1
|
Martoriati A, Molinaro C, Marchand G, Fliniaux I, Marin M, Bodart JF, Takeda-Uchimura Y, Lefebvre T, Dehennaut V, Cailliau K. Follicular cells protect Xenopus oocyte from abnormal maturation via integrin signaling downregulation and O-GlcNAcylation control. J Biol Chem 2023; 299:104950. [PMID: 37354972 PMCID: PMC10366548 DOI: 10.1016/j.jbc.2023.104950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Xenopus oocytes are encompassed by a layer of follicular cells that contribute to oocyte growth and meiosis in relation to oocyte maturation. However, the effects of the interaction between follicular cells and the oocyte surface on meiotic processes are unclear. Here, we investigated Xenopus follicular cell function using oocyte signaling and heterologous-expressing capabilities. We found that oocytes deprotected from their surrounding layer of follicular cells and expressing the epidermal growth factor (EGF) receptor (EGFR) and the Grb7 adaptor undergo accelerated prophase I to metaphase II meiosis progression upon stimulation by EGF. This unusual maturation unravels atypical spindle formation but is rescued by inhibiting integrin β1 or Grb7 binding to the EGFR. In addition, we determined that oocytes surrounded by their follicular cells expressing EGFR-Grb7 exhibit normal meiotic resumption. These oocytes are protected from abnormal meiotic spindle formation through the recruitment of O-GlcNAcylated Grb7, and OGT (O-GlcNAc transferase), the enzyme responsible for O-GlcNAcylation processes, in the integrin β1-EGFR complex. Folliculated oocytes can be forced to adopt an abnormal phenotype and exclusive Grb7 Y338 and Y188 phosphorylation instead of O-GlcNAcylation under integrin activation. Furthermore, an O-GlcNAcylation increase (by inhibition of O-GlcNAcase), the glycosidase that removes O-GlcNAc moieties, or decrease (by inhibition of OGT) amplifies oocyte spindle defects when follicular cells are absent highlighting a control of the meiotic spindle by the OGT-O-GlcNAcase duo. In summary, our study provides further insight into the role of the follicular cell layer in oocyte meiosis progression.
Collapse
Affiliation(s)
- Alain Martoriati
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Caroline Molinaro
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Guillaume Marchand
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Ingrid Fliniaux
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Matthieu Marin
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jean-François Bodart
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yoshiko Takeda-Uchimura
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Tony Lefebvre
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Vanessa Dehennaut
- Université de Lille, CNRS, INSERM, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, Lille, France
| | - Katia Cailliau
- University Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
2
|
Zhou X, Zhang Y, Michal JJ, Qu L, Zhang S, Wildung MR, Du W, Pouchnik DJ, Zhao H, Xia Y, Shi H, Ji G, Davis JF, Smith GD, Griswold MD, Harland RM, Jiang Z. Alternative polyadenylation coordinates embryonic development, sexual dimorphism and longitudinal growth in Xenopus tropicalis. Cell Mol Life Sci 2019; 76:2185-2198. [PMID: 30729254 PMCID: PMC6597005 DOI: 10.1007/s00018-019-03036-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 01/09/2019] [Accepted: 01/30/2019] [Indexed: 12/27/2022]
Abstract
RNA alternative polyadenylation contributes to the complexity of information transfer from genome to phenome, thus amplifying gene function. Here, we report the first X. tropicalis resource with 127,914 alternative polyadenylation (APA) sites derived from embryos and adults. Overall, APA networks play central roles in coordinating the maternal-zygotic transition (MZT) in embryos, sexual dimorphism in adults and longitudinal growth from embryos to adults. APA sites coordinate reprogramming in embryos before the MZT, but developmental events after the MZT due to zygotic genome activation. The APA transcriptomes of young adults are more variable than growing adults and male frog APA transcriptomes are more divergent than females. The APA profiles of young females were similar to embryos before the MZT. Enriched pathways in developing embryos were distinct across the MZT and noticeably segregated from adults. Briefly, our results suggest that the minimal functional units in genomes are alternative transcripts as opposed to genes.
Collapse
Affiliation(s)
- Xiang Zhou
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangzi Zhang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Jennifer J Michal
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Lujiang Qu
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
- College of Animal Sciences and Technology, China Agricultural University, Beijing, China
| | - Shuwen Zhang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA
| | - Mark R Wildung
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Weiwei Du
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Derek J Pouchnik
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yin Xia
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Honghua Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Guoli Ji
- Department of Automation, Xiamen University, Xiamen, China
| | - Jon F Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Gary D Smith
- Departments of OB/GYN, Physiology, and Urology, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Griswold
- Laboratory for Biotechnology and Bioanalysis, Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164-7620, USA.
| |
Collapse
|
3
|
Huang Y, Winklbauer R. Cell migration in the Xenopus gastrula. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e325. [PMID: 29944210 DOI: 10.1002/wdev.325] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 05/22/2018] [Accepted: 05/30/2018] [Indexed: 12/17/2022]
Abstract
Xenopus gastrulation movements are in large part based on the rearrangement of cells by differential cell-on-cell migration within multilayered tissues. Different patterns of migration-based cell intercalation drive endoderm and mesoderm internalization and their positioning along their prospective body axes. C-cadherin, fibronectin, integrins, and focal contact components are expressed in all gastrula cells and play putative roles in cell-on-cell migration, but their actual functions in this respect are not yet understood. The gastrula can be subdivided into two motility domains, and in the vegetal, migratory domain, two modes of cell migration are discerned. Vegetal endoderm cells show ingression-type migration, a variant of amoeboid migration characterized by the lack of locomotory protrusions and by macropinocytosis as a mechanism of trailing edge resorption. Mesendoderm and prechordal mesoderm cells use lamellipodia in a mesenchymal mode of migration. Gastrula cell motility can be dissected into traits, such as cell polarity, adhesion, mobility, or protrusive activity, which are controlled separately yet in complex, combinatorial ways. Cells can instantaneously switch between different combinations of traits, showing plasticity as they respond to substratum properties. This article is categorized under: Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Rozario T, Mead PE, DeSimone DW. Diverse functions of kindlin/fermitin proteins during embryonic development in Xenopus laevis. Mech Dev 2014; 133:203-17. [PMID: 25173804 DOI: 10.1016/j.mod.2014.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 07/03/2014] [Accepted: 07/30/2014] [Indexed: 12/11/2022]
Abstract
The kindlin/fermitin family includes three proteins involved in regulating integrin ligand-binding activity and adhesion. Loss-of-function mutations in kindlins1 and 3 have been implicated in Kindler Syndrome and Leukocyte Adhesion Deficiency III (LAD-III) respectively, whereas kindlin2 null mice are embryonic lethal. Post translational regulation of cell-cell and cell-ECM adhesion has long been presumed to be important for morphogenesis, however, few specific examples of activation-dependent changes in adhesion molecule function in normal development have been reported. In this study, antisense morpholinos were used to reduce expression of individual kindlins in Xenopus laevis embryos in order to investigate their roles in early development. Kindlin1 knockdown resulted in developmental delays, gross malformations of the gut and eventual lethality by tadpole stages. Kindlin2 morphant embryos displayed late stage defects in vascular maintenance and angiogenic branching consistent with kindlin2 loss of function in the mouse. Antisense morpholinos were also used to deplete maternal kindlin2 protein in oocytes and eggs. Embryos lacking maternal kindlin2 arrested at early cleavage stages due to failures in cytokinesis. Kindlin3 morphant phenotypes included defects in epidermal ciliary beating and partial paralysis at tailbud stages but these embryos recovered eventually as morpholino levels decayed. These results indicate a remarkably diverse range of kindlin functions in vertebrate development.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA
| | - Paul E Mead
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Douglas W DeSimone
- Department of Cell Biology and The Morphogenesis and Regenerative Medicine Institute, University of Virginia, School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
5
|
McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2012; 373:244-57. [PMID: 23123967 DOI: 10.1016/j.ydbio.2012.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/18/2012] [Accepted: 10/25/2012] [Indexed: 01/13/2023]
Abstract
Neural crest cells are highly migratory cells that give rise to many derivatives including peripheral ganglia, craniofacial structures and melanocytes. Neural crest cells migrate along defined pathways to their target sites, interacting with each other and their environment as they migrate. Cell adhesion molecules are critical during this process. In this review we discuss the expression and function of cell adhesion molecules during the process of neural crest migration, in particular cadherins, integrins, members of the immunoglobulin superfamily of cell adhesion molecules, and the proteolytic enzymes that cleave these cell adhesion molecules. The expression and function of these cell adhesion molecules and proteases are compared across neural crest emigrating from different axial levels, and across different species of vertebrates.
Collapse
Affiliation(s)
- Sonja J McKeown
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia.
| | | | | |
Collapse
|
6
|
Activation of endogenous FAK via expression of its amino terminal domain in Xenopus embryos. PLoS One 2012; 7:e42577. [PMID: 22880041 PMCID: PMC3412797 DOI: 10.1371/journal.pone.0042577] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/09/2012] [Indexed: 11/20/2022] Open
Abstract
Background The Focal Adhesion Kinase is a well studied tyrosine kinase involved in a wide number of cellular processes including cell adhesion and migration. It has also been shown to play important roles during embryonic development and targeted disruption of the FAK gene in mice results in embryonic lethality by day 8.5. Principal Findings Here we examined the pattern of phosphorylation of FAK during Xenopus development and found that FAK is phosphorylated on all major tyrosine residues examined from early blastula stages well before any morphogenetic movements take place. We go on to show that FRNK fails to act as a dominant negative in the context of the early embryo and that the FERM domain has a major role in determining FAK’s localization at the plasma membrane. Finally, we show that autonomous expression of the FERM domain leads to the activation of endogenous FAK in a tyrosine 397 dependent fashion. Conclusions Overall, our data suggest an important role for the FERM domain in the activation of FAK and indicate that integrin signalling plays a limited role in the in vivo activation of FAK at least during the early stages of development.
Collapse
|
7
|
Kurth T, Weiche S, Vorkel D, Kretschmar S, Menge A. Histology of plastic embedded amphibian embryos and larvae. Genesis 2011; 50:235-50. [DOI: 10.1002/dvg.20821] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/27/2011] [Accepted: 10/28/2011] [Indexed: 12/27/2022]
|
8
|
Ueno S, Ueno T, Iwao Y. Role of the PI3K-TOR-S6K pathway in the onset of cell cycle elongation during Xenopus early embryogenesis. Dev Growth Differ 2011; 53:924-33. [PMID: 21958163 DOI: 10.1111/j.1440-169x.2011.01297.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In the early embryogenesis of the frog, Xenopus laevis, cells proliferate by rapid and synchronous divisions, followed by cell cycle elongation and prolongation of the S phases, and then the appearance of the G2 and G1 phases after the midblastula transition (MBT). The beginning of cell cycle elongation was thought to depend on an increase in the nucleo-cytoplasmic (N/C) ratio in blastomeres and a decrease in cortical cytoplasmic factors necessary for cell cycle progression, although these factors are unknown. In the present study, we demonstrated that a regulatory subunit of PI3K (p85α) was localized in the cortical cytoplasm of the blastomere during the MBT. When the embryos were treated with a PI3K inhibitor, LY294002, or a TOR inhibitor, rapamycin, cell cycle elongation was initiated before the MBT. In addition, the inhibition of S6K expression by antisense morpholino oligo enhanced the initiation of cell cycle elongation. In contrast, the activation of PI3K-TOR by Rheb-S16H expression delayed the initiation of cell cycle elongation. These results indicate that a decrease in translational activity dependent on the PI3K-TOR-S6K pathway causes the initiation of cell cycle elongation at the onset of the MBT.
Collapse
Affiliation(s)
- Shuichi Ueno
- Laboratory of Molecular Developmental Biology, Department of Applied Molecular Biosciences, Graduate School of Medicine, Yamaguchi University, 753-8512 Yamaguchi, Japan.
| | | | | |
Collapse
|
9
|
Schwarzbauer JE, DeSimone DW. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005041. [PMID: 21576254 DOI: 10.1101/cshperspect.a005041] [Citation(s) in RCA: 304] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fibronectin (FN) is a multidomain protein with the ability to bind simultaneously to cell surface receptors, collagen, proteoglycans, and other FN molecules. Many of these domains and interactions are also involved in the assembly of FN dimers into a multimeric fibrillar matrix. When, where, and how FN binds to its various partners must be controlled and coordinated during fibrillogenesis. Steps in the process of FN fibrillogenesis including FN self-association, receptor activities, and intracellular pathways have been under intense investigation for years. In this review, the domain organization of FN including the extra domains and variable region that are controlled by alternative splicing are described. We discuss how FN-FN and cell-FN interactions play essential roles in the initiation and progression of matrix assembly using complementary results from cell culture and embryonic model systems that have enhanced our understanding of this process.
Collapse
Affiliation(s)
- Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | |
Collapse
|
10
|
Mouguelar VS, Cabada MO, Coux G. The integrin-binding motif RGDS induces protein tyrosine phosphorylation without activation in Bufo arenarum (Amphibia) oocytes. Reproduction 2011; 141:581-93. [DOI: 10.1530/rep-10-0411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Integrins are cell adhesion molecules that are thought to be involved in sperm–oocyte interaction. Nevertheless, their function in mammalian fertilization is still controversial, as different species behave differently. In amphibians, their role is mainly supported byXenopus laevisstudies, where RGDS peptide induces oocyte activation. We recently provided evidence suggesting the presence and involvement of integrins in the interaction of the oocyte plasma membrane (PM) with sperm in the amphibianBufo arenarum. In order to understand the role of integrin homologs in oocytes and their possible contribution to egg activation mechanisms, we examined the presence of integrin subunits and the effect of RGDS peptide on oocytes and during fertilization. Western blot studies detected integrin subunits α5, αV and β1 in oocytes. In sperm, we could detect only the αV integrin subunit. We found that RGDS peptide was unable to elicit egg activation or MAPK dephosphorylation, but can induce reversible inhibition of fertilization. A similar partial inhibition was produced by an anti-β1 integrin antibody. Using an anti-phosphotyrosine antibody we found major changes in phosphotyrosine-containing proteins in egg extracts minutes after fertilization. Cytosol and PMs isolated from oocytes and fertilized eggs showed additional fertilization-induced phosphorylated proteins. Some of these were also present in cytosol and PMs from RGDS-treated oocytes (partially mimicking fertilization). These findings suggest thatB. arenarumfertilization involves integrins (e.g. β1 subunit) as adhesion proteins. Our data support the view that RGDS-binding receptors may function as signaling receptors inB. arenarumoocytes, but integrin engagement by RGDS is not sufficient for oocyte activation.
Collapse
|
11
|
Krneta-Stankic V, Sabillo A, Domingo CR. Temporal and spatial patterning of axial myotome fibers in Xenopus laevis. Dev Dyn 2010; 239:1162-77. [PMID: 20235228 PMCID: PMC3086394 DOI: 10.1002/dvdy.22275] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Somites give rise to the vertebral column and segmented musculature of adult vertebrates. The cell movements that position cells within somites along the anteroposterior and dorsoventral axes are not well understood. Using a fate mapping approach, we show that at the onset of Xenopus laevis gastrulation, mesoderm cells undergo distinct cell movements to form myotome fibers positioned in discrete locations within somites and along the anteroposterior axis. We show that the distribution of presomitic cells along the anteroposterior axis is influenced by convergent and extension movements of the notochord. Heterochronic and heterotopic transplantations between presomitic gastrula and early tail bud stages show that these cells are interchangeable and can form myotome fibers in locations determined by the host embryo. However, additional transplantation experiments revealed differences in the competency of presomitic cells to form myotome fibers, suggesting that maturation within the tail bud presomitic mesoderm is required for myotome fiber differentiation.
Collapse
Affiliation(s)
| | - Armbien Sabillo
- Department of Biology, San Francisco State University, San Francisco, CA, 94132
| | - Carmen R. Domingo
- Department of Biology, San Francisco State University, San Francisco, CA, 94132
| |
Collapse
|
12
|
Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW. Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 2009; 16:421-32. [PMID: 19289087 PMCID: PMC2682918 DOI: 10.1016/j.devcel.2009.01.008] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 11/05/2008] [Accepted: 01/20/2009] [Indexed: 12/16/2022]
Abstract
In this study we demonstrate that planar cell polarity signaling regulates morphogenesis in Xenopus embryos in part through the assembly of the fibronectin (FN) matrix. We outline a regulatory pathway that includes cadherin adhesion and signaling through Rac and Pak, culminating in actin reorganization, myosin contractility, and tissue tension, which, in turn, directs the correct spatiotemporal localization of FN into a fibrillar matrix. Increased mechanical tension promotes FN fibril assembly in the blastocoel roof (BCR), while reduced BCR tension inhibits matrix assembly. These data support a model for matrix assembly in tissues where cell-cell adhesions play an analogous role to the focal adhesions of cultured cells by transferring to integrins the tension required to direct FN fibril formation at cell surfaces.
Collapse
Affiliation(s)
- Bette J Dzamba
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia Health Sciences Center, PO Box 800732, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
13
|
Meighan CM, Schwarzbauer JE. Temporal and spatial regulation of integrins during development. Curr Opin Cell Biol 2008; 20:520-4. [PMID: 18603422 PMCID: PMC2572561 DOI: 10.1016/j.ceb.2008.05.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 05/13/2008] [Accepted: 05/19/2008] [Indexed: 11/21/2022]
Abstract
Integrin receptors for extracellular matrix (ECM) are critical determinants of biological processes. Regulation of integrin expression is one way for cells to respond to changes in the ECM, to integrate intracellular signals, and to obtain appropriate adhesion for cell motility, proliferation, and differentiation. Transcriptional and post-translational mechanisms for changing the integrin repertoire at the cell surface have recently been described. These mechanisms work through transcriptional regulation that alters the proportions of one integrin relative to another, referred to as integrin switching, or through localized regulation of integrin-ECM interactions, thus providing exquisite control over cell rearrangements during tissue morphogenesis and remodeling. These integrin regulatory pathways may also be important targets in such emerging fields as tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Christopher M Meighan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
14
|
Cousin H, Desimone DW, Alfandari D. PACSIN2 regulates cell adhesion during gastrulation in Xenopus laevis. Dev Biol 2008; 319:86-99. [PMID: 18495106 PMCID: PMC2494715 DOI: 10.1016/j.ydbio.2008.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/04/2008] [Accepted: 04/07/2008] [Indexed: 02/05/2023]
Abstract
We previously identified the adaptor protein PACSIN2 as a negative regulator of ADAM13 proteolytic function. In Xenopus embryos, PACSIN2 is ubiquitously expressed, suggesting that PACSIN2 may control other proteins during development. To investigate this possibility, we studied PACSIN2 function during Xenopus gastrulation and in XTC cells. Our results show that PACSIN2 is localized to the plasma membrane via its coiled-coil domain. We also show that increased levels of PACSIN2 in embryos inhibit gastrulation, fibronectin (FN) fibrillogenesis and the ability of ectodermal cells to spread on a FN substrate. These effects require PACSIN2 coiled-coil domain and are not due to a reduction of FN or integrin expression and/or trafficking. The expression of a Mitochondria Anchored PACSIN2 (PACSIN2-MA) sequesters wild type PACSIN2 to mitochondria, and blocks gastrulation without interfering with cell spreading or FN fibrillogenesis but perturbs both epiboly and convergence/extension. In XTC cells, the over-expression of PACSIN2 but not PACSIN2-MA prevents the localization of integrin beta1 to focal adhesions (FA) and filamin to stress fiber. PACSIN2-MA prevents filamin localization to membrane ruffles but not to stress fiber. We propose that PACSIN2 may regulate gastrulation by controlling the population of activated alpha5beta1 integrin and cytoskeleton strength during cell movement.
Collapse
Affiliation(s)
- Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Paige Laboratory, Amherst, MA 01003, USA.
| | | | | |
Collapse
|
15
|
Abstract
Morphogenesis integrates a wide range of cellular processes into a self-organizing, self-deforming tissue. No single molecular "magic bullet" controls morphogenesis. Wide ranging cellular processes, often without parallels in conventional cell culture systems, work together to generate the architecture and modulate forces that produce and guide shape changes in the embryo. In this review we summarize the early development of the frog Xenopus laevis from a biomechanical perspective. We describe processes operating in the embryo from whole embryo scale, the tissue-scale, to the cellular and extracellular matrix scale. We focus on describing cells, their behaviors and the unique microenvironments they traverse during gastrulation and discuss the role of tissue mechanics in these processes.
Collapse
Affiliation(s)
- Lance A Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pensylvania 15260, USA
| |
Collapse
|
16
|
Kragtorp KA, Miller JR. Integrin alpha5 is required for somite rotation and boundary formation in Xenopus. Dev Dyn 2007; 236:2713-20. [PMID: 17685483 DOI: 10.1002/dvdy.21280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The morphogenesis of somites in Xenopus laevis is characterized by a complex process of cell turning that requires coordinated regulation of cell shape, adhesion, and motility. The integrin alpha5 subunit has been implicated in the formation of somite boundaries in organisms utilizing epithelialization to create morphologically distinct somites, but its function has not been examined in Xenopus. We used a splice-blocking morpholino to knock down expression of integrin alpha5 during somite formation. Loss of integrin alpha5 delayed somite turning and accumulation of integrin beta1 at somite boundaries, and disrupted the fibronectin matrix surrounding developing somites. Irregular somite boundaries with a sparse and discontinuous fibronectin matrix formed upon eventual completion of somite turning. Recovery of somite morphology was improved, but still incomplete in far posterior somites. These data demonstrate that the role of integrin alpha5 in somite boundary formation is conserved in a species using a unique mechanism of somitogenesis.
Collapse
Affiliation(s)
- Katherine A Kragtorp
- Department of Genetics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
17
|
Cousin H, Alfandari D. A PTP-PEST-like protein affects alpha5beta1-integrin-dependent matrix assembly, cell adhesion, and migration in Xenopus gastrula. Dev Biol 2004; 265:416-32. [PMID: 14732402 DOI: 10.1016/j.ydbio.2003.09.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
During amphibian gastrulation, mesodermal cell movements depend on both cell-cell and cell-matrix interactions. Ectodermal cells from the blastocoel roof use alpha5beta1 integrins to assemble a fibronectin-rich extracellular matrix on which mesodermal cells migrate using the same alpha5beta1 integrin. In this report, we show that the tyrosine phosphatase xPTP-PESTr can prevent fibronectin fibril formation when overexpressed in ectodermal cells resulting in delayed gastrulation. In addition, isolated ectodermal cells overexpressing xPTP-PESTr are able to spread on fibronectin using the alpha5beta1 integrin in the absence of activin-A induction and before the onset of gastrulation. We further show that while the inhibition of fibrillogenesis depends on the phosphatase activity of xPTP-PESTr, induction of cell spreading does not. Finally, while cell spreading is usually associated with cell migration, xPTP-PESTr promotes ectodermal cell spreading on fibronectin but also reduces cell migration in response to activin-A, suggesting an adverse effect on cell translocation. We propose that xPTP-PESTr overexpression adversely affect cell migration by preventing de-adhesion of cells from the substrate.
Collapse
Affiliation(s)
- Hélène Cousin
- Paige Laboratory, Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | | |
Collapse
|
18
|
Alfandari D, Cousin H, Gaultier A, Hoffstrom BG, DeSimone DW. Integrin alpha5beta1 supports the migration of Xenopus cranial neural crest on fibronectin. Dev Biol 2003; 260:449-64. [PMID: 12921745 DOI: 10.1016/s0012-1606(03)00277-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
During early embryonic development, cranial neural crest cells emerge from the developing mid- and hindbrain. While numerous studies have focused on integrin involvement in trunk neural crest cell migration, comparatively little is known about mechanisms of cranial neural crest cell migration. We show that fibronectin, but not laminin, vitronectin, or type I collagen can support cranial neural crest cell migration and segmentation in vitro. These behaviors require both the RGD and "synergy" sites located within the central cell-binding domain of fibronectin. While these two sites are sufficient for cranial neural crest cell migration, we find that the second Heparin-binding domain of fibronectin can provide additional support for cranial neural crest cell migration in vitro. Finally, using a function blocking monoclonal antibody, we show that cranial neural crest cell migration on fibronectin requires the integrin alpha5beta1.
Collapse
Affiliation(s)
- Dominique Alfandari
- Department of Cell Biology, University of Virginia Health Sciences System, Box 800732, School of Medicine, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
19
|
Na J, Marsden M, DeSimone DW. Differential regulation of cell adhesive functions by integrin alpha subunit cytoplasmic tails in vivo. J Cell Sci 2003; 116:2333-43. [PMID: 12711704 DOI: 10.1242/jcs.00445] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell adhesion to fibronectin (FN) is crucial for early vertebrate morphogenesis. In Xenopus gastrulae, several distinct integrin-dependent adhesive behaviors can be identified: adhesion of cells to FN, assembly of FN fibrils, and initiation of cell spreading and migration in response to mesoderm inducing signals. We have taken a chimeric integrin approach to investigate the role of the integrin alpha cytoplasmic tail in the specification of these developmentally significant adhesive functions. Cytoplasmic tail-deleted alpha4 constructs and alpha4-ectodomain/alpha-cytoplasmic tail chimeras were generated and expressed in whole embryos. Normal gastrula cells lack integrin alpha4 and, correspondingly, are unable to adhere to the alpha4 ligand, the V-region of FN. The ability of alpha4 constructs to promote adhesive behaviors was established by placing tissue explants or dissociated cells on an FN V-region fusion protein that lacks the RGD (Arg-Gly-Asp)/synergy sites or treating whole embryos with antibodies that block endogenous integrin-FN interactions. We found that each alpha4 cytoplasmic domain deletion mutant and alpha-tail chimera examined could support cell attachment; however, activin induction-dependent cell spreading, mesoderm cell and explant motility, and the ability to assemble FN matrix on the blastocoel roof varied with specific alpha subunit tail sequences. These data suggest that alpha cytoplasmic tail signaling and changes in integrin activation state can regulate a variety of developmentally significant adhesive behaviors in both space and time.
Collapse
Affiliation(s)
- Jie Na
- Department of Cell Biology, University of Virginia School of Medicine, PO Box 800732, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
20
|
Barreto G, Reintsch W, Kaufmann C, Dreyer C. The function of Xenopus germ cell nuclear factor (xGCNF) in morphogenetic movements during neurulation. Dev Biol 2003; 257:329-42. [PMID: 12729562 DOI: 10.1016/s0012-1606(03)00109-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The germ cell nuclear factor (GCNF, NR6A1) is a nuclear orphan receptor first described in the mouse testis and subsequently identified as an essential transcription factor in vertebrate embryogenesis. Here, we analyze the phenotype of Xenopus embryos after depletion of embryonic GCNF (xEmGCNF) protein using a specific morpholino antisense oligonucleotide. Morphological defects after xEmGCNF knockdown became obvious from neurulation onward. Among the abnormalities observed, defective formation of the neural tube and a short and curved main body axis were the most remarkable traits. Histological analysis, lineage tracing of injected blastomeres, and Keller sandwich explants revealed that xEmGCNF function is required for different patterns of cell intercalation during neurulation and consequently for the sequence of morphogenetic movements leading to formation of the neural tube. Further characterization of the phenotype at the molecular level showed an abnormal distribution of the extracellular matrix protein fibronectin and a reduction in the expression level of the integrin subunits alpha5 and alpha6, the limiting components of the laminin and fibronectin receptors, respectively. We propose integrin-mediated cell-matrix interaction as a process that requires xEmGCNF function and provides, in concert with cadherins-mediated cell-cell interactions, a molecular basis for morphogenetic cell movements during neurulation.
Collapse
Affiliation(s)
- Guillermo Barreto
- Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35/V, D-72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
21
|
The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002. [PMID: 11784865 DOI: 10.1128/mcb.22.3.901-915.2002.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.
Collapse
|
22
|
Hagel M, George EL, Kim A, Tamimi R, Opitz SL, Turner CE, Imamoto A, Thomas SM. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol Cell Biol 2002; 22:901-15. [PMID: 11784865 PMCID: PMC133539 DOI: 10.1128/mcb.22.3.901-915.2002] [Citation(s) in RCA: 268] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.
Collapse
Affiliation(s)
- Margit Hagel
- Beth Israel Deaconess Medical Center/Harvard Medical School, Vascular Research Division, Department of Pathology, Brigham and Women's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Reintsch WE, Hausen P. Dorsoventral differences in cell-cell interactions modulate the motile behaviour of cells from the Xenopus gastrula. Dev Biol 2001; 240:387-403. [PMID: 11784071 DOI: 10.1006/dbio.2001.0478] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When groups of cells from the inner marginal zone (mesendoderm) of the early Xenopus gastrula are placed on a fibronectin-coated substratum, the explants of the dorsal region spread into monolayers whereas those from the ventral region, though they adhere to the substratum, do not show this spreading reaction. This different behaviour is not reflected in the in vitro behaviour of the respective cells kept in isolation. No difference between dorsal and ventral cells was observed, when they were tested for lamellipodia-driven spreading, movement over the substratum or properties of integrin- and cadherin-mediated adhesion. However, cell contacts between individual dorsal cells are significantly less stable than those between ventral cells. The higher flexibility of the cell-cell contacts seems to determine the spreading behaviour of the dorsal explants, which includes lamellipodia-driven outward movement of the peripheral cells, rearrangements of the cells, building up a horizontal tension within the aggregate and intercalation of cells from above into the bottom layer. Ventral explants lack these properties. Staining for F-actin revealed a decisive difference of the supracellular organisation of the cytoskeleton that underlies the morphology of the different types of explants. Evidence for a higher flexibility of cell-cell contacts in the dorsal mesendoderm was also obtained in SEM studies on gastrulating embryos. Dorsal mesendodermal cells show stronger protrusive activity as compared to ventral mesendodermal cells. The meaning of these observations for the mechanisms of morphogenetic movements during gastrulation is central to the discussion.
Collapse
Affiliation(s)
- W E Reintsch
- Max-Planck-Institut für Entwicklungsbiologie, Abteilung Zellbiologie, Spemannstrasse 35, Tübingen, 72076, Germany
| | | |
Collapse
|
24
|
Abstract
Active zones are the sites along nerve terminals where synaptic vesicles dock and undergo calcium-dependent exocytosis during synaptic transmission. Here we show, by immunofluorescent staining with antibodies generated against Xenopus laevis integrins, that alpha3beta1 integrin is concentrated at the active zones of Xenopus motor nerve terminals. Because integrins can link extracellular matrix molecules to cytoskeletal elements and participate in the formation of signaling complexes, the localization of integrin at active zones suggests that it may play a role in the adhesion of the nerve terminals to the synaptic basal lamina, in the formation and maintenance of active zones, and in some of the events associated with calcium-dependent exocytosis of neurotransmitter. Our findings also indicate that the integrin composition of the terminal Schwann cells differs from that of the motor nerve terminals, and this may account at least in part for differences in their adhesiveness to the synaptic basal lamina.
Collapse
|
25
|
Rojas AI, Ahmed AR. Adhesion receptors in health and disease. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:337-58. [PMID: 10759413 DOI: 10.1177/10454411990100030601] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cell adhesion molecules have been recognized to play a major role in a variety of physiological and pathological phenomena. They determine the specificity of cell-cell binding and the interactions between cells and extracellular matrix proteins. Some of them may also function as receptors that trigger intracellular pathways and participate in cellular processes like migration, proliferation, differentiation, and cell death. The receptors that mediate adhesion between epithelial cells that are discussed in this review include integrins, selectins, the immunoglobulin superfamily members, and cadherins. The intent of this review is to inform the reader about recent advances in cellular and molecular functions of certain receptors, specifically those that are considered important in cell adhesion. We have deliberately not provided all-inclusive detailed information on every molecule, but instead, have presented a generalized overview in order to give the reader a global perspective. This information will be useful in enhancing the reader's understanding of the molecular pathology of diseases and recognizing the potential role of these receptors and ligands as therapeutic agents.
Collapse
Affiliation(s)
- A I Rojas
- Department of Oral Medicine and Diagnostic Sciences, Harvard School of Dental Medicine, Boston, Massachusettes 02115, USA
| | | |
Collapse
|
26
|
Aybar MJ, Genta SB, Sánchez Riera AN, Sánchez SS. Participation of the GM1 ganglioside in the gastrulation of anuran amphibian Bufo arenarum. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 286:457-72. [PMID: 10684569 DOI: 10.1002/(sici)1097-010x(20000401)286:5<457::aid-jez3>3.0.co;2-a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the present paper we established the ganglioside composition of the blastula and gastrula stages of the anuran amphibian Bufo arenarum, two relevant stages characterized by dynamic changes in morphology and cellular rearrangements. Densitometric studies evidenced that GD1a and GT1b were the more abundant gangliosides of the blastula embryos whereas GM1 and GM2 were the predominant species in gastrula embryos. Analysis of ganglioside abundance indicates that the "a" and "b" synthesis pathways perform similar biosynthetic activities in the blastula stage, in contrast to the gastrula stage in which a marked predominance of the "a" pathway occurred. The spatio-temporal expression of GM1 and of polygangliotetraosyl ceramides (pGTC) was investigated by wholemount immunocytochemistry using cholera toxin B subunit (CTB) and an affinity purified human anti-GM1 antibody. The pGTC were detected as GM1 after treatment with neuraminidase. Blastomeres from the inner surface of the blastocoelic roof (BCR) of blastula embryos were GM1 and pGTC positive. At midgastrula stage, embryos showed an increased labeling on the inner surface of BCR. To establish whether the GM1 ganglioside was involved in the gastrulation processes, CTB, anti-GM1 antibodies and anti-GM1 Fab' fragments were microinjected into the blastocoel cavity of blastula embryos. Treatment with the probes blocked gastrulation. Scanning electron microscopy analysis of blocked embryos revealed that mesodermal cell migration, radial interdigitation, and convergent extension movements were affected. The blocking of gastrulation was correlated with the absence of fibronectin and EP3/EP4 on the inner surface of blastocoelic roof of CTB- or anti-GM1 treated embryos. Results show that the GM1 ganglioside is differentially expressed by embryonic cells and participates in the morphogenetic processes of amphibian gastrulation. J. Exp. Zool. 286:457-472, 2000.
Collapse
Affiliation(s)
- M J Aybar
- Departamento de Biología del Desarrollo, Instituto Superior de Investigaciones Biológicas (INSIBIO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) y Universidad Nacional de Tucumán (UNT), Argentina
| | | | | | | |
Collapse
|
27
|
Cordes VC, Hase ME, Müller L. Molecular segments of protein Tpr that confer nuclear targeting and association with the nuclear pore complex. Exp Cell Res 1998; 245:43-56. [PMID: 9828100 DOI: 10.1006/excr.1998.4246] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tpr is a 267-kDa protein of unknown function recently identified as a constitutive component of the nuclear pore complex (NPC2)-attached intranuclear filaments. Secondary structure predictions suggest that the protein is divided into a large, coiled-coil forming aminoterminal domain and a shorter, highly acidic carboxyterminal domain. To identify which of Tpr's molecular segments determine its specific intranuclear localization, we have constructed expression vectors encoding various Tpr deletion mutants as well as chimeric combinations of Tpr sequences with the soluble cytoplasmic protein pyruvate kinase. Following transfection of cultured mammalian cells, we have identified a short region within Tpr's carboxyterminal domain that is essential and sufficient to mediate nuclear import of Tpr and which can also confer nuclear accumulation of pyruvate kinase. Tpr deletion mutants that contain this nuclear targeting segment, but lack the aminoterminal domain, appear evenly dispersed throughout the nucleus without any noticeable association to the NPC. In contrast, the aminoterminal domain lacking the carboxyterminal region remains located within the cytoplasm, forming aggregate-like structures not associated with the nuclear envelope. However, when tagged to Tpr's short nuclear targeting segment or to the nuclear localization signal of the SV40 large T protein, the aminoterminal domain is imported into the nucleus, where it then associates with the NPC. This association is mediated by shorter molecular segments within the aminoterminal domain which contain clusters of heptad repeats, whereas other regions are dispensable. This assignment of different topogenetic properties to distinct molecular segments of Tpr will now allow the design of future experiments to study the protein's structural properties further and determine its actual function.
Collapse
Affiliation(s)
- V C Cordes
- Medical Nobel Institute, Karolinska Institutet, Stockholm, S-17177, Sweden.
| | | | | |
Collapse
|
28
|
Whittaker CA, Desimone DW. Molecular cloning and developmental expression of the Xenopus homolog of integrin alpha 4. Ann N Y Acad Sci 1998; 857:56-73. [PMID: 9917832 DOI: 10.1111/j.1749-6632.1998.tb10107.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Integrin receptors containing an alpha 4 subunit mediate cell-cell adhesion by binding to VCAM and MadCAM-1 in addition to supporting cell-extracellular matrix (ECM) adhesion by binding to the alternatively spliced V-region of fibronectin (FN). Studies in chick and mouse embryos have implicated these integrins in neural crest migration, myotube formation, heart development, and placentation. Because integrin-FN adhesive interactions have been shown to play essential roles in mammalian development, studies were initiated of integrin alpha 4 in amphibian embryos, which are better suited to experimental analyses of the earliest stages of embryogenesis. Here, the cDNA cloning and pattern of expression of the Xenopus laevis homolog of integrin alpha 4 is reported. Xenopus alpha 4 is 55% identical at the amino-acid level to both its human and mouse counterparts, including conservation of an alpha 4-specific protease cleavage site, 11 potential N-linked glycosylation sites, and 24 cysteine residues. In situ hybridization analysis reveals that transcripts encoding alpha 4 are expressed in epidermis and the branchial arches. Although alpha 4 transcripts can be detected as early as gastrulation, the protein is observed only after tailbud stages of development and is spatially restricted to the epidermis and gills of tadpole stage embryos. From these data it is concluded that Xenopus integrin alpha 4 has structural features in common with other vertebrate alpha 4 homologs, but is detected in a more restricted tissue distribution during development than alpha 4 in other species.
Collapse
Affiliation(s)
- C A Whittaker
- Department of Cell Biology, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
29
|
Abstract
Fibronectin fibril formation on a multilayered cohesive cell sheet is studied in the Xenopus embryo. In the blastula, secreted fibronectin accumulates in the blastocoel, where it associates with mucous material. At the onset of gastrulation, a fibrillar fibronectin matrix develops on the blastocoel roof. Cells engage in this process stochastically within a 2-hr period. Fibril network formation requires more than 60 microg/ml of fibronectin, but the timing of fibrillogenesis is not regulated through the availability of fibronectin. With the exception of a few isolated mesoderm cells, only the cells of the blastocoel roof are able to form fibronectin fibrils. However, this requires that cells are provided with a free surface and, at the same time, with lateral adhesive cell contacts, i.e. fibril assembly occurs only on the surface of cohesive cells aggregates. This explains the observed restriction of fibronectin matrix formation to the inner surface of the blastocoel roof in the embryo. In addition, a minimum blastocoel roof size is required for fibril formation.
Collapse
Affiliation(s)
- R Winklbauer
- Zoological Institute, University of Cologne, Germany.
| |
Collapse
|
30
|
Shah S, Tugendreich S, Forbes D. Major binding sites for the nuclear import receptor are the internal nucleoporin Nup153 and the adjacent nuclear filament protein Tpr. J Biophys Biochem Cytol 1998; 141:31-49. [PMID: 9531546 PMCID: PMC2132719 DOI: 10.1083/jcb.141.1.31] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major question in nuclear import concerns the identity of the nucleoporin(s) that interact with the nuclear localization sequences (NLS) receptor and its cargo as they traverse the nuclear pore. Ligand blotting and solution binding studies of isolated proteins have attempted to gain clues to the identities of these nucleoporins, but the studies have from necessity probed binding events far from an in vivo context. Here we have asked what binding events occur in the more physiological context of a Xenopus egg extract, which contains nuclear pore subcomplexes in an assembly competent state. We have then assessed our conclusions in the context of assembled nuclear pores themselves. We have used immunoprecipitation to identify physiologically relevant complexes of nucleoporins and importin subunits. In parallel, we have demonstrated that it is possible to obtain immunofluorescence localization of nucleoporins to subregions of the nuclear pore and its associated structures. By immunoprecipitation, we find the nucleoporin Nup153 and the pore-associated filament protein Tpr, previously shown to reside at distinct sites on the intranuclear side of assembled pores, are each in stable subcomplexes with importin alpha and beta in Xenopus egg extracts. Importin subunits are not in stable complexes with nucleoporins Nup62, Nup93, Nup98, or Nup214/CAN, either in egg extracts or in extracts of assembled nuclear pores. In characterizing the Nup153 complex, we find that Nup153 can bind to a complete import complex containing importin alpha, beta, and an NLS substrate, consistent with an involvement of this nucleoporin in a terminal step of nuclear import. Importin beta binds directly to Nup153 and in vitro can do so at multiple sites in the Nup153 FXFG repeat region. Tpr, which has no FXFG repeats, binds to importin beta and to importin alpha/beta heterodimers, but only to those that do not carry an NLS substrate. That the complex of Tpr with importin beta is fundamentally different from that of Nup153 is additionally demonstrated by the finding that recombinant beta or beta45-462 fragment freely exchanges with the endogenous importin beta/Nup153 complex, but cannot displace endogenous importin beta from a Tpr complex. However, the GTP analogue GMP-PNP is able to disassemble both Nup153- and Tpr-importin beta complexes. Importantly, analysis of extracts of isolated nuclei indicates that Nup153- and Tpr-importin beta complexes exist in assembled nuclear pores. Thus, Nup153 and Tpr are major physiological binding sites for importin beta. Models for the roles of these interactions are discussed.
Collapse
Affiliation(s)
- S Shah
- Department of Biology, University of California at San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
31
|
Urry LA, Whittaker CA, Duquette M, Lawler J, DeSimone DW. Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development. Dev Dyn 1998; 211:390-407. [PMID: 9566958 DOI: 10.1002/(sici)1097-0177(199804)211:4<390::aid-aja10>3.0.co;2-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The thrombospondins (TSPs) are a family of extracellular matrix (ECM) glycoproteins that modulate many cell behaviors including adhesion, migration, and proliferation. Here we report the molecular cloning of the Xenopus homologs of TSP-1 and TSP-3, and the developmental patterns of expression of Xenopus TSP-1, TSP-3, and TSP-4 mRNAs. Xenopus TSP-1 and TSP-3 protein sequences each share approximately 80% amino acid identity with their mammalian counterparts. TSP-1 mRNAs are detectable at low levels in fertilized eggs indicating that this TSP is a maternally deposited transcript. Zygotic expression of TSP-1, TSP-3, and TSP-4 begins at the end of gastrulation and transcripts encoding each protein accumulate through the tadpole stages of development. Whole mount in situ hybridizations reveal that each TSP mRNA is localized in the embryo with distinct, developmentally regulated patterns of expression. TSP-1 mRNAs are detected in a wide range of tissues including the floor plate of the neural tube, epidermis, somites, notochord and, most notably, alternating rhombomeres. Transcripts encoding TSP-3 are expressed in the notochord, floor plate, sensorial layer of the epidermis and sensory epithelia. TSP-4 mRNAs are restricted to somitic mesoderm and skeletal muscle. These data suggest that the TSPs represent a functionally diverse family of ECM proteins with tissue-specific functions during embryogenesis.
Collapse
Affiliation(s)
- L A Urry
- Mills College, Department of Biology, Oakland, California, USA
| | | | | | | | | |
Collapse
|
32
|
Skalski M, Alfandari D, Darribère T. A key function for alphav containing integrins in mesodermal cell migration during Pleurodeles waltl gastrulation. Dev Biol 1998; 195:158-73. [PMID: 9520332 DOI: 10.1006/dbio.1997.8838] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During cleavage of Pleurodeles waltl amphibian embryos, inner cells of the blastocoel roof (presumptive ectodermal and mesodermal cells) organize a fibrillar extracellular matrix (ECM) containing fibronectin on their basal surface by a beta1-integrin-dependent process. This matrix is used as a migratory substrate by mesodermal cells during gastrulation. While alpha5beta1 integrin is expressed on both ectodermal and mesodermal cell surface, we have shown previously that alphav containing integrins are essentially restricted to the surface of mesodermal cells (Alfandari, D., Whittaker, C. A., DeSimone, D. W., and Darribère, T., Dev. Biol. 170, 249-261, 1995). To investigate the function of alphav integrins during gastrulation, we have generated a function blocking antibody directed against the extracellular domain of the Pleurodeles integrin alphav subunit. The antibody did not prevent fibronectin fibril formation, whereas an antibody against the alpha5beta1 integrin did. When injected into the blastocoel, the antibody against integrin alphav subunit perturbed gastrulation and further development in a stage-dependent manner. Developmental defects were correlated to an abnormal positioning of the mesoderm layer. In vitro, the antibody blocked spreading of mesodermal cell to fibronectin or blastocoel roof ECM but not their attachment. In contrast, the antibody directed against the alpha5beta1 integrin inhibited both cell attachment and spreading to the same substrates. We propose that the alpha5beta1 integrin is required for fibronectin assembly into fibrils and mesodermal cell attachment to the blastocoel roof ECM, while the alphav containing integrins are necessary for cell spreading, and possibly migration, on this complex network.
Collapse
Affiliation(s)
- M Skalski
- Equipe Adhesion et Migration Cellulaires, Université P. et M. Curie, CNRS UMR 7622, 9 Quai Saint-Bernard, Paris Cedex 05, 75252, France
| | | | | |
Collapse
|
33
|
Meng F, Whittaker CA, Ransom DG, DeSimone DW. Cloning and characterization of cDNAs encoding the integrin alpha2 and alpha3 subunits from Xenopus laevis. Mech Dev 1997; 67:141-55. [PMID: 9392512 DOI: 10.1016/s0925-4773(97)00108-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Integrins containing the alpha2 and alpha3 subunits associate with the beta1 subunit to form distinct receptors with partially overlapping adhesive specificities. We report the cloning and sequence of cDNAs that encode the Xenopus orthologues of integrins alpha2 and alpha3 and the expression of these subunits during embryogenesis. Integrin alpha2 and alpha3 mRNAs are first expressed in the dorsal mesoderm and developing notochord at gastrulation. We also show that alpha3 mRNAs are expressed in the entire marginal zone of gastrulae dorsalized with LiCl but that this localization is lost in embryos ventralized by ultraviolet light. Immunoblots reveal that the alpha3 protein is expressed throughout early development, however, the alpha2 protein is not detected until late tailbud stages. Injection of full-length alpha3 transcripts into the animal poles of fertilized eggs results in embryonic defects in paraxial mesoderm attributed to the failure of somites to form segments. Injection of the alpha3 transcripts into the vegetal pole and overexpression of a 5'-truncated alpha3 control construct have no apparent affect on development or somite formation. These data suggest that normal position-specific expression of integrins is important in maintaining the proper organization of tissues during early amphibian morphogenesis.
Collapse
Affiliation(s)
- F Meng
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
34
|
Edwalds-Gilbert G, Veraldi KL, Milcarek C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res 1997; 25:2547-61. [PMID: 9185563 PMCID: PMC146782 DOI: 10.1093/nar/25.13.2547] [Citation(s) in RCA: 408] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many genes have been described and characterized which result in alternative polyadenylation site use at the 3'-end of their mRNAs based on the cellular environment. In this survey and summary article 95 genes are discussed in which alternative polyadenylation is a consequence of tandem arrays of poly(A) signals within a single 3'-untranslated region. An additional 31 genes are described in which polyadenylation at a promoter-proximal site competes with a splicing reaction to influence expression of multiple mRNAs. Some have a composite internal/terminal exon which can be differentially processed. Others contain alternative 3'-terminal exons, the first of which can be skipped in some cells. In some cases the mRNAs formed from these three classes of genes are differentially processed from the primary transcript during the cell cycle or in a tissue-specific or developmentally specific pattern. Immunoglobulin heavy chain genes have composite exons; regulated production of two different Ig mRNAs has been shown to involve B cell stage-specific changes in trans -acting factors involved in formation of the active polyadenylation complex. Changes in the activity of some of these same factors occur during viral infection and take-over of the cellular machinery, suggesting the potential applicability of at least some aspects of the Ig model. The differential expression of a number of genes that undergo alternative poly(A) site choice or polyadenylation/splicing competition could be regulated at the level of amounts and activities of either generic or tissue-specific polyadenylation factors and/or splicing factors.
Collapse
Affiliation(s)
- G Edwalds-Gilbert
- Department of Molecular Genetics and Biochemistry and the Graduate Program in Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261-2072, USA
| | | | | |
Collapse
|
35
|
Shilling FM, Krätzschmar J, Cai H, Weskamp G, Gayko U, Leibow J, Myles DG, Nuccitelli R, Blobel CP. Identification of metalloprotease/disintegrins in Xenopus laevis testis with a potential role in fertilization. Dev Biol 1997; 186:155-64. [PMID: 9205136 DOI: 10.1006/dbio.1997.8586] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Proteins containing a membrane-anchored metalloprotease domain, a disintegrin domain, and a cysteine-rich region (MDC proteins) are thought to play an important role in mammalian fertilization, as well as in somatic cell-cell interactions. We have identified PCR sequence tags encoding the disintegrin domain of five distinct MDC proteins from Xenopus laevis testis cDNA. Four of these sequence tags (xMDC9, xMDC11.1, xMDC11.2, and xMDC13) showed strong similarity to known mammalian MDC proteins, whereas the fifth (xMDC16) apparently represents a novel family member. Northern blot analysis revealed that the mRNA for xMDC16 was only expressed in testis, and not in heart, muscle, liver, ovaries, or eggs, whereas the mRNAs corresponding to the four other PCR products were expressed in testis and in some or all somatic tissues tested. The xMDC16 protein sequence, as predicted from the full-length cDNA, contains a metalloprotease domain with the active-site sequence HEXXH, a disintegrin domain, a cysteine-rich region, an EGF repeat, a transmembrane domain, and a short cytoplasmic tail. To study a potential role for these xMDC proteins in fertilization, peptides corresponding to the predicted integrin-binding domain of each protein were tested for their ability to inhibit X. laevis fertilization. Cyclic and linear xMDC16 peptides inhibited fertilization in a concentration-dependent manner, whereas xMDC16 peptides that were scrambled or had certain amino acid replacements in the predicted integrin-binding domain did not affect fertilization. Cyclic and linear xMDC9 peptides and linear xMDC13 peptides also inhibited fertilization similarly to xMDC16 peptides, whereas peptides corresponding to the predicted integrin-binding site of xMDC11.1 and xMDC11.2 did not. These results are discussed in the context of a model in which multiple MDC protein-receptor interactions are necessary for fertilization to occur.
Collapse
Affiliation(s)
- F M Shilling
- Section of Molecular and Cellular Biology, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Alfandari D, Wolfsberg TG, White JM, DeSimone DW. ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development. Dev Biol 1997; 182:314-30. [PMID: 9070330 DOI: 10.1006/dbio.1996.8458] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Embryonic development involves a series of cell adhesive interactions that provide mechanical and instructive information required for morphogenesis. The ADAMs family of membrane-anchored proteins, containing a disintegrin and metalloprotease domain, is well suited for participating in such developmental events. They encode not only a potential adhesive function, through an integrin-binding disintegrin domain, but also a potential antiadhesive function, through a zinc-dependent metalloprotease domain. In order to investigate the role of ADAMs in early development we cloned a cDNA encoding a novel member of the ADAM family from a Xenopus laevis neurula stage library. We call this cDNA, and the 915-amino-acid protein it encodes, ADAM 13, X-ADAM 13 RNA is expressed during embryogenesis from the midblastula stage through tadpole stage 45. X-ADAM 13 is localized to somitic mesoderm and cranial neural crest cells during gastrulation, neurulation, and in tail bud stages. Sequence analyses of the X-ADAM 13 metalloprotease and disintegrin domains indicate that the protein is likely to be involved in both proteolytic and cell-adhesive functions. The X-ADAM 13 sequence is most closely related to that of mouse meltrin alpha, which is implicated in myoblast fusion. Our data suggest that X-ADAM 13 may be involved in neural crest cell adhesion and migration as well as myoblast differentiation.
Collapse
Affiliation(s)
- D Alfandari
- Department of Cell Biology, Health Sciences Center, University of Virginia, Charlottesville 22908, USA
| | | | | | | |
Collapse
|
37
|
Ramos JW, Whittaker CA, DeSimone DW. Integrin-dependent adhesive activity is spatially controlled by inductive signals at gastrulation. Development 1996; 122:2873-83. [PMID: 8787760 DOI: 10.1242/dev.122.9.2873] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Integrins mediate cell-ECM interactions essential for morphogenesis, however, the extent to which integrin adhesive activities are regulated in the embryo has not been addressed. We report that integrin-dependent cell adhesion to the Arg-Gly-Asp (RGD) containing central cell-binding domain of fibronectin is required for gastrulation in Xenopus. Although all cells of the early embryo retain the ability to attach to this region, only involuting cells arising from the dorsal and ventral lips of the blastopore are able to spread and migrate on fibronectin in vitro. This change in adhesive behavior is mimicked by treating animal cap cells with activin-A. Activin-induced changes in adhesion are independent of new transcription, translation, or changes in receptor expression at the cell surface. We demonstrate that ectopic expression of integrin alpha4beta1 in animal cap cells results in attachment to the non RGD-containing V-region of fibronectin. Further, these cells acquire the ability to spread on the V-region following activin induction. Thus, alpha4beta1 adhesion to the V-region, like endogenous integrin binding to the central cell-binding domain, is responsive to activin signalling. These data indicate that cell adhesion to the central cell-binding domain is regulated in both space and time, and is under the control of inductive signals that initiate gastrulation movements. We suggest that position-specific inductive interactions are likely to represent a novel and general mechanism by which integrin adhesion is modulated throughout development.
Collapse
Affiliation(s)
- J W Ramos
- Department of Cell Biology, University of Virginia, Charlottesville 22908, USA
| | | | | |
Collapse
|
38
|
Ramos JW, DeSimone DW. Xenopus embryonic cell adhesion to fibronectin: position-specific activation of RGD/synergy site-dependent migratory behavior at gastrulation. J Biophys Biochem Cytol 1996; 134:227-40. [PMID: 8698817 PMCID: PMC2120922 DOI: 10.1083/jcb.134.1.227] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
During Xenopus laevis gastrulation, the basic body plan of the embryo is generated by movement of the marginal zone cells of the blastula into the blastocoel cavity. This morphogenetic process involves cell adhesion to the extracellular matrix protein fibronectin (FN). Regions of FN required for the attachment and migration of involuting marginal zone (IMZ) cells were analyzed in vitro using FN fusion protein substrates. IMZ cell attachment to FN is mediated by the Arg-Gly-Asp (RGD) sequence located in the type III-10 repeat and by the Pro-Pro-Arg-Arg-Ala-Arg (PPRRAR) sequence in the type III-13 repeat of the Hep II domain. IMZ cells spread and migrate persistently on fusion proteins containing both the RGD and synergy site sequence Pro-Pro-Ser-Arg-Asn (PPSRN) located in the type III-9 repeat. Cell recognition of the synergy site is positionally regulated in the early embryo. During gastrulation, IMZ cells will spread and migrate on FN whereas presumptive pre-involuting mesoderm, vegetal pole endoderm, and animal cap ectoderm will not. However, animal cap ectoderm cells acquire the ability to spread and migrate on the RGD/synergy region when treated with the mesoderm inducing factor activin-A. These data suggest that mesoderm induction activates the position-specific recognition of the synergy site of FN in vivo. Moreover, we demonstrate the functional importance of this site using a monoclonal antibody that blocks synergy region-dependent cell spreading and migration on FN. Normal IMZ movement is perturbed when this antibody is injected into the blastocoel cavity indicating that IMZ cell interaction with the synergy region is required for normal gastrulation.
Collapse
Affiliation(s)
- J W Ramos
- Department of Cell Biology, University of Virginia, Charlottesville, 22908, USA.
| | | |
Collapse
|
39
|
Alfandari D, Ramos J, Clavilier L, DeSimone DW, Darribère T. The RGD-dependent and the Hep II binding domains of fibronectin govern the adhesive behaviors of amphibian embryonic cells. Mech Dev 1996; 56:83-92. [PMID: 8798149 DOI: 10.1016/0925-4773(96)00513-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In early amphibian development, interactions between fibronectin and both ectoderm and mesoderm cells are critical in the progression of gastrulation movements. In the Pleurodeles waltl embryo, it has been established that ectoderm cells of the animal hemisphere organize a fibrillar-extracellular matrix containing fibronectin. Mesoderm cells migrate along the blastocoel roof using these fibronectin fibrils as substratum. Fibronectin is an adhesive glycoprotein which possesses multiple cell-binding domains. From previous studies, it is clear that amphibian ectoderm and mesoderm cells interact with fibronectin in an RGD-dependent manner, whereas the contributions of RGD-independent domains in the adhesive behaviors of gastrula cells has not been defined. To study this question, we have used bacterially expressed Pleurodeles waltl fibronectin-fusion proteins. The approach consisted of in vitro adhesion assays with either isolated cells or tissue fragments of embryos dissected at the onset of gastrulation. Tissues were obtained from regions of the embryo which represent presumptive ectoderm cells or from the dorsal-marginal zone which contains cells of the presumptive cephalic, chordal and somitic mesoderm. The results show that both the RGD-dependent and the Hep II domains of fibronectin mediate attachment and spreading of isolated cells. Both regions cooperate to control the proper expansion of a sheet of dorsal mesoderm cells. The Hep II domain promotes the migration of cells ahead of the mesoderm-cell sheet.
Collapse
Affiliation(s)
- D Alfandari
- Université P. et M. Curie, U.R.A. CNRS 1135, Laboratoire de Biologie Moléculaire et Cellulaire du Développement, Paris, France
| | | | | | | | | |
Collapse
|