, led to neuronal hyperexcitability and irregular spiking, and increased epilepsy susceptibility in mice. Further analysis revealed that restoring Kv1.1 in excitatory neurons rescued the defect of spiking capacity, improved epilepsy susceptibility, and prolonged the life-span of mice. CONCLUSIONS These results describe a role of secretion-defective LGI1 in maintaining neuronal excitability and reveal a new mechanism in the pathology of LGI1 mutation-related epilepsy.
Collapse
Affiliation(s)
- Lin Zhou
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Kang Wang
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Yuxiang Xu
- grid.256922.80000 0000 9139 560XSchool of Life Sciences, Henan University, Kaifeng, 475004 China
| | - Bin-Bin Dong
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Deng-Chang Wu
- grid.452661.20000 0004 1803 6319Department of Neurology, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003 China
| | - Zhao-Xiang Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Tai Wang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Xin-Yu Cai
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Jin-Tao Yang
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Rui Zheng
- grid.13402.340000 0004 1759 700XDepartment of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020 China
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China.
| | - Jian-She Wei
- School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
De Luca R, Nardone S, Grace KP, Venner A, Cristofolini M, Bandaru SS, Sohn LT, Kong D, Mochizuki T, Viberti B, Zhu L, Zito A, Scammell TE, Saper CB, Lowell BB, Fuller PM, Arrigoni E. Orexin neurons inhibit sleep to promote arousal. Nat Commun 2022; 13:4163. [PMID: 35851580 PMCID: PMC9293990 DOI: 10.1038/s41467-022-31591-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/23/2022] [Indexed: 01/31/2023] Open
Abstract
Humans and animals lacking orexin neurons exhibit daytime sleepiness, sleep attacks, and state instability. While the circuit basis by which orexin neurons contribute to consolidated wakefulness remains unclear, existing models posit that orexin neurons provide their wake-stabilizing influence by exerting excitatory tone on other brain arousal nodes. Here we show using in vivo optogenetics, in vitro optogenetic-based circuit mapping, and single-cell transcriptomics that orexin neurons also contribute to arousal maintenance through indirect inhibition of sleep-promoting neurons of the ventrolateral preoptic nucleus. Activation of this subcortical circuit rapidly drives wakefulness from sleep by differentially modulating the activity of ventrolateral preoptic neurons. We further identify and characterize a feedforward circuit through which orexin (and co-released glutamate) acts to indirectly target and inhibit sleep-promoting ventrolateral preoptic neurons to produce arousal. This revealed circuitry provides an alternate framework for understanding how orexin neurons contribute to the maintenance of consolidated wakefulness and stabilize behavioral state.
Collapse
Affiliation(s)
- Roberto De Luca
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Stefano Nardone
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Kevin P Grace
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA
| | - Anne Venner
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Michela Cristofolini
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lauren T Sohn
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Dong Kong
- Department of Pediatrics, Division of Endocrinology, F.M. Kirby Neurobiology Center. Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Takatoshi Mochizuki
- Department of Biology, Graduate School of Science and Engineering. University of Toyama, Toyama, Japan
| | - Bianca Viberti
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Lin Zhu
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Antonino Zito
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA, 02114, USA
| | - Thomas E Scammell
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Clifford B Saper
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
| | - Bradford B Lowell
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism. Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
- Department of Neurological Surgery, University of California Davis School of Medicine, Davis, CA, USA.
| | - Elda Arrigoni
- Department of Neurology, Division of Sleep Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Enander JMD, Jones AM, Kirkland M, Hurless J, Jörntell H, Loeb GE. A model for self-organization of sensorimotor function: the spinal monosynaptic loop. J Neurophysiol 2022; 127:1460-1477. [PMID: 35264006 PMCID: PMC9208450 DOI: 10.1152/jn.00242.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/11/2022] [Accepted: 03/02/2022] [Indexed: 01/05/2023] Open
Abstract
Recent spinal cord literature abounds with descriptions of genetic preprogramming and the molecular control of circuit formation. In this paper, we explore to what extent circuit formation based on learning rather than preprogramming could explain the selective formation of the monosynaptic projections between muscle spindle primary afferents and homonymous motoneurons. We adjusted the initially randomized gains in the neural network according to a Hebbian plasticity rule while exercising the model system with spontaneous muscle activity patterns similar to those observed during early fetal development. Normal connectivity patterns developed only when we modeled β motoneurons, which are known to innervate both intrafusal and extrafusal muscle fibers in vertebrate muscles but were not considered in previous literature regarding selective formation of these synapses in animals with paralyzed muscles. It was also helpful to correctly model the greatly reduced contractility of extrafusal muscle fibers during early development. Stronger and more coordinated muscle activity patterns such as observed later during neonatal locomotion impaired projection selectivity. These findings imply a generic functionality of a musculoskeletal system to imprint important aspects of its mechanical dynamics onto a neural network, without specific preprogramming other than setting a critical period for the formation and maturation of this general pattern of connectivity. Such functionality would facilitate the successful evolution of new species with altered musculoskeletal anatomy, and it may help to explain patterns of connectivity and associated reflexes that appear during abnormal development.NEW & NOTEWORTHY A novel model of self-organization of early spinal circuitry based on a biologically realistic plant, sensors, and neuronal plasticity in conjunction with empirical observations of fetal development. Without explicit need for guiding genetic rules, connection matrices emerge that support functional self-organization of the mature pattern of Ia to motoneuron connectivity in the spinal circuitry.
Collapse
Affiliation(s)
- Jonas M D Enander
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Adam M Jones
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Matthieu Kirkland
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Jordan Hurless
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| | - Henrik Jörntell
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Gerald E Loeb
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Padamsey Z, Katsanevaki D, Dupuy N, Rochefort NL. Neocortex saves energy by reducing coding precision during food scarcity. Neuron 2022; 110:280-296.e10. [PMID: 34741806 PMCID: PMC8788933 DOI: 10.1016/j.neuron.2021.10.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022]
Abstract
Information processing is energetically expensive. In the mammalian brain, it is unclear how information coding and energy use are regulated during food scarcity. Using whole-cell recordings and two-photon imaging in layer 2/3 mouse visual cortex, we found that food restriction reduced AMPA receptor conductance, reducing synaptic ATP use by 29%. Neuronal excitability was nonetheless preserved by a compensatory increase in input resistance and a depolarized resting potential. Consequently, neurons spiked at similar rates as controls but spent less ATP on underlying excitatory currents. This energy-saving strategy had a cost because it amplified the variability of visually-evoked subthreshold responses, leading to a 32% broadening of orientation tuning and impaired fine visual discrimination. This reduction in coding precision was associated with reduced levels of the fat mass-regulated hormone leptin and was restored by exogenous leptin supplementation. Our findings reveal that metabolic state dynamically regulates the energy spent on coding precision in neocortex.
Collapse
Affiliation(s)
- Zahid Padamsey
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| | - Danai Katsanevaki
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie Dupuy
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Nathalie L Rochefort
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
10
|
Kadgien CA, Kamesh A, Milnerwood AJ. Endosomal traffic and glutamate synapse activity are increased in VPS35 D620N mutant knock-in mouse neurons, and resistant to LRRK2 kinase inhibition. Mol Brain 2021; 14:143. [PMID: 34530877 PMCID: PMC8447518 DOI: 10.1186/s13041-021-00848-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) regulates neurotransmitter receptor recycling from endosomes. A missense mutation (D620N) in VPS35 leads to autosomal-dominant, late-onset Parkinson's disease. Here, we study the basic neurobiology of VPS35 and Parkinson's disease mutation effects in the D620N knock-in mouse and the effect of leucine-rich repeat kinase 2 (LRRK2) inhibition on synaptic phenotypes. The study was conducted using a VPS35 D620N knock-in mouse that expresses VPS35 at endogenous levels. Protein levels, phosphorylation states, and binding ratios in brain lysates from knock-in mice and wild-type littermates were assayed by co-immunoprecipitation and western blot. Dendritic protein co-localization, AMPA receptor surface expression, synapse density, and glutamatergic synapse activity in primary cortical cultures from knock-in and wild-type littermates were assayed using immunocytochemistry and whole-cell patch clamp electrophysiology. In brain tissue, we confirm VPS35 forms complexes with LRRK2 and AMPA-type glutamate receptor GluA1 subunits, in addition to NMDA-type glutamate receptor GluN1 subunits and D2-type dopamine receptors. Receptor and LRRK2 binding was unaltered in D620N knock-in mice, but we confirm the mutation results in reduced binding of VPS35 with WASH complex member FAM21, and increases phosphorylation of the LRRK2 kinase substrate Rab10, which is reversed by LRRK2 kinase inhibition in vivo. In cultured cortical neurons from knock-in mice, pRab10 is also increased, and reversed by LRRK2 inhibition. The mutation also results in increased endosomal recycling protein cluster density (VPS35-FAM21 co-clusters and Rab11 clusters), glutamate transmission, and GluA1 surface expression. LRRK2 kinase inhibition, which reversed Rab10 hyper-phosphorylation, did not rescue elevated glutamate release or surface GluA1 expression in knock-in neurons, but did alter AMPAR traffic in wild-type cells. The results improve our understanding of the cell biology of VPS35, and the consequences of the D620N mutation in developing neuronal networks. Together the data support a chronic synaptopathy model for latent neurodegeneration, providing phenotypes and candidate pathophysiological stresses that may drive eventual transition to late-stage parkinsonism in VPS35 PD. The study demonstrates the VPS35 mutation has effects that are independent of ongoing LRRK2 kinase activity, and that LRRK2 kinase inhibition alters basal physiology of glutamate synapses in vitro.
Collapse
Affiliation(s)
- Chelsie A Kadgien
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Anusha Kamesh
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Austen J Milnerwood
- Graduate Program in Neuroscience and Centre for Applied Neurogenetics, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
- Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada.
| |
Collapse
|
11
|
Cull‐Candy SG, Farrant M. Ca 2+ -permeable AMPA receptors and their auxiliary subunits in synaptic plasticity and disease. J Physiol 2021; 599:2655-2671. [PMID: 33533533 PMCID: PMC8436767 DOI: 10.1113/jp279029] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
AMPA receptors are tetrameric glutamate-gated ion channels that mediate a majority of fast excitatory neurotransmission in the brain. They exist as calcium-impermeable (CI-) and calcium-permeable (CP-) subtypes, the latter of which lacks the GluA2 subunit. CP-AMPARs display an array of distinctive biophysical and pharmacological properties that allow them to be functionally identified. This has revealed that they play crucial roles in diverse forms of central synaptic plasticity. Here we summarise the functional hallmarks of CP-AMPARs and describe how these are modified by the presence of auxiliary subunits that have emerged as pivotal regulators of AMPARs. A lasting change in the prevalence of GluA2-containing AMPARs, and hence in the fraction of CP-AMPARs, is a feature in many maladaptive forms of synaptic plasticity and neurological disorders. These include modifications of glutamatergic transmission induced by inflammatory pain, fear conditioning, cocaine exposure, and anoxia-induced damage in neurons and glia. Furthermore, defective RNA editing of GluA2 can cause altered expression of CP-AMPARs and is implicated in motor neuron damage (amyotrophic lateral sclerosis) and the proliferation of cells in malignant gliomas. A number of the players involved in CP-AMPAR regulation have been identified, providing useful insight into interventions that may prevent the aberrant CP-AMPAR expression. Furthermore, recent molecular and pharmacological developments, particularly the discovery of TARP subtype-selective drugs, offer the exciting potential to modify some of the harmful effects of increased CP-AMPAR prevalence in a brain region-specific manner.
Collapse
Affiliation(s)
- Stuart G. Cull‐Candy
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| | - Mark Farrant
- Department of Neuroscience, Physiology and PharmacologyUniversity College LondonGower StreetLondonWC1E 6BTUK
| |
Collapse
|
12
|
Park P, Georgiou J, Sanderson TM, Ko KH, Kang H, Kim JI, Bradley CA, Bortolotto ZA, Zhuo M, Kaang BK, Collingridge GL. PKA drives an increase in AMPA receptor unitary conductance during LTP in the hippocampus. Nat Commun 2021; 12:413. [PMID: 33462202 PMCID: PMC7814032 DOI: 10.1038/s41467-020-20523-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/08/2020] [Indexed: 01/12/2023] Open
Abstract
Long-term potentiation (LTP) at hippocampal CA1 synapses can be expressed by an increase either in the number (N) of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors or in their single channel conductance (γ). Here, we have established how these distinct synaptic processes contribute to the expression of LTP in hippocampal slices obtained from young adult rodents. LTP induced by compressed theta burst stimulation (TBS), with a 10 s inter-episode interval, involves purely an increase in N (LTPN). In contrast, either a spaced TBS, with a 10 min inter-episode interval, or a single TBS, delivered when PKA is activated, results in LTP that is associated with a transient increase in γ (LTPγ), caused by the insertion of calcium-permeable (CP)-AMPA receptors. Activation of CaMKII is necessary and sufficient for LTPN whilst PKA is additionally required for LTPγ. Thus, two mechanistically distinct forms of LTP co-exist at these synapses.
Collapse
Affiliation(s)
- Pojeong Park
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Thomas M Sanderson
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Kwang-Hee Ko
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Heather Kang
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Ji-Il Kim
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Clarrisa A Bradley
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.,Neurosciences and Mental Health, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Zuner A Bortolotto
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Min Zhuo
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea.,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Bong-Kiun Kaang
- Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea
| | - Graham L Collingridge
- Glutamate Receptor Group, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom. .,Department of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Korea. .,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, M5S 1A8, Canada. .,TANZ Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
13
|
Wang YJ, Liu MG, Wang JH, Cao W, Wu C, Wang ZY, Liu L, Yang F, Feng ZH, Sun L, Zhang F, Shen Y, Zhou YD, Zhuo M, Luo JH, Xu TL, Li XY. Restoration of Cingulate Long-Term Depression by Enhancing Non-apoptotic Caspase 3 Alleviates Peripheral Pain Hypersensitivity. Cell Rep 2020; 33:108369. [PMID: 33176141 DOI: 10.1016/j.celrep.2020.108369] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 08/09/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022] Open
Abstract
Nerve injury in somatosensory pathways may lead to neuropathic pain, which affects the life quality of ∼8% of people. Long-term enhancement of excitatory synaptic transmission along somatosensory pathways contributes to neuropathic pain. Caspase 3 (Casp3) plays a non-apoptotic role in the hippocampus and regulates internalization of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits. Whether Casp3-AMPAR interaction is involved in the maintenance of peripheral hypersensitivity after nerve injury remained unknown. Here, we show that nerve injury suppresses long-term depression (LTD) and downregulates Casp3 in the anterior cingulate cortex (ACC). Interfering with interactions between Casp3 and AMPAR subunits or reducing Casp3 activity in the ACC suppresses LTD induction and causes peripheral hypersensitivity. Overexpression of Casp3 restores LTD and reduces peripheral hypersensitivity after nerve injury. We reveal how Casp3 is involved in the maintenance of peripheral hypersensitivity. Our findings suggest that restoration of LTD via Casp3 provides a therapeutic strategy for neuropathic pain management.
Collapse
Affiliation(s)
- Yong-Jie Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China; Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ming-Gang Liu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing-Hua Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Wei Cao
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Cheng Wu
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Zi-Yue Wang
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Li Liu
- Core Facilities of the School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics and Kidney Disease Center, First Affiliated Hospital, Institute of Neuroscience, National Health Commission and Chinese Academy of Medical Sciences Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058 Zhejiang, China
| | - Zhi-Hui Feng
- Center for Mitochondrial Biology and Medicine, Frontier Institute of Science and Technology, and The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li Sun
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Fuxing Zhang
- Department of Anatomy and K. K. Leung Brain Research Center, School of Basic Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yi Shen
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Yu-Dong Zhou
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China
| | - Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Life Science, Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jian-Hong Luo
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| | - Tian-Le Xu
- Collaborative Innovation Centre for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Zhejiang, China.
| |
Collapse
|
14
|
Russo I, Gavello D, Menna E, Vandael D, Veglia C, Morello N, Corradini I, Focchi E, Alfieri A, Angelini C, Bianchi FT, Morellato A, Marcantoni A, Sassoè-Pognetto M, Ottaviani MM, Yekhlef L, Giustetto M, Taverna S, Carabelli V, Matteoli M, Carbone E, Turco E, Defilippi P. p140Cap Regulates GABAergic Synaptogenesis and Development of Hippocampal Inhibitory Circuits. Cereb Cortex 2020; 29:91-105. [PMID: 29161354 DOI: 10.1093/cercor/bhx306] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/23/2017] [Indexed: 01/19/2023] Open
Abstract
The neuronal scaffold protein p140Cap was investigated during hippocampal network formation. p140Cap is present in presynaptic GABAergic terminals and its genetic depletion results in a marked alteration of inhibitory synaptic activity. p140Cap-/- cultured neurons display higher frequency of miniature inhibitory postsynaptic currents (mIPSCs) with no changes of their mean amplitude. Consistent with a potential presynaptic alteration of basal GABA release, p140Cap-/- neurons exhibit a larger synaptic vesicle readily releasable pool, without any variation of single GABAA receptor unitary currents and number of postsynaptic channels. Furthermore, p140Cap-/- neurons show a premature and enhanced network synchronization and appear more susceptible to 4-aminopyridine-induced seizures in vitro and to kainate-induced seizures in vivo. The hippocampus of p140Cap-/- mice showed a significant increase in the number of both inhibitory synapses and of parvalbumin- and somatostatin-expressing interneurons. Specific deletion of p140Cap in forebrain interneurons resulted in increased susceptibility to in vitro epileptic events and increased inhibitory synaptogenesis, comparable to those observed in p140Cap-/- mice. Altogether, our data demonstrate that p140Cap finely tunes inhibitory synaptogenesis and GABAergic neurotransmission, thus regulating the establishment and maintenance of the proper hippocampal excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Daniela Gavello
- Department of Drug Science, University of Torino, Torino, Italy.,NIS Centre of Excellence, Torino, Italy
| | - Elisabetta Menna
- Institute of Neuroscience, CNR, Milano, Italy.,Istituto Clinico Humanitas, IRCCS, Rozzano, Italy
| | - David Vandael
- Department of Drug Science, University of Torino, Torino, Italy.,NIS Centre of Excellence, Torino, Italy
| | - Carola Veglia
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Torino, Torino, Italy
| | - Irene Corradini
- Institute of Neuroscience, CNR, Milano, Italy.,Istituto Clinico Humanitas, IRCCS, Rozzano, Italy
| | | | - Annalisa Alfieri
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Costanza Angelini
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federico Tommaso Bianchi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.,Neuroscience Institute Cavalieri Ottolenghi, University of Torino, Orbassano, Italy
| | - Alessandro Morellato
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Andrea Marcantoni
- Department of Drug Science, University of Torino, Torino, Italy.,NIS Centre of Excellence, Torino, Italy
| | - Marco Sassoè-Pognetto
- Department of Neuroscience, University of Torino, Torino, Italy.,National Institute of Neuroscience-Italy, Torino, Italy
| | | | - Latefa Yekhlef
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Torino, Torino, Italy.,National Institute of Neuroscience-Italy, Torino, Italy
| | - Stefano Taverna
- Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Valentina Carabelli
- Department of Drug Science, University of Torino, Torino, Italy.,NIS Centre of Excellence, Torino, Italy
| | - Michela Matteoli
- Institute of Neuroscience, CNR, Milano, Italy.,Istituto Clinico Humanitas, IRCCS, Rozzano, Italy
| | - Emilio Carbone
- Department of Drug Science, University of Torino, Torino, Italy.,NIS Centre of Excellence, Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Bykowska O, Gontier C, Sax AL, Jia DW, Montero ML, Bird AD, Houghton C, Pfister JP, Costa RP. Model-Based Inference of Synaptic Transmission. Front Synaptic Neurosci 2019; 11:21. [PMID: 31481887 PMCID: PMC6710341 DOI: 10.3389/fnsyn.2019.00021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 12/15/2022] Open
Abstract
Synaptic computation is believed to underlie many forms of animal behavior. A correct identification of synaptic transmission properties is thus crucial for a better understanding of how the brain processes information, stores memories and learns. Recently, a number of new statistical methods for inferring synaptic transmission parameters have been introduced. Here we review and contrast these developments, with a focus on methods aimed at inferring both synaptic release statistics and synaptic dynamics. Furthermore, based on recent proposals we discuss how such methods can be applied to data across different levels of investigation: from intracellular paired experiments to in vivo network-wide recordings. Overall, these developments open the window to reliably estimating synaptic parameters in behaving animals.
Collapse
Affiliation(s)
- Ola Bykowska
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Camille Gontier
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Anne-Lene Sax
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - David W. Jia
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Milton Llera Montero
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
- School of Psychological Science, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Alex D. Bird
- Ernst Strungmann Institute for Neuroscience in Cooperation With Max Planck Society, Frankfurt, Germany
- Frankfurt Institute for Advanced Studies, Frankfurt, Germany
| | - Conor Houghton
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Jean-Pascal Pfister
- Department of Physiology, University of Bern, Bern, Switzerland
- Institute of Neuroinformatics and Neuroscience Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - Rui Ponte Costa
- Computational Neuroscience Unit, Department of Computer Science, SCEEM, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Energy-efficient information transfer at thalamocortical synapses. PLoS Comput Biol 2019; 15:e1007226. [PMID: 31381555 PMCID: PMC6695202 DOI: 10.1371/journal.pcbi.1007226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 08/15/2019] [Accepted: 06/28/2019] [Indexed: 12/04/2022] Open
Abstract
We have previously shown that the physiological size of postsynaptic currents maximises energy efficiency rather than information transfer across the retinothalamic relay synapse. Here, we investigate information transmission and postsynaptic energy use at the next synapse along the visual pathway: from relay neurons in the thalamus to spiny stellate cells in layer 4 of the primary visual cortex (L4SS). Using both multicompartment Hodgkin-Huxley-type simulations and electrophysiological recordings in rodent brain slices, we find that increasing or decreasing the postsynaptic conductance of the set of thalamocortical inputs to one L4SS cell decreases the energy efficiency of information transmission from a single thalamocortical input. This result is obtained in the presence of random background input to the L4SS cell from excitatory and inhibitory corticocortical connections, which were simulated (both excitatory and inhibitory) or injected experimentally using dynamic-clamp (excitatory only). Thus, energy efficiency is not a unique property of strong relay synapses: even at the relatively weak thalamocortical synapse, each of which contributes minimally to the output firing of the L4SS cell, evolutionarily-selected postsynaptic properties appear to maximise the information transmitted per energy used. Compared to other organs, the brain consumes a vast amount of energy for its size. Most of this energy is used to power the electrical and chemical processes that support neural computation. As the energy supply to the brain is limited, it follows that this computation should be energetically efficient. Previously, we showed that this is indeed the case for transmission of information between cells at synapses. Synapses transferring information from the retina to the brain do not maximise information transmission—some information is lost and does not reach the visual cortex. Instead, these synapses maximise the information transmitted per energy used. Here, we demonstrate that this principle of energetic efficiency also holds at the next synapse in the visual pathway, the thalamocortical synapse. This synapse is weaker and competes with hundreds of other inputs to influence the output firing of the next cell. Using detailed simulations of cortical neurons, and electrophysiological recordings in rodent brain slices, we found that this relatively weak synapse also does not maximise information transmission. Instead, it maximises the amount of information transmitted per energy used. This suggests that energy efficiency at synapses could be a common design principle in the brain.
Collapse
|
17
|
Smith-Dijak AI, Nassrallah WB, Zhang LYJ, Geva M, Hayden MR, Raymond LA. Impairment and Restoration of Homeostatic Plasticity in Cultured Cortical Neurons From a Mouse Model of Huntington Disease. Front Cell Neurosci 2019; 13:209. [PMID: 31156395 PMCID: PMC6532531 DOI: 10.3389/fncel.2019.00209] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Huntington disease (HD) is an inherited neurodegenerative disorder caused by a mutation in the huntingtin gene. The onset of symptoms is preceded by synaptic dysfunction. Homeostatic synaptic plasticity (HSP) refers to processes that maintain the stability of networks of neurons, thought to be required to enable new learning and cognitive flexibility. One type of HSP is synaptic scaling, in which the strength of all of the synapses onto a cell increases or decreases following changes in the cell’s level of activity. Several pathways implicated in synaptic scaling are dysregulated in HD, including brain-derived neurotrophic factor (BDNF) and calcium signaling. Here, we investigated whether HSP is disrupted in cortical neurons from an HD mouse model. We treated cultured cortical neurons from wild-type (WT) FVB/N or YAC128 HD mice with tetrodotoxin (TTX) for 48 h to silence action potentials and then recorded miniature excitatory postsynaptic currents. In WT cultures, these increased in both amplitude and frequency after TTX treatment, and further experiments showed that this was a result of insertion of AMPA receptors and formation of new synapses, respectively. Manipulation of BDNF concentration in the culture medium revealed that BDNF signaling contributed to these changes. In contrast to WT cortical neurons, YAC128 cultures showed no response to action potential silencing. Strikingly, we were able to restore the TTX-induced changes in YAC128 cultures by treating them with pridopidine, a drug which enhances BDNF signaling through stimulation of the sigma-1 receptor (S1R), and with the S1R agonist 3-PPP. These data provide evidence for disruption of HSP in cortical neurons from an HD mouse model that is restored by stimulation of S1R. Our results suggest a potential new direction for developing therapy to mitigate cognitive deficits in HD.
Collapse
Affiliation(s)
- Amy I Smith-Dijak
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Wissam B Nassrallah
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, BC, Canada.,Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Lily Y J Zhang
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| | - Michal Geva
- Research and Development, Teva Pharmaceutical Industries Ltd., Netanya, Israel
| | - Michael R Hayden
- Research and Development, Teva Pharmaceutical Industries Ltd., Netanya, Israel.,Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, BC, Canada
| | - Lynn A Raymond
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Haselmann H, Mannara F, Werner C, Planagumà J, Miguez-Cabello F, Schmidl L, Grünewald B, Petit-Pedrol M, Kirmse K, Classen J, Demir F, Klöcker N, Soto D, Doose S, Dalmau J, Hallermann S, Geis C. Human Autoantibodies against the AMPA Receptor Subunit GluA2 Induce Receptor Reorganization and Memory Dysfunction. Neuron 2018; 100:91-105.e9. [PMID: 30146304 DOI: 10.1016/j.neuron.2018.07.048] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 03/14/2018] [Accepted: 07/27/2018] [Indexed: 11/29/2022]
Abstract
AMPA receptors are essential for fast excitatory transmission in the CNS. Autoantibodies to AMPA receptors have been identified in humans with autoimmune encephalitis and severe defects of hippocampal function. Here, combining electrophysiology and high-resolution imaging with neuronal culture preparations and passive-transfer models in wild-type and GluA1-knockout mice, we analyze how specific human autoantibodies against the AMPA receptor subunit GluA2 affect receptor function and composition, synaptic transmission, and plasticity. Anti-GluA2 antibodies induce receptor internalization and a reduction of synaptic GluA2-containing AMPARs followed by compensatory ryanodine receptor-dependent incorporation of synaptic non-GluA2 AMPARs. Furthermore, application of human pathogenic anti-GluA2 antibodies to mice impairs long-term synaptic plasticity in vitro and affects learning and memory in vivo. Our results identify a specific immune-neuronal rearrangement of AMPA receptor subunits, providing a framework to explain disease symptoms.
Collapse
Affiliation(s)
- Holger Haselmann
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Christian Werner
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jesús Planagumà
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Federico Miguez-Cabello
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Lars Schmidl
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Benedikt Grünewald
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Mar Petit-Pedrol
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Knut Kirmse
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany
| | - Joseph Classen
- Department of Neurology, University of Leipzig, Liebigstrasse 20, 04103 Leipzig, Germany
| | - Fatih Demir
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany; Forschungszentrum Jülich, Central Institute for Engineering, Electronics and Analytics (ZEA-3), Wilhelm-Johnen-Strasse, 52425 Jülich, Germany
| | - Nikolaj Klöcker
- Institute of Neural and Sensory Physiology, Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - David Soto
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Laboratori de Neurofisiologia, Departament de Biomedicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sören Doose
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain; Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), (Instituto Carlos III, Madrid), Av. Monforte de Lemos, 3-5 Pabellón 11, 28029 Madrid, Spain
| | - Stefan Hallermann
- Carl-Ludwig-Institute for Physiology, Medical Faculty, University of Leipzig, Liebigstrasse 27, 04103 Leipzig, Germany
| | - Christian Geis
- Hans-Berger Department of Neurology, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany.
| |
Collapse
|
19
|
Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF. A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 2018; 596:4057-4089. [PMID: 29917241 PMCID: PMC6117563 DOI: 10.1113/jp276093] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022] Open
Abstract
Key points The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Abstract NMDA receptors (NMDARs) are tetrameric complexes comprising two glycine‐binding GluN1 and two glutamate‐binding GluN2 subunits. Four GluN2 subunits encoded by different genes can produce up to 10 different di‐ and triheteromeric receptors. In addition, some neurological patients contain a de novo mutation or inherited rare variant in only one subunit. There is currently no mechanistic framework to describe tetrameric receptor function that can be extended to receptors with two different GluN1 or GluN2 subunits. Here we use the structural features of glutamate receptors to develop a mechanism describing both single channel and macroscopic NMDAR currents. We propose that each agonist‐bound subunit undergoes some rate‐limiting conformational change after agonist binding, prior to channel opening. We hypothesize that this conformational change occurs within a triad of interactions between a short helix preceding the M1 transmembrane helix, the highly conserved M3 motif encoded by the residues SYTANLAAF, and the linker preceding the M4 transmembrane helix of the adjacent subunit. Molecular dynamics simulations suggest that pre‐M1 helix motion is uncorrelated between subunits, which we interpret to suggest independent subunit‐specific conformational changes may influence these pre‐gating steps. According to this interpretation, these conformational changes are the main determinants of the key kinetic properties of NMDA receptor activation following agonist binding, and so these steps sculpt their physiological role. We show that this structurally derived tetrameric model describes both single channel and macroscopic data, giving a new approach to interpreting functional properties of synaptic NMDARs that provides a logical framework to understanding receptors with non‐identical subunits. The kinetics of NMDA receptor (NMDAR) signalling are a critical aspect of the physiology of excitatory synaptic transmission in the brain. Here we develop a mechanistic description of NMDAR function based on the receptor tetrameric structure and the principle that each agonist‐bound subunit must undergo some rate‐limiting conformational change after agonist binding, prior to channel opening. By fitting this mechanism to single channel data using a new MATLAB‐based software implementation of maximum likelihood fitting with correction for limited time resolution, rate constants were derived for this mechanism that reflect distinct structural changes and predict the properties of macroscopic and synaptic NMDAR currents. The principles applied here to develop a mechanistic description of the heterotetrameric NMDAR, and the software used in this analysis, can be equally applied to other heterotetrameric glutamate receptors, providing a unifying mechanistic framework to understanding the physiology of glutamate receptor signalling in the brain.
Collapse
Affiliation(s)
- Alasdair J Gibb
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin K Ogden
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Miranda J McDaniel
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Katie M Vance
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| | - Steven A Kell
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Chris Butch
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Pieter Burger
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Dennis C Liotta
- Department of Chemistry, Emory University School, 1515 Dickey Drive, Atlanta, GA, 30322, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Rollins Research Center, 1510 Clifton Road, Atlanta, GA, 30322, USA
| |
Collapse
|
20
|
Rothman JS, Silver RA. NeuroMatic: An Integrated Open-Source Software Toolkit for Acquisition, Analysis and Simulation of Electrophysiological Data. Front Neuroinform 2018; 12:14. [PMID: 29670519 PMCID: PMC5893720 DOI: 10.3389/fninf.2018.00014] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/15/2018] [Indexed: 12/21/2022] Open
Abstract
Acquisition, analysis and simulation of electrophysiological properties of the nervous system require multiple software packages. This makes it difficult to conserve experimental metadata and track the analysis performed. It also complicates certain experimental approaches such as online analysis. To address this, we developed NeuroMatic, an open-source software toolkit that performs data acquisition (episodic, continuous and triggered recordings), data analysis (spike rasters, spontaneous event detection, curve fitting, stationarity) and simulations (stochastic synaptic transmission, synaptic short-term plasticity, integrate-and-fire and Hodgkin-Huxley-like single-compartment models). The merging of a wide range of tools into a single package facilitates a more integrated style of research, from the development of online analysis functions during data acquisition, to the simulation of synaptic conductance trains during dynamic-clamp experiments. Moreover, NeuroMatic has the advantage of working within Igor Pro, a platform-independent environment that includes an extensive library of built-in functions, a history window for reviewing the user's workflow and the ability to produce publication-quality graphics. Since its original release, NeuroMatic has been used in a wide range of scientific studies and its user base has grown considerably. NeuroMatic version 3.0 can be found at http://www.neuromatic.thinkrandom.com and https://github.com/SilverLabUCL/NeuroMatic.
Collapse
Affiliation(s)
- Jason S Rothman
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
21
|
Studniarczyk D, Needham EL, Mitchison HM, Farrant M, Cull-Candy SG. Altered Cerebellar Short-Term Plasticity but No Change in Postsynaptic AMPA-Type Glutamate Receptors in a Mouse Model of Juvenile Batten Disease. eNeuro 2018; 5:ENEURO.0387-17.2018. [PMID: 29780879 PMCID: PMC5956745 DOI: 10.1523/eneuro.0387-17.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/28/2022] Open
Abstract
Juvenile Batten disease is the most common progressive neurodegenerative disorder of childhood. It is associated with mutations in the CLN3 gene, causing loss of function of CLN3 protein and degeneration of cerebellar and retinal neurons. It has been proposed that changes in granule cell AMPA-type glutamate receptors (AMPARs) contribute to the cerebellar dysfunction. In this study, we compared AMPAR properties and synaptic transmission in cerebellar granule cells from wild-type and Cln3 knock-out mice. In Cln3Δex1-6 cells, the amplitude of AMPA-evoked whole-cell currents was unchanged. Similarly, we found no change in the amplitude, kinetics, or rectification of synaptic currents evoked by individual quanta, or in their underlying single-channel conductance. We found no change in cerebellar expression of GluA2 or GluA4 protein. By contrast, we observed a reduced number of quantal events following mossy-fiber stimulation in Sr2+, altered short-term plasticity in conditions of reduced extracellular Ca2+, and reduced mossy fiber vesicle number. Thus, while our results suggest early presynaptic changes in the Cln3Δex1-6 mouse model of juvenile Batten disease, they reveal no evidence for altered postsynaptic AMPARs.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Elizabeth L. Needham
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Hannah M. Mitchison
- UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Stuart G. Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
22
|
Benke T, Traynelis SF. AMPA-Type Glutamate Receptor Conductance Changes and Plasticity: Still a Lot of Noise. Neurochem Res 2018; 44:539-548. [PMID: 29476449 DOI: 10.1007/s11064-018-2491-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 11/30/2022]
Abstract
Twenty years ago, we reported from the Collingridge Lab that a single-channel conductance increase through α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPARs) could mediate one form of plasticity associated with long-term potentiation (LTP) in the hippocampus (Benke et al., Nature 395:793-797, 1998). Revealed through peak-scaled non-stationary fluctuation analysis (PS-NSFA, also known as noise analysis), this component of LTP could be exclusively mediated by direct increases in channel conductance or by increases in the number of high conductance synaptic AMPARs. Re-evaluation of our original data in the light of the molecular details regarding AMPARs, conductance changes and plasticity suggests that insertion of high-conductance GluA1 homomers can account for our initial findings. Any potential cost associated with manufacture or trafficking of new receptors could be mitigated if pre-existing synaptic AMPARs also undergo a modest conductance change. The literature suggests that the presence of high conductance AMPARs and/or GluA1 homomers confers an unstable synaptic state, suggesting state transitions. An experimental paradigm is proposed to differentiate these possibilities. Validation of this state diagram could provide insight into development, disease pathogenesis and treatment.
Collapse
Affiliation(s)
- Tim Benke
- Departments of Pediatrics, Pharmacology, Neurology and Otolaryngology, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons. J Neurosci 2018; 38:1588-1599. [PMID: 29311142 DOI: 10.1523/jneurosci.1925-17.2017] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 12/04/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022] Open
Abstract
Orexin (also known as hypocretin) neurons are considered a key component of the ascending arousal system. They are active during wakefulness, at which time they drive and maintain arousal, and are silent during sleep. Their activity is controlled by long-range inputs from many sources, as well as by more short-range inputs, including from presumptive GABAergic neurons in the lateral hypothalamus/perifornical region (LH/PF). To characterize local GABAergic input to orexin neurons, we used channelrhodopsin-2-assisted circuit mapping in brain slices. We expressed channelrhodopsin-2 in GABAergic neurons (Vgat+) in the LH/PF and recorded from genetically identified surrounding orexin neurons (LH/PFVgat → Orx). We performed all experiments in mice of either sex. Photostimulation of LH/PF GABAergic neurons inhibited the firing of orexin neurons through the release of GABA, evoking GABAA-mediated IPSCs in orexin neurons. These photo-evoked IPSCs were maintained in the presence of TTX, indicating direct connectivity. Carbachol inhibited LH/PFVgat → Orx input through muscarinic receptors. By contrast, application of orexin was without effect on LH/PFVgat → Orx input, whereas dynorphin, another peptide produced by orexin neurons, inhibited LH/PFVgat → Orx input through κ-opioid receptors. Our results demonstrate that orexin neurons are under inhibitory control by local GABAergic neurons and that this input is depressed by cholinergic signaling, unaffected by orexin and inhibited by dynorphin. We propose that local release of dynorphin may, via collaterals, provides a positive feedback to orexin neurons and that, during wakefulness, orexin neurons may be disinhibited by acetylcholine and by their own release of dynorphin.SIGNIFICANCE STATEMENT The lateral hypothalamus contains important wake-promoting cell populations, including orexin-producing neurons. Intermingled with the orexin neurons, there are other cell populations that selectively discharge during nonrapid eye movement or rapid eye movement sleep. Some of these sleep-active neurons release GABA and are thought to inhibit wake-active neurons during rapid eye movement and nonrapid eye movement sleep. However, this hypothesis had not been tested. Here we show that orexin neurons are inhibited by a local GABAergic input. We propose that this local GABAergic input inhibits orexin neurons during sleep but that, during wakefulness, this input is depressed, possibly through cholinergically mediated disinhibition and/or by release of dynorphin from orexin neurons themselves.
Collapse
|
24
|
Scheppach C, Robinson HPC. Fluctuation Analysis in Nonstationary Conditions: Single Ca 2+ Channel Current in Pyramidal Neurons. Biophys J 2017; 113:2383-2395. [PMID: 29211992 DOI: 10.1016/j.bpj.2017.09.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/26/2017] [Accepted: 09/19/2017] [Indexed: 11/28/2022] Open
Abstract
Fluctuation analysis is a method that allows measurement of the single-channel current of ion channels even when it is too small to be resolved directly with the patch-clamp technique. This is the case for voltage-gated calcium channels. They are present in all mammalian central neurons, controlling presynaptic release of transmitter, postsynaptic signaling, and synaptic integration. The amplitudes of their single-channel currents in a physiological concentration of extracellular calcium, however, are small and not well determined. But measurement of this quantity is essential for estimating numbers of functional voltage-gated calcium channels in the membrane and the size of channel-associated calcium signaling domains, and for understanding the stochastic nature of calcium signaling. Here, we recorded the voltage-gated calcium channel current in nucleated patches from layer 5 pyramidal neurons in rat neocortex, in physiological external calcium (1-2 mM). The ensemble-averaging of current responses required for conventional fluctuation analysis proved impractical because of the rapid rundown of calcium channel currents. We therefore developed a more robust method, using mean current fitting of individual current responses and band-pass filtering. Furthermore, voltage-ramp stimulation proved useful. We validated the accuracy of the method by analyzing simulated data. At an external calcium concentration of 1 mM, and a membrane potential of -20 mV, we found that the average single-channel current amplitude was ∼0.04 pA, increasing to 0.065 pA at 2 mM external calcium, and 0.12 pA at 5 mM. The relaxation time constant of the fluctuations was in the range 0.2-0.8 ms. The results are relevant to understanding the stochastic properties of dendritic Ca2+ spikes in neocortical layer 5 pyramidal neurons. With the reported method, single-channel current amplitude of native voltage-gated calcium channels can be resolved accurately despite conditions of unstable rundown.
Collapse
Affiliation(s)
- Christian Scheppach
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; Institute of Physics, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Hugh P C Robinson
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Costa RP, Mizusaki BEP, Sjöström PJ, van Rossum MCW. Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0153. [PMID: 28093547 PMCID: PMC5247585 DOI: 10.1098/rstb.2016.0153] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2016] [Indexed: 01/23/2023] Open
Abstract
Growing experimental evidence shows that both homeostatic and Hebbian synaptic plasticity can be expressed presynaptically as well as postsynaptically. In this review, we start by discussing this evidence and methods used to determine expression loci. Next, we discuss the functional consequences of this diversity in pre- and postsynaptic expression of both homeostatic and Hebbian synaptic plasticity. In particular, we explore the functional consequences of a biologically tuned model of pre- and postsynaptically expressed spike-timing-dependent plasticity complemented with postsynaptic homeostatic control. The pre- and postsynaptic expression in this model predicts (i) more reliable receptive fields and sensory perception, (ii) rapid recovery of forgotten information (memory savings), and (iii) reduced response latencies, compared with a model with postsynaptic expression only. Finally, we discuss open questions that will require a considerable research effort to better elucidate how the specific locus of expression of homeostatic and Hebbian plasticity alters synaptic and network computations.This article is part of the themed issue 'Integrating Hebbian and homeostatic plasticity'.
Collapse
Affiliation(s)
- Rui Ponte Costa
- Institute for Adaptive and Neural Computation, School of Informatics University of Edinburgh, Edinburgh, UK.,Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, UK
| | - Beatriz E P Mizusaki
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Program for Brain Repair and Integrative Neuroscience, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - P Jesper Sjöström
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Program for Brain Repair and Integrative Neuroscience, The Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Mark C W van Rossum
- Institute for Adaptive and Neural Computation, School of Informatics University of Edinburgh, Edinburgh, UK
| |
Collapse
|
26
|
Savtchouk I, Sun L, Bender CL, Yang Q, Szabó G, Gasparini S, Liu SJ. Topological Regulation of Synaptic AMPA Receptor Expression by the RNA-Binding Protein CPEB3. Cell Rep 2017; 17:86-103. [PMID: 27681423 DOI: 10.1016/j.celrep.2016.08.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 07/13/2016] [Accepted: 08/29/2016] [Indexed: 12/21/2022] Open
Abstract
Synaptic receptors gate the neuronal response to incoming signals, but they are not homogeneously distributed on dendrites. A spatially defined receptor distribution can preferentially amplify certain synaptic inputs, resize receptive fields of neurons, and optimize information processing within a neuronal circuit. Thus, a longstanding question is how the spatial organization of synaptic receptors is achieved. Here, we find that action potentials provide local signals that influence the distribution of synaptic AMPA receptors along dendrites in mouse cerebellar stellate cells. Graded dendritic depolarizations elevate CPEB3 protein at proximal dendrites, where we suggest that CPEB3 binds to GluA2 mRNA, suppressing GluA2 protein synthesis leading to a distance-dependent increase in synaptic GluA2 AMPARs. The activity-induced expression of CPEB3 requires increased Ca(2+) and PKC activation. Our results suggest a cell-autonomous mechanism where sustained postsynaptic firing drives graded local protein synthesis, thus directing the spatial organization of synaptic AMPARs.
Collapse
Affiliation(s)
- Iaroslav Savtchouk
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA; Department of Biology, Penn State University, State College, PA 16802, USA
| | - Lu Sun
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA; Department of Biology, Penn State University, State College, PA 16802, USA
| | - Crhistian L Bender
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Qian Yang
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, 1450 Budapest, Hungary
| | - Sonia Gasparini
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA; Neuroscience Center of Excellence, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Siqiong June Liu
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, New Orleans, LA 70112, USA; Department of Biology, Penn State University, State College, PA 16802, USA.
| |
Collapse
|
27
|
Hartveit E, Zandt BJ, Madsen E, Castilho Á, Mørkve SH, Veruki ML. AMPA receptors at ribbon synapses in the mammalian retina: kinetic models and molecular identity. Brain Struct Funct 2017; 223:769-804. [PMID: 28936725 DOI: 10.1007/s00429-017-1520-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/10/2017] [Indexed: 10/24/2022]
Abstract
In chemical synapses, neurotransmitter molecules released from presynaptic vesicles activate populations of postsynaptic receptors that vary in functional properties depending on their subunit composition. Differential expression and localization of specific receptor subunits are thought to play fundamental roles in signal processing, but our understanding of how that expression is adapted to the signal processing in individual synapses and microcircuits is limited. At ribbon synapses, glutamate release is independent of action potentials and characterized by a high and rapidly changing rate of release. Adequately translating such presynaptic signals into postsynaptic electrical signals poses a considerable challenge for the receptor channels in these synapses. Here, we investigated the functional properties of AMPA receptors of AII amacrine cells in rat retina that receive input at spatially segregated ribbon synapses from OFF-cone and rod bipolar cells. Using patch-clamp recording from outside-out patches, we measured the concentration dependence of response amplitude and steady-state desensitization, the single-channel conductance and the maximum open probability. The GluA4 subunit seems critical for the functional properties of AMPA receptors in AII amacrines and immunocytochemical labeling suggested that GluA4 is located at synapses made by both OFF-cone bipolar cells and rod bipolar cells. Finally, we used a series of experimental observables to develop kinetic models for AII amacrine AMPA receptors and subsequently used the models to explore the behavior of the receptors and responses generated by glutamate concentration profiles mimicking those occurring in synapses. These models will facilitate future in silico modeling of synaptic signaling and processing in AII amacrine cells.
Collapse
Affiliation(s)
- Espen Hartveit
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Bas-Jan Zandt
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Eirik Madsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Radiology, Førde Central Hospital, Førde, Norway
| | - Áurea Castilho
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| | - Svein Harald Mørkve
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.,Department of Neurosurgery, Haukeland University Hospital, Bergen, Norway.,Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Margaret Lin Veruki
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| |
Collapse
|
28
|
Opposite, bidirectional shifts in excitation and inhibition in specific types of dorsal horn interneurons are associated with spasticity and pain post-SCI. Sci Rep 2017; 7:5884. [PMID: 28724992 PMCID: PMC5517549 DOI: 10.1038/s41598-017-06049-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/01/2017] [Indexed: 11/23/2022] Open
Abstract
Spasticity, a common complication after spinal cord injury (SCI), is frequently accompanied by chronic pain. The physiological origin of this pain (critical to its treatment) remains unknown, although spastic motor dysfunction has been related to the hyperexcitability of motoneurons and to changes in spinal sensory processing. Here we show that the pain mechanism involves changes in sensory circuits of the dorsal horn (DH) where nociceptive inputs integrate for pain processing. Spasticity is associated with the DH hyperexcitability resulting from an increase in excitation and disinhibition occurring in two respective types of sensory interneurons. In the tonic-firing inhibitory lamina II interneurons, glutamatergic drive was reduced while glycinergic inhibition was potentiated. In contrast, excitatory drive was boosted to the adapting-firing excitatory lamina II interneurons while GABAergic and glycinergic inhibition were reduced. Thus, increased activity of excitatory DH interneurons coupled with the reduced excitability of inhibitory DH interneurons post-SCI could provide a neurophysiological mechanism of central sensitization and chronic pain associated with spasticity.
Collapse
|
29
|
TARP γ-2 Is Required for Inflammation-Associated AMPA Receptor Plasticity within Lamina II of the Spinal Cord Dorsal Horn. J Neurosci 2017; 37:6007-6020. [PMID: 28559374 PMCID: PMC5481940 DOI: 10.1523/jneurosci.0772-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 03/30/2017] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically influence the distribution, gating, and pharmacology of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. We found that the Type I TARP γ-2 (stargazin) is present in lamina II of the superficial dorsal horn, an area involved in nociception. Consistent with the notion that γ-2 is associated with surface AMPARs, CNQX, a partial agonist at AMPARs associated with Type I TARPs, evoked whole-cell currents in lamina II neurons, but such currents were severely attenuated in γ-2-lacking stargazer (stg/stg) mice. Examination of EPSCs revealed the targeting of γ-2 to be synapse-specific; the amplitude of spontaneously occurring miniature EPSCs (mEPSCs) was reduced in neurons from stg/stg mice, but the amplitude of capsaicin-induced mEPSCs from C-fiber synapses was unaltered. This suggests that γ-2 is associated with AMPARs at synapses in lamina II but excluded from those at C-fiber inputs, a view supported by our immunohistochemical colabeling data. Following induction of peripheral inflammation, a model of hyperalgesia, there was a switch in the current-voltage relationships of capsaicin-induced mEPSCs, from linear to inwardly rectifying, indicating an increased prevalence of calcium-permeable (CP) AMPARs. This effect was abolished in stg/stg mice. Our results establish that, although γ-2 is not typically associated with calcium-impermeable AMPARs at C-fiber synapses, it is required for the translocation of CP-AMPARs to these synapses following peripheral inflammation.SIGNIFICANCE STATEMENT In the brain, transmembrane AMPAR regulatory proteins (TARPs) critically determine the functional properties of AMPARs, but the contribution of these auxiliary subunits to AMPAR-mediated signaling in the spinal cord remains unclear. An increase in the excitability of neurons within the superficial dorsal horn (SDH) of the spinal cord is thought to underlie heighted pain sensitivity. One mechanism considered to contribute to such long-lived changes is the remodeling of the ionotropic AMPA-type glutamate receptors that underlie fast excitatory synaptic transmission in the SDH. Here we show that the TARP γ-2 (stargazin) is present in SDH neurons and is necessary in a form of inflammatory pain-induced plasticity, which involves an increase in the prevalence of synaptic calcium-permeable AMPARs.
Collapse
|
30
|
Abstract
UNLABELLED AMPA-type glutamate receptors are ligand-gated cation channels responsible for a majority of the fast excitatory synaptic transmission in the brain. Their behavior and calcium permeability depends critically on their subunit composition and the identity of associated auxiliary proteins. Calcium-permeable AMPA receptors (CP-AMPARs) contribute to various forms of synaptic plasticity, and their dysfunction underlies a number of serious neurological conditions. For CP-AMPARs, the prototypical transmembrane AMPAR regulatory protein stargazin, which acts as an auxiliary subunit, enhances receptor function by increasing single-channel conductance, slowing channel gating, increasing calcium permeability, and relieving the voltage-dependent block by endogenous intracellular polyamines. We find that, in contrast, GSG1L, a transmembrane auxiliary protein identified recently as being part of the AMPAR proteome, acts to reduce the weighted mean single-channel conductance and calcium permeability of recombinant CP-AMPARs, while increasing polyamine-dependent rectification. To examine the effects of GSG1L on native AMPARs, we manipulated its expression in cerebellar and hippocampal neurons. Transfection of GSG1L into mouse cultured cerebellar stellate cells that lack this protein increased the inward rectification of mEPSCs. Conversely, shRNA-mediated knockdown of endogenous GSG1L in rat cultured hippocampal pyramidal neurons led to an increase in mEPSC amplitude and in the underlying weighted mean single-channel conductance, revealing that GSG1L acts to suppress current flow through native CP-AMPARs. Thus, our data suggest that GSG1L extends the functional repertoire of AMPAR auxiliary subunits, which can act not only to enhance but also diminish current flow through their associated AMPARs. SIGNIFICANCE STATEMENT Calcium-permeable AMPA receptors (CP-AMPARs) are an important group of receptors for the neurotransmitter glutamate. These receptors contribute to various forms of synaptic plasticity, and alterations in their expression or regulation are also seen in a number of serious neurological conditions, including stroke, motor neuron disease, and cocaine addiction. Several groups of auxiliary transmembrane proteins have been described that enhance the function and cell-surface expression of AMPARs. We now report that the recently identified auxiliary protein GSG1L decreases weighted mean channel conductance and calcium permeability of CP-AMPARs while increasing polyamine-dependent rectification by diminishing outward current. Our experiments reveal that GSG1L is an auxiliary subunit that can markedly suppress CP-AMPAR function, in both recombinant systems and central neurons.
Collapse
|
31
|
Chen Y, Derkach VA, Smith PA. Loss of Ca(2+)-permeable AMPA receptors in synapses of tonic firing substantia gelatinosa neurons in the chronic constriction injury model of neuropathic pain. Exp Neurol 2016; 279:168-177. [PMID: 26948545 DOI: 10.1016/j.expneurol.2016.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 02/29/2016] [Accepted: 03/01/2016] [Indexed: 12/11/2022]
Abstract
Synapses transmitting nociceptive information in the spinal dorsal horn undergo enduring changes following peripheral nerve injury. Indeed, such injury alters the expression of the GluA2 subunit of glutamatergic AMPA receptors (AMPARs) in the substantia gelatinosa and this predicts altered channel conductance and calcium permeability, leading to an altered function of excitatory synapses. We therefore investigated the functional properties of synaptic AMPA receptors in rat substantia gelatinosa neurons following 10-20d chronic constriction injury (CCI) of the sciatic nerve; a model of neuropathic pain. We measured their single-channel conductance and sensitivity to a blocker of calcium permeable AMPA receptors (CP-AMPARs), IEM1460 (50μM). In putative inhibitory, tonic firing neurons, CCI reduced the average single-channel conductance of synaptic AMPAR from 14.4±3.5pS (n=12) to 9.2±1.0pS (n=10, p<0.05). IEM1460 also more effectively antagonized evoked, spontaneous and miniature EPSCs in tonic neurons from sham operated animals than in those from animals that had been subjected to CCI. By contrast, CCI did not change the effectiveness of IEM1460 in delay firing neurons although average single channel conductance was increased from 7.6±1.2pS (n=11) to 12.2±1.5pS (n=10, p<0.01). CCI thus elicits plastic changes in a specific set of glutamatergic synapses of substantia gelatinosa due to subunit recomposition and loss of GluA2-lacking CP-AMPAR. These insights reveal a molecular mechanism of nerve injury acting at synapses of inhibitory neurons to reduce their drive and therefore inhibitory tone in the spinal cord, therefore contributing to the central sensitization associated with neuropathic pain.
Collapse
Affiliation(s)
- Yishen Chen
- Department of Pharmacology and Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Victor A Derkach
- Department of Biochemistry, School of Medicine, University of Washington, Seattle, WA 98195-7350, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-7350, USA
| | - Peter A Smith
- Department of Pharmacology and Neurosciences and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
32
|
Differential Modulation of GABAA Receptors Underlies Postsynaptic Depolarization- and Purinoceptor-Mediated Enhancement of Cerebellar Inhibitory Transmission: A Non-Stationary Fluctuation Analysis Study. PLoS One 2016; 11:e0150636. [PMID: 26930485 PMCID: PMC4773004 DOI: 10.1371/journal.pone.0150636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/17/2016] [Indexed: 12/20/2022] Open
Abstract
Cerebellar GABAergic inhibitory transmission between interneurons and Purkinje cells (PCs) undergoes a long-lasting enhancement following different stimulations, such as brief depolarization or activation of purinergic receptors of postsynaptic PCs. The underlying mechanisms, however, are not completely understood. Using a peak-scaled non-stationary fluctuation analysis, we therefore aimed at characterizing changes in the electrophysiological properties of GABAA receptors in PCs of rat cerebellar cortex during depolarization-induced “rebound potentiation (RP)” and purinoceptor-mediated long-term potentiation (PM-LTP), because both RP and PM-LTP likely depend on postsynaptic mechanisms. Stimulation-evoked inhibitory postsynaptic currents (eIPSCs) were recorded from PCs in neonatal rat cerebellar slices. Our analysis showed that postsynaptic membrane depolarization induced RP of eIPSCs in association with significant increase in the number of synaptic GABAA receptors without changing the channel conductance. By contrast, bath application of ATP induced PM-LTP of eIPSCs with a significant increase of the channel conductance of GABAA receptors without affecting the receptor number. Pretreatment with protein kinase A (PKA) inhibitors, H-89 and cAMPS-Rp, completely abolished the PM-LTP. The CaMKII inhibitor KN-62 reported to abolish RP did not alter PM-LTP. These results suggest that the signaling mechanism underlying PM-LTP could involve ATP-induced phosphorylation of synaptic GABAA receptors, thereby resulting in upregulation of the channel conductance by stimulating adenylyl cyclase-PKA signaling cascade, possibly via activation of P2Y11 purinoceptor. Thus, our findings reveal that postsynaptic GABAA receptors at the interneuron-PC inhibitory synapses are under the control of two distinct forms of long-term potentiation linked with different second messenger cascades.
Collapse
|
33
|
Dentate cannabinoid-sensitive interneurons undergo unique and selective strengthening of mutual synaptic inhibition in experimental epilepsy. Neurobiol Dis 2016; 89:23-35. [PMID: 26804027 DOI: 10.1016/j.nbd.2016.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 01/12/2016] [Accepted: 01/19/2016] [Indexed: 11/22/2022] Open
Abstract
Altered inhibition is a salient feature of hippocampal network reorganization in epilepsy. Hippocampal pyramidal cells and dentate granule cells show specific reduction in cannabinoid receptor type 1 (CB1R)-sensitive GABAergic inputs in experimental epilepsy. In the dentate gyrus, CB1Rs regulate synaptic release from accommodating interneurons (AC-INs) with adapting firing characteristics and axonal projections in the molecular layer, but not from fast-spiking basket cells (FS-BCs). However, it is not known whether the intrinsic physiology and synaptic inhibition of AC-INs responsible for CB1R-sensitive inhibition is altered in epilepsy. Using the pilocarpine-induced status epilepticus (SE) model of epilepsy, we find that the basic physiological characteristics of AC-INs in epileptic rats are not different from age-matched controls. In paired interneuronal recordings, the amplitude of unitary inhibitory synaptic currents (uIPSCs) between AC-INs doubled after SE. Non-stationary noise analysis revealed that the post-SE strengthening of synapses between AC-INs resulted from an increase in postsynaptic receptors. Baseline synaptic release and CB1R antagonist enhancement of release at synapses between AC-INs were not different between control and post-SE rats. Additionally, uIPSC amplitude in FS-BCs to AC-INs pairs was unchanged after SE indicating input-specific microcircuit alterations in inhibitory inputs to AC-INs. At the network level, AC-INs showed no reduction in spontaneous and miniature inhibitory synaptic current (sIPSC or mIPSC) frequency or amplitude after SE. However, AC-IN mIPSC amplitude was persistently enhanced in post-SE and epileptic rats. CB1R agonist reduced the amplitude and suppressed a greater proportion of sIPSCs in AC-INs from post-SE and epileptic rats demonstrating a novel, cell-type specific increase in CB1R-sensitive inhibition of AC-INs after SE. This unique post-SE strengthening of inhibition between AC-INs could lead to activity-dependent suppression of AC-IN firing and compromise dentate CB1R-sensitive inhibition in epilepsy.
Collapse
|
34
|
Lanore F, Silver RA. Extracting quantal properties of transmission at central synapses. NEUROMETHODS 2016; 113:193-211. [PMID: 30245548 DOI: 10.1007/978-1-4939-3411-9_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chemical synapses enable neurons to communicate rapidly, process and filter signals and to store information. However, studying their functional properties is difficult because synaptic connections typically consist of multiple synaptic contacts that release vesicles stochastically and exhibit time-dependent behavior. Moreover, most central synapses are small and inaccessible to direct measurements. Estimation of synaptic properties from responses recorded at the soma is complicated by the presence of nonuniform release probability and nonuniform quantal properties. The presence of multivesicular release and postsynaptic receptor saturation at some synapses can also complicate the interpretation of quantal parameters. Multiple-probability fluctuation analysis (MPFA; also known as variance-mean analysis) is a method that has been developed for estimating synaptic parameters from the variance and mean amplitude of synaptic responses recorded at different release probabilities. This statistical approach, which incorporates nonuniform synaptic properties, has become widely used for studying synaptic transmission. In this chapter, we describe the statistical models used to extract quantal parameters and discuss their interpretation when applying MPFA.
Collapse
Affiliation(s)
- Frederic Lanore
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| |
Collapse
|
35
|
Harris JJ, Jolivet R, Engl E, Attwell D. Energy-Efficient Information Transfer by Visual Pathway Synapses. Curr Biol 2015; 25:3151-60. [PMID: 26671670 PMCID: PMC4691239 DOI: 10.1016/j.cub.2015.10.063] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 11/29/2022]
Abstract
The architecture of computational devices is shaped by their energy consumption. Energetic constraints are used to design silicon-based computers but are poorly understood for neural computation. In the brain, most energy is used to reverse ion influxes generating excitatory postsynaptic currents (EPSCs) and action potentials. Thus, EPSCs should be small to minimize energy use, but not so small as to impair information transmission. We quantified information flow through the retinothalamic synapse in the visual pathway in brain slices, with cortical and inhibitory input to the postsynaptic cell blocked. Altering EPSC size with dynamic clamp, we found that a larger-than-normal EPSC increased information flow through the synapse. Thus, the evolutionarily selected EPSC size does not maximize retinal information flow to the cortex. By assessing the energy used on postsynaptic ion pumping and action potentials, we show that, instead, the EPSC size optimizes the ratio of retinal information transmitted to energy consumed. These data suggest maximization of information transmission per energy used as a synaptic design principle.
Collapse
Affiliation(s)
- Julia J Harris
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Renaud Jolivet
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elisabeth Engl
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
36
|
Feigenspan A, Babai N. Functional properties of spontaneous excitatory currents and encoding of light/dark transitions in horizontal cells of the mouse retina. Eur J Neurosci 2015; 42:2615-32. [PMID: 26173960 DOI: 10.1111/ejn.13016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/23/2015] [Accepted: 07/07/2015] [Indexed: 02/01/2023]
Abstract
As all visual information is represented in the spatio-temporal dynamics of transmitter release from photoreceptors and the combined postsynaptic responses of second-order neurons, appropriate synaptic transfer functions are fundamental for a meaningful perception of the visual world. The functional contribution of horizontal cells to gain control and organization of bipolar and ganglion cell receptive fields can only be evaluated with an in-depth understanding of signal processing in horizontal cells. Therefore, a horizontal slice preparation of the mouse retina was established to record from horizontal cell bodies with their dendritic fields intact and receiving functional synaptic input from cone photoreceptors. Horizontal cell bodies showed spontaneous excitatory currents (spEPSCs) of monophasic and more complex multi-peak waveforms. spEPSCs were induced by quantal release of glutamate from presynaptic cones with a unitary amplitude of 3 pA. Non-stationary noise analysis revealed that spEPSCs with a monoexponential decay were mediated by 7-8 glutamate receptors with a single-channel amplitude of 1.55 pA. Responses to photopic full-field illumination were characterized by reduction of a tonic inward current or hyperpolarization, inhibition of spEPSCs, followed by a fast and transient inward current at light offset. The response to periodic dark/light transitions of different frequencies was dependent on the adaptational status of the cell with a limiting frequency of 10 Hz. Both on and off components of the light response were mediated by AMPA and kainate receptors. Detailed analysis of horizontal cell synaptic physiology is a prerequisite for understanding signal coding and processing at the photoreceptor ribbon synapse.
Collapse
Affiliation(s)
- Andreas Feigenspan
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| | - Norbert Babai
- Department of Biology, Division of Animal Physiology, University of Erlangen-Nuernberg, Staudtstrasse 5, D-91058, Erlangen, German
| |
Collapse
|
37
|
Roy B, Ahmed KT, Cunningham ME, Ferdous J, Mukherjee R, Zheng W, Chen XZ, Ali DW. Zebrafish TARP Cacng2 is required for the expression and normal development of AMPA receptors at excitatory synapses. Dev Neurobiol 2015; 76:487-506. [PMID: 26178704 DOI: 10.1002/dneu.22327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/03/2023]
Abstract
Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPA receptor-related proteins, known as TARPs. Little is known about the role of TARPs during development, or about their function in non-mammalian organisms. Here we report the presence of TARPs, specifically the prototypical TARP, stargazin, in developing zebrafish. We find that zebrafish express two forms of stargazin, Cacng2a and Cacng2b from as early as 12-h post fertilization (hpf). Knockdown of Cacng2a and Cacng2b via splice-blocking morpholinos resulted in embryos that exhibited deficits in C-start escape responses, showing reduced C-bend angles, smaller tail velocities and aberrant C-bend turning directions. Injection of the morphants with Cacng2a or 2b mRNA rescued the morphological phenotype and the synaptic deficits. To investigate the effect of reduced Cacng2a and 2b levels on synaptic physiology, we performed whole cell patch clamp recordings of AMPA mEPSCs from zebrafish Mauthner cells. Knockdown of Cacng2a results in reduced AMPA currents and lower mEPSC frequencies, whereas knockdown of Cacng2b displayed no significant change in mEPSC amplitude or frequency. Non-stationary fluctuation analysis confirmed a reduction in the number of active synaptic receptors in the Cacng2a but not in the Cacng2b morphants. Together, these results suggest that Cacng2a is required for normal trafficking and function of synaptic AMPARs, while Cacng2b is largely non-functional with respect to the development of AMPA synaptic transmission.
Collapse
Affiliation(s)
- Birbickram Roy
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Kazi T Ahmed
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Marcus E Cunningham
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Jannatul Ferdous
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Rajarshi Mukherjee
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Wang Zheng
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Xing-Zhen Chen
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7
| | - Declan W Ali
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada, T6G 2H7.,Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada, T6G 2E1
| |
Collapse
|
38
|
He Q, Duguid I, Clark B, Panzanelli P, Patel B, Thomas P, Fritschy JM, Smart TG. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nat Commun 2015; 6:7364. [PMID: 26179122 PMCID: PMC4518301 DOI: 10.1038/ncomms8364] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 05/01/2015] [Indexed: 01/16/2023] Open
Abstract
Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABA(A) receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABA(A) receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABA(A) receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABA(A) receptors and is abolished by preventing CaMKII phosphorylation of GABA(A) receptors. Our results reveal a novel GABA(A) receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.
Collapse
Affiliation(s)
- Qionger He
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Ian Duguid
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Beverley Clark
- Wolfson Institute for Biomedical Research, UCL, Gower Street, London WC1E 6BT, UK
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini, University of Turin, 15-10126 Turin, Italy
| | - Bijal Patel
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| | - Jean-Marc Fritschy
- Institute of Pharmacology, University of Zurich, Winterthurestrasse 190, Zurich 8057, Switzerland
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
39
|
MET receptor tyrosine kinase controls dendritic complexity, spine morphogenesis, and glutamatergic synapse maturation in the hippocampus. J Neurosci 2015; 34:16166-79. [PMID: 25471559 DOI: 10.1523/jneurosci.2580-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The MET receptor tyrosine kinase (RTK), implicated in risk for autism spectrum disorder (ASD) and in functional and structural circuit integrity in humans, is a temporally and spatially regulated receptor enriched in dorsal pallial-derived structures during mouse forebrain development. Here we report that loss or gain of function of MET in vitro or in vivo leads to changes, opposite in nature, in dendritic complexity, spine morphogenesis, and the timing of glutamatergic synapse maturation onto hippocampus CA1 neurons. Consistent with the morphological and biochemical changes, deletion of Met in mutant mice results in precocious maturation of excitatory synapse, as indicated by a reduction of the proportion of silent synapses, a faster GluN2A subunit switch, and an enhanced acquisition of AMPA receptors at synaptic sites. Thus, MET-mediated signaling appears to serve as a mechanism for controlling the timing of neuronal growth and functional maturation. These studies suggest that mistimed maturation of glutamatergic synapses leads to the aberrant neural circuits that may be associated with ASD risk.
Collapse
|
40
|
Postsynaptic insertion of AMPA receptor onto cortical pyramidal neurons in the anterior cingulate cortex after peripheral nerve injury. Mol Brain 2014; 7:76. [PMID: 25359681 PMCID: PMC4221704 DOI: 10.1186/s13041-014-0076-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 10/21/2014] [Indexed: 12/12/2022] Open
Abstract
Long-term potentiation (LTP) is the key cellular mechanism for physiological learning and pathological chronic pain. Postsynaptic accumulation of AMPA receptor (AMPAR) GluA1 plays an important role for injury-related cortical LTP. However, there is no direct evidence for postsynaptic GluA1 insertion or accumulation after peripheral injury. Here we report nerve injury increased the postsynaptic expression of AMPAR GluA1 in pyramidal neurons in the layer V of the anterior cingulate cortex (ACC), including the corticospinal projecting neurons. Electrophysiological recordings show that potentiation of postsynaptic responses was reversed by Ca2+ permeable AMPAR antagonist NASPM. Finally, behavioral studies show that microinjection of NASPM into the ACC inhibited behavioral sensitization caused by nerve injury. Our findings provide direct evidence that peripheral nerve injury induces postsynaptic GluA1 accumulation in cingulate cortical neurons, and inhibits postsynaptic GluA1 accumulation which may serve as a novel target for treating neuropathic pain.
Collapse
|
41
|
Stepanyuk A, Borisyuk A, Belan P. Maximum likelihood estimation of biophysical parameters of synaptic receptors from macroscopic currents. Front Cell Neurosci 2014; 8:303. [PMID: 25324721 PMCID: PMC4183100 DOI: 10.3389/fncel.2014.00303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/09/2014] [Indexed: 11/13/2022] Open
Abstract
Dendritic integration and neuronal firing patterns strongly depend on biophysical properties of synaptic ligand-gated channels. However, precise estimation of biophysical parameters of these channels in their intrinsic environment is complicated and still unresolved problem. Here we describe a novel method based on a maximum likelihood approach that allows to estimate not only the unitary current of synaptic receptor channels but also their multiple conductance levels, kinetic constants, the number of receptors bound with a neurotransmitter, and the peak open probability from experimentally feasible number of postsynaptic currents. The new method also improves the accuracy of evaluation of unitary current as compared to the peak-scaled non-stationary fluctuation analysis, leading to a possibility to precisely estimate this important parameter from a few postsynaptic currents recorded in steady-state conditions. Estimation of unitary current with this method is robust even if postsynaptic currents are generated by receptors having different kinetic parameters, the case when peak-scaled non-stationary fluctuation analysis is not applicable. Thus, with the new method, routinely recorded postsynaptic currents could be used to study the properties of synaptic receptors in their native biochemical environment.
Collapse
Affiliation(s)
- Andrey Stepanyuk
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| | - Anya Borisyuk
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| | - Pavel Belan
- Laboratory of Molecular Biophysics, Bogomoletz Institute of Physiology Kiev, Ukraine ; State Key Laboratory of Molecular and Cellular Biology, Bogomoletz Institute of Physiology Kiev, Ukraine
| |
Collapse
|
42
|
Pin1-dependent signalling negatively affects GABAergic transmission by modulating neuroligin2/gephyrin interaction. Nat Commun 2014; 5:5066. [PMID: 25297980 PMCID: PMC4197815 DOI: 10.1038/ncomms6066] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/25/2014] [Indexed: 01/06/2023] Open
Abstract
The cell adhesion molecule Neuroligin2 (NL2) is localized selectively at GABAergic synapses, where it interacts with the scaffolding protein gephyrin in the post-synaptic density. However, the role of this interaction for formation and plasticity of GABAergic synapses is unclear. Here, we demonstrate that endogenous NL2 undergoes proline-directed phosphorylation at its unique S714-P consensus site, leading to the recruitment of the peptidyl-prolyl cis-trans isomerase Pin1. This signalling cascade negatively regulates NL2's ability to interact with gephyrin at GABAergic post-synaptic sites. As a consequence, enhanced accumulation of NL2, gephyrin and GABAA receptors was detected at GABAergic synapses in the hippocampus of Pin1-knockout mice (Pin1-/-) associated with an increase in amplitude of spontaneous GABAA-mediated post-synaptic currents. Our results suggest that Pin1-dependent signalling represents a mechanism to modulate GABAergic transmission by regulating NL2/gephyrin interaction.
Collapse
|
43
|
Enhanced lateral inhibition in the barrel cortex by deletion of phospholipase C-related catalytically inactive protein-1/2 in mice. Pflugers Arch 2014; 467:1445-1456. [DOI: 10.1007/s00424-014-1592-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
|
44
|
Guimond D, Diabira D, Porcher C, Bader F, Ferrand N, Zhu M, Appleyard SM, Wayman GA, Gaiarsa JL. Leptin potentiates GABAergic synaptic transmission in the developing rodent hippocampus. Front Cell Neurosci 2014; 8:235. [PMID: 25177272 PMCID: PMC4133691 DOI: 10.3389/fncel.2014.00235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/26/2014] [Indexed: 12/17/2022] Open
Abstract
It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission.
Collapse
Affiliation(s)
- Damien Guimond
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France ; Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Diabe Diabira
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Christophe Porcher
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Francesca Bader
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Nadine Ferrand
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Gary A Wayman
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University Pullman, WA, USA
| | - Jean-Luc Gaiarsa
- Parc Scientifique de Luminy, Aix-Marseille Université Marseille, France ; Unité 901, Institut National de la Santé et de la Recherche Médicale Marseille, France ; Institut de Neurobiologie de la Méditerranée Marseille, France
| |
Collapse
|
45
|
Wang XS, Peng CZ, Cai WJ, Xia J, Jin D, Dai Y, Luo XG, Klyachko VA, Deng PY. Activity-dependent regulation of release probability at excitatory hippocampal synapses: a crucial role of fragile X mental retardation protein in neurotransmission. Eur J Neurosci 2014; 39:1602-12. [PMID: 24646437 DOI: 10.1111/ejn.12546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/21/2014] [Accepted: 02/03/2014] [Indexed: 01/23/2023]
Abstract
Transcriptional silencing of the Fmr1 gene encoding fragile X mental retardation protein (FMRP) causes fragile X syndrome (FXS), the most common form of inherited intellectual disability and the leading genetic cause of autism. FMRP has been suggested to play important roles in regulating neurotransmission and short-term synaptic plasticity at excitatory hippocampal and cortical synapses. However, the origins and mechanisms of these FMRP actions remain incompletely understood, and the role of FMRP in regulating synaptic release probability and presynaptic function remains debated. Here we used variance-mean analysis and peak-scaled nonstationary variance analysis to examine changes in both presynaptic and postsynaptic parameters during repetitive activity at excitatory CA3-CA1 hippocampal synapses in a mouse model of FXS. Our analyses revealed that loss of FMRP did not affect the basal release probability or basal synaptic transmission, but caused an abnormally elevated release probability specifically during repetitive activity. These abnormalities were not accompanied by changes in excitatory postsynaptic current kinetics, quantal size or postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor conductance. Our results thus indicate that FMRP regulates neurotransmission at excitatory hippocampal synapses specifically during repetitive activity via modulation of release probability in a presynaptic manner. Our study suggests that FMRP function in regulating neurotransmitter release is an activity-dependent phenomenon that may contribute to the pathophysiology of FXS.
Collapse
Affiliation(s)
- Xiao-Sheng Wang
- Department of Histology and Embryology, Department of Anatomy and Neurobiology, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rothman JS, Silver RA. Data-driven modeling of synaptic transmission and integration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 123:305-50. [PMID: 24560150 PMCID: PMC4748401 DOI: 10.1016/b978-0-12-397897-4.00004-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In this chapter, we describe how to create mathematical models of synaptic transmission and integration. We start with a brief synopsis of the experimental evidence underlying our current understanding of synaptic transmission. We then describe synaptic transmission at a particular glutamatergic synapse in the mammalian cerebellum, the mossy fiber to granule cell synapse, since data from this well-characterized synapse can provide a benchmark comparison for how well synaptic properties are captured by different mathematical models. This chapter is structured by first presenting the simplest mathematical description of an average synaptic conductance waveform and then introducing methods for incorporating more complex synaptic properties such as nonlinear voltage dependence of ionotropic receptors, short-term plasticity, and stochastic fluctuations. We restrict our focus to excitatory synaptic transmission, but most of the modeling approaches discussed here can be equally applied to inhibitory synapses. Our data-driven approach will be of interest to those wishing to model synaptic transmission and network behavior in health and disease.
Collapse
Affiliation(s)
- Jason S Rothman
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| | - R Angus Silver
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, UK
| |
Collapse
|
47
|
Differential subcellular targeting of glutamate receptor subtypes during homeostatic synaptic plasticity. J Neurosci 2013; 33:13547-59. [PMID: 23946413 DOI: 10.1523/jneurosci.1873-13.2013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homeostatic processes are believed to contribute to the stability of neuronal networks that are perpetually influenced by Hebbian forms of synaptic plasticity. Whereas the rules governing the targeting and trafficking of AMPA and NMDA subtypes of glutamate receptors during rapid Hebbian LTP have been extensively studied, those that are operant during homeostatic forms of synaptic strengthening are less well understood. Here, we used biochemical, biophysical, and pharmacological approaches to investigate glutamate receptor regulation during homeostatic synaptic plasticity. We show in rat organotypic hippocampal slices that prolonged network silencing induced a robust surface upregulation of GluA2-lacking AMPARs, not only at synapses, but also at extrasynaptic dendritic and somatic regions of CA1 pyramidal neurons. We also detected a shift in NMDAR subunit composition that, in contrast to the cell-wide surface delivery of GluA2-lacking AMPARs, occurred exclusively at synapses. The subunit composition and subcellular distribution of AMPARs and NMDARs are therefore distinctly regulated during homeostatic synaptic plasticity. Thus, because subunit composition dictates key channel properties, such as agonist affinity, gating kinetics, and calcium permeability, the homeostatic synaptic process transcends the simple modulation of synaptic strength by also regulating the signaling and integrative properties of central synapses.
Collapse
|
48
|
Studniarczyk D, Coombs I, Cull-Candy SG, Farrant M. TARP γ-7 selectively enhances synaptic expression of calcium-permeable AMPARs. Nat Neurosci 2013; 16:1266-74. [PMID: 23872597 PMCID: PMC3858651 DOI: 10.1038/nn.3473] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/13/2013] [Indexed: 12/14/2022]
Abstract
Regulation of calcium-permeable AMPA receptors (CP-AMPARs) is crucial in normal synaptic function and neurological disease states. Although transmembrane AMPAR regulatory proteins (TARPs) such as stargazin (γ-2) modulate the properties of calcium-impermeable AMPARs (CI-AMPARs) and promote their synaptic targeting, the TARP-specific rules governing CP-AMPAR synaptic trafficking remain unclear. We used RNA interference to manipulate AMPAR-subunit and TARP expression in γ-2-lacking stargazer cerebellar granule cells--the classic model of TARP deficiency. We found that TARP γ-7 selectively enhanced the synaptic expression of CP-AMPARs and suppressed CI-AMPARs, identifying a pivotal role of γ-7 in regulating the prevalence of CP-AMPARs. In the absence of associated TARPs, both CP-AMPARs and CI-AMPARs were able to localize to synapses and mediate transmission, although their properties were altered. Our results also establish that TARPed synaptic receptors in granule cells require both γ-2 and γ-7 and reveal an unexpected basis for the loss of AMPAR-mediated transmission in stargazer mice.
Collapse
Affiliation(s)
- Dorota Studniarczyk
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | | | | | | |
Collapse
|
49
|
Pizzarelli R, Cherubini E. Developmental regulation of GABAergic signalling in the hippocampus of neuroligin 3 R451C knock-in mice: an animal model of Autism. Front Cell Neurosci 2013; 7:85. [PMID: 23761734 PMCID: PMC3671185 DOI: 10.3389/fncel.2013.00085] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 05/17/2013] [Indexed: 11/24/2022] Open
Abstract
Autism Spectrum Disorders (ASDs) comprise an heterogeneous group of neuro-developmental abnormalities, mainly of genetic origin, characterized by impaired social interactions, communications deficits, and stereotyped behaviors. In a small percentage of cases, ASDs have been found to be associated with single mutations in genes involved in synaptic function. One of these involves the postsynaptic cell adhesion molecule neuroligin (NL) 3. NLs interact with presynaptic neurexins (Nrxs) to ensure a correct cross talk between post and presynaptic specializations. Here, transgenic mice carrying the human R451C mutation of Nlgn3, were used to study GABAergic signaling in the hippocampus early in postnatal life. Whole cell recordings from CA3 pyramidal neurons in slices from NL3R451C knock-in mice revealed an enhanced frequency of Giant Depolarizing Potentials (GDPs), as compared to controls. This effect was probably dependent on an increased GABAergic drive to principal cells as demonstrated by the enhanced frequency of miniature GABAA-mediated (GPSCs), but not AMPA-mediated postsynaptic currents (EPSCs). Changes in frequency of mGPSCs were associated with an acceleration of their decay kinetics, in the absence of any change in unitary synaptic conductance or in the number of GABAA receptor channels, as assessed by peak scaled non-stationary fluctuation analysis. The enhanced GABAergic but not glutamatergic transmission early in postnatal life may change the excitatory/inhibitory balance known to play a key role in the construction and refinement of neuronal circuits during postnatal development. This may lead to behavioral deficits reminiscent of those observed in ASDs patients.
Collapse
Affiliation(s)
- Rocco Pizzarelli
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati Trieste, Italy
| | | |
Collapse
|
50
|
Parekh R, Ascoli GA. Neuronal morphology goes digital: a research hub for cellular and system neuroscience. Neuron 2013; 77:1017-38. [PMID: 23522039 PMCID: PMC3653619 DOI: 10.1016/j.neuron.2013.03.008] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2013] [Indexed: 02/07/2023]
Abstract
The importance of neuronal morphology in brain function has been recognized for over a century. The broad applicability of "digital reconstructions" of neuron morphology across neuroscience subdisciplines has stimulated the rapid development of numerous synergistic tools for data acquisition, anatomical analysis, three-dimensional rendering, electrophysiological simulation, growth models, and data sharing. Here we discuss the processes of histological labeling, microscopic imaging, and semiautomated tracing. Moreover, we provide an annotated compilation of currently available resources in this rich research "ecosystem" as a central reference for experimental and computational neuroscience.
Collapse
Affiliation(s)
- Ruchi Parekh
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| | - Giorgio A. Ascoli
- Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA, 22030, USA
| |
Collapse
|