1
|
Badger SE, Coldicott I, Kyrgiou-Balli E, Higginbottom A, Moutin C, Mohd Imran K, Day JC, Cooper-Knock J, Mead RJ, Alix JJP. A bacterial artificial chromosome mouse model of amyotrophic lateral sclerosis manifests 'space cadet syndrome' on two FVB backgrounds. Dis Model Mech 2025; 18:DMM052221. [PMID: 39945358 PMCID: PMC11849976 DOI: 10.1242/dmm.052221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
C9orf72-related amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD) has proven difficult to model in mice. Liu et al. (2016) reported a bacterial artificial chromosome (BAC) transgenic mouse displaying behavioural, motor and pathological abnormalities. This was followed by multiple laboratories independently refuting and confirming phenotypes. A proposed explanation centred on the use of different FVB background lines (from The Jackson Laboratory and Janvier Labs). We studied C9orf72 BAC mice on both backgrounds and found significantly elevated levels of dipeptide repeat proteins, but no evidence of a transgene-associated phenotype. We observed seizures and a gradual decline in functional performance in transgenic and non-transgenic mice, irrespective of genetic background. The phenotype was in keeping with the so-called 'space cadet syndrome'. Our findings indicate that the differences previously reported are not due to C9orf72 status and highlight the importance of using genetic backgrounds that do not confound interpretation of neurodegenerative phenotypes.
Collapse
Affiliation(s)
- Sophie E. Badger
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - Ian Coldicott
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - Ergita Kyrgiou-Balli
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - Chloé Moutin
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - Kamallia Mohd Imran
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
| | - John C. Day
- Interface Analysis Centre, School of Physics, University of Bristol, Bristol BS8 1TL, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
- Neuroscience Institute, University of Sheffield,Sheffield S10 2TN, UK
| | - Richard J. Mead
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
- Neuroscience Institute, University of Sheffield,Sheffield S10 2TN, UK
| | - James J. P. Alix
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 1HQ, UK
- Neuroscience Institute, University of Sheffield,Sheffield S10 2TN, UK
| |
Collapse
|
2
|
Nguyen HVM, Ran Q, Salmon AB, Bumsoo A, Chiao YA, Bhaskaran S, Richardson A. Mouse models used to test the role of reactive oxygen species in aging and age-related chronic diseases. Free Radic Biol Med 2024; 225:617-629. [PMID: 39419456 PMCID: PMC11624111 DOI: 10.1016/j.freeradbiomed.2024.10.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
With the development of the technology to generate transgenic and knockout mice in the 1990s, investigators had a powerful tool to directly test the impact of altering a specific gene on a biological process or disease. Over the past three decades, investigators have used transgenic and knockout mouse models, which have altered expression of antioxidant genes, to test the role of oxidative stress/damage in aging and age-related diseases. In this comprehensive review, we describe the studies using transgenic and knockout mouse models to test the role of oxidative stress/damage in aging (longevity) and three age-related diseases, e.g., sarcopenia, cardiac aging, and Alzheimer's Disease. While longevity was consistently altered only by one transgenic and one knockout mouse model as predicted by the Oxidative Stress Theory of Aging, the incidence/progression of the three age-related diseases (especially Alzheimer's disease) were robustly impacted when the expression of various antioxidant genes was altered using transgenic and knockout mouse models.
Collapse
Affiliation(s)
- Hoang Van M Nguyen
- Department of Nutritional Sciences, University of Oklahoma Health Sciences, Oklahoma City, OK, USA
| | - Qitao Ran
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Adam B Salmon
- Department of Molecular Medicine, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA; VA South Texas Health Care System, San Antonio, TX, USA
| | - Ahn Bumsoo
- Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Shylesh Bhaskaran
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Arlan Richardson
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences, Oklahoma City, OK, USA; VA Oklahoma Health Care System, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Ganguly U, Carroll T, Nehrke K, Johnson GVW. Mitochondrial Quality Control in Alzheimer's Disease: Insights from Caenorhabditis elegans Models. Antioxidants (Basel) 2024; 13:1343. [PMID: 39594485 PMCID: PMC11590956 DOI: 10.3390/antiox13111343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/16/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder that is classically defined by the extracellular deposition of senile plaques rich in amyloid-beta (Aβ) protein and the intracellular accumulation of neurofibrillary tangles (NFTs) that are rich in aberrantly modified tau protein. In addition to aggregative and proteostatic abnormalities, neurons affected by AD also frequently possess dysfunctional mitochondria and disrupted mitochondrial maintenance, such as the inability to eliminate damaged mitochondria via mitophagy. Decades have been spent interrogating the etiopathogenesis of AD, and contributions from model organism research have aided in developing a more fundamental understanding of molecular dysfunction caused by Aβ and toxic tau aggregates. The soil nematode C. elegans is a genetic model organism that has been widely used for interrogating neurodegenerative mechanisms including AD. In this review, we discuss the advantages and limitations of the many C. elegans AD models, with a special focus and discussion on how mitochondrial quality control pathways (namely mitophagy) may contribute to AD development. We also summarize evidence on how targeting mitophagy has been therapeutically beneficial in AD. Lastly, we delineate possible mechanisms that can work alone or in concert to ultimately lead to mitophagy impairment in neurons and may contribute to AD etiopathology.
Collapse
Affiliation(s)
- Upasana Ganguly
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Trae Carroll
- Department of Pathology, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Keith Nehrke
- Department of Medicine, Nephrology Division, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| | - Gail V. W. Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center (URMC), Rochester, NY 14642, USA;
| |
Collapse
|
4
|
Żukowska J, Moss SJ, Subramanian V, Acharya KR. Molecular basis of selective amyloid-β degrading enzymes in Alzheimer's disease. FEBS J 2024; 291:2999-3029. [PMID: 37622248 DOI: 10.1111/febs.16939] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 08/26/2023]
Abstract
The accumulation of the small 42-residue long peptide amyloid-β (Aβ) has been proposed as a major trigger for the development of Alzheimer's disease (AD). Within the brain, the concentration of Aβ peptide is tightly controlled through production and clearance mechanisms. Substantial experimental evidence now shows that reduced levels of Aβ clearance are present in individuals living with AD. This accumulation of Aβ can lead to the formation of large aggregated amyloid plaques-one of two detectable hallmarks of the disease. Aβ-degrading enzymes (ADEs) are major players in the clearance of Aβ. Stimulating ADE activity or expression, in order to compensate for the decreased clearance in the AD phenotype, provides a promising therapeutic target. It has been reported in mice that upregulation of ADEs can reduce the levels of Aβ peptide and amyloid plaques-in some cases, this led to improved cognitive function. Among several known ADEs, neprilysin (NEP), endothelin-converting enzyme-1 (ECE-1), insulin degrading enzyme (IDE) and angiotensin-1 converting enzyme (ACE) from the zinc metalloprotease family have been identified as important. These ADEs have the capacity to digest soluble Aβ which, in turn, cannot form the toxic oligomeric species. While they are known for their amyloid degradation, they exhibit complexity through promiscuous nature and a broad range of substrates that they can degrade. This review highlights current structural and functional understanding of these key ADEs, giving some insight into the molecular interactions that leads to the hydrolysis of peptide substrates, the crucial tasks performed by them and the potential for therapeutic use in the future.
Collapse
|
5
|
Singh CSB, Johns KM, Kari S, Munro L, Mathews A, Fenninger F, Pfeifer CG, Jefferies WA. Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation. Stem Cell Reports 2024; 19:456-468. [PMID: 38552634 PMCID: PMC11096610 DOI: 10.1016/j.stemcr.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/12/2024] Open
Abstract
The risk of iatrogenic disease is often underestimated as a concern in contemporary medical procedures, encompassing tissue and organ transplantation, stem cell therapies, blood transfusions, and the administration of blood-derived products. In this context, despite the prevailing belief that Alzheimer's disease (AD) manifests primarily in familial and sporadic forms, our investigation reveals an unexpected transplantable variant of AD in a preclinical context, potentially indicating iatrogenic transmission in AD patients. Through adoptive transplantation of donor bone marrow stem cells carrying a mutant human amyloid precursor protein (APP) transgene into either APP-deficient knockout or normal recipient animals, we observed rapid development of AD pathological hallmarks. These pathological features were significantly accelerated and emerged within 6-9 months post transplantation and included compromised blood-brain barrier integrity, heightened cerebral vascular neoangiogenesis, elevated brain-associated β-amyloid levels, and cognitive impairment. Furthermore, our findings underscore the contribution of β-amyloid burden originating outside of the central nervous system to AD pathogenesis within the brain. We conclude that stem cell transplantation from donors harboring a pathogenic mutant allele can effectively transfer central nervous system diseases to healthy recipients, mirroring the pathogenesis observed in the donor. Consequently, our observations advocate for genomic sequencing of donor specimens prior to tissue, organ, or stem cell transplantation therapies, as well as blood transfusions and blood-derived product administration, to mitigate the risk of iatrogenic diseases.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Kelly Marie Johns
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Suresh Kari
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada
| | - Angela Mathews
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Franz Fenninger
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9 Canada.
| |
Collapse
|
6
|
B Szabo A, Sayegh F, Gauzin S, Lejards C, Guiard B, Valton L, Verret L, Rampon C, Dahan L. No major effect of dopamine receptor 1/5 antagonist SCH-23390 on epileptic activity in the Tg2576 mouse model of amyloidosis. Eur J Neurosci 2024; 59:1558-1566. [PMID: 38308520 DOI: 10.1111/ejn.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
The excitation-inhibition imbalance manifesting as epileptic activities in Alzheimer's disease is gaining more and more attention, and several potentially involved cellular and molecular pathways are currently under investigation. Based on in vitro studies, dopamine D1-type receptors in the anterior cingulate cortex and the hippocampus have been proposed to participate in this peculiar co-morbidity in mouse models of amyloidosis. Here, we tested the implication of dopaminergic transmission in vivo in the Tg2576 mouse model of Alzheimer's disease by monitoring epileptic activities via intracranial EEG before and after treatment with dopamine antagonists. Our results show that neither the D1-like dopamine receptor antagonist SCH23390 nor the D2-like dopamine receptor antagonist haloperidol reduces the frequency of epileptic activities. While requiring further investigation, our results indicate that on a systemic level, dopamine receptors are not significantly contributing to epilepsy observed in vivo in this mouse model of Alzheimer's disease.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France
| | - Farès Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sèbastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Bruno Guiard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France
- Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
7
|
Lee Y, Morrow EM. Quantitative Measurement of Tau Aggregation in Genetically Modified Rats with Neurodegeneration. Methods Mol Biol 2024; 2761:291-299. [PMID: 38427245 DOI: 10.1007/978-1-0716-3662-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Animal models of neurodegenerative diseases have helped us to better understand the pathogenesis of neurodegenerative diseases. However, recent failure to translate pre-clinical model studies to the clinic urges us to develop more rigorous and faithful animal models in neurodegenerative diseases. As genetic manipulation of rats becomes much more accessible due to availability of CRISPR-Cas9 and other genomic editing toolboxes, rats have been emerging as a new model system for neurodegenerative diseases. Even though mouse models have been dominant over the last decades, rats may provide advantages over mice. Rats are more genetically and physiologically closer to humans than to mice. Also, certain rat models can represent deposition of tau, which is one of the key pathological features of Alzheimer's diseases and tauopathies. However, there is an unmet need for standardized, rigorous testing in rat models. We adopted two commonly used biochemical and immunofluorescence methods from mice and human postmortem brains to measure tau aggregation. Due to the intrinsic differences between mice and rats, e.g., size of rat brains, certain equipment is required for rat models to study tau pathologies. Along with specific tools, here we describe the detailed methods for rat models of neurodegenerative diseases.
Collapse
Affiliation(s)
- YouJin Lee
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| | - Eric M Morrow
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA.
- Center for Translational Neuroscience, Carney Institute for Brain Science, and Brown Institute for Translational Science (BITS), Brown University, Providence, RI, USA.
| |
Collapse
|
8
|
Van Raamsdonk JM, Al-Shekaili HH, Wagner L, Bredy TW, Chan L, Pearson J, Schwab C, Murphy Z, Devon RS, Lu G, Kobor MS, Hayden MR, Leavitt BR. Huntingtin Decreases Susceptibility to a Spontaneous Seizure Disorder in FVN/B Mice. Aging Dis 2023; 14:2249-2266. [PMID: 37199581 PMCID: PMC10676795 DOI: 10.14336/ad.2023.0423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/23/2023] [Indexed: 05/19/2023] Open
Abstract
Huntington disease (HD) is an adult-onset neurodegenerative disorder that is caused by a trinucleotide CAG repeat expansion in the HTT gene that codes for the protein huntingtin (HTT in humans or Htt in mice). HTT is a multi-functional, ubiquitously expressed protein that is essential for embryonic survival, normal neurodevelopment, and adult brain function. The ability of wild-type HTT to protect neurons against various forms of death raises the possibility that loss of normal HTT function may worsen disease progression in HD. Huntingtin-lowering therapeutics are being evaluated in clinical trials for HD, but concerns have been raised that decreasing wild-type HTT levels may have adverse effects. Here we show that Htt levels modulate the occurrence of an idiopathic seizure disorder that spontaneously occurs in approximately 28% of FVB/N mice, which we have called FVB/N Seizure Disorder with SUDEP (FSDS). These abnormal FVB/N mice demonstrate the cardinal features of mouse models of epilepsy including spontaneous seizures, astrocytosis, neuronal hypertrophy, upregulation of brain-derived neurotrophic factor (BDNF), and sudden seizure-related death. Interestingly, mice heterozygous for the targeted inactivation of Htt (Htt+/- mice) exhibit an increased frequency of this disorder (71% FSDS phenotype), while over-expression of either full length wild-type HTT in YAC18 mice or full length mutant HTT in YAC128 mice completely prevents it (0% FSDS phenotype). Examination of the mechanism underlying huntingtin's ability to modulate the frequency of this seizure disorder indicated that over-expression of full length HTT can promote neuronal survival following seizures. Overall, our results demonstrate a protective role for huntingtin in this form of epilepsy and provide a plausible explanation for the observation of seizures in the juvenile form of HD, Lopes-Maciel-Rodan syndrome, and Wolf-Hirschhorn syndrome. Adverse effects caused by decreasing huntingtin levels have ramifications for huntingtin-lowering therapies that are being developed to treat HD.
Collapse
Affiliation(s)
- Jeremy M. Van Raamsdonk
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 2B4, Canada
- Metabolic Disorders and Complications (MeDiC) and Brain Repair and Integrated Neuroscience (BRaIN) Programs, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, H3A 2B4, Canada.
| | - Hilal H. Al-Shekaili
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Laura Wagner
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Tim W Bredy
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland, QLD 4072, Australia..
| | - Laura Chan
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Jacqueline Pearson
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Claudia Schwab
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Zoe Murphy
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Rebecca S. Devon
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Ge Lu
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Michael S. Kobor
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Michael R. Hayden
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| | - Blair R. Leavitt
- Department of Medical Genetics and Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada.
| |
Collapse
|
9
|
Qiu F, Liu Y, Liu Y, Zhao Z, Zhou L, Chen P, Du Y, Wang Y, Sun H, Zeng C, Wang X, Liu Y, Pan H, Ke C. CD137L Inhibition Ameliorates Hippocampal Neuroinflammation and Behavioral Deficits in a Mouse Model of Sepsis-Associated Encephalopathy. Neuromolecular Med 2023; 25:616-631. [PMID: 37796401 PMCID: PMC10721669 DOI: 10.1007/s12017-023-08764-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
Anxiety manifestations and cognitive dysfunction are common sequelae in patients with sepsis-associated encephalopathy (SAE). Microglia-mediated inflammatory signaling is involved in anxiety, depression, and cognitive dysfunction during acute infection with bacterial lipopolysaccharide (LPS). However, the molecular mechanisms underlying microglia activation and behavioral and cognitive deficits in sepsis have not been in fully elucidated. Based on previous research, we speculated that the CD137 receptor/ligand system modulates microglia function during sepsis to mediate classical neurological SAE symptoms. A murine model of SAE was established by injecting male C57BL/6 mice with LPS, and cultured mouse BV2 microglia were used for in vitro assays. RT-qPCR, immunofluorescence staining, flow cytometry, and ELISA were used to assess microglial activation and the expression of CD137L and inflammation-related cytokines in the mouse hippocampus and in cultured BV2 cells. In addition, behavioral tests were conducted in assess cognitive performance and behavioral distress. Immunofluorescence and RT-qPCR analyses showed that hippocampal expression of CD137L was upregulated in activated microglia following LPS treatment. Pre-treatment with the CD137L neutralizing antibody TKS-1 significantly reduced CD137L levels, attenuated the expression of M1 polarization markers in microglia, and inhibited the production of TNF-α, IL-1β, and IL-6 in both LPS-treated mice and BV2 cells. Conversely, stimulation of CD137L signaling by recombinant CD137-Fc fusion protein activated the synthesis and release of pro-inflammatory cytokines in cultures BV2 microglia. Importantly, open field, elevated plus maze, and Y-maze spontaneous alternation test results indicated that TKS-1 administration alleviated anxiety-like behavior and spatial memory decline in mice with LPS-induced SAE. These findings suggest that CD137L upregulation in activated microglia critically contributes to neuroinflammation, anxiety-like behavior, and cognitive dysfunction in the mouse model of LPS-induced sepsis. Therefore, therapeutic modulation of the CD137L/CD137 signaling pathway may represent an effective way to minimize brain damage and prevent cognitive and emotional deficits associated with SAE.
Collapse
Affiliation(s)
- Fang Qiu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yueming Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Yang Liu
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Zhuyun Zhao
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Lile Zhou
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China
| | - Pengfei Chen
- Department of Traumatic Orthopedics, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yunbo Du
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yanmei Wang
- Department of Critical Care Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Huimin Sun
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Changchun Zeng
- Department of Medical Laboratory, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yuqiang Liu
- Department of Anesthesiology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518025, Guangdong, China.
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Changneng Ke
- Department of Burn and Plastic Surgery, Shenzhen Longhua District Central Hospital, Shenzhen, 518110, Guangdong, China.
| |
Collapse
|
10
|
Qi S, Ngwa C, Al Mamun A, Romana S, Wu T, Marrelli SP, Arnold AP, McCullough LD, Liu F. X, but not Y, Chromosomal Complement Contributes to Stroke Sensitivity in Aged Animals. Transl Stroke Res 2023; 14:776-789. [PMID: 35906327 PMCID: PMC10490444 DOI: 10.1007/s12975-022-01070-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/16/2023]
Abstract
Post-menopausal women become vulnerable to stroke and have poorer outcomes and higher mortality than age-matched men, and previous studies suggested that sex chromosomes play a vital role in mediating stroke sensitivity in the aged. It is unknown if this is due to effects of the X or Y chromosome. The present study used the XY* mouse model (with four genotypes: XX and XO gonadal females and XY and XXY gonadal males) to compare the effect of the X vs. Y chromosome compliment in stroke. Aged (18-20 months) and gonadectomized young (8-12 weeks) mice were subjected to a 60-min middle cerebral artery occlusion. Infarct volume and behavioral deficits were quantified 3 days after stroke. Microglial activation and infiltration of peripheral leukocytes in the aged ischemic brain were assessed by flow cytometry. Plasma inflammatory cytokine levels by ELISA, and brain expression of two X chromosome-linked genes, KDM6A and KDM5C by immunochemistry, were also examined. Both aged and young XX and XXY mice had worse stroke outcomes compared to XO and XY mice, respectively; however, the difference between XX vs. XXY and XO vs. XY aged mice was minimal. Mice with two copies of the X chromosome showed more robust microglial activation, higher brain-infiltrating leukocytes, elevated plasma cytokine levels, and enhanced co-localization of KDM6A and KDM5C with Iba1+ cells after stroke than mice with one X chromosome. The number of X chromosomes mediates stroke sensitivity in aged mice, which might be processed through the X chromosome-linked genes and the inflammatory responses.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ting Wu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, McGovern Medical School, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Sims S, Barak O, Ryu V, Miyashita S, Kannangara H, Korkmaz F, Wizman S, Macdonald A, Gumerova A, Goosens K, Zaidi M, Yuen T, Lizneva D, Frolinger T. Absent LH signaling rescues the anxiety phenotype in aging female mice. Mol Psychiatry 2023; 28:3324-3331. [PMID: 37563278 DOI: 10.1038/s41380-023-02209-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023]
Abstract
Clinical studies and experimental data together support a role for pituitary gonadotropins, including luteinizing hormone (LH), otherwise considered solely as fertility hormones, in age-related cognitive decline. Furthermore, rising levels of LH in post-menopausal women have been implicated in the high prevalence of mood disorders. This study was designed to examine the effect of deficient LH signaling on both cognitive and emotional behavior in 12-month-old Lhcgr-/- mice. For this, we established and validated a battery of five tests, including Dark-Light Box (DLB), Y-Maze Spontaneous Alternation, Novel Object Recognition (NOR), and contextual and cued Fear Conditioning (FCT) tests. We found that 12-month-old female wild type mice display a prominent anxiety phenotype on DLB and FCT. This phenotype was not seen in 12-month-old female Lhcgr-/- mice, indicating full phenotypic rescue. Furthermore, there was no effect of LHCGR depletion on recognition memory or working spatial memory on NOR and Y-maze testing, respectively, in 12-month-old mice, notwithstanding the absence of a basal phenotype in wild type littermates. The latter data do not exclude an effect of LH on cognition documented in previous studies. Finally, 12-month-old male mice and 3-month-old male and female mice did not consistently display deficits on any test. The data collectively document, for the first time, that loss of LH signaling reverses age-related emotional disturbances, a prelude to future targeted therapies that block LH action.
Collapse
Affiliation(s)
- Steven Sims
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Orly Barak
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sari Miyashita
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hasni Kannangara
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Soleil Wizman
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anne Macdonald
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anisa Gumerova
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ki Goosens
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Mone Zaidi
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Tal Frolinger
- Center for Translational Medicine and Pharmacology, Departments of Pharmacological Sciences and of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
12
|
Gouveia FV, Lea‐Banks H, Aubert I, Lipsman N, Hynynen K, Hamani C. Anesthetic-loaded nanodroplets with focused ultrasound reduces agitation in Alzheimer's mice. Ann Clin Transl Neurol 2023; 10:507-519. [PMID: 36715553 PMCID: PMC10109287 DOI: 10.1002/acn3.51737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/03/2023] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Alzheimer's disease (AD) is often associated with neuropsychiatric symptoms, including agitation and aggressive behavior. These symptoms increase with disease severity, ranging from 10% in mild cognitive impairment to 50% in patients with moderate-to-severe AD, pose a great risk for self-injury and injury to caregivers, result in high rates of institutionalization and great suffering for patients and families. Current pharmacological therapies have limited efficacy and a high potential for severe side effects. Thus, there is a growing need to develop novel therapeutics tailored to safely and effectively reduce agitation and aggressive behavior in AD. Here, we investigate for the first time the use of focused ultrasound combined with anesthetic-loaded nanodroplets (nanoFUS) targeting the amygdala (key structure in the neurocircuitry of agitation) as a novel minimally invasive tool to modulate local neural activity and reduce agitation and aggressive behavior in the TgCRND8 AD transgenic mice. METHODS Male and female animals were tested in the resident-intruder (i.e., aggressive behavior) and open-field tests (i.e., motor agitation) for baseline measures, followed by treatment with active- or sham-nanoFUS. Behavioral testing was then repeated after treatment. RESULTS Active-nanoFUS neuromodulation reduced aggressive behavior and agitation in male mice, as compared to sham-treated controls. Treatment with active-nanoFUS increased the time male mice spent in social-non-aggressive behaviors. INTERPRETATION Our results show that neuromodulation with active-nanoFUS may be a potential therapeutic tool for the treatment of neuropsychiatric symptoms, with special focus on agitation and aggressive behaviors. Further studies are necessary to establish cellular, molecular and long-term behavioral changes following treatment with nanoFUS.
Collapse
Affiliation(s)
- Flavia Venetucci Gouveia
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoOntarioM5G 1X8Canada
| | - Harriet Lea‐Banks
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
| | - Isabelle Aubert
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Laboratory Medicine & PathobiologyUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
| | - Nir Lipsman
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| | - Kullervo Hynynen
- Physical Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioM5S 1A1Canada
- Institute of Biomedical Engineering, University of TorontoTorontoOntarioM5S 1A1Canada
| | - Clement Hamani
- Biological Sciences PlatformSunnybrook Research InstituteTorontoOntarioM4N 3M5Canada
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences CentreTorontoOntarioM4N 3M5Canada
- Division of NeurosurgeryUniversity of TorontoTorontoOntarioM5T 1P5Canada
| |
Collapse
|
13
|
Lim S, Shin S, Sung Y, Lee HE, Kim KH, Song JY, Lee GH, Aziz H, Lukianenko N, Kang DM, Boesen N, Jeong H, Abdildinova A, Lee J, Yu BY, Lim SM, Lee JS, Ryu H, Pae AN, Kim YK. Levosimendan inhibits disulfide tau oligomerization and ameliorates tau pathology in Tau P301L-BiFC mice. Exp Mol Med 2023; 55:612-627. [PMID: 36914856 PMCID: PMC10073126 DOI: 10.1038/s12276-023-00959-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 03/14/2023] Open
Abstract
Tau oligomers play critical roles in tau pathology and are responsible for neuronal cell death and transmitting the disease in the brain. Accordingly, preventing tau oligomerization has become an important therapeutic strategy to treat tauopathies, including Alzheimer's disease. However, progress has been slow because detecting tau oligomers in the cellular context is difficult. Working toward tau-targeted drug discovery, our group has developed a tau-BiFC platform to monitor and quantify tau oligomerization. By using the tau-BiFC platform, we screened libraries with FDA-approved and passed phase I drugs and identified levosimendan as a potent anti-tau agent that inhibits tau oligomerization. 14C-isotope labeling of levosimendan revealed that levosimendan covalently bound to tau cysteines, directly inhibiting disulfide-linked tau oligomerization. In addition, levosimendan disassembles tau oligomers into monomers, rescuing neurons from aggregation states. In comparison, the well-known anti-tau agents methylene blue and LMTM failed to protect neurons from tau-mediated toxicity, generating high-molecular-weight tau oligomers. Levosimendan displayed robust potency against tau oligomerization and rescued cognitive declines induced by tauopathy in the TauP301L-BiFC mouse model. Our data present the potential of levosimendan as a disease-modifying drug for tauopathies.
Collapse
Affiliation(s)
- Sungsu Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Seulgi Shin
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yoonsik Sung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ha Eun Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Kyu Hyeon Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ji Yeon Song
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Gwan-Ho Lee
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hira Aziz
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Nataliia Lukianenko
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Min Kang
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Department of Life Sciences, Korea University, Seoul, 02841, Korea
| | - Nicolette Boesen
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Hyeanjeong Jeong
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Aizhan Abdildinova
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Junghee Lee
- Boston University Alzheimer's disease Research Center and VA Boston Health care System, Boston, MA, 02130, USA
| | - Byung-Yong Yu
- Advanced Analysis Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sang Min Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.,Boston University Alzheimer's disease Research Center and Department of Neurology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ae Nim Pae
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
| | - Yun Kyung Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea. .,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
| |
Collapse
|
14
|
B Szabo A, Cattaud V, Bezzina C, Dard RF, Sayegh F, Gauzin S, Lejards C, Valton L, Rampon C, Verret L, Dahan L. Neuronal hyperexcitability in the Tg2576 mouse model of Alzheimer's disease - the influence of sleep and noradrenergic transmission. Neurobiol Aging 2023; 123:35-48. [PMID: 36634385 DOI: 10.1016/j.neurobiolaging.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.
Collapse
Affiliation(s)
- Anna B Szabo
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France; Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France.
| | - Vanessa Cattaud
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Charlotte Bezzina
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Robin F Dard
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Fares Sayegh
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sebastien Gauzin
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Luc Valton
- Centre de recherche Cerveau et Cognition (CerCo), CNRS, UMR 5549, Toulouse Mind and Brain Institute (TMBI), University of Toulouse, University Paul Sabatier (UPS), Toulouse, France; Department of Neurology, Hôpital Pierre Paul Riquet - Purpan, Toulouse University Hospital, University of Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
| |
Collapse
|
15
|
Liu YS, Zhao HF, Li Q, Cui HW, Huang GD. Research Progress on the Etiology and Pathogenesis of Alzheimer's Disease from the Perspective of Chronic Stress. Aging Dis 2022:AD.2022.1211. [PMID: 37163426 PMCID: PMC10389837 DOI: 10.14336/ad.2022.1211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/12/2022] [Indexed: 05/12/2023] Open
Abstract
Due to its extremely complex pathogenesis, no effective drugs to prevent, delay progression, or cure Alzheimer's disease (AD) exist at present. The main pathological features of AD are senile plaques composed of β-amyloid, neurofibrillary tangles formed by hyperphosphorylation of the tau protein, and degeneration or loss of neurons in the brain. Many risk factors associated with the onset of AD, including gene mutations, aging, traumatic brain injury, endocrine and cardiovascular diseases, education level, and obesity. Growing evidence points to chronic stress as one of the major risk factors for AD, as it can promote the onset and development of AD-related pathologies via a mechanism that is not well known. The use of murine stress models, including restraint, social isolation, noise, and unpredictable stress, has contributed to improving our understanding of the relationship between chronic stress and AD. This review summarizes the evidence derived from murine models on the pathological features associated with AD and the related molecular mechanisms induced by chronic stress. These results not only provide a retrospective interpretation for understanding the pathogenesis of AD, but also provide a window of opportunity for more effective preventive and identifying therapeutic strategies for stress-induced AD.
Collapse
Affiliation(s)
- Yun-Sheng Liu
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Hua-Fu Zhao
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Qian Li
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Han-Wei Cui
- The Central Laboratory, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Central Laboratory, Shenzhen Samii Medical Center, Shenzhen, China
| | - Guo-Dong Huang
- Department of Neurosurgery, Shenzhen Second People's Hospital/the First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
16
|
Song WS, Cho YS, Oh SP, Yoon SH, Kim YS, Kim MH. Cognitive and behavioral effects of the anti-epileptic drug cenobamate (YKP3089) and underlying synaptic and cellular mechanisms. Neuropharmacology 2022; 221:109292. [DOI: 10.1016/j.neuropharm.2022.109292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/08/2022]
|
17
|
Kim TK, Bae EJ, Jung BC, Choi M, Shin SJ, Park SJ, Kim JT, Jung MK, Ulusoy A, Song MY, Lee JS, Lee HJ, Di Monte DA, Lee SJ. Inflammation promotes synucleinopathy propagation. Exp Mol Med 2022; 54:2148-2161. [PMID: 36473937 PMCID: PMC9794777 DOI: 10.1038/s12276-022-00895-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/27/2022] [Accepted: 10/05/2022] [Indexed: 12/12/2022] Open
Abstract
The clinical progression of neurodegenerative diseases correlates with the spread of proteinopathy in the brain. The current understanding of the mechanism of proteinopathy spread is far from complete. Here, we propose that inflammation is fundamental to proteinopathy spread. A sequence variant of α-synuclein (V40G) was much less capable of fibril formation than wild-type α-synuclein (WT-syn) and, when mixed with WT-syn, interfered with its fibrillation. However, when V40G was injected intracerebrally into mice, it induced aggregate spreading even more effectively than WT-syn. Aggregate spreading was preceded by sustained microgliosis and inflammatory responses, which were more robust with V40G than with WT-syn. Oral administration of an anti-inflammatory agent suppressed aggregate spreading, inflammation, and behavioral deficits in mice. Furthermore, exposure of cells to inflammatory cytokines increased the cell-to-cell propagation of α-synuclein. These results suggest that the inflammatory microenvironment is the major driver of the spread of synucleinopathy in the brain.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Department of Exercise Physiology and Sport Science Institute, Korea National Sport University, Seoul, 05541, Korea
| | - Eun-Jin Bae
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Chul Jung
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Nutritional Sciences and Toxicology Department, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Minsun Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Soo Jean Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Sung Jun Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Jeong Tae Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Min Kyo Jung
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41068, Korea
| | - Ayse Ulusoy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mi-Young Song
- Department of Biomedical Science and Technology, Konkuk University, Seoul, 143-701, Korea
- IPS Intellectual Property Law Firm, Seoul, Korea
| | - Jun Sung Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
- Neuramedy Co. Ltd., Seoul, South Korea
| | - He-Jin Lee
- Department of Anatomy, Konkuk University, Seoul, 05029, Korea
- IBST, Konkuk University, Seoul, 05029, Korea
| | | | - Seung-Jae Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea.
- SNU Dementia Research Center, Seoul National University College of Medicine, Seoul, South Korea.
- Neuramedy Co. Ltd., Seoul, South Korea.
| |
Collapse
|
18
|
Isoflavone-Enriched Soybean Leaves (Glycine Max) Alleviate Cognitive Impairment Induced by Ovariectomy and Modulate PI3K/Akt Signaling in the Hippocampus of C57BL6 Mice. Nutrients 2022; 14:nu14224753. [PMID: 36432439 PMCID: PMC9697522 DOI: 10.3390/nu14224753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/24/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
(1) Background: The estrogen decline during perimenopause can induce various disorders, including cognitive impairment. Phytoestrogens, such as isoflavones, lignans, and coumestans, have been tried as a popular alternative to avoid the side effects of conventional hormone replacement therapy, but their exact mechanisms and risk are not fully elucidated. In this study, we investigated the effects of isoflavone-enriched soybean leaves (IESLs) on the cognitive impairment induced by ovariectomy in female mice. (2) Methods: Ovariectomy was performed at 9 weeks of age to mimic menopausal women, and the behavior tests for cognition were conducted 15 weeks after the first administration. IESLs were administered for 18 weeks. (3) Results: The present study showed the effects of IESLs on the cognitive function in the OVX (ovariectomized) mice. Ovariectomy markedly increased the body weight and fat accumulation in the liver and perirenal fat, but IESL treatment significantly inhibited them. In the behavioral tests, ovariectomy impaired cognitive functions, but administration of IESLs restored it. In addition, in the OVX mice, administration of IESLs restored decreased estrogen receptor (ER) β and PI3K/Akt expression in the hippocampus. (4) Conclusions: The positive effects of IESLs on cognitive functions may be closely related to the ER-mediated PI3/Akt signaling pathway in the hippocampus.
Collapse
|
19
|
Early death in a mouse model of Alzheimer's disease exacerbated by microglial loss of TAM receptor signaling. Proc Natl Acad Sci U S A 2022; 119:e2204306119. [PMID: 36191221 PMCID: PMC9564325 DOI: 10.1073/pnas.2204306119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recurrent seizure is a common comorbidity in early-stage Alzheimer's disease (AD) and may contribute to AD pathogenesis and cognitive decline. Similarly, many mouse models of Alzheimer's disease that overproduce amyloid beta are prone to epileptiform seizures that may result in early sudden death. We studied one such model, designated APP/PS1, and found that mutation of the TAM receptor tyrosine kinase (RTK) Mer or its ligand Gas6 greatly exacerbated early death. Lethality was tied to violent seizures that appeared to initiate in the dentate gyrus (DG) of the hippocampus, where Mer plays an essential role in the microglial phagocytosis of both apoptotic and newborn cells normally generated during adult neurogenesis. We found that newborn DG neurons and excitatory synapses between the DG and the cornu ammonis field 3 (CA3) field of the hippocampus were increased in TAM-deficient mice, and that premature death and adult neurogenesis in these mice were coincident. In contrast, the incidence of lethal seizures and the deposition of dense-core amyloid plaques were strongly anticorrelated. Together, these results argue that TAM-mediated phagocytosis sculpts synaptic connectivity in the hippocampus, and that seizure-inducing amyloid beta polymers are present prior to the formation of dense-core plaques.
Collapse
|
20
|
Cho Y, Bae HG, Okun E, Arumugam TV, Jo DG. Physiology and pharmacology of amyloid precursor protein. Pharmacol Ther 2022; 235:108122. [PMID: 35114285 DOI: 10.1016/j.pharmthera.2022.108122] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/17/2022] [Accepted: 01/25/2022] [Indexed: 02/06/2023]
Abstract
Amyloid precursor protein (APP) is an evolutionarily conserved transmembrane protein and a well-characterized precursor protein of amyloid-beta (Aβ) peptides, which accumulate in the brains of individuals with Alzheimer's disease (AD)-related pathologies. Aβ has been extensively investigated since the amyloid hypothesis in AD was proposed. Besides Aβ, previous studies on APP and its proteolytic cleavage products have suggested their diverse pathological and physiological functions. However, their roles still have not been thoroughly understood. In this review, we extensively discuss the evolutionarily-conserved biology of APP, including its structure and processing pathway, as well as recent findings on the physiological roles of APP and its fragments in the central nervous system and peripheral nervous system. We have also elaborated upon the current status of APP-targeted therapeutic approaches for AD treatment by discussing inhibitors of several proteases participating in APP processing, including α-, β-, and γ-secretases. Finally, we have highlighted the future perspectives pertaining to further research and the potential clinical role of APP.
Collapse
Affiliation(s)
- Yoonsuk Cho
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Han-Gyu Bae
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eitan Okun
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; The Pauld Feder Laboratory on Alzheimer's Disease Research, Israel
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea; Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul 06351, South Korea; Biomedical Institute for Convergence, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
21
|
Karthika C, Appu AP, Akter R, Rahman MH, Tagde P, Ashraf GM, Abdel-Daim MM, Hassan SSU, Abid A, Bungau S. Potential innovation against Alzheimer's disorder: a tricomponent combination of natural antioxidants (vitamin E, quercetin, and basil oil) and the development of its intranasal delivery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10950-10965. [PMID: 35000160 DOI: 10.1007/s11356-021-17830-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Alzheimer's disorder (AD) is very difficult to manage and treat. The complexity of the brain, the blood-brain barrier influencing a multitude of parameters/biomarkers, as well as numerous other factors involved often contribute to the decline in the chances of treatment success. Development of the new drug moiety also takes time, being necessary to consider both its toxicity and related issues. As a strategic plan, a combined strategy is being developed and considered to address AD pathology using several approaches. A combination of vitamin E, quercetin, and basil oil in a nano-based formulation is designed to be administered nasally. The antioxidant present in these natural-based products helps to treat and alleviate AD if a synergistic approach is considered. The three active substances mentioned above are well known for the treatment of neurodegenerative disorders. The nanoformulation helps the co-delivery of the drug moiety to the brain through the intranasal route. In this review, a correlation and use of vitamin E, quercetin, and basil oil in a nano-based formulation is described as an effective way to treat AD. The intranasal administration of drugs is a promising approach for the treatment of neurodegenerative and mental disorders, as this route is non-invasive, enhances the bioavailability, allows a drug dose reduction, bypasses the blood-brain barrier, and reduces the systemic undesired effect. The use of natural products is generally considered to be just as safe; therefore, by using this combined approach, the level of toxicity can be minimized.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Nilgiris, Ooty, 643001, Tamil Nadu, India
| | | | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka, 1100, Bangladesh
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, South Korea
| | - Md Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju, 26426, South Korea.
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, Madhya Pradesh, 462026, India
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Areha Abid
- Department of Food Science, Faculty of Agricultural and Food Sciences, University of Debrecen, 4032, Debrecen, Hungary
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028, Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087, Oradea, Romania
| |
Collapse
|
22
|
Ma J, Goodwani S, Acton PJ, Buggia-Prevot V, Kesler SR, Jamal I, Mahant ID, Liu Z, Mseeh F, Roth BL, Chakraborty C, Peng B, Wu Q, Jiang Y, Le K, Soth MJ, Jones P, Kavelaars A, Ray WJ, Heijnen CJ. Inhibition of dual leucine zipper kinase prevents chemotherapy-induced peripheral neuropathy and cognitive impairments. Pain 2021; 162:2599-2612. [PMID: 33872235 PMCID: PMC8442742 DOI: 10.1097/j.pain.0000000000002256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Chemotherapy-induced peripheral neuropathy (CIPN) and chemotherapy-induced cognitive impairments (CICI) are common, often severe neurotoxic side effects of cancer treatment that greatly reduce quality of life of cancer patients and survivors. Currently, there are no Food and Drug Administration-approved agents for the prevention or curative treatment of CIPN or CICI. The dual leucine zipper kinase (DLK) is a key mediator of axonal degeneration that is localized to axons and coordinates the neuronal response to injury. We developed a novel brain-penetrant DLK inhibitor, IACS'8287, which demonstrates potent and highly selective inhibition of DLK in vitro and in vivo. Coadministration of IACS'8287 with the platinum derivative cisplatin prevents mechanical allodynia, loss of intraepidermal nerve fibers in the hind paws, cognitive deficits, and impairments in brain connectivity in mice, all without interfering with the antitumor activity of cisplatin. The protective effects of IACS'8287 are associated with preservation of mitochondrial function in dorsal root ganglion neurons and in brain synaptosomes. In addition, RNA sequencing analysis of dorsal root ganglia reveals modulation of genes involved in neuronal activity and markers for immune cell infiltration by DLK inhibition. These data indicate that CIPN and CICI require DLK signaling in mice, and DLK inhibitors could become an attractive treatment in the clinic when coadministered with cisplatin, and potentially other chemotherapeutic agents, to prevent neurotoxicities as a result of cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Ma
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sunil Goodwani
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Paul J. Acton
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Virginie Buggia-Prevot
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shelli R. Kesler
- Cancer Neuroscience Lab, School of Nursing, Department of Diagnostic Medicine, LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, United States
| | - Imran Jamal
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Iteeben D. Mahant
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Zhen Liu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Faika Mseeh
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bruce L. Roth
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chaitali Chakraborty
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Bo Peng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qi Wu
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yongying Jiang
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kang Le
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Michael J. Soth
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Philip Jones
- Institute for Applied Cancer Science, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Annemieke Kavelaars
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William J. Ray
- The Neurodegeneration Consortium, Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Cobi J. Heijnen
- Laboratories of Neuroimmunology, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
23
|
Singh CSB, Choi KB, Munro L, Wang HY, Pfeifer CG, Jefferies WA. Reversing pathology in a preclinical model of Alzheimer's disease by hacking cerebrovascular neoangiogenesis with advanced cancer therapeutics. EBioMedicine 2021; 71:103503. [PMID: 34534764 PMCID: PMC8449085 DOI: 10.1016/j.ebiom.2021.103503] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cognitive decline leading to dementia, accompanied by the accumulation of amyloid-beta (Aβ) in neuritic plaques together with the appearance of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein (tau), are previously noted hallmarks of Alzheimer's disease (AD). We previously discovered hypervascularity in brain specimens from AD patients and consistent with this observation, we demonstrated that overexpression of Aβ drives cerebrovascular neoangiogenesis leading to hypervascularity and coincident tight-junction disruption and blood-brain barrier (BBB) leakiness in animal models of AD. We subsequently demonstrated that amyloid plaque burden and cerebrovascular pathogenesis subside when pro-angiogenic Aβ levels are reduced. Based on these data, we propose a paradigm of AD etiology where, as a compensatory response to impaired cerebral blood flow (CBF), Aβ triggers pathogenic cerebrovascular neoangiogenesis that underlies the conventional hallmarks of AD. Consequently, here we present evidence that repurposing anti-cancer drugs to modulate cerebrovascular neoangiogenesis, rather than directly targeting the amyloid cascade, may provide an effective treatment for AD and related vascular diseases of the brain. METHODS We explored whether the anti-cancer drug, Axitinib, a small molecule tyrosine kinase inhibitor that targets vascular endothelial growth factor receptors (VEGFR) can inhibit aberrant cerebrovascular neoangiogenic changes, reduce Aβ deposits and reverse cognitive decline in an animal model of AD. One month post-treatment with Axitinib, we employed a battery of tests to assess cognition and memory in aged Tg2576 AD mice and used molecular analysis to demonstrate reduction of amyloid plaques, BBB leakage, hypervascularity and associated disease pathology. FINDINGS Targeting the pro-angiogenic pathway in AD using the cancer drug, Axitinib, dramatically reduced cerebrovascular neoangiogenesis, restored BBB integrity, resolved tight-junction pathogenesis, diminishes Aβ depositions in plaques and effectively restores memory and cognitive performance in a preclinical mouse model of AD. INTERPRETATION Modulation of neoangiogenesis, in an analogous approach to those used to treat aberrant vascularization in cancer and also in the wet form of age-related macular degeneration (AMD), provides an alternative therapeutic strategy for intervention in AD that warrants clinical investigation. FUNDING None.
Collapse
Affiliation(s)
- Chaahat S B Singh
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Kyung Bok Choi
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Lonna Munro
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Hong Yue Wang
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada
| | - Cheryl G Pfeifer
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada
| | - Wilfred A Jefferies
- Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Zoology, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
24
|
Romoli M, Sen A, Parnetti L, Calabresi P, Costa C. Amyloid-β: a potential link between epilepsy and cognitive decline. Nat Rev Neurol 2021; 17:469-485. [PMID: 34117482 DOI: 10.1038/s41582-021-00505-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/05/2023]
Abstract
People with epilepsy - in particular, late-onset epilepsy of unknown aetiology - have an elevated risk of dementia, and seizures have been detected in the early stages of Alzheimer disease (AD), supporting the concept of an epileptic AD prodrome. However, the relationship between epilepsy and cognitive decline remains controversial, with substantial uncertainties about whether epilepsy drives cognitive decline or vice versa, and whether shared pathways underlie both conditions. Here, we review evidence that amyloid-β (Aβ) forms part of a shared pathway between epilepsy and cognitive decline, particularly in the context of AD. People with epilepsy show an increased burden of Aβ pathology in the brain, and Aβ-mediated epileptogenic alterations have been demonstrated in experimental studies, with evidence suggesting that Aβ pathology might already be pro-epileptogenic at the soluble stage, long before plaque deposition. We discuss the hypothesis that Aβ mediates - or is at least a major determinant of - a continuum spanning epilepsy and cognitive decline. Serial cognitive testing and assessment of Aβ levels might be worthwhile to stratify the risk of developing dementia in people with late-onset epilepsy. If seizures are a clinical harbinger of dementia, people with late-onset epilepsy could be an ideal group in which to implement preventive or therapeutic strategies to slow cognitive decline.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK.,Neurology and Stroke Unit, "Maurizio Bufalini" Hospital, Cesena, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, Neurologia e Rete Stroke Metropolitana, Ospedale Maggiore, Bologna, Italy
| | - Arjune Sen
- Oxford Epilepsy Research Group, NIHR Biomedical Research Centre, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, UK
| | - Lucilla Parnetti
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Paolo Calabresi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario A. Gemelli, IRCCS, UOC Neurologia, Dipartimento di Scienze dell'Invecchiamento, Neurologiche, Ortopediche e della Testa-Collo, Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, Department of Medicine and Surgery, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.
| |
Collapse
|
25
|
Ali AAH, Abdel-Hafiz L, Tundo-Lavalle F, Hassan SA, von Gall C. P2Y 2 deficiency impacts adult neurogenesis and related forebrain functions. FASEB J 2021; 35:e21546. [PMID: 33817825 DOI: 10.1096/fj.202002419rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
Adult neurogenesis occurs particularly in the subgranular zone (SGZ) of the hippocampus and the subventricular zone (SVZ) of the lateral ventricle. This continuous addition of neurons to pre-existing neuronal networks is essential for intact cognitive and olfactory functions, respectively. Purinergic signaling modulates adult neurogenesis, however, the role of individual purinergic receptor subtypes in this dynamic process and related cognitive performance is poorly understood. In this study, we analyzed the role of P2Y2 receptor in the neurogenic niches and in related forebrain functions such as spatial working memory and olfaction using mice with a targeted deletion of the P2Y2 receptor (P2Y2-/- ). Proliferation, migration, differentiation, and survival of neuronal precursor cells (NPCs) were analyzed by BrdU assay and immunohistochemistry; signal transduction pathway components were analyzed by immunoblot. In P2Y2-/- mice, proliferation of NPCs in the SGZ and the SVZ was reduced. However, migration, neuronal fate decision, and survival were not affected. Moreover, p-Akt expression was decreased in P2Y2-/- mice. P2Y2-/- mice showed an impaired performance in the Y-maze and a higher latency in the hidden food test. These data indicate that the P2Y2 receptor plays an important role in NPC proliferation as well as in hippocampus-dependent working memory and olfactory function.
Collapse
Affiliation(s)
- Amira A H Ali
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Soha A Hassan
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany.,Zoology Department, Faculty of Science, Suez University, Suez, Egypt
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
26
|
Phenotypic Differences between the Alzheimer's Disease-Related hAPP-J20 Model and Heterozygous Zbtb20 Knock-Out Mice. eNeuro 2021; 8:ENEURO.0089-21.2021. [PMID: 33833046 PMCID: PMC8121260 DOI: 10.1523/eneuro.0089-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse gene products contribute to the pathogenesis of Alzheimer’s disease (AD). Experimental models have helped elucidate their mechanisms and impact on brain functions. Human amyloid precursor protein (hAPP) transgenic mice from line J20 (hAPP-J20 mice) are widely used to simulate key aspects of AD. However, they also carry an insertional mutation in noncoding sequence of one Zbtb20 allele, a gene involved in neural development. We demonstrate that heterozygous hAPP-J20 mice have reduced Zbtb20 expression in some AD-relevant brain regions, but not others, and that Zbtb20 levels are higher in hAPP-J20 mice than heterozygous Zbtb20 knock-out (Zbtb20+/–) mice. Whereas hAPP-J20 mice have premature mortality, severe deficits in learning and memory, other behavioral alterations, and prominent nonconvulsive epileptiform activity, Zbtb20+/– mice do not. Thus, the insertional mutation in hAPP-J20 mice does not ablate the affected Zbtb20 allele and is unlikely to account for the AD-like phenotype of this model.
Collapse
|
27
|
Dejakaisaya H, Kwan P, Jones NC. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer's disease. Epilepsia 2021; 62:1485-1493. [PMID: 33971019 DOI: 10.1111/epi.16918] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) can increase the risk of epilepsy by up to 10-fold compared to healthy age-matched controls. However, the pathological mechanisms that underlie this increased risk are poorly understood. Because disruption in brain glutamate homeostasis has been implicated in both AD and epilepsy, this might play a mechanistic role in the pathogenesis of epilepsy in AD. Prior to the formation of amyloid beta (Aβ) plaques, the brain can undergo pathological changes as a result of increased production of amyloid precursor protein (APP) and Aβ oligomers. Impairments in the glutamate uptake ability of astrocytes due to astrogliosis are hypothesized to be an early event occurring before Aβ plaque formation. Astrogliosis may increase the susceptibility to epileptogenesis of the brain via accumulation of extracellular glutamate and resulting excitotoxicity. Here we hypothesize that Aβ oligomers and proinflammatory cytokines can cause astrogliosis and accumulation of extracellular glutamate, which then contribute to the pathogenesis of epilepsy in AD. In this review article, we consider the evidence supporting a potential role of dysfunction of the glutamate-glutamine cycle and the astrocyte in the pathogenesis of epilepsy in AD.
Collapse
Affiliation(s)
- Hattapark Dejakaisaya
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, The Alfred Hospital, Monash University, Melbourne, Vic., Australia.,Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Vic., Australia
| |
Collapse
|
28
|
Ali M, Saleem U, Anwar F, Imran M, Nadeem H, Ahmad B, Ali T, Ismail T. Screening of Synthetic Isoxazolone Derivative Role in Alzheimer's Disease: Computational and Pharmacological Approach. Neurochem Res 2021; 46:905-920. [PMID: 33486698 DOI: 10.1007/s11064-021-03229-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is age-dependent neurological disorder with progressive loss of cognition and memory. This multifactorial disease is characterized by intracellular neurofibrillary tangles, beta amyloid plaques, neuroinflammation, and increased oxidative stress. The increased cellular manifestations of these markers play a critical role in neurodegeneration and pathogenesis of AD. Therefore, reducing neurodegeneration by decreasing one or more of these markers may provide a potential therapeutic roadmap for the treatment of AD. AD causes a devastating loss of cognition with no conclusive and effective treatment. Many synthetic compound containing isoxazolone nucleus have been reported as neuroprotective agents. The aim of this study was to explore the anti-Alzheimer's potential of a newly synthesized 3,4,5-trimethoxy isoxazolone derivative (TMI) that attenuated the beta amyloid (Aβ1-42) and tau protein levels in streptozotocin (STZ) induced Alzheimer's disease mouse model. Molecular analysis revealed increased beta amyloid (Aβ1-42) protein levels, increased tau protein levels, increased cellular oxidative stress and reduced antioxidant enzymes in STZ exposed mice brains. Furthermore, ELISA and PCR were used to validate the expression of Aβ1-42. Pre-treatment with TMI significantly improved the memory and cognitive behavior along with ameliorated levels of Aβ1-42 proteins. TMI treated mice further showed marked increase in GSH, CAT, SOD levels while decreased levels of acetylcholinesterase inhibitors (AChEI's) and MDA intermediate. The multidimensional nature of isoxazolone derivatives and its versatile affinity towards various targets highpoint its multistep targeting nature. These results indicated the neuroprotective potential of TMI which may be considered for the treatment of neurodegenerative disease specifically in AD.
Collapse
Affiliation(s)
- Meissam Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Uzma Saleem
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Fareeha Anwar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan.
| | - Muhammad Imran
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Humaira Nadeem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, 44000, Pakistan
| | - Bashir Ahmad
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tahir Ali
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, 54000, Pakistan
| | - Tariq Ismail
- Department of Pharmacy, COMSATS University, Abbottabad, 22060, Pakistan
| |
Collapse
|
29
|
Sleep disorders and late-onset epilepsy of unknown origin: Understanding new trajectories to brain amyloidopathy. Mech Ageing Dev 2021; 194:111434. [PMID: 33444630 DOI: 10.1016/j.mad.2021.111434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
The intertwining between epilepsy, sleep disorders and beta amyloid pathology has been progressively highlighted, as early identification and stratification of patients at high risk of cognitive decline is the need of the hour. Modification of the sleep-wake activity, such as sleep impairment or excessive daytime sleepiness, can critically affect cerebral beta amyloid levels. Both mice models and human studies have demonstrated a substantial increase in the burden of beta amyloid pathology after sleep-deprivation, with potential negative effects partially restored by sleep recovery. The accumulation of beta amyloid has been shown to be an early event in the course of Alzheimer's disease dementia. Beta amyloid accumulation has been linked to epileptic seizures epileptic seizures, with beta amyloid being itself pro-epileptogenic in mice models already at oligomeric stage, well before plaque deposition. Further supporting a potential relationship between beta amyloid and epilepsy: i) seizures happen in 1 out of oofut 10 patients with Alzheimer's disease in the prodromal stage, ii) epileptic activity accelerates cognitive decline in Alzheimer's disease, iii) people with late-onset epilepsy present a critically high risk of developing dementia. In this Review we highlight the role of beta amyloid as a potential shared mechanisms between sleep disorders, late-onset epilepsy, and cognitive decline.
Collapse
|
30
|
Maigler KC, Buhr TJ, Park CS, Miller SA, Kozlowski DA, Marr RA. Assessment of the Effects of Altered Amyloid-Beta Clearance on Behavior following Repeat Closed-Head Brain Injury in Amyloid-Beta Precursor Protein Humanized Mice. J Neurotrauma 2021; 38:665-676. [PMID: 33176547 DOI: 10.1089/neu.2020.6989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aβ) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aβ elevation and AD as well as tau pathology, the role(s) of Aβ in TBI is of high importance. Endopeptidases, including the neprilysin (NEP)-like enzymes, are key mediators of Aβ clearance and may affect susceptibility to pathology post-TBI. Here, we use a "humanized" mouse model of Aβ production, which expresses normal human amyloid-beta precursor protein (APP) under its natural transcriptional regulation and exposed them to a more clinically relevant repeated closed-head TBI paradigm. These transgenic mice also were crossed with mice deficient for the Aβ degrading enzymes NEP or NEP2 to assess models of reduced cerebral Aβ clearance in our TBI model. Our results show that the presence of the human form of Aβ did not exacerbate motor (Rotarod) and spatial learning/memory deficits (Morris water maze) post-injuries, while potentially reduced anxiety (Open Field) was observed. NEP and NEP2 deficiency also did not exacerbate these deficits post-injuries and was associated with protection from motor (NEP and NEP2) and spatial learning/memory deficits (NEP only). These data suggest that normally regulated expression of wild-type human APP/Aβ does not contribute to deficits acutely after TBI and may be protective at this stage of injury.
Collapse
Affiliation(s)
- Kathleen C Maigler
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Trevor J Buhr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Christopher S Park
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Steven A Miller
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Dorothy A Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, Illinois, USA
| | - Robert A Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
31
|
Absence of Survival and Motor Deficits in 500 Repeat C9ORF72 BAC Mice. Neuron 2020; 108:775-783.e4. [PMID: 33022228 DOI: 10.1016/j.neuron.2020.08.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/06/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022]
Abstract
A hexanucleotide repeat expansion at C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Initial studies of bacterial artificial chromosome (BAC) transgenic mice harboring this expansion described an absence of motor and survival phenotypes. However, a recent study by Liu and colleagues described transgenic mice harboring a large repeat expansion (C9-500) and reported decreased survival and progressive motor phenotypes. To determine the utility of the C9-500 animals for understanding degenerative mechanisms, we validated and established two independent colonies of transgene carriers. However, extended studies of these animals for up to 1 year revealed no reproducible abnormalities in survival, motor function, or neurodegeneration. Here, we propose several potential explanations for the disparate nature of our findings from those of Liu and colleagues. Resolving the discrepancies we identify will be essential to settle the translational utility of C9-500 mice. This Matters Arising paper is in response to Liu et al. (2016), published in Neuron. See also the response by Nguyen et al. (2020), published in this issue.
Collapse
|
32
|
Poon CH, Wang Y, Fung ML, Zhang C, Lim LW. Rodent Models of Amyloid-Beta Feature of Alzheimer's Disease: Development and Potential Treatment Implications. Aging Dis 2020; 11:1235-1259. [PMID: 33014535 PMCID: PMC7505263 DOI: 10.14336/ad.2019.1026] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 10/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide and causes severe financial and social burdens. Despite much research on the pathogenesis of AD, the neuropathological mechanisms remain obscure and current treatments have proven ineffective. In the past decades, transgenic rodent models have been used to try to unravel this disease, which is crucial for early diagnosis and the assessment of disease-modifying compounds. In this review, we focus on transgenic rodent models used to study amyloid-beta pathology in AD. We also discuss their possible use as promising tools for AD research. There is still no effective treatment for AD and the development of potent therapeutics are urgently needed. Many molecular pathways are susceptible to AD, ranging from neuroinflammation, immune response, and neuroplasticity to neurotrophic factors. Studying these pathways may shed light on AD pathophysiology as well as provide potential targets for the development of more effective treatments. This review discusses the advantages and limitations of these models and their potential therapeutic implications for AD.
Collapse
Affiliation(s)
- Chi Him Poon
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yingyi Wang
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Man-Lung Fung
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Chengfei Zhang
- 2Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Lee Wei Lim
- 1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
33
|
Johnson ECB, Ho K, Yu GQ, Das M, Sanchez PE, Djukic B, Lopez I, Yu X, Gill M, Zhang W, Paz JT, Palop JJ, Mucke L. Behavioral and neural network abnormalities in human APP transgenic mice resemble those of App knock-in mice and are modulated by familial Alzheimer's disease mutations but not by inhibition of BACE1. Mol Neurodegener 2020; 15:53. [PMID: 32921309 PMCID: PMC7489007 DOI: 10.1186/s13024-020-00393-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 07/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is the most frequent and costly neurodegenerative disorder. Although diverse lines of evidence suggest that the amyloid precursor protein (APP) is involved in its causation, the precise mechanisms remain unknown and no treatments are available to prevent or halt the disease. A favorite hypothesis has been that APP contributes to AD pathogenesis through the cerebral accumulation of the amyloid-β peptide (Aβ), which is derived from APP through sequential proteolytic cleavage by BACE1 and γ-secretase. However, inhibitors of these enzymes have failed in clinical trials despite clear evidence for target engagement. METHODS To further elucidate the roles of APP and its metabolites in AD pathogenesis, we analyzed transgenic mice overexpressing wildtype human APP (hAPP) or hAPP carrying mutations that cause autosomal dominant familial AD (FAD), as well as App knock-in mice that do not overexpress hAPP but have two mouse App alleles with FAD mutations and a humanized Aβ sequence. RESULTS Although these lines of mice had marked differences in cortical and hippocampal levels of APP, APP C-terminal fragments, soluble Aβ, Aβ oligomers and age-dependent amyloid deposition, they all developed cognitive deficits as well as non-convulsive epileptiform activity, a type of network dysfunction that also occurs in a substantive proportion of humans with AD. Pharmacological inhibition of BACE1 effectively reduced levels of amyloidogenic APP C-terminal fragments (C99), soluble Aβ, Aβ oligomers, and amyloid deposits in transgenic mice expressing FAD-mutant hAPP, but did not improve their network dysfunction and behavioral abnormalities, even when initiated at early stages before amyloid deposits were detectable. CONCLUSIONS hAPP transgenic and App knock-in mice develop similar pathophysiological alterations. APP and its metabolites contribute to AD-related functional alterations through complex combinatorial mechanisms that may be difficult to block with BACE inhibitors and, possibly, also with other anti-Aβ treatments.
Collapse
Affiliation(s)
- Erik C. B. Johnson
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Kaitlyn Ho
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Gui-Qiu Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Melanie Das
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Pascal E. Sanchez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Biljana Djukic
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Isabel Lopez
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Xinxing Yu
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Michael Gill
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
| | - Weiping Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Institute of Endocrinology, Tianjin Medical University Metabolic Diseases Hospital, Tianjin, China
| | - Jeanne T. Paz
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Jorge J. Palop
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, 1650 Owens Street, San Francisco, CA 94158 USA
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158 USA
| |
Collapse
|
34
|
IRF5 Signaling in Phagocytes Is Detrimental to Neonatal Hypoxic Ischemic Encephalopathy. Transl Stroke Res 2020; 12:602-614. [PMID: 32761315 DOI: 10.1007/s12975-020-00832-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/10/2020] [Accepted: 07/01/2020] [Indexed: 01/20/2023]
Abstract
Immune responses to neonatal hypoxic ischemic encephalopathy (HIE) exacerbate brain injury. Phagocytes, including microglia, play a central role in the immune response, but how the activation of phagocytes is regulated remains elusive. Previously, we have reported that interferon regulatory factor 5 (IRF5) signaling is closely correlated with a pro-inflammatory microglial phenotype in adult mice after stroke. The present study investigated IRF5's regulatory role in post-HIE inflammation. Male IRF5 conditional knockout (CKO) and IRF5fl/fl postnatal day 10 (P10) pups were subjected to the Rice-Vannucci model (RVM) to induce HIE. Outcomes including morphological and neurobehavioral changes were evaluated at day 7 after HIE. Microglia/macrophage phenotypes and inflammatory responses were evaluated by flow cytometry (FC), RT-PCR, and multiplex cytokine assays. Lenti-IRF5 virus was administered in microglia-neuron co-cultures to evaluate the effects of microglial IRF5 upregulation in ischemic neurons exposed to oxygen-glucose deprivation (OGD). Deletion of phagocytic IRF5 resulted in significantly decreased IRF5 expression, attenuated pro-inflammatory and enhanced anti-inflammatory responses to HIE, and improved outcomes compared with IRF5fl/fl control pups. In vitro lentivirus transfection experiments revealed that overexpression of IRF5 in microglia amplified pro-inflammatory signals and exacerbated OGD-induced neuronal apoptosis and neurite fragmentation. IRF5 signaling mediates microglial pro-inflammatory activation and also affects anti-inflammatory responses. Phagocytic IRF5 signaling is detrimental in HIE and is a potential therapeutic target for post-ischemic inflammation.
Collapse
|
35
|
Deyts C, Clutter M, Pierce N, Chakrabarty P, Ladd TB, Goddi A, Rosario AM, Cruz P, Vetrivel K, Wagner SL, Thinakaran G, Golde TE, Parent AT. APP-Mediated Signaling Prevents Memory Decline in Alzheimer's Disease Mouse Model. Cell Rep 2020; 27:1345-1355.e6. [PMID: 31042463 DOI: 10.1016/j.celrep.2019.03.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-β (Aβ) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aβ production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.
Collapse
Affiliation(s)
- Carole Deyts
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Mary Clutter
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Nicholas Pierce
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Thomas B Ladd
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Anna Goddi
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Awilda M Rosario
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pedro Cruz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kulandaivelu Vetrivel
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Angèle T Parent
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
36
|
Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies. Trends Neurosci 2020; 43:458-466. [PMID: 32423764 DOI: 10.1016/j.tins.2020.04.003] [Citation(s) in RCA: 335] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022]
Abstract
The glymphatic concept along with the discovery of meningeal lymphatic vessels have, in recent years, highlighted that fluid is directionally transported within the central nervous system (CNS). Imaging studies, as well as manipulations of fluid transport, point to a key role of the glymphatic-lymphatic system in clearance of amyloid-β and other proteins. As such, the glymphatic-lymphatic system represents a new target in combating neurodegenerative diseases. Not unexpectedly, introduction of a new plumbing system in the brain has stirred controversies. This opinion article will highlight what we know about the brain's fluid transport systems, where experimental data are lacking, and what is still debated.
Collapse
Affiliation(s)
- Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
37
|
Chen CA, Wang W, Pedersen SE, Raman A, Seymour ML, Ruiz FR, Xia A, van der Heijden ME, Wang L, Yin J, Lopez J, Rech ME, Lewis RA, Wu SM, Liu Z, Pereira FA, Pautler RG, Zoghbi HY, Schaaf CP. Nr2f1 heterozygous knockout mice recapitulate neurological phenotypes of Bosch-Boonstra-Schaaf optic atrophy syndrome and show impaired hippocampal synaptic plasticity. Hum Mol Genet 2020; 29:705-715. [PMID: 31600777 PMCID: PMC7104670 DOI: 10.1093/hmg/ddz233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein's role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/- hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wei Wang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Steen E Pedersen
- Department of Molecular Physiology and Biophysics-Cardiovascular Sciences Track, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Physiology and Biochemistry, Ross University School of Medicine, Portsmouth, Commonwealth of Dominica
| | - Ayush Raman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Michelle L Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fernanda R Ruiz
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anping Xia
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Meike E van der Heijden
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Li Wang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Jiani Yin
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Joanna Lopez
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Megan E Rech
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Richard A Lewis
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Fred A Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics-Cardiovascular Sciences Track, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christian P Schaaf
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
38
|
Microglial IRF5-IRF4 regulatory axis regulates neuroinflammation after cerebral ischemia and impacts stroke outcomes. Proc Natl Acad Sci U S A 2019; 117:1742-1752. [PMID: 31892541 DOI: 10.1073/pnas.1914742117] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microglial activation plays a central role in poststroke inflammation and causes secondary neuronal damage; however, it also contributes in debris clearance and chronic recovery. Microglial pro- and antiinflammatory responses (or so-called M1-M2 phenotypes) coexist and antagonize each other throughout the disease progress. As a result of this balance, poststroke immune responses alter stroke outcomes. Our previous study found microglial expression of interferon regulatory factor 5 (IRF5) and IRF4 was related to pro- and antiinflammatory responses, respectively. In the present study, we genetically modified the IRF5 and IRF4 signaling to explore their roles in stroke. Both in vitro and in vivo assays were utilized; IRF5 or IRF4 small interfering RNA (siRNA), lentivirus, and conditional knockout (CKO) techniques were employed to modulate IRF5 or IRF4 expression in microglia. We used a transient middle cerebral artery occlusion model to induce stroke and examined both acute and chronic stroke outcomes. Poststroke inflammation was evaluated with flow cytometry, RT-PCR, MultiPlex, and immunofluorescence staining. An oscillating pattern of the IRF5-IRF4 regulatory axis function was revealed. Down-regulation of IRF5 signaling by siRNA or CKO resulted in increased IRF4 expression, enhanced M2 activation, quenched proinflammatory responses, and improved stroke outcomes, whereas down-regulation of IRF4 led to increased IRF5 expression, enhanced M1 activation, exacerbated proinflammatory responses, and worse functional recovery. Up-regulation of IRF4 or IRF5 by lentivirus induced similar results. We conclude that the IRF5-IRF4 regulatory axis is a key determinant in microglial activation. The IRF5-IRF4 regulatory axis is a potential therapeutic target for neuroinflammation and ischemic stroke.
Collapse
|
39
|
Gureviciene I, Ishchenko I, Ziyatdinova S, Jin N, Lipponen A, Gurevicius K, Tanila H. Characterization of Epileptic Spiking Associated With Brain Amyloidosis in APP/PS1 Mice. Front Neurol 2019; 10:1151. [PMID: 31781019 PMCID: PMC6861424 DOI: 10.3389/fneur.2019.01151] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Epileptic activity without visible convulsions is common in Alzheimer's disease (AD) and may contribute adversely to the disease progress and symptoms. Transgenic mice with amyloid plaque pathology also display epileptic seizures, but those are too infrequent to assess the effect of anti-epileptic treatments. Besides spontaneous seizures, these mice also display frequent epileptic spiking in epidural EEG recordings, and these have provided a means to test potential drug treatment to AD-related epilepsy. However, the origin of EEG spikes in transgenic AD model mice has remained elusive, which makes it difficult to relate electrophysiology with underlying pathology at the cellular and molecular level. Using multiple cortical and subcortical electrodes in freely moving APP/PS1 transgenic mice and their wild-type littermates, we identified several types of epileptic spikes among over 15 800 spikes visible with cortical screw electrodes based on their source localization. Cortical spikes associated with muscle twitches, cortico-hippocampal spikes, and spindle and fast-spindle associated spikes were present equally often in both APP/PS1 and wild-type mice, whereas pure cortical spikes were slightly more common in APP/PS1 mice. In contrast, spike-wave discharges, cortico-hippocampal spikes with after hyperpolarization and giant spikes were seen almost exclusively in APP/PS1 mice but only in a subset of them. Interestingly, different subtypes of spikes responded differently to anti-epileptic drugs ethosuximide and levetiracetam. From the translational point most relevant may be the giant spikes generated in the hippocampus that reached an amplitude up to ± 5 mV in the hippocampal channel. As in AD patients, they occurred exclusively during sleep. Further, we could demonstrate that a high number of giant spikes in APP/PS1 mice predicts seizures. These data show that by only adding a pair of hippocampal deep electrodes and EMG to routine cortical epidural screw electrodes and by taking into account underlying cortical oscillations, one can drastically refine the analysis of cortical spike data. This new approach provides a powerful tool to preclinical testing of potential new treatment options for AD related epilepsy.
Collapse
Affiliation(s)
- Irina Gureviciene
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Irina Ishchenko
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Sofya Ziyatdinova
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Nanxiang Jin
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | | | - Heikki Tanila
- A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
40
|
Michno W, Wehrli P, Meier SR, Sehlin D, Syvänen S, Zetterberg H, Blennow K, Hanrieder J. Chemical imaging of evolving amyloid plaque pathology and associated Aβ peptide aggregation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 2019; 152:602-616. [DOI: 10.1111/jnc.14888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Wojciech Michno
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Patrick Wehrli
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
| | - Silvio R. Meier
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Dag Sehlin
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Stina Syvänen
- Department of Public Health and Caring Sciences Uppsala University Uppsala Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
- UK Dementia Research Institute at UCL London UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology University College London London UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry Sahlgrenska Academy at the University of Gothenburg Mölndal Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology University College London London UK
| |
Collapse
|
41
|
Qiang L, Piermarini E, Muralidharan H, Yu W, Leo L, Hennessy LE, Fernandes S, Connors T, Yates PL, Swift M, Zholudeva LV, Lane MA, Morfini G, Alexander GM, Heiman-Patterson TD, Baas PW. Hereditary spastic paraplegia: gain-of-function mechanisms revealed by new transgenic mouse. Hum Mol Genet 2019; 28:1136-1152. [PMID: 30520996 DOI: 10.1093/hmg/ddy419] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/31/2018] [Accepted: 12/02/2018] [Indexed: 12/17/2022] Open
Abstract
Mutations of the SPAST gene, which encodes the microtubule-severing protein spastin, are the most common cause of hereditary spastic paraplegia (HSP). Haploinsufficiency is the prevalent opinion as to the mechanism of the disease, but gain-of-function toxicity of the mutant proteins is another possibility. Here, we report a new transgenic mouse (termed SPASTC448Y mouse) that is not haploinsufficient but expresses human spastin bearing the HSP pathogenic C448Y mutation. Expression of the mutant spastin was documented from fetus to adult, but gait defects reminiscent of HSP (not observed in spastin knockout mice) were adult onset, as is typical of human patients. Results of histological and tracer studies on the mouse are consistent with progressive dying back of corticospinal axons, which is characteristic of the disease. The C448Y-mutated spastin alters microtubule stability in a manner that is opposite to the expectations of haploinsufficiency. Neurons cultured from the mouse display deficits in organelle transport typical of axonal degenerative diseases, and these deficits were worsened by depletion of endogenous mouse spastin. These results on the SPASTC448Y mouse are consistent with a gain-of-function mechanism underlying HSP, with spastin haploinsufficiency exacerbating the toxicity of the mutant spastin proteins. These findings reveal the need for a different therapeutic approach than indicated by haploinsufficiency alone.
Collapse
Affiliation(s)
| | | | | | | | | | - Laura E Hennessy
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | | | | | | | | | | | | - Gerardo Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA
| | - Guillermo M Alexander
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | - Terry D Heiman-Patterson
- Department of Neurology, Drexel University College of Medicine, Queen Lane, Philadelphia, PA, USA
| | | |
Collapse
|
42
|
Zhang W, Tan YW, Yam WK, Tu H, Qiu L, Tan EK, Chu JJH, Zeng L. In utero infection of Zika virus leads to abnormal central nervous system development in mice. Sci Rep 2019; 9:7298. [PMID: 31086212 PMCID: PMC6513999 DOI: 10.1038/s41598-019-43303-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 04/16/2019] [Indexed: 12/14/2022] Open
Abstract
The World Health Organization has declared ZIKA virus (ZIKV) a global public health emergency, prompted by the association of ZIKV infections with severe brain abnormalities in the human fetus. ZIKV preferentially targets human neuronal precursor cells (NPCs) in both monolayer and cortical brain organoid culture systems and stunts their growth. Although ZIKV is well recognized to cause microcephaly, there is no systematic analysis to demonstrate the effect of ZIKV on central nervous system (CNS) development, including brain malformations and spinal cord dysfunction. Here, we conducted a longitudinal analysis to show that a novel mouse model (infected in utero and monitored after birth until adulthood) recapitulates the effects of ZIKV infection affecting neural stem cells fate and leads to a thinner cortex and a smaller brain. Furthermore, we demonstrate the effect of ZIKV on spinal cord function. Specifically, we found significant reductions in neuron numbers in the anterior horn of grey matter of the spinal cord and muscle dystrophy with a significant decrease in forepaw grip strength in the ZIKV group. Thus, the established mouse model of ZIKV infection leading to abnormal CNS development will help to further advance our understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Yong Wah Tan
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore
| | - Wan Keat Yam
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Lifeng Qiu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Eng King Tan
- Research Department, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.,Department of Neurology, National Neuroscience Institute, SGH Campus, Singapore, 169856, Singapore.,Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore
| | - Justin Jang Hann Chu
- Collaborative Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency of Science, Technology & Research (A STAR), Singapore, 138673, Singapore.,Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore, 308433, Singapore. .,Neuroscience & Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore, 169857, Singapore. .,Lee Kong Chian School of Medicine, Novena Campus, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
43
|
Grant MKO, Shapiro SL, Ashe KH, Liu P, Zahs KR. A Cautionary Tale: Endogenous Biotinylated Proteins and Exogenously-Introduced Protein A Cause Antibody-Independent Artefacts in Western Blot Studies of Brain-Derived Proteins. Biol Proced Online 2019; 21:6. [PMID: 31019379 PMCID: PMC6474067 DOI: 10.1186/s12575-019-0095-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 04/08/2019] [Indexed: 02/02/2023] Open
Abstract
Antibodies are commonly used to detect or isolate proteins from biological samples. Much attention has been paid to the potential for poorly-characterized antibodies to lead to misleading results, but antibody-independent artefacts may also occur. Here, we recount two examples of antibody-independent artefacts that have confounded the interpretation of results in our search for molecular entities associated with memory loss in Alzheimer's disease (AD). First, when using biotin-avidin systems for antibody detection, endogenous biotinylated proteins created spurious bands in Western blots of brain lysates from AD patients and transgenic mouse models of AD. These artefactual bands occurred in a transgene- and strain-dependent manner. A second, unexpected artefact occurred when Protein A-conjugated Sepharose beads were used to deplete lysates of endogenous immunoglobulins prior to immunopurification of target proteins. In these assays, Protein A shed from the beads, then bound to (and was eluted from) an immunoaffinity matrix designed to capture AD-related proteins. The Protein A then bound detection antibodies when the immunoaffinity eluates were analyzed by Western blot. Both of these artefacts-the endogenous biotinylated proteins and the Protein A artefact-can be monitored by including an "irrelevant" antibody as an experimental control (e.g., running a parallel protocol in which the antibody directed against the target of interest is replaced by a non-specific antibody).
Collapse
Affiliation(s)
- Marianne K O Grant
- 1Departments of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
- 3N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
- 5Present address: Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN 55455 USA
| | - Samantha L Shapiro
- 1Departments of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
- 3N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
- 6Present address: University of Wisconsin - Madison, Madison, WI 53705 USA
| | - Karen H Ashe
- 1Departments of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
- 2Departments of Neuroscience, University of Minnesota, Minneapolis, MN 55455 USA
- 3N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
- 4GRECC, VA Medical Center, Minneapolis, MN 55417 USA
| | - Peng Liu
- 1Departments of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
- 3N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
| | - Kathleen R Zahs
- 1Departments of Neurology, University of Minnesota, Minneapolis, MN 55455 USA
- 3N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
44
|
Mouse models of Alzheimer's disease cause rarefaction of pial collaterals and increased severity of ischemic stroke. Angiogenesis 2019; 22:263-279. [PMID: 30519973 PMCID: PMC6475514 DOI: 10.1007/s10456-018-9655-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 11/20/2018] [Indexed: 01/26/2023]
Abstract
Vascular dysfunction contributes to the progression and severity of Alzheimer's disease (AD). Patients with AD also sustain larger infarctions after ischemic stroke; however, the responsible mechanisms are unknown. Pial collaterals are the primary source of protection in stroke. Unfortunately, natural aging and other vascular risk factors cause a decline in collateral number and diameter (rarefaction) and an increase in stroke severity. Herein, we tested the hypothesis that AD accelerates age-induced collateral rarefaction and examined potential underlying mechanisms. Triple and double transgenic mouse models of AD both sustained collateral rarefaction by 8 months of age, well before the onset of rarefaction caused by aging alone (16 months of age). Rarefaction, which did not progress further at 18 months of age, was accompanied by a twofold increase in infarct volume after MCA occlusion. AD did not induce rarefaction of similarly sized pial arterioles or penetrating arterioles. Rarefaction was minimal and occurred only at 18 months of age in a parenchymal vascular amyloid-beta model of AD. Rarefaction was not associated with amyloid-beta deposition on collaterals or pial arteries, nor was plaque burden or CD11b+ cell density greater in brain underlying the collateral zones versus elsewhere. However, rarefaction was accompanied by increased markers of oxidative stress, inflammation, and aging of collateral endothelial and mural cells. Moreover, rarefaction was lessened by deletion of CX3CR1 and prevented by overexpression of eNOS. These findings demonstrate that mouse models of AD promote rarefaction of pial collaterals and implicate inflammation-induced accelerated aging of collateral wall cells. Strategies that reduce vascular inflammation and/or increase nitric oxide may preserve collateral function.
Collapse
|
45
|
Myeloid cell IRF4 signaling protects neonatal brains from hypoxic ischemic encephalopathy. Neurochem Int 2018; 127:148-157. [PMID: 30586599 DOI: 10.1016/j.neuint.2018.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Interferon regulatory factor 4 (IRF4), a transcription factor recognized as a key regulator of lymphoid and myeloid cell differentiation, has recently been recognized as a critical mediator of macrophage activation. Previously we have reported that IRF4 signaling is closely correlated with anti-inflammatory polarization of microglia in adult mice after stroke. However, IRF4's role in the inflammatory response in the immature brain is unknown. Using a model of neonatal hypoxic ischemic encephalopathy (HIE) we investigated the regulatory action of IRF4 signaling in the activation of microglia and monocytes after HIE. IRF4 myeloid cell conditional knockout (CKO) postnatal day 10 (P10) male pups were subjected to a 60-min hypoxic-ischemic insult by the Rice-Vanucci model (RVM). IRF4 gene floxed mice (IRF4fl/fl) were used as controls. Brain atrophy and behavioral deficits were measured 7 days after HIE. Flow cytometry (FC) was performed to examine central (microglial activation) and peripheral immune cell responses by both cell membrane and intracellular marker staining. Serum levels of cytokines were determined by ELISA. The results showed that IRF4 CKO pups had increased tissue loss and worse behavioral deficits than IRF4fl/fl mice seven days after HIE. FC demonstrated significantly more infiltration of monocytes and neutrophils in the ischemic brains of IRF4 CKO vs IRF4fl/fl pups. IRF4 CKO ischemic microglia were more pro-inflammatory as evidenced by higher expression of the pro-inflammatory marker CD68, and increased intracellular TNFα and IL-1β levels compared to controls. In addition, IRF4 deletion from myeloid cells resulted in increased levels of circulating pro-inflammatory cytokines and higher endothelial MMP9 expression after HIE. These data indicate that IRF4 signaling in myeloid cells plays a regulatory role in neuroinflammation and that deletion of myeloid IRF4 is detrimental to HIE injury, suggesting that IRF4 could serve as a potential therapeutic target for neonatal ischemic brain injury.
Collapse
|
46
|
Heiland T, Zeitschel U, Puchades MA, Kuhn PH, Lichtenthaler SF, Bjaalie JG, Hartlage-Rübsamen M, Roßner S, Höfling C. Defined astrocytic expression of human amyloid precursor protein in Tg2576 mouse brain. Glia 2018; 67:393-403. [PMID: 30485540 PMCID: PMC6588085 DOI: 10.1002/glia.23550] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 09/28/2018] [Indexed: 12/22/2022]
Abstract
Transgenic Tg2576 mice expressing human amyloid precursor protein (hAPP) with the Swedish mutation are among the most frequently used animal models to study the amyloid pathology related to Alzheimer's disease (AD). The transgene expression in this model is considered to be neuron‐specific. Using a novel hAPP‐specific antibody in combination with cell type‐specific markers for double immunofluorescent labelings and laser scanning microscopy, we here report that—in addition to neurons throughout the brain—astrocytes in the corpus callosum and to a lesser extent in neocortex express hAPP. This astrocytic hAPP expression is already detectable in young Tg2576 mice before the onset of amyloid pathology and still present in aged Tg2576 mice with robust amyloid pathology in neocortex, hippocampus, and corpus callosum. Surprisingly, hAPP immunoreactivity in cortex is restricted to resting astrocytes distant from amyloid plaques but absent from reactive astrocytes in close proximity to amyloid plaques. In contrast, neither microglial cells nor oligodendrocytes of young or aged Tg2576 mice display hAPP labeling. The astrocytic expression of hAPP is substantiated by the analyses of hAPP mRNA and protein expression in primary cultures derived from Tg2576 offspring. We conclude that astrocytes, in particular in corpus callosum, may contribute to amyloid pathology in Tg2576 mice and thus mimic this aspect of AD pathology.
Collapse
Affiliation(s)
- Tina Heiland
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peer-Hendrik Kuhn
- Institute of Pathology, Technical University of Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Munich, Germany.,Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Ma J, Huo X, Jarpe MB, Kavelaars A, Heijnen CJ. Pharmacological inhibition of HDAC6 reverses cognitive impairment and tau pathology as a result of cisplatin treatment. Acta Neuropathol Commun 2018; 6:103. [PMID: 30270813 PMCID: PMC6166273 DOI: 10.1186/s40478-018-0604-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/22/2022] Open
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a commonly reported neurotoxic side effect of chemotherapy, occurring in up to 75% cancer patients. CICI manifests as decrements in working memory, executive functioning, attention, and processing speed, and greatly interferes with patients’ daily performance and quality of life. Currently no treatment for CICI has been approved by the US Food and Drug Administration. We show here that treatment with a brain-penetrating histone deacetylase 6 (HDAC6) inhibitor for two weeks was sufficient to fully reverse cisplatin-induced cognitive impairments in male mice, as demonstrated in the Y-maze test of spontaneous alternation, the novel object/place recognition test, and the puzzle box test. Normalization of cognitive impairment was associated with reversal of cisplatin-induced synaptosomal mitochondrial deficits and restoration of synaptic integrity. Mechanistically, cisplatin induced deacetylation of the microtubule protein α-tubulin and hyperphosphorylation of the microtubule-associated protein tau. These cisplatin-induced changes were reversed by HDAC6 inhibition. Our data suggest that inhibition of HDAC6 restores microtubule stability and reverses tau phosphorylation, leading to normalization of synaptosomal mitochondrial function and synaptic integrity and thereby to reversal of CICI. Remarkably, our results indicate that short-term daily treatment with the HDAC6 inhibitor was sufficient to achieve prolonged reversal of established behavioral, structural and functional deficits induced by cisplatin. Because the beneficial effects of HDAC6 inhibitors as add-ons to cancer treatment have been demonstrated in clinical trials, selective targeting of HDAC6 with brain-penetrating inhibitors appears a promising therapeutic approach for reversing chemotherapy-induced neurotoxicity while enhancing tumor control.
Collapse
|
48
|
Caccamo A, Belfiore R, Oddo S. Genetically reducing mTOR signaling rescues central insulin dysregulation in a mouse model of Alzheimer's disease. Neurobiol Aging 2018; 68:1. [PMID: 29729422 PMCID: PMC6777740 DOI: 10.1016/j.neurobiolaging.2018.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. The causes of sporadic AD, which represents more than 95% of AD cases, are unknown. Several AD risk factors have been identified and among these, type 2 diabetes increases the risk of developing AD by 2-fold. However, the mechanisms by which diabetes contributes to AD pathogenesis remain elusive. The mammalian target of rapamycin (mTOR) is a protein kinase that plays a crucial role in the insulin signaling pathway and has been linked to AD. We used a crossbreeding strategy to remove 1 copy of the mTOR gene from the forebrain of Tg2576 mice, a mouse model of AD. We used 20-month-old mice to assess changes in central insulin signaling and found that Tg2576 mice had impaired insulin signaling. These impairments were mTOR dependent as we found an improvement in central insulin signaling in mice with lower brain mTOR activity. Furthermore, removing 1 copy of mTOR from Tg2576 mice improved cognition and reduced levels of Aβ, tau, and cytokines. Our findings indicate that mTOR signaling is a key mediator of central insulin dysfunction in Tg2576. These data further highlight a possible role for mTOR signaling in AD pathogenesis and add to the body of evidence indicating that reducing mTOR activity could be a valid therapeutic approach for AD.
Collapse
Affiliation(s)
- Antonella Caccamo
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
| | - Ramona Belfiore
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy, 95125
| | - Salvatore Oddo
- The Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Arizona State University, Tempe, Arizona, 85287
- School of Life Sciences, Arizona State University, Tempe, Arizona, 85287
| |
Collapse
|
49
|
Jin N, Lipponen A, Koivisto H, Gurevicius K, Tanila H. Increased cortical beta power and spike-wave discharges in middle-aged APP/PS1 mice. Neurobiol Aging 2018; 71:127-141. [PMID: 30138766 DOI: 10.1016/j.neurobiolaging.2018.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/12/2018] [Accepted: 07/14/2018] [Indexed: 12/11/2022]
Abstract
Amyloid plaque-forming transgenic mice display neuronal hyperexcitability, epilepsy, and sudden deaths in early adulthood. However, it is unknown whether hyperexcitability persists until middle ages when memory impairment manifests. We recorded multichannel video electroencephalography (EEG), local field potentials, and auditory evoked potentials in transgenic mice carrying mutated human amyloid precursor protein (APP) and presenilin-1 (PS1) genes and wild-type littermates at 14-16 months and compared the results with data we have earlier collected from 4-month-old mice. Furthermore, we monitored acoustic startle responses in other APP/PS1 and wild-type mice from 3 to 11 months of age. Independent of the age APP/PS1 mice demonstrated increased cortical power at 8-60 Hz. They also displayed over 5-fold increase in the occurrence of spike-wave discharges and augmented auditory evoked potentials compared with nontransgenic littermates. In contrast to evoked potentials, APP/PS1 mice showed normalization of acoustic startle responses with aging. Increased cortical power and spike-wave discharges provide powerful new biomarkers to monitor progression of amyloid pathology in preclinical intervention studies.
Collapse
Affiliation(s)
- Nanxiang Jin
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Arto Lipponen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | - Heikki Tanila
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
50
|
Al Mamun A, Yu H, Romana S, Liu F. Inflammatory Responses are Sex Specific in Chronic Hypoxic-Ischemic Encephalopathy. Cell Transplant 2018; 27:1328-1339. [PMID: 29692197 PMCID: PMC6168990 DOI: 10.1177/0963689718766362] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is increasingly recognized as a sexually dimorphic disease. Male infants are not only more vulnerable to ischemic insult; they also suffer more long-term cognitive deficits compared with females with comparable brain damage. The innate immune response plays a fundamental role in mediating acute neonatal HIE injury. However, the mechanism underlying the sex difference in chronic HIE is still elusive. The present study investigated the sex difference in HIE outcomes and inflammatory response in the chronic stage (30 days after HIE). Postnatal day 10 (P10) male and female C57BL/6 pups were subjected to 60-min Rice-Vanucci model (RVM) to induce HIE. Brain atrophy and behavioral deficits were analyzed to measure stroke outcomes at 30 days of HIE. Flow cytometry (FC) was performed to examine central (microglial activation) and peripheral immune responses. Serum levels of cytokines and sex hormones were determined by enzyme-linked immunosorbent assay (ELISA). Neurogenesis was quantified by 5-Bromo-2'-deoxyuridine (BrdU) incorporation with neurons. Results showed males had worse HIE outcomes than females at the endpoint. Female microglia exhibited a more robust anti-inflammatory response that was corresponding to an enhanced expression of CX3C chemokine receptor 1 (CX3CR1) than males. More infiltration of peripheral lymphocytes was seen in male vs. female HIE brains. Cytokine levels of tumor necrosis factor (TNF)-α and interleukin (IL)-10 were more upregulated in males and females respectively than their counterparts. Neurogenesis was more highly induced in females vs. males. No significant difference in circulating hormonal level was found between males and females after HIE. We conclude that a sex dichotomy in pro- and anti-inflammatory response underlies the sex-specific chronic HIE outcomes, and an enhanced neurogenesis in females also contribute to the sex difference.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Haifu Yu
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA.,2 Department of Neurology, Shanghai Jiaotong University Sixth People's Hospital South Campus, Shanghai Fengxian District Central Hospital, Shanghai, China
| | - Sharmeen Romana
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| | - Fudong Liu
- 1 Department of Neurology, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, TX, USA
| |
Collapse
|