1
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Nickerson KR, Tom I, Cortés E, Abolafia JR, Özkan E, Gonzalez LC, Jaworski A. WFIKKN2 is a bifunctional axon guidance cue that signals through divergent DCC family receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544950. [PMID: 37398498 PMCID: PMC10312737 DOI: 10.1101/2023.06.15.544950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Axon pathfinding is controlled by attractive and repulsive molecular cues that activate receptors on the axonal growth cone, but the full repertoire of axon guidance molecules remains unknown. The vertebrate DCC receptor family contains the two closely related members DCC and Neogenin with prominent roles in axon guidance and three additional, divergent members - Punc, Nope, and Protogenin - for which functions in neural circuit formation have remained elusive. We identified a secreted Punc/Nope/Protogenin ligand, WFIKKN2, which guides mouse peripheral sensory axons through Nope-mediated repulsion. In contrast, WFIKKN2 attracts motor axons, but not via Nope. These findings identify WFIKKN2 as a bifunctional axon guidance cue that acts through divergent DCC family members, revealing a remarkable diversity of ligand interactions for this receptor family in nervous system wiring. One-Sentence Summary WFIKKN2 is a ligand for the DCC family receptors Punc, Nope, and Prtg that repels sensory axons and attracts motor axons.
Collapse
|
3
|
Schirò G, Iacono S, Ragonese P, Aridon P, Salemi G, Balistreri CR. A Brief Overview on BDNF-Trk Pathway in the Nervous System: A Potential Biomarker or Possible Target in Treatment of Multiple Sclerosis? Front Neurol 2022; 13:917527. [PMID: 35911894 PMCID: PMC9332890 DOI: 10.3389/fneur.2022.917527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
The growing incidence of neurodegenerative disorders in our populations is leading the research to identify potential biomarkers and targets for facilitating their early management and treatments. Biomarkers represent the crucial indicators of both physiological and pathological processes. Specific changes in molecular and cellular mechanisms of physiological processes result in biochemical alterations at systemic level, which can give us comprehensive information regarding the nature of any disease. In addition, any disease biomarker should be specific and reliable, able to consent of distinguishing the physiological condition of a tissue, organ, or system from disease, and be diverse among the various diseases, or subgroups or phenotypes of them. Accordingly, biomarkers can predict chances for diseases, facilitate their early diagnosis, and set guidelines for the development of new therapies for treating diseases and disease-making process. Here, we focus our attention on brain neurotrophic factor (BDNF)–tropomyosin receptor kinase (Trk) pathway, describing its multiple roles in the maintenance of central nervous system (CNS) health, as well as its implication in the pathogenesis of multiple sclerosis (MS). In addition, we also evidence the features of such pathway, which make of it a potential MS biomarker and therapeutic target.
Collapse
Affiliation(s)
- Giuseppe Schirò
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Salvatore Iacono
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Paolo Ragonese
| | - Paolo Aridon
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Giuseppe Salemi
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, Palermo, Italy
- *Correspondence: Carmela Rita Balistreri ; orcid.org/0000-0002-5393-1007
| |
Collapse
|
4
|
Montagud-Romero S, Cantacorps L, Valverde O. Histone deacetylases inhibitor trichostatin A reverses anxiety-like symptoms and memory impairments induced by maternal binge alcohol drinking in mice. J Psychopharmacol 2019; 33:1573-1587. [PMID: 31294671 DOI: 10.1177/0269881119857208] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Alcohol exposure during development has detrimental effects, including a wide range of physical, cognitive and neurobehavioural anomalies known as foetal alcohol spectrum disorders. However, alcohol consumption among pregnant woman is an ongoing latent health problem. AIM In the present study, the effects of trichostatin A (TSA) on emotional and cognitive impairments caused by prenatal and lactational alcohol exposure were assessed. TSA is an inhibitor of class I and II histone deacetylases enzymes (HDAC), and for that, HDAC4 activity was determined. We also evaluated mechanisms underlying the behavioural effects observed, including the expression of brain-derived neurotrophic factor (BDNF) in discrete brain regions and newly differentiated neurons in the dentate gyrus (DG). METHODS C57BL/6 female pregnant mice were used, with limited access to a 20% v/v alcohol solution as a procedure to model binge alcohol drinking during gestation and lactation. Male offspring were treated with TSA during the postnatal days (PD28-35) and behaviourally evaluated (PD36-55). RESULTS Early alcohol exposure mice presented increased anxiogenic-like responses and memory deterioration - effects that were partially reversed with TSA. Early alcohol exposure produces a decrease in BDNF levels in the hippocampus (HPC) and prefrontal cortex, a reduction of neurogenesis in the DG and increased activity levels of the HDAC4 in the HPC. CONCLUSIONS Such findings support the participation of HDAC enzymes in cognitive and emotional alterations induced by binge alcohol consumption during gestation and lactation and would indicate potential benefits of HDAC inhibitors for some aspects of foetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Medical Research Institute, Neurosciences Programme, Barcelona, Spain
| |
Collapse
|
5
|
Drug Targets in Neurotrophin Signaling in the Central and Peripheral Nervous System. Mol Neurobiol 2018; 55:6939-6955. [PMID: 29372544 DOI: 10.1007/s12035-018-0885-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022]
Abstract
Neurotrophins are a family of proteins that play an important role in the regulation of the growth, survival, and differentiation of neurons in the central and peripheral nervous system. Neurotrophins were earlier characterized by their role in early development, growth, maintenance, and the plasticity of the nervous system during development, but recent findings also indicate their complex role during normal physiology in both neuronal and non-neuronal tissues. Therefore, it is important to recognize a deficiency in the expression of neurotrophins, a major factor driving the debilitating features of several neurologic and psychiatric diseases/disorders. On the other hand, overexpression of neurotrophins is well known to play a critical role in pathogenesis of chronic pain and afferent sensitization, underlying conditions such as lower urinary tract symptoms (LUTS)/disorders and osteoarthritis. The existence of a redundant receptor system of high-and low-affinity receptors accounts for the diverse, often antagonistic, effects of neurotrophins in neurons and non-neuronal tissues in a spatial and temporal manner. In addition, studies looking at bladder dysfunction because of conditions such as spinal cord injury and diabetes mellitus have found alterations in the levels of these neurotrophins in the bladder, as well as in sensory afferent neurons, which further opens a new avenue for therapeutic targets. In this review, we will discuss the characteristics and roles of key neurotrophins and their involvement in the central and periphery nervous system in both normal and diseased conditions.
Collapse
|
6
|
Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, Tedeschi G, Funke K, Di Lazzaro V. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul 2017; 10:1-18. [DOI: 10.1016/j.brs.2016.11.009] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 01/05/2023] Open
|
7
|
Wei Z, Liao J, Qi F, Meng Z, Pan S. Evidence for the contribution of BDNF-TrkB signal strength in neurogenesis: An organotypic study. Neurosci Lett 2015; 606:48-52. [DOI: 10.1016/j.neulet.2015.08.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 01/04/2023]
|
8
|
Lim Y, Zhong JH, Zhou XF. Development of mature BDNF-specific sandwich ELISA. J Neurochem 2015; 134:75-85. [PMID: 25824396 DOI: 10.1111/jnc.13108] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 01/19/2023]
Abstract
Mature brain-derived neurotrophic factor (mBDNF) plays a vital role in the nervous system, whereas proBDNF elicits neurodegeneration and neuronal apoptosis. Although current enzyme-linked immunosorbent assay (ELISA) has been widely used to measure BDNF levels, it cannot differentiate mBDNF from proBDNF. As the function of proBDNF differs from mBDNF, it is necessary to establish an ELISA assay specific for the detection of mBDNF. Therefore, we aimed to establish a new mBDNF-specific sandwich ELISA. In this study, we have screened and found a combination of antibodies for a sandwich ELISA. A monoclonal antibody and sheep anti-BDNF were chosen as capture and detection antibody for sandwich ELISA respectively. The new ELISA showed no cross-reactivity to human recombinant NT-3, NT-4, nerve growth factor and negligible cross-reactivity (0.99-4.99%) for proBDNF compared to commercial ELISA kits (33.18-91.09%). The application of the new mBDNF ELISA was shown through the measurement of mBDNF levels in different brain regions of rats and in the brain of β-site amyloid precursor protein cleaving enzyme 1 (BACE1)(-/-) and WT mice and compared to western blot. Overall, this new ELISA will be useful for the measurement of mBDNF levels with high specificity. As the function of proBDNF differs from mBDNF (mature BDNF), it is necessary to establish an ELISA specific for the detection of mBDNF. Here, we present a novel sandwich ELISA which detects mBDNF with high specificity. This new ELISA will be useful for the measurement of mBDNF levels with high specificity in various human and animal tissues. proBDNF, precursor of BDNF; BDNF, brain-derived neurotrophic factor; NT-3, neurotrophin-3; NT-4, neurotrophin-4; NGF, nerve growth factor.
Collapse
Affiliation(s)
- Yoon Lim
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia.,Department of Human Physiology, Centre for Neuroscience, University of Flinders, Adelaide, SA, Australia
| | - Jin-Hua Zhong
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
9
|
Low-density lipoprotein receptor related protein-1 (LRP1)-dependent cell signaling promotes neurotrophic activity in embryonic sensory neurons. PLoS One 2013; 8:e75497. [PMID: 24086544 PMCID: PMC3781060 DOI: 10.1371/journal.pone.0075497] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 01/31/2023] Open
Abstract
Developing sensory neurons require neurotrophic support for survival, neurite outgrowth and myelination. The low-density lipoprotein receptor-related protein-1 (LRP1) transactivates Trk receptors and thereby functions as a putative neurotrophin. Herein, we show that LRP1 is abundantly expressed in developing dorsal root ganglia (DRG) and that LRP1-dependent cell signaling supports survival, neurite extension and receptivity to Schwann cells even in the absence of neurotrophins. Cultured embryonic DRG neurons (E15) were treated with previously characterized LRP1 ligands, LRP1-receptor binding domain of α2-macroglobulin (RBD), hemopexin domain of MMP-9 (PEX) or controls (GST) for two weeks. These structurally diverse LRP1 ligands significantly activated and sustained extracellular signal-regulated kinases (ERK1/2) 5-fold (p<0.05), increased expression of growth-associated protein-43(GAP43) 15-fold (P<0.01), and increased neurite outgrowth 20-fold (P<0.01). Primary sensory neurons treated with LRP1 ligands survived > 2 weeks in vitro, to an extent equaling NGF, a finding associated with canonical signaling mechanisms and blockade of caspase-3 cleavage. LRP1 ligand-induced survival and sprouting were blocked by co-incubation with the LRP1 antagonist, receptor associated protein (RAP), whereas RAP had no effect on NGF-induced activity. Site directed mutagenesis of the LRP1 ligand, RBD, in which Lys1370 and Lys1374 are converted to alanine to preclude LRP1 binding, were ineffective in promoting cell signaling, survival or inducing neurite extension in primary sensory neurons, confirming LRP1 specificity. Furthermore, LRP1-induced neurite sprouting was mediated by Src-family kinase (SFK) activation, suggesting transactivation of Trk receptors. Co-cultures of primary embryonic neurons and Schwann cells showed that LRP1 agonists promoted axonal receptivity to myelination to Schwann cells. Collectively, these findings identify LRP1 as a novel and perhaps essential trophic molecule for sensory neuronal survival and development.
Collapse
|
10
|
Chavez-Valdez R, Mason A, Nunes AR, Northington FJ, Tankersley C, Ahlawat R, Johnson SM, Gauda EB. Effect of hyperoxic exposure during early development on neurotrophin expression in the carotid body and nucleus tractus solitarii. J Appl Physiol (1985) 2012; 112:1762-72. [PMID: 22422797 DOI: 10.1152/japplphysiol.01609.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Synaptic activity can modify expression of neurotrophins, which influence the development of neuronal circuits. In the newborn rat, early hyperoxia silences the synaptic activity and input from the carotid body, impairing the development and function of chemoreceptors. The purpose of this study was to determine whether early hyperoxic exposure, sufficient to induce hypoplasia of the carotid body and decrease the number of chemoafferents, would also modify neurotrophin expression within the nucleus tractus solitarii (nTS). Rat pups were exposed to hyperoxia (fraction of inspired oxygen 0.60) or normoxia until 7 or 14 days of postnatal development (PND). In the carotid body, hyperoxia decreased brain-derived neurotrophic factor (BDNF) protein expression by 93% (P = 0.04) after a 7-day exposure, followed by a decrease in retrogradely labeled chemoafferents by 55% (P = 0.004) within the petrosal ganglion at 14 days. Return to normoxia for 1 wk after a 14-day hyperoxic exposure did not reverse this effect. In the nTS, hyperoxia for 7 days: 1) decreased BDNF gene expression by 67% and protein expression by 18%; 2) attenuated upregulation of BDNF mRNA levels in response to acute hypoxia; and 3) upregulated p75 neurotrophic receptor, truncated tropomyosin kinase B (inactive receptor), and cleaved caspase-3. These effects were not observed in the locus coeruleus (LC). Hyperoxia for 14 days also decreased tyrosine hydroxylase levels by 18% (P = 0.04) in nTS but not in the LC. In conclusion, hyperoxic exposure during early PND reduces neurotrophin levels in the carotid body and the nTS and shifts the balance of neurotrophic support from prosurvival to proapoptotic in the nTS, the primary brain stem site for central integration of sensory and autonomic inputs.
Collapse
Affiliation(s)
- Raul Chavez-Valdez
- Department of Pediatrics, Division of Neonatology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287-3200, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Waterhouse EG, Xu B. New insights into the role of brain-derived neurotrophic factor in synaptic plasticity. Mol Cell Neurosci 2009; 42:81-9. [PMID: 19577647 DOI: 10.1016/j.mcn.2009.06.009] [Citation(s) in RCA: 252] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022] Open
Abstract
Substantial evidence indicates that brain-derived neurotrophic factor (BDNF) plays a crucial role in synaptic plasticity. Long-lasting synaptic plasticity is restricted to active synapses and requires new protein synthesis. Recent work has identified local protein synthesis as an important source for new protein during the expression of enduring synaptic plasticity. This review discusses recent progress in understanding the mechanisms that restrict the action of BDNF to active synapses and by which BDNF mediates chemical and structural modifications of individual synapses, placing an emphasis on the role of local protein synthesis in these processes.
Collapse
Affiliation(s)
- Emily G Waterhouse
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, DC 20057, USA
| | | |
Collapse
|
12
|
Atrial natriuretic peptide type C induces a cell-cycle switch from proliferation to differentiation in brain-derived neurotrophic factor- or nerve growth factor-primed olfactory receptor neurons. J Neurosci 2002. [PMID: 12097505 DOI: 10.1523/jneurosci.22-13-05536.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the discovery of postnatal stem cells within the brain, it has become important to understand how extracellular factors might affect the maturation of neuronal precursors in the postnatal brain. Neurotrophic factors are known to play a role in neuronal development but display pleiotrophic effects, in part because of their physiological interactions with other factors. One factor positioned to interact with neurotrophins in the brains of postnatal animals is atrial C-type natriuretic peptide (CNP). In this study, we used olfactory receptor neurons (ORNs) as a model, because their precursors demonstrate the most robust and functional postnatal neurogenesis of those systems thus far described. We examined the effects of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) and the interactions of these neurotrophins and CNP in postnatal olfactory neuronal precursors. Results obtained using mice with targeted deletion of the gene for BDNF indicated that BDNF is a neuroproliferation-inducing and survival factor for ORN precursors. These roles were confirmed in vitro using primary cultures of ORNs. NGF was found to be a proliferation-inducing factor but not a survival factor. The addition of CNP to either BDNF- or NGF-treated neuronal precursors resulted in an inhibition of proliferation and the promotion of maturation. These effects were accompanied by changes in cell-cycle proteins that suggest possible mechanisms for these effects. Thus, CNP may function in the postnatal brain to regulate the exit from the cell cycle in neuronal precursor cells.
Collapse
|
13
|
Ritter AM, Woodbury CJ, Davis BM, Albers K, Koerber HR. Excess target-derived neurotrophin-3 alters the segmental innervation of the skin. Eur J Neurosci 2001; 14:411-8. [PMID: 11553291 DOI: 10.1046/j.0953-816x.2001.01654.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is thought that dermatomes are established during development as a result of competition between afferents of neighbouring segments. Mice that overexpress neurotrophins in the skin provide an interesting model to test this hypothesis, as they possess increased numbers of sensory neurons, and display hyperinnervation of the skin. When dermatomal boundaries were mapped in adult mice, it was found that those in nerve growth factor and brain-derived neurotrophic factor overexpressers were indistinguishable from wild-type animals but that overlap between adjacent segments was greatly reduced in neurotrophin-3 (NT-3) overexpressers. However, dermatomes in heterozygous NT-3 knockout mice displayed no more overlap than wild-types. In order to quantify differences across strains, innervation territories of thoracic dorsal cutaneous nerves were mapped and measured in adult mice. Overlap between adjacent dorsal cutaneous nerves was normal in nerve growth factor overexpressing mice, but much reduced in NT-3 overexpressers. However, this restriction was not reflected in the central projection of the dorsal cutaneous nerve, creating a mismatch between peripheral and central projections. Dorsal cutaneous nerve territories were also mapped in neonatal mice aged postnatal day 7-8. In neonates, nerve territories of NT-3 overexpressers overlapped less than wild-types, but in neonates of both strains the amount of overlap was much greater than in the adult. These results indicate that substantial separation of dermatomes occurs postnatally, and that excess NT-3 enhances this process, resulting in more restricted dermatomes. It may exert its effects either by enhancing competition, or by direct effects on the stability and formation of sensory endings in the skin.
Collapse
Affiliation(s)
- A M Ritter
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh PA 15261, USA.
| | | | | | | | | |
Collapse
|
14
|
Ambros IM, Attarbaschi A, Rumpler S, Luegmayr A, Turkof E, Gadner H, Ambros PF. Neuroblastoma cells provoke Schwann cell proliferation in vitro. MEDICAL AND PEDIATRIC ONCOLOGY 2001; 36:163-8. [PMID: 11464875 DOI: 10.1002/1096-911x(20010101)36:1<163::aid-mpo1040>3.0.co;2-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND A subset of human neuroblastomas (NBs) has the capacity to mature completely, imitating sympathetic ganglia. Previously, we showed that the neuronal population in spontaneously maturing NBs usually has a near-triploid DNA content without 1p deletions, and we concluded that the constantly diploid Schwann cells (SCs) do not belong to the neoplastic component of these tumours. We therefore hypothesised that NB cells are able to stimulate SC proliferation, and that SCs trigger NB differentiation. PROCEDURE We performed in vitro experiments to test this model and to test whether SCs can also influence the growth of aggressive NBs. Human SCs were co-cultivated with NB tumours and cell lines, and were harvested after defined time intervals. Proliferative activity of the SCs and the NB cells was determined by visualisation of 5-bromo-2'-deoxyuridine (BrdU) incorporation or Ki-67 staining. Neurite outgrowth and neurofilament (NF) expression were analysed immunocytochemically and apoptotic rate was determined by a terminal deoxynucleotidyl transferase-mediated dUTP-X fluorescein nick end labelling (TUNEL) assay. RESULTS Human NB tumours or cell lines unequivocally increased the proliferation of SCs in vitro. In cocultivated NB cells, the proliferative activity was not altered in the first days of cocultivation, although neurite outgrowth and NF expression were enhanced. However, after 10 days, the mitotic rate of neuroblastic cells decreased and the apoptotic rate showed a marked increase. CONCLUSIONS The results of the cocultivation experiments provide an experimental hint that the in vivo growth of SCs in NBs is caused by the neoplastic neuroblasts, and they also indicate that cells from peripheral nerves can influence the growth of aggressive NB cells if cocultivated.
Collapse
Affiliation(s)
- I M Ambros
- Children's Cancer Research Institute CCRI, St. Anna Kinderspital, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
15
|
Ritter AM, Woodbury CJ, Albers K, Davis BM, Koerber HR. Maturation of cutaneous sensory neurons from normal and NGF-overexpressing mice. J Neurophysiol 2000; 83:1722-32. [PMID: 10712492 DOI: 10.1152/jn.2000.83.3.1722] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the rodent, cutaneous sensory neurons mature over the first two postnatal weeks, both in terms of their electrical properties and their responses to mechanical stimulation of the skin. To examine the coincidence of these events, intracellular recordings were made from neurons in the dorsal root ganglion (DRG) in an in vitro spinal cord, DRG, and skin preparation from mice between the ages of postnatal day 0 and 5 (P0-P5). We also examined mice in which nerve growth factor (NGF) is overexpressed in the skin. NGF has been shown to be involved in a number of aspects of sensory neuron development and function. Therefore we ask here whether excess target-derived NGF will alter the normal course of development, either of somal membrane properties, physiological response properties, or neuropeptide content. In wild-type mice, somal action potentials (APs) were heterogeneous, with some having simple, uninflected falling phases and some displaying an inflection or break on the falling limb. The proportion of neurons lacking an inflection increased with increasing age, as did mean conduction velocity. A variety of rapidly and slowly adapting responses could be obtained by gently probing the skin; however, due to relatively low thresholds and firing frequencies, as well as lack of mature peripheral receptors such as hairs, it was not possible to place afferents into the same categories as in the adult. No correlation was seen between the presence or absence of an inflection on the somal AP (a marker for high-threshold mechanoreceptors in adult animals) and either peripheral threshold or calcitonin-gene related peptide (CGRP) content. Small differences in the duration and amplitude of the somal AP were seen in the NGF-overexpressing mice that disappeared by P3-P5. Excess target-derived NGF did not alter physiological response properties or the types of neurons containing CGRP. The changes that did occur, including a loss of the normal relationship between AP duration and conduction velocity, and a decrease in mean conduction velocity in the inflected population, might best be explained by an increase in the relative proportions of myelinated nociceptors. Of greatest interest was the finding that in both NGF overexpressers and wild-type mice, the correlation between mechanical threshold and presence or absence of an inflection on the somal spike is not apparent by P5.
Collapse
Affiliation(s)
- A M Ritter
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
16
|
Amano O, Bringas P, Takahashi I, Takahashi K, Yamane A, Chai Y, Nuckolls GH, Shum L, Slavkin HC. Nerve growth factor (NGF) supports tooth morphogenesis in mouse first branchial arch explants. Dev Dyn 1999; 216:299-310. [PMID: 10590481 DOI: 10.1002/(sici)1097-0177(199911)216:3<299::aid-dvdy8>3.0.co;2-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Posterior midbrain and anterior hindbrain neuroectoderm trans-differentiate into cranial neural crest cells (CNCC), emigrate from the neural folds, and become crest-derived ectomesenchyme within the mandibular and maxillary processes. To investigate the growth factor requirement specific for the initiation of tooth morphogenesis, we designed studies to test whether nerve growth factor (NGF) can support odontogenesis in a first branchial arch (FBA) explant culture system. FBA explants containing neural-fold tissues before CNCC emigration and the anlagen of the FBA were microdissected from embryonic day 8 (E8) mouse embryos, and cultured for 8 days in medium supplemented with 10% fetal calf serum only, or serum-containing medium further supplemented with either NGF or epidermal growth factor (EGF) at three different concentrations: 50, 100, or 200 ng/ml. Morphological, morphometric, and total protein analyses indicated that growth and development in all groups were comparable. Meckel's cartilage and tongue formation were also observed in all groups. However, odontogenesis was only detected in explants cultured in the presence of exogenous NGF. NGF-supplemented cultures were permissive for bud stage (50 ng/ml) as well as cap stage of tooth morphogenesis (100 and 200 ng/ml). Morphometric analyses of the volume of tooth organs showed a significant dose-dependent increase in tooth volume as the concentration of NGF increased. Whole-mount in situ hybridization and semiquantitative reverse transcription-polymerase chain reaction for Pax9, a molecular marker of dental mesenchyme, further supported and confirmed the morphological data of the specificity and dose dependency of NGF on odontogenesis. We conclude that (1) E8 FBA explants contain premigratory CNCC that are capable of emigration, proliferation, and differentiation in vitro; (2) serum-supplemented medium is permissive for CNCC differentiation into tongue myoblasts and chondrocytes in FBA explants; and (3) NGF controls CNCC cell fate specification and differentiation into tooth organs.
Collapse
Affiliation(s)
- O Amano
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Germani E, Lesma E, Di Giulio AM, Gorio A. Progressive and selective changes in neurotrophic factor expression and substance p axonal transport induced by perinatal diabetes: Protective action of antioxidant treatment. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990815)57:4<521::aid-jnr11>3.0.co;2-b] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Abstract
It is now well established that neurotrophins play a crucial role in the development of the nervous system. However, there is increasing evidence that the function of neurotrophins persists throughout adulthood. The broad scope of neurotrophin action is well documented in the case of nerve growth factor (NGF) and its effect on nociceptors and nociception. Here, we review the evidence for these multiple roles for NGF. Two manipulations influencing NGF levels are discussed in detail. The first involves the use of transgenic mice that overexpress or underexpress neurotrophins. A second strategy involves administration of NGF or its antibody in vivo to increase or decrease its level. During prenatal development, NGF is required for survival of nociceptors. In the early postnatal period, NGF is required for expression of the appropriate nociceptor phenotype. In adults, NGF acts as an important intermediate in inflammatory pain, contributing to both peripheral and central sensitization. The sensitization of peripheral nociceptors can be very rapid and can involve non-neural cells such as mast cells, neutrophils, fibroblasts, and macrophages. Recent evidence indicates that other neurotrophins also play key supporting roles in the development of nociceptors (e.g., NT-3) and in inflammatory pain (e.g., BDNF, NT-4/5). Furthermore, molecules from other superfamilies (e.g., GDNF) also are required to assure survival of certain classes of nociceptors. The diverse effects of neurotrophins on nociceptive processing emphasize their broad importance in the development and function of the nervous system.
Collapse
Affiliation(s)
- L M Mendell
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 11794-5230, USA
| | | | | |
Collapse
|
19
|
Abstract
Neurotrophic factors are now recognized to play important roles in the normal function of the mature central nervous system. This knowledge has motivated experiments to evaluate the potential benefits of administering neurotrophic factors to the aged brain. This article provides a review of studies to date that have determined the behavioral effects of such treatments. Nerve growth factor (NGF) administration appears to reliably enhance learning and memory in aged rats, while glial-derived neurotrophic factor (GDNF) causes some improvement in motor function. Problems associated with neurotrophic factor administration to humans are discussed.
Collapse
Affiliation(s)
- Gregory M. Rose
- Neuroscience Drug Discovery, Bristol-Myers Squibb Co., 5 Research Parkway, Wallingford, CT 06492
| |
Collapse
|
20
|
Hansson SR, Mezey E, Hoffman BJ. Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. II. Expression in neural crest derivatives and their target sites in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 110:159-74. [PMID: 9733958 DOI: 10.1016/s0165-3806(98)00103-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We used in situ hybridization histochemistry to study the expression of the two vesicular monoamine transporters (VMAT1 and VMAT2) during embryonic development in the rat. In the adult rat VMAT2 is present exclusively in neuronal tissues and VMAT1 is present in the adrenal medulla and in certain intestinal endocrine cells. We found that both transporter molecules are more widely expressed during development. We demonstrate a complete overlap of the two VMAT mRNAs in the sympathetic nervous system between E13 and E21 days. In addition, VMAT2 (and to some extent VMAT1) mRNA is expressed in ganglionic cells of the parasympathetic nervous system and in cranial ganglia (trigeminal, vestibular and spiral ganglia) between E12 and E21. The sensory neurons of the dorsal root ganglia, which are also neural crest derivatives, express VMAT2 mRNA (E11-E21), exclusively. Both VMAT mRNAs are found in the developing GI system, but in different cells. VMAT1 mRNA was detected in organs of the endocrine system (pituitary gland, adrenal gland, testis, seminal vesicle), some connective tissue cells, and the thymus. We observed expression of both VMAT mRNAs in two separate cell groups in the placenta (E8-E10). Based on their distribution during development we suggest that monoamines, released in a controlled fashion, might affect migration and differentiation of neural crest derivatives.
Collapse
Affiliation(s)
- S R Hansson
- Unit on Molecular Pharmacology, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
21
|
Zhuang X, Silverman AJ, Silver R. Mast cell number and maturation in the central nervous system: influence of tissue type, location and exposure to steroid hormones. Neuroscience 1997; 80:1237-45. [PMID: 9284073 DOI: 10.1016/s0306-4522(97)00052-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
While it is well established that brain mast cells are usually associated with the cerebral vasculature, in ring doves mast cells lie directly in the neuropil of the medial habenula. During normal development mast cells enter the habenula and complete their differentiation in situ. In the present study, we asked what characteristics of the medial habenula contribute to mast cell entry and differentiation. Grafts of embryonic habenula or control optic tectal grafts were placed in the lateral ventricle or anterior chamber of the eye. Transplantation alters the location of the habenula as well as its neural and vascular connections. Three groups of hosts were used for the ventricular grafts: four-month-old and killed three months after transplantation; four-month-old and killed seven months later, and two- to three-year-old gonadectomized males killed three months later. Hosts for the intraocular grafts were four months of age and killed three months later. Mast cells were present in the habenular grafts but not in the control tissue. Mast cells in three- and seven-month-old grafts were phenotypically immature when compared to those of hosts. They contained fewer metachromatic granules, fewer granules immunoreactive to an antiserum against gonadotropin-releasing hormone, and no highly-sulphated proteoglycans. As previously described, gonadectomized adults had fewer mast cells in their medial habenula than did intact animals, but there was no change in mast cell number in habenular grafts. The current experiments indicate that the occurrence and survival of mast cells can occur within the microenvironment of the medial habenula, but that maturation of these cells requires the normal connections of this nucleus. Furthermore, gonadectomy appears to alter mast cell number in the medial habenula by generating a secondary signal which the transplanted tissue is incapable of receiving or processing.
Collapse
Affiliation(s)
- X Zhuang
- Department of Psychology, Columbia University, New York, NY 10027, U.S.A
| | | | | |
Collapse
|
22
|
Parnas D, Linial M. Acceleration of neuronal maturation of P19 cells by increasing culture density. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:115-24. [PMID: 9263586 DOI: 10.1016/s0165-3806(97)00057-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
P19 embryonal carcinoma cells differentiate into neurons, astrocytes, and fibroblast-like cells following induction with retinoic acid. The mature neurons are capable of neurotransmitter release, and from functional synapses. We have previously shown that high culture density suppresses the cholinergic phenotype of P19 neurons. Here we demonstrate that increasing culture density accelerates the maturation of P19 neurons in a continuous manner. This is manifested by several criteria: increased efficiency of evoked [3H]aspartate release; decreased level of basal release; up-regulation of synaptic vesicle proteins; increased neurite outgrowth rate; and earlier segregation of axons and dendrites. While glutamate release is enhanced in dense cultures, the efficiency of [3H]GABA release is hardly affected, suggesting that P19 GABAergic neurons are not affected by culture density. The acceleration of neuronal maturation in dense cultures is also exhibited by the ability of dense, but not sparse cultures to release [3H]aspartate at an earlier day of differentiation. Furthermore, density effects are monitored already a few hours after plating the cultures, when neurite length in dense cultures is several fold higher than in sparse cultures. This indicates that commitment to a faster and coordinated maturation process occurs already very early during P19 neuronal differentiation.
Collapse
Affiliation(s)
- D Parnas
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
23
|
Abstract
In the developing peripheral nervous system many neurons die shortly after their axons reach their target fields. This loss is thought to match the number of neurons to the size and requirements of their target fields because altering target field size before innervation affects the number of neurons that survive. The neurotrophic hypothesis provides an explanation for how target fields influence the size of the neuronal populations that innervate them. This hypothesis arose from work on nerve growth factor (NGF), the founder member of the neurotrophin family of secreted proteins. Its principal tenet is that the survival of developing neurons depends on the supply of a neurotrophic factor that is synthesized in limiting amounts in their target fields. The neurotrophic hypothesis has, however, been broadened by the demonstration that multiple neurotrophic factors regulate the survival of certain populations of neurons. For example, some neurons depend on several different neurotrophic factors which may act concurrently or sequentially during target field innervation. In addition, there are aspects of neurotrophin action that do not conform with the classic neurotrophic hypothesis. For example, the dependence of some populations of sensory neurons on particular neurotrophins before significant neuronal death takes place raises the possibility that the supply of these neurotrophins is not limiting for survival at this stage of development. There is also evidence that at stages before and after sensory neurons depend on target-derived neurotrophins for survival, neurotrophins act on at least some sensory neurons by an autocrine route. Yet despite the growing wealth of information on the multiple roles and modes of action of neurotrophic factors, the neurotrophic hypothesis has remained the best explanation for how neuronal target fields in the developing peripheral nervous system regulate their innervation density.
Collapse
Affiliation(s)
- A M Davies
- School of Biological and Medical Sciences, University of St. Andrews, Fife, UK
| |
Collapse
|
24
|
Rusanescu G, Qi H, Thomas SM, Brugge JS, Halegoua S. Calcium influx induces neurite growth through a Src-Ras signaling cassette. Neuron 1995; 15:1415-25. [PMID: 8845164 DOI: 10.1016/0896-6273(95)90019-5] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We find that calcium influx through voltage-dependent calcium channels causes extensive neurite outgrowth in PC12 cells. The calcium signal transduction pathway promoting neurite outgrowth causes the rapid activation of protein tyrosine kinases, which include Src. Protein tyrosine phosphorylation results in the formation of an Shc/Grb2 complex, leading to Ras activation, MAP kinase activation, and the subsequent induction of the immediate early gene NGFI-A. Protein tyrosine phosphorylation, gene induction, and neurite outgrowth are inhibited by the expression of dominant negative forms of both Src and Ras, indicating a requirement for both proto-oncoproteins in calcium signaling. Our results suggest that a signaling cassette which includes Src and Ras is likely to underlie a broad range of calcium of actions in the nervous system.
Collapse
Affiliation(s)
- G Rusanescu
- Department of Neurobiology and Behavior, State University of New York at Stony Brook 11794-5230, USA
| | | | | | | | | |
Collapse
|
25
|
Abstract
Developing neurons depend on neurotrophins supplied by the tissues they innervate. Before and after this period of target-dependent survival, brain-derived neurotrophic factor also has autocrine actions on some neurons.
Collapse
Affiliation(s)
- A M Davies
- School of Biological and Medical Sciences, University of St Andrews, Fife, Scotland, UK
| | | |
Collapse
|