1
|
Acute administration of diazepam or midazolam minimally alters long-term neuropathological effects in the rat brain following acute intoxication with diisopropylfluorophosphate. Eur J Pharmacol 2020; 886:173538. [PMID: 32898549 DOI: 10.1016/j.ejphar.2020.173538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022]
Abstract
Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated. We compared the efficacy of diazepam vs. midazolam in preventing persistent neuropathology in adult male Sprague-Dawley rats acutely intoxicated with the OP diisopropylfluorophosphate (DFP). Subjects were administered pyridostigmine bromide (0.1 mg/kg, i.p.) 30 min prior to injection with DFP (4 mg/kg, s.c.) or vehicle (saline) followed 1 min later by atropine sulfate (2 mg/kg, i.m.) and pralidoxime (25 mg/kg, i.m.), and 40 min later by diazepam (5 mg/kg, i.p.), midazolam (0.73 mg/kg, i.m.), or vehicle. At 3 and 6 months post-exposure, neurodegeneration, reactive astrogliosis, microglial activation, and oxidative stress were assessed in multiple brain regions using quantitative immunohistochemistry. Brain mineralization was evaluated by in vivo micro-computed tomography (micro-CT). Acute DFP intoxication caused persistent neurodegeneration, neuroinflammation, and brain mineralization. Midazolam transiently mitigated neurodegeneration, and both benzodiazepines partially protected against reactive astrogliosis in a brain region-specific manner. Neither benzodiazepine attenuated microglial activation or brain mineralization. These findings indicate that neither benzodiazepine effectively protects against persistent neuropathological changes, and suggest that midazolam is not significantly better than diazepam. Overall, this study highlights the need for improved neuroprotective strategies for treating humans in the event of a chemical emergency involving OPs.
Collapse
|
2
|
Bouchatta O, Chaibi I, Baba AA, Ba-M'Hamed S, Bennis M. The effects of Topiramate on isolation-induced aggression: a behavioral and immunohistochemical study in mice. Psychopharmacology (Berl) 2020; 237:2451-2467. [PMID: 32430516 DOI: 10.1007/s00213-020-05546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
Topiramate, an antiepileptic drug, has been found to be useful for the treatment of aggression in clinical populations. Most preclinical studies related to Topiramate have been focused exclusively on the quantitative aspects of the aggressive behavior between mice. However, there is still limited knowledge regarding the effects of Topiramate on neuronal mechanisms occurring in aggressive mice. The present work aims to understand further the effects of the antiepileptic drug Topiramate on aggressive behaviors, and on the neural correlates underlying such behaviors. To achieve this, we combined the resident-intruder model of isolation-induced aggression in mice with two drug regimens of Topiramate administration (30.0 mg/kg; acute and sub-chronic treatments). Our data showed that both acute and subchronic treatments decreased the intensity of agonistic encounters and reinforced social behavior. By using C-fos immunoreactivity, we investigated the neuronal activation of several brain regions involved in aggressive behavior following subchronic treatment. We found that Topiramate produced activation in several cortical areas and in the lateral septum of resident brain mice compared with their controls. However, Topiramate induced inhibition in the medial nucleus of the amygdala, the dorsomedial nucleus of the periaqueductal gray, and especially in the anterior hypothalamic nucleus. Finally, we performed microinfusion of Topiramate (0.1 and 0.3 mM) into the lateral septum and anterior hypothalamus on offensive behaviors in isolation-induced-aggression paradigm. Interestingly, the microinfusion of Topiramate into the lateral septum has the capacity to alleviate aggressive behavior, without affecting social behavior. However, the microinfusion of Topiramate into the anterior hypothalamus decreased aggressive behavior and slightly reinforced social behavior. Our observations supported that the dose of 0.1 mM of Topiramate appeared more efficacy to treat aggression in adult mice. These pharmacological characteristics may account for Topiramate efficacy on aggressive symptoms in psychiatric patients.
Collapse
Affiliation(s)
- Otmane Bouchatta
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Ilias Chaibi
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Abdelfatah Ait Baba
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Saadia Ba-M'Hamed
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco
| | - Mohamed Bennis
- Laboratory of Pharmacology, Neurobiology and Behavior, Faculty of Sciences Semlalia, Cadi Ayyad University, Bd. Prince My Abdallah, 40000, Marrakesh, Morocco.
| |
Collapse
|
3
|
GABAA receptor signaling in caudal periaqueductal gray regulates maternal aggression and maternal care in mice. Behav Brain Res 2010; 213:230-7. [PMID: 20457185 DOI: 10.1016/j.bbr.2010.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/07/2010] [Accepted: 05/03/2010] [Indexed: 01/16/2023]
Abstract
Maternal aggression (maternal defense) is exhibited by lactating females towards intruders and contributes to the protection of offspring. Enhancement of Gamma-Aminobutyric acid (GABA)(A) receptor signaling by benzodiazepines elevates maternal aggression, and we previously found indirect evidence (via c-Fos immunohistochemistry) that caudal periaqueductal gray (cPAG) and lateral septum (LS) could be sites where benzodiazepines increase aggression. We recently found that GABA(A) receptor signaling in LS modulates maternal aggression, and in this study, we tested the hypothesis that GABA(A) receptor signaling in cPAG also regulates this behavior. Site-directed injections to cPAG were made in lactating mice using the GABA(A) receptor antagonist, bicuculline (3-9 ng) or the GABA(A) receptor positive modulator, chlordiazepoxide (CDP), a benzodiazepine (2.5-20 microg). Maternal aggression, other maternal behaviors, and anxiety-like measures (using the light-dark box) were then examined. GABA(A) receptor positive modulator did not increase aggression, which could have resulted from a ceiling effect. However, 8 ng and 9 ng of bicuculline in cPAG significantly decreased maternal aggression without altering other maternal behaviors or light-dark box performance, suggesting some GABA(A) receptor signaling in cPAG is required for full maternal aggression expression. Additionally, 7 ng of bicuculline significantly increased licking/grooming of pups, and decreased the number of transitions between the light and dark compartments of the light-dark box without affecting aggression. Given these results indicating that antagonizing GABA(A) receptor in cPAG dose-dependently promotes offspring grooming behavior while impairing aggression, it is possible that the cPAG represents a key site for decision making (aggression versus other behaviors) in the lactating female.
Collapse
|
4
|
Prototypic GABA(A) receptor agonist muscimol acts preferentially through forebrain high-affinity binding sites. Neuropsychopharmacology 2010; 35:999-1007. [PMID: 20032968 PMCID: PMC2823376 DOI: 10.1038/npp.2009.203] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Muscimol has been regarded as a universal agonist for all gamma-aminobutyric acid type A receptor (GABA(A)-R) subtypes. However, brain regional distribution of muscimol's high-affinity binding sites greatly differs from those of other binding sites of the GABA(A)-R. To test whether behavioral effects of muscimol correlated with the density of high-affinity [(3)H]muscimol binding, we examined several GABA(A)-R subunit gene-modified mouse lines: alpha1, alpha4, or delta-knockouts (KO), alpha4+delta-double KO, and Thy1.2 promoter-driven alpha6 transgenic mice (Thy1alpha6). We determined the high-affinity [(3)H]muscimol binding in brain sections by quantitative autoradiography and sedative/ataxic effects induced in vivo by muscimol using a constant speed rotarod. alpha4-KO mice had reduced [(3)H]muscimol binding in the caudate-putamen, thalamus, and hippocampus, and were less sensitive to the behavioral impairment by muscimol. Similarly, delta-KO mice also had reduced binding to forebrain regions and a lower behavioral sensitivity to muscimol than their wild-type controls. In contrast, alpha1-KO mice had unaltered behavioral sensitivity to muscimol and unaltered [(3)H]muscimol binding, even though previous studies have demonstrated dramatically reduced binding to various other GABA(A)-R sites in these mice. Finally, Thy1alpha6 mice exhibited increased behavioral sensitivity to muscimol, and to another direct GABA-site agonist gaboxadol, and increased [(3)H]muscimol binding in the cerebral cortex and hippocampus. Thus, the differences in sedative and motor-impairing actions of muscimol in various mouse models correlated with the level of forebrain high-affinity [(3)H]muscimol binding. These data suggest that a small special population of GABA(A)-Rs, most likely extrasynaptic non-alpha1-containing receptors, strongly contributes to the in vivo pharmacological effects of muscimol.
Collapse
|
5
|
Wang GJ, Volkow ND, Franceschi D, Fowler JS, Thanos PK, Scherbaum N, Pappas N, Wong CT, Hitzemann RJ, Felder CA. Regional Brain Metabolism During Alcohol Intoxication. Alcohol Clin Exp Res 2000. [DOI: 10.1111/j.1530-0277.2000.tb02061.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Gonzalez LE, Ouagazzal AM, File SE. Stimulation of benzodiazepine receptors in the dorsal hippocampus and median raphé reveals differential GABAergic control in two animal tests of anxiety. Eur J Neurosci 1998; 10:3673-80. [PMID: 9875346 DOI: 10.1046/j.1460-9568.1998.00375.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effects of pharmacological challenges to the benzodiazepine receptors in the dorsal hippocampus and median raphé nucleus were investigated in the social interaction and the elevated plus-maze tests of anxiety in rats. In the social interaction test, bilateral administration of midazolam (1 and 2 micrograms), into the dorsal hippocampus had anxiolytic effects; flumazenil (500 ng) was silent, but was able to antagonize the anxiolytic effects of midazolam (2 micrograms). In the social interaction test, midazolam was also anxiolytic when infused into the median raphé nucleus; flumazenil (100 and 500 ng) increased locomotor activity, but did not change anxiety measures. As an anatomical control, midazolam (1 and 2 micrograms) was infused into the adjacent pontine reticular nucleus, and was without effect. In contrast to the social interaction test, local infusion of midazolam (1 and 2 micrograms) and flumazenil (100 and 500 ng) into either the dorsal hippocampus or the median raphé nucleus failed to change anxiety measures in the elevated plus-maze (trials 1 and 2). These results show that stimulation of the benzodiazepine receptors in the hippocampus or the median raphé nucleus leads to anxiolytic effects in the social interaction test, but not in the elevated plus-maze. It would therefore appear that the two tests detect different types of anxiety that are differentially modulated by GABAA-benzodiazepine receptors in the dorsal hippocampus and the median raphé nucleus.
Collapse
Affiliation(s)
- L E Gonzalez
- Psychopharmacology Research Unit, UMDS, Guy's Hospital, London, UK
| | | | | |
Collapse
|
7
|
Thielen RJ, McBride WJ, Chernet E, Lumeng L, Li TK. Regional densities of benzodiazepine sites in the CNS of alcohol-naive P and NP rats. Pharmacol Biochem Behav 1997; 57:875-82. [PMID: 9259019 DOI: 10.1016/s0091-3057(96)00464-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The regional densities of benzodiazepine (BDZ) recognition sites coupled to GABAA receptors were studied in ethanol-naive alcohol-preferring (P) and -nonpreferring (NP) lines of rats by using quantitative autoradiography to measure the amount of 2 nM [3H]flunitrazepam (FNZ) binding in the absence and presence of 100 microM GABA. Lower values (p < 0.025) for [3H]FNZ binding (in the absence of GABA) were observed in the prefrontal cortex, layer 4 of the parietal cortex, and the nucleus accumbens shell of the P relative to the NP line. GABA significantly (p < 0.025) stimulated [3H]FNZ binding in all 50 central nervous system regions examined in both the P and the NP rats. The largest percent increases (190-220%) were observed in the prefrontal, cingulate, frontal, and parietal cortices; shell and core nucleus accumbens; caudate putamen; dorsal lateral, intermediate lateral, ventral lateral, and medial septal nuclei; and lateral hypothalamus. In several layers of the frontal and parietal cortices, a 25-30% greater net or percent increase (p < 0.025) in GABA-enhanced [3H]FNZ binding was observed in the P rats compared with the NP rats. In contrast, lower net or percent increases (p < 0.025) in GABA-enhanced [3H]FNZ binding were found in the entorhinal cortex, the mediodorsal thalamus, and the dorsal CA3 area and middle dentate gyrus of the posterior hippocampus of the P line relative to the NP line. The present findings suggest that there are innate regional differences between P and NP rats in the densities and/or affinities of BDZ recognition sites and in the coupling between the GABAA and BDZ binding sites.
Collapse
Affiliation(s)
- R J Thielen
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, USA
| | | | | | | | | |
Collapse
|
8
|
Milbrandt JC, Albin RL, Turgeon SM, Caspary DM. GABAA receptor binding in the aging rat inferior colliculus. Neuroscience 1996; 73:449-58. [PMID: 8783261 DOI: 10.1016/0306-4522(96)00050-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The inhibitory neurotransmitter GABA has been shown to be critically involved in shaping neuronal responses to simple and complex acoustic stimuli in the inferior colliculus. Studies in the rat and human inferior colliculus have suggested significant changes in functions related to GABA neurotransmission occur in the aged. These changes include significant decreases in GABA content, GABA release, GABA neurons, glutamate decarboxylase enzymatic activity, and GABAB receptor binding. Such changes within the inferior colliculus may affect the ability of elderly listeners to process complex acoustic signals, particularly in the presence of background noise. The present study was designed to examine the regional distribution and effects of aging on GABAA receptor binding sites in the Fischer 344 rat inferior colliculus using in vitro quantitative receptor autoradiography. [3H]GABA binding to GABAA receptors was significantly reduced in the inferior colliculus of young adult (3 months) and aged (18-26 months) rats when compared to 2-month animals. However, no significant changes were observed after 3 months of age. Single concentrations of tritiated GABAA receptor ligands (muscimol, t-butylbicycloorthobenzoate, and flunitrazepam) revealed no significant age-related changes in receptor binding in the inferior colliculus between 3 and 26 months of age. To characterize further the pharmacology of the GABAA receptor in the inferior colliculus, GABA modulation of the picrotoxin binding site was examined using [3H]t-butylbicycloorthobenzoate. When increasing concentrations of GABA were added to the incubation buffer, a significant decrease in binding was observed in the inferior colliculus of rats in each age group. In aged rats, the dose-response curve was shifted to the left, indicating an increase in the potency of GABA to inhibit [3H]t-butylbicycloorthobenzoate binding. Although no changes in GABAA receptor binding were detected in the inferior colliculus after 3 months of age, a significant alteration in interaction between the GABA and picrotoxin binding sites was observed in the inferior colliculus of aged rats when compared to 3-month-old young adults. This difference appears to reflect an increased sensitivity of the receptor to GABA modulation in aged rats and, thus, may serve as a compensatory mechanism to enhance GABAA receptor function in response to a presynaptic loss of inhibition.
Collapse
Affiliation(s)
- J C Milbrandt
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield 62702, USA
| | | | | | | |
Collapse
|
9
|
Brett RR, Pratt JA. Changes in benzodiazepine-GABA receptor coupling in an accumbens-habenula circuit after chronic diazepam treatment. Br J Pharmacol 1995; 116:2375-84. [PMID: 8581272 PMCID: PMC1909033 DOI: 10.1111/j.1476-5381.1995.tb15083.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
1. The effects of subacute and of chronic diazepam treatment upon binding to the GABAA receptor have been examined by use of receptor autoradiography for determining flunitrazepam (FNZP) binding, GABA enhancement of FNZP binding. SR 95531 2-(3'-carboxy-2',propyl)-3-amino-6-p-methoxyphenylpyridazinium bromide) binding and GABA binding in parallel sections from rat brain. Prior to the autoradiographic procedures, a behavioural assessment of the rats was made in the elevated plus-maze test of anxiety. 2. Rats receiving diazepam either subacutely (3 days) or chronically (28 days) by both continuous release, from previously implanted subcutaneous silastic capsules, or by daily injection (5 mg kg-1) did not display changes in FNZP or GABA binding in any of the 47 brain structures analysed. Similarly, there were no significant effects of treatment upon mean total entries or on the open:total ratio for entries in the elevated plus-maze. 3. There were reductions in the GABA enhancement of FNZP binding in the nucleus accumbens and central grey after subacute diazepam treatment. This effect persisted in the nucleus accumbens after chronic treatment. Less marked effects occurred in the lateral habenula, dorsal raphe and substantia nigra pars compacta. In the dorsal tegmental nucleus, GABA enhancement of FNZP binding was enhanced after chronic treatment and this was accompanied by reductions in SR 95531 binding. Treatment did not otherwise affect SR 95531 binding, with the exception of the dorsal raphe where binding was decreased after subacute treatment. 4. In general, the patterns of binding produced by the two different treatment routes were very similar. However, SR 95531 binding was lower in certain hippocampal fields in the i.p. treated animals compared to the rats implanted with silastic capsules. 5. It is concluded that repeated administration of diazepam evokes changes in benzodiazepine and GABA receptor coupling, and to a lesser extent changes in low affinity GABA binding, in certain interrelated brain structures of which an accumbens-habenula circuit is a central feature. These changes occur soon after the initiation of diazepam treatment, suggesting that they are unlikely to account for tolerance to the anxiolytic effects of diazepam but may trigger and/or accompany other critical neurochemical events.
Collapse
Affiliation(s)
- R R Brett
- Department of Biological Sciences, University of Paisley
| | | |
Collapse
|
10
|
Abstract
The major functions of the midbrain periaqueductal gray (PAG), including pain and analgesia, fear and anxiety, vocalization, lordosis and cardiovascular control are considered in this review article. The PAG is an important site in ascending pain transmission. It receives afferents from nociceptive neurons in the spinal cord and sends projections to thalamic nuclei that process nociception. The PAG is also a major component of a descending pain inhibitory system. Activation of this system inhibits nociceptive neurons in the dorsal horn of the sinal cord. The dorsal PAG is a major site for processing of fear and anxiety. It interacts with the amygdala and its lesion alters fear and anxiety produced by stimulation of amygdala. Stimulation of PAG produces vocalization and its lesion produces mutism. The firing of many cells within the PAG correlates with vocalization. The PAG is a major site for lordosis and this role of PAG is mediated by a pathway connecting the medial preoptic with the PAG. The cardiovascular controlling network within the PAG are organized in columns. The dorsal column is involved in pressor and the ventrolateral column mediates depressor responses. The major intrinsic circuit within the PAG is a tonically-active GABAergic network and inhibition of this network is an important mechanism for activation of outputs of the PAG. The various functions of the PAG are interrelated and there is a significant interaction between different functional components of the PAG. Using the current information about the anatomy, physiology, and pharmacology of the PAG, a model is proposed to account for the interactions between these different functional components.
Collapse
Affiliation(s)
- M M Behbehani
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, OH 45267-0576, USA
| |
Collapse
|
11
|
Nicholson LF, Faull RL, Waldvogel HJ, Dragunow M. GABA and GABAA receptor changes in the substantia nigra of the rat following quinolinic acid lesions in the striatum closely resemble Huntington's disease. Neuroscience 1995; 66:507-21. [PMID: 7644016 DOI: 10.1016/0306-4522(94)00607-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
GABA and GABAA receptors have been studied in the substantia nigra of the rat following quinolinic acid lesions in the striatum. The regional distribution of GABA and GABAA receptors was investigated using immunohistochemical techniques with monoclonal antibodies to GABA and to the beta 2.3 subtypes of the GABAA receptor complex. The distribution, density and cellular localization of GABAA receptors were studied using quantitative receptor autoradiography and 6-hydroxydopamine-induced degeneration of dopaminergic pars compacta neurons. The subunit configuration of GABAA receptors was investigated using in situ hybridization histochemistry and subunit subtype-specific oligonucleotide probes. The results showed that in the normal substantia nigra GABA and GABAA receptors were mainly localized within the pars reticulata. GABAA receptors were mainly of the BZI variety, had a subunit subtype configuration that included alpha 1 and beta 2.3 subtypes, and showed a rostrocaudal gradient in the density of receptors; the density of receptors in the caudal third was 56% higher than that in the rostral third of the pars reticulata. Following quinolinic acid-induced degeneration of the striatonigral pathway, there was a marked loss of GABA immunoreactivity and a 59% increase in the density of GABAA receptors in the substantia nigra pars reticulata. There was a corresponding regional topography in the pattern of loss of GABA immunoreactivity and in the pattern of increase in GABAA receptors in the pars reticulata; the topography varied with the size and placement of the lesion in the striatum and correlated with the known topographical organization of the striatonigral projection. The quantitative autoradiographic results showed that following quinolinic acid lesions in the striatum: (i) the greatest increase in the density of GABAA receptors occurred in the middle third (91% increase) of the pars reticulata; (ii) the receptors were mainly of the GABAA/BZI variety; and (iii) 6-hydroxydopamine-induced degeneration of the dopaminergic pars compacta neurons did not significantly affect the density of receptors, indicating that the increased receptor binding was mainly localized on non-dopaminergic pars reticulata neurons. The immunohistochemical and in situ hybridization studies showed that, as in the normal substantia nigra, GABAA receptors in the substantia nigra pars reticulata on the lesioned side contained the alpha 1 and beta 2.3 GABAA receptor subtypes; the alpha 1 and beta 2.3 subtypes (but not the alpha 2) were increased after quinolinic acid lesions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L F Nicholson
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
12
|
Titulaer MN, Kamphuis W, Pool CW, van Heerikhuize JJ, Lopes da Silva FH. Kindling induces time-dependent and regional specific changes in the [3H]muscimol binding in the rat hippocampus: a quantitative autoradiographic study. Neuroscience 1994; 59:817-26. [PMID: 8058123 DOI: 10.1016/0306-4522(94)90286-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To investigate possible changes in the GABAA receptor agonist site in the CA1 area and fascia dentata of rats kindled by stimulation of Schaffer collaterals, a quantitative autoradiographic study of the [3H]muscimol binding was carried out. Two kindled groups were studied, at 24 h (fully kindled stage) and at 28 days (long-term stage) after the last class V seizure. Several concentrations of [3H]muscimol were tested in the range of the high/intermediate (5-40 nM) and low-affinity (60-100 nM) binding sites. In the fully kindled group, the binding over the complete range of tested [3H]muscimol concentrations was significantly increased by 30-50% in the fascia dentata, while the binding was significantly decreased by 10-25% in the CA1 area. The high/intermediate-affinity binding was still significantly increased by 20-30% in the fascia dentata 28 days after the last seizure. In this long-term group there was still a significant decrease of 10-18% of the low-affinity binding in the CA1 area. These results show that kindling epileptogenesis induces long-lasting changes in the GABAA receptor agonist binding sites that are region specific. We hypothesize that the changes encountered at the fully kindled stage, i.e. increased binding in the fascia dentata and decreased binding in the CA1 area, may underly the electrophysiologically observed increased paired-pulse depression of field potentials in the former and the decreased paired-pulse depression in the latter area [Kamphuis et al. (1992) Neurosci. Lett. 141, 101-105; Kamphuis et al. (1988) Brain Res. 440, 205-215; Zhao and Leung (1991) Brain Res. 564, 220-229; Zhao and Leung (1992) Brain Res. 582, 163-167]. We conclude that the observed changes may not only contribute to the induction of kindling epileptogenesis but may also play a role in the maintenance of the kindled state.
Collapse
Affiliation(s)
- M N Titulaer
- Graduate School for the Neurosciences, Institute of Neurobiology, Faculty of Biology, University of Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Hajós M, Greenfield SA. Topographic heterogeneity of substantia nigra neurons: diversity in intrinsic membrane properties and synaptic inputs. Neuroscience 1993; 55:919-34. [PMID: 7901802 DOI: 10.1016/0306-4522(93)90308-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The passive and active membrane properties of substantia nigra neurons were recorded in vitro at various locations throughout its anterior-posterior extent and their responses to extracellular electrical stimulation within the pars reticulata were analysed. One class of nigral pars compacta cell showed the well-established electrophysiological characteristics of mesencephalic dopaminergic neurons, i.e. spontaneous discharge in a very rhythmic, pacemaker fashion without bursting activity and with broad action potentials. However, these neurons could be subdivided further according to differences in electrophysiological properties which correlated with their position within the substantia nigra. Thus, neurons recorded from the anterior part of the substantia nigra, at the level of the mammilary bodies displayed a significantly higher firing rate and shorter action potential than those located in posterior slices at the level of the accessory optic tract. The location of the cell was also a critical factor in its response to stimulation of the pars reticulata: in anterior slices only 45.5% of the cells responded with inhibitory postsynaptic potentials to stimulation, while in posterior slices inhibitory postsynaptic potentials occurred in 85.7% of the neurons (n = 44). In addition, anteriorly located neurons were more sensitive to direct electrical stimulation than posteriorly located cells and they also exhibited excitatory postsynaptic potentials (33%) on pars reticulata stimulation. However, the actual properties of inhibitory postsynaptic potentials were essentially the same in these neurons irrespective of whether they were located either in the anterior or posterior part of the nigra: reversal potentials of inhibitory postsynaptic potentials were found at two distinct potentials indicating involvement of both GABAA and GABAB receptors. This deduction is also supported by additional pharmacological findings: application of the GABAA antagonist, bicuculline methiodide and/or GABAB antagonist, 2-hydroxysaclofen blocked both the inhibitory postsynaptic potentials and the cessation of spontaneous firing activity of the cells to stimulation of the pars reticulata. The other type of pars compacta neuron recorded discharges phasically and was located exclusively in the anterior pole of the substantia nigra. These cells showed a wide range of spontaneous firing activity, a non-rhythmic, irregular pattern of firing, a shorter action potential width and the presence of a low-threshold calcium conductance. These "phasic" neurons also differed greatly from other compacta neurons in their response to pars reticulata stimulation: spontaneous activity of these cells was not inhibited nor did they show inhibitory postsynaptic potentials. Instead, the majority was preferentially activated by direct stimulation of the dendrites, although excitatory postsynaptic potentials could also be evoked.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M Hajós
- University Department of Pharmacology, Oxford, U.K
| | | |
Collapse
|
14
|
Spreafico R, Mennini T, Danober L, Cagnotto A, Regondi MC, Miari A, De Blas A, Vergnes M, Avanzini G. GABAA receptor impairment in the genetic absence epilepsy rats from Strasbourg (GAERS): an immunocytochemical and receptor binding autoradiographic study. Epilepsy Res 1993; 15:229-38. [PMID: 8223419 DOI: 10.1016/0920-1211(93)90060-k] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Some aspects of the GABA and cholinergic systems have been investigated in the cortex and thalamus of GAERS Wistar rats, a model of petit-mal epilepsy, and in a non-epileptic control strain. GABA and its synthetic enzyme, glutamic acid decarboxylase (GAD), were located by immunocytochemistry; the GABAA receptors were evaluated by autoradiography of GABA-enhanced 3H-flunitrazepam binding and by immunocytochemistry using specific antibodies against the beta 2-beta 3 subunits of GABAA receptor protein. GABA and GAD immunocytochemistry did not show up any difference in density or distribution of immunoreactive elements (fibers, terminals and neurons) between epileptic and control animals, but autoradiographic and immunocytochemical studies showed a decreased enhancement of 3H-flunitrazepam binding and of beta 2-beta 3 subunits of GABAA receptor in the sensorimotor cortex and anterior thalamic areas of the epileptic strain. No differences were found in benzodiazepine receptors in the two strains. GABAB receptors were measured as 3H-baclofen binding in a crude synaptic membrane preparation and there was no difference between epileptic and control animals. Choline acetyltransferase, the synthetic enzyme for acetylcholine, and muscarinic receptor subtypes (M1 and M2), visualized respectively by an immunocytochemical procedure and binding autoradiography, did not differ in epileptic and normal rats. The data suggest an impairment of the 'GABAA system' in restricted brain regions of epileptic rats, due to a reduction of receptor beta 2-beta 3 subunits and coupling to benzodiazepine receptors despite the normal synthesis and location of the neurotransmitter.
Collapse
Affiliation(s)
- R Spreafico
- Dept. of Neurophysiology, Istituto Neurologico C. Besta, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ruano D, Benavides J, Machado A, Vitorica J. Regional differences in the enhancement by GABA of [3H]zolpidem binding to omega 1 sites in rat brain membranes and sections. Brain Res 1993; 600:134-40. [PMID: 8380746 DOI: 10.1016/0006-8993(93)90411-f] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The potential heterogeneity in the allosteric coupling between GABA and omega 1 binding sites within the native GABAA receptor complex has been evaluated in the rat by measuring the enhancement by GABA of [3H]zolpidem binding to omega 1 site in membranes from three rat brain structures (neocortex, cerebellum and hippocampus) and brain sections. The maximal stimulatory effect of GABA was significantly higher (265 +/- 47%) in cortical membranes than in cerebellar (165 +/- 48%) or in hippocampal (118 +/- 17%) membranes. These differences are not due either to the presence of different amounts of residual GABA in the membrane preparations or to the labeling, in presence of GABA, of binding sites other than omega 1 since: (1) the pharmacological properties of the [3H]zolpidem binding sites were similar in the three regions; (2) the degree of allosteric enhancement was unrelated to the relative proportion of omega 1 sites in each structure; and (3) GABA did not increase the Bmax for [3H]zolpidem. Regional differences in the effect of 100 microM GABA on [3H]zolpidem binding were also observed by quantitative autoradiography. Regions where the strongest (3-4-fold) effects of GABA in [3H]zolpidem binding were observed included the substantia nigra, lateral geniculate body, olfactory tubercule and red nucleus. A large increase in [3H]zolpidem binding was also demonstrated in the cingulate and frontoparietal cortices with higher effects in deep (4.2-fold) rather than in superficial layers (3.3-fold). Heterogeneous subregional increases in [3H]zolpidem binding in the presence of GABA were quantified within the cerebellum, hippocampus and superior colliculus.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D Ruano
- Departamento de Bioquímica, Bromatología y Toxicología, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | |
Collapse
|
16
|
Persohn E, Malherbe P, Richards JG. Comparative molecular neuroanatomy of cloned GABAA receptor subunits in the rat CNS. J Comp Neurol 1992; 326:193-216. [PMID: 1336019 DOI: 10.1002/cne.903260204] [Citation(s) in RCA: 299] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
gamma-Aminobutyric acidA (GABAA) receptors in the mammalian central nervous system (CNS) are members of a family of ligand-gated ion channels consisting of heterooligomeric glycoprotein complexes in synaptic and extrasynaptic membranes. Although molecular cloning studies have identified 5 subunits (with approximately 40% amino acid homology) and isoforms thereof (approximately 70% homology), namely alpha 1-6, beta 1-4, gamma 1-3, delta, and rho, the subunit composition and stoichiometry of native receptors are not known. The regional distribution and cellular expression of GABAA receptor messenger RNAs (mRNAs) in the rat CNS have now been investigated by in situ hybridization histochemistry with subunit-specific 35S-labelled oligonucleotide probes on adjacent cryostat sections. Whereas alpha 1, beta 2, and gamma 2 transcripts were the most abundant and ubiquitous in the rat brain--correlating with the radioautographic distribution of GABAA receptors revealed by an ionophore ligand--others had a more restricted expression while often being abundant. For example, alpha 2 transcripts were found only in the olfactory bulb, cerebral cortex, caudate putamen, hippocampal formation, and certain lower brain stem nuclei; alpha 3 only in the olfactory bulb and cerebral cortex; alpha 5 in the hippocampal formation; and alpha 6 only in cerebellar granule cells. In addition, beta 1, beta 3, gamma 1, and delta mRNAs were also uniquely expressed in restricted brain regions. Moreover, in the spinal cord, alpha 1-3, beta 2,3, and gamma 2 mRNAs were differently expressed in Rexed layers 2-9, with alpha 2, beta 3, and gamma 2 transcripts most prominent in motoneurons of layer 9. Although differential protein trafficking could lead to the incorporation of some subunits into somatic membranes and others into dendritic membranes, some tentative conclusions as to the probable composition of native proteins in various regions of the CNS may be drawn.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- E Persohn
- Pharma Division, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | | | |
Collapse
|
17
|
Nicholson LF, Faull RL, Waldvogel HJ, Dragunow M. The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience 1992; 50:355-70. [PMID: 1331862 DOI: 10.1016/0306-4522(92)90429-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The regional, cellular and subcellular distribution of GABAA/benzodiazepine receptors was investigated by light and electron microscopy in the rat substantia nigra. The regional distribution and density of GABAA/benzodiazepine receptor subtypes (Type I and II) was studied using quantitative receptor autoradiography following in vitro labelling of cryostat sections with tritiated ligands. This was followed by a detailed study of the cellular and subcellular distribution and localization of GABAA/benzodiazepine receptors by light and electron microscopy using immunohistochemical techniques with a monoclonal antibody (bd-17) to the beta 2,3 subunits of the GABAA/benzodiazepine receptor complex. Finally, in situ hybridization histochemistry using 35S-labelled oligonucleotide probes was used to demonstrate the cellular distribution of mRNA for the alpha 1 and alpha 2 GABAA receptor subunits in the substantia nigra. The results of the autoradiographic and immunohistochemical studies showed a close correspondence in the regional distribution of GABAA/benzodiazepine receptors in the substantia nigra. A moderate-to-high density of receptors was present throughout the full extent of the substantia nigra pars reticulata with a very low density of receptors in the substantia nigra pars compacta. Quantitative autoradiographic studies showed that: (i) the pars reticulata contained mainly central Type I receptors; (ii) the highest density of receptors was present in the caudal pars reticulata (200 +/- 38 fmol/mg) with successively lower densities of receptors in the middle (176 +/- 31 fmol/mg) and rostral (150 +/- 26 fmol/mg) levels of the pars reticulata; and (iii) the density of receptors in the pars reticulata was reduced by 34% following 6-hydroxydopamine-induced degeneration of dopaminergic pars compacta neurons. At the cellular level, GABAA/benzodiazepine receptor immunoreactivity was localized in a punctate fashion on dendrites and neuronal cell bodies in the pars reticulata. At the subcellular level, GABAA/benzodiazepine receptor immunoreactivity was associated with the pre- and postsynaptic membranes of axodendritic synaptic complexes along the length of small-to-large sized smooth dendrites in the pars reticulata. Two types of immunoreactive axodendritic synaptic complexes were identified: most (about 80%) immunopositive synapses showed equal staining of the pre- and postsynaptic membranes and were associated with small (less than 1.0 micron) axon terminals containing few mitochondria and small, round-to-pleomorphic vesicles in synaptic contact with small, peripheral dendrites; less frequently (about 20%) immunopositive synapses showed a marked immunoreactive thickening of the postsynaptic membrane and were associated with large (greater than 1.0 micron) axon terminals containing numerous mitochondria and mainly pleomorphic vesicles in synaptic contact with large mainstem dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- L F Nicholson
- Department of Anatomy, School of Medicine, University of Auckland, New Zealand
| | | | | | | |
Collapse
|
18
|
Mesdjian E, Ciesielski L, Mandel P. GABAA sodium independent receptor sites in a strain of rats presenting generalized non-convulsive seizures. Neurosci Lett 1992; 136:232-5. [PMID: 1322518 DOI: 10.1016/0304-3940(92)90056-d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The role of gamma-aminobutyric acid (GABA), a major inhibitor neurotransmitter in the central nervous system (CNS), is well established in the genesis and the control of epilepsies. The purpose of this work was to study the binding parameters of the Na(+)-independent GABA receptors in the brain of a strain of rats presenting spontaneous generalized non-convulsive seizures. The high- and low-affinity binding sites were evaluated in cerebral cortex, cerebellum, and hippocampus using [3H]muscimol. No significant modification was observed for the Bmax and the Kd of high-affinity binding sites, although a slight decrease of Bmax was noted in the three brain areas in rats with seizures. Concerning the low-affinity binding sites, significant decreases were observed in the values of Bmax in the cortex, cerebellum, and hippocampus of animals with spontaneous seizures, without modification of Kd values. Such changes could be considered to be involved in some of the physiological and behaviour activities observed in this strain of rats.
Collapse
Affiliation(s)
- E Mesdjian
- INSERM U. 278, Faculté de Pharmacie, Marseille, France
| | | | | |
Collapse
|
19
|
Gobbi M, Cavanus S, Miari A, Mennini T. Effect of acute and chronic administration of buspirone on serotonin and benzodiazepine receptor subtypes in the rat brain: an autoradiographic study. Neuropharmacology 1991; 30:313-21. [PMID: 1649418 DOI: 10.1016/0028-3908(91)90055-g] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The affinity of buspirone and its main metabolite 1-(2-pyrimidinyl)piperazine (PmP) for serotonin1 (5-HT1) and benzodiazepine receptors was first evaluated by computerized receptor autoradiography. The results confirmed that buspirone is a selective 5-HT1A ligand, since it inhibited the binding of [3H]5-HT with lower IC50 values (about 100 nM) in regions of the brain of the rat where this receptor subtype is predominant (such as hippocampal areas). Larger IC50 values than 3 microM were found in areas of the brain richer in 5-HT1 receptors, other than the 5-HT1A subtype (e.g. striatum, substantia nigra and the ventricles). The PmP was not selective, inhibiting the binding of [3H]5-HT with similar affinity (about 4-10 microM) in all the regions of the brain examined. Neither buspirone nor PmP, up to 100 microM, were active on benzodiazepine receptors. The autoradiographic technique was therefore used to evaluate the effects of acute (10 mg/kg, p.o., 1 hr before killing) and chronic (10 mg/kg, i.p., twice a day for 21 days, 24 hr washout) treatment with buspirone in male rats. Acute treatment reduced the binding of [3H]5-HT in all the regions of the brain studied, including those with low levels of 5-HT1A receptors, indicating the occupancy of 5-HT1 receptors by either buspirone or its metabolite. The binding of [3H]flunitrazepam was decreased (16%) only in the substantia nigra.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Gobbi
- Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | | | | | | |
Collapse
|