1
|
Zhang X, Wu Q, Zheng W, Liu C, Huang L, Zuo X, Xiao W, Han X, Ye H, Wang W, Yang L, Zhu Y. Developmental changes in lipid and fatty acid metabolism and the inhibition by in ovo feeding oleic acid in Muscovy duck embryogenesis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 12:321-333. [PMID: 36733781 PMCID: PMC9873582 DOI: 10.1016/j.aninu.2022.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/26/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Hepatic lipid and fatty acid (FA) metabolism are critical for regulating energetic homeostasis during embryogenesis. At present, it remains unclear how an exogenous FA intervention affects embryonic development in an avian embryo model. In Exp. 1, 30 fertilized eggs were sampled on embryonic days (E) 16, 19, 22, 25, 28, 31 and the day of hatch (DOH) to determine the critical period of lipid metabolism. In Exp. 2, a total of 120 fertilized eggs were divided into two groups (60 eggs/group) for in ovo feeding (IOF) procedures on E25. Eggs were injected into the yolk sac with PBS as the control group and with oleic acid (OA) as the IOF-OA treatment group. Samples were collected on E28 and E31. In Exp. 1, hepatic triacylglycerol (TG) and cholesterol (CHO) contents increased while serum TG content decreased from E16 to DOH (P < 0.05). Both serum and liver displayed an increase in unsaturated FA and a decrease in saturated FA (P < 0.05). There was a quadratic increase in the target gene and protein expression related to hepatic FA de novo synthesis and oxidation (P < 0.05), whose inflection period was between E22 and E28. In Exp. 2, compared with the control embryos, IOF-OA embryos had an increased yolk sac TG content on E28 and E31, and a decreased serum TG and CHO content on E28 (P < 0.05). The IOF-OA embryos had less OA in the yolk sac and liver on E28, and less unsaturated FA in the serum and liver on E31 than did the control embryos (P < 0.05). Hepatic gene mRNA expression related to FA uptake, synthesis, and oxidation on E28 was lower in IOF-OA than in control embryos (P < 0.05), not on E31 (P > 0.05). Maximal metabolic changes in lipid and FA metabolism occurred on E22-E28 in Muscovy duck embryogenesis, along with the altered target gene and protein expression related to lipogenesis and lipolysis. IOF-OA intervention on E25 could inhibit the target gene expression related to FA uptake, synthesis, and oxidation, which may influence the normal FA metabolism on E28 during embryogenesis.
Collapse
Affiliation(s)
- Xiufen Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qilin Wu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wenxuan Zheng
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Chuang Liu
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | - Liang Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xin Zuo
- Wen's Food Group Co., Ltd, Yunfu 52740, China
| | | | | | - Hui Ye
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou 510642, China,Corresponding authors.
| |
Collapse
|
2
|
Ebm N, Guo F, Brett MT, Bunn SE, Kainz MJ. Polyunsaturated fatty acids in fish tissues more closely resemble algal than terrestrial diet sources. HYDROBIOLOGIA 2021; 848:371-383. [PMID: 33343020 PMCID: PMC7738338 DOI: 10.1007/s10750-020-04445-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 05/05/2023]
Abstract
The River Continuum Concept implies that consumers in headwater streams have greater dietary access to terrestrial basal resources, but recent studies have highlighted the dietary importance of high-quality algae. Algae provide consumers with physiologically important omega-3 (n-3) polyunsaturated fatty acids (PUFA), particularly eicosapentaenoic acid (EPA). However, terrestrial plants and most benthic stream algae lack the long-chain (LC) n-3 PUFA docosahexaenoic acid (DHA, 22:6n-3), which is essential for neural development in fish and other vertebrates. We sampled subalpine streams to investigate how the PUFA composition of neural (brain and eyes), muscle, and liver tissues of freshwater fish is related to their potential diets (macroinvertebrates, epilithon, fresh and conditioned terrestrial leaves). The PUFA composition of consumers was more similar to epilithon than to terrestrial leaves. Storage lipids of eyes most closely resembled dietary PUFA (aquatic invertebrates and algae). However, DHA and arachidonic acid (ARA, 20:4n-6) were not directly available in the diet but abundant in organs. This implies that algal PUFA were selectively retained or were produced internally via enzymatic PUFA conversion by aquatic consumers. This field study demonstrates the nutritional importance of algal PUFA for neural organs in aquatic consumers of headwater regions.
Collapse
Affiliation(s)
- Nadine Ebm
- WasserCluster Lunz – Inter-university Center for Aquatic Ecosystem Studies, 3293 Lunz Am See, Austria
- Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Fen Guo
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Michael T. Brett
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195 USA
| | - Stuart E. Bunn
- Australian Rivers Institute, Griffith University, Nathan, QLD 4111 Australia
| | - Martin J. Kainz
- WasserCluster Lunz – Inter-university Center for Aquatic Ecosystem Studies, 3293 Lunz Am See, Austria
- Department for Biomedical Research, Danube University Krems, Krems an der Donau, Austria
| |
Collapse
|
3
|
Ozkan A, Parlak H, Tanriover G, Dilmac S, Ulker SN, Birsen I, Agar A. The protective mechanism of docosahexaenoic acid in mouse model of Parkinson: The role of hemeoxygenase. Neurochem Int 2016; 101:S0197-0186(16)30159-0. [PMID: 27984168 DOI: 10.1016/j.neuint.2016.10.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/18/2016] [Accepted: 10/26/2016] [Indexed: 12/17/2022]
Abstract
Parkinson's disease (PD) is characterized by degeneration of the dopaminergic neurons in substantia nigra (SN). Its major clinical symptoms are tremor, rigidity, bradykinesia and postural instability. Docosahexaenoic acid (DHA) is an essential fatty acid for neural functions that resides within the neural membrane. A decline in fatty acid concentration is observed in case of neurodegenerative diseases such as PD. The present study aimed to explore the role of the heme oxygenase (HO) enzyme in protective effects of DHA administration in an experimental model of PD by using the neurotoxin 1-Methly-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Three-month old male C57BL/6 mice were randomly divided into 4 groups as Control, DHA-treated (DHA), MPTP-injected (MPTP) and DHA-treated + MPTP injected (DHA + MPTP). DHA was administered daily (36 mg kg-1 day-1) by gavage to DHA and DHA + MPTP groups for 30 days. On the 23rd day of DHA administration, MPTP was intraperitoneally injected at a dose of 4 × 20 mg kg-1 with 2-hr. intervals. Motor activities of mice were evaluated by pole test, locomotor activity and rotarod tests on the 7th day of the utilization of experimental Parkinson's model. Total brain tissues were used in immunohistochemical analysis of the tyrosine hydroxylase (TH) and Nuclear factor E2 related factor2 (Nrf2). SN tissues were extracted for biochemical analysis. HO-1 and HO-2 protein levels were detected by western blotting. Further, HO activity was measured by spectrophotometric assay. As an indicator of motor coordination and balance, the rotarod test at 40 rpm showed that MPTP-treated animals exhibited shorter time on the rotating rod mill, which was significantly increased by DHA treatment in DHA + MPTP group. The total locomotor activity, ambulatory movement and total distance were decreased in MPTP group, whereas they were improved upon DHA treatment. The results of the pole test indicating the intensity of the bradykinesia showed that the T-turn and T-total were increased in MPTP group, while DHA treatment significantly shortened both parameters. The number of TH-positive cells in SN was significantly reduced in MPTP group compared to the Control and DHA + MPTP groups. Also, immunoreactive Nrf2 levels were clearly increased in MPTP group compared to DHA + MPTP group. HO-1 expression level decreased in the DHA + MPTP group compared to MPTP group. The results of the present study indicated that DHA has protective effects on dopaminergic neurons in MPTP-induced experimental model of PD. In addition, the pathways of HO-1 and HO-2 might participate in this protective mechanism.
Collapse
Affiliation(s)
- Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey.
| | - Hande Parlak
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Sayra Dilmac
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | | | - Ilknur Birsen
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| |
Collapse
|
4
|
Wu H, Ichikawa S, Tani C, Zhu B, Tada M, Shimoishi Y, Murata Y, Nakamura Y. Docosahexaenoic acid induces ERK1/2 activation and neuritogenesis via intracellular reactive oxygen species production in human neuroblastoma SH-SY5Y cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:8-16. [DOI: 10.1016/j.bbalip.2008.10.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/19/2008] [Accepted: 10/03/2008] [Indexed: 01/21/2023]
|
5
|
Cao D, Xue R, Xu J, Liu Z. Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 2005; 16:538-46. [PMID: 16115542 DOI: 10.1016/j.jnutbio.2005.02.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Indexed: 11/23/2022]
Abstract
Effects of docosahexaenoic acid (DHA) on survival and neurite outgrowth were investigated in primary cultures of rat cortical neurons. Cell cultures were prepared from cortex on embryonic day 18 (E-18) for treatment with a series of DHA concentrations (12.5, 25, 50, 75, 100 and 200 microM). Docosahexaenoic acid (25-50 microM) significantly enhanced neuronal viability, but lower concentration of DHA (12.5 microM) did not show an obvious effect. In contrast, higher concentrations of DHA (100-200 microM) exerted the significant opposite effects by decreasing neuronal viability. Furthermore, treatment with 25 microM DHA significantly prevented the neurons from death after different culture days in vitro (DIV). Moreover, measurements from the cultures exposed to 25 microM DHA immediately after plating showed significant increases in the percentage of cells with neurites, the mean number of neurite branches, the total neuritic length per cell and the length of the longest neurite in each cell after 24 and 48 h in vitro (HIV). The DHA-treated neurons had greater growth-associated protein-43 (GAP-43) immunoactivity and higher phosphatidylserine (PS) and phosphatidylethanolamine (PE) contents, but lower phosphatidylcholine (PC) content than control neurons. The significant increased DHA contents were also observed in both PE and PS in the treated neurons. These findings suggest that optimal DHA (25 microM) may have positive effects on the survival and the neurite outgrowth of the cultured fetal rat cortical neurons, and the effects probably are related to DHA-stimulating neuron-specific protein synthesis and its enhancing the discrete phospholipid (PL) content through enrichment of DHA in the PL species.
Collapse
Affiliation(s)
- Dehua Cao
- Department of Biology, School of Life Sciences, Nanjing University, Jiangsu, Nanjing 210093, P. R. China
| | | | | | | |
Collapse
|
6
|
Bazan NG. Synaptic lipid signaling: significance of polyunsaturated fatty acids and platelet-activating factor. J Lipid Res 2003; 44:2221-33. [PMID: 13130128 DOI: 10.1194/jlr.r300013-jlr200] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Neuronal cellular and intracellular membranes are rich in specialized phospholipids that are reservoirs of lipid messengers released by specific phospholipases and stimulated by neurotransmitters, neurotrophic factors, cytokines, membrane depolarization, ion channel activation, etc. Secretory phospholipases A2 may be both intercellular messengers and generators of lipid messengers. The highly networked nervous system includes cells (e.g., astrocytes, oligodendrocytes, microglial cells, endothelial microvascular cells) that extensively interact with neurons; several lipid messengers participate in these interactions. This review highlights modulation of postsynaptic membrane excitability and long-term synaptic plasticity by cyclooxygenase-2-generated prostaglandin E2, arachidonoyldiacylcylglycerol, and arachidonic acid-containing endocannabinoids. The peroxidation of docosahexaenoic acid (DHA), a critical component of excitable membranes in brain and retina, is promoted by oxidative stress. DHA is also the precursor of enzyme-derived, neuroprotective docosanoids. The phospholipid platelet-activating factor is a retrograde messenger of long-term potentiation, a modulator of glutamate release, and an upregulator of memory formation. Lipid messengers modulate signaling cascades and contribute to cellular differentiation, function, protection, and repair in the nervous system. Lipidomic neurobiology will advance our knowledge of the brain, spinal cord, retina, and peripheral nerve function and diseases that affect them, and new discoveries on networks of signaling in health and disease will likely lead to novel therapeutic interventions.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Louisiana State University Neuroscience Center of Excellence and Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| |
Collapse
|
7
|
Farooqui AA, Ong WY, Horrocks LA. Plasmalogens, Docosahexaenoic Acid and Neurological Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 544:335-54. [PMID: 14713251 DOI: 10.1007/978-1-4419-9072-3_45] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Affiliation(s)
- Akhlaq A Farooqui
- Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
8
|
Rodriguez de Turco EB, Belayev L, Liu Y, Busto R, Parkins N, Bazan NG, Ginsberg MD. Systemic fatty acid responses to transient focal cerebral ischemia: influence of neuroprotectant therapy with human albumin. J Neurochem 2002; 83:515-24. [PMID: 12390513 DOI: 10.1046/j.1471-4159.2002.01121.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human albumin therapy is highly neuroprotective in focal cerebral ischemia. Because albumin is the main carrier of free fatty acids (FFA) in plasma, we investigated the content and composition of plasma FFA in jugular vein (JV), femoral artery (FA) and femoral vein (FV) of rats given intravenous human albumin (1.25 g/kg) or saline vehicle (5 mL/kg) 1 h after a 2 h middle cerebral artery occlusion (MCAo) or sham surgery. Arachidonic acid was the only FFA significantly increased by MCAo in all plasma samples prior to albumin administration, remaining at the same level regardless of subsequent treatments. Albumin treatment induced in both MCAo- and sham-groups a 1.7-fold increase in total plasma FFA (mainly 16:0, 18:1, 18:2n-6) during 90-min reperfusion. MCAo selectively stimulated the albumin-mediated mobilization of n-3 polyunsaturated fatty acids (PUFA), with an early increase in 22:5n-3 and 22:6n-3 in the FA prior to detectable changes in the JV. In the MCAo-albumin group, the lower level of FFA in JV as compared with FA and FV suggests an albumin-mediated systemic mobilization and supply of FFA to the brain, which may favor the replenishment of PUFA lost from cellular membranes during ischemia and/or to serve as an alternative source of energy, thus contributing to albumin neuroprotection.
Collapse
MESH Headings
- Animals
- Arachidonic Acid/metabolism
- Disease Models, Animal
- Docosahexaenoic Acids/metabolism
- Fatty Acids, Nonesterified/blood
- Fatty Acids, Nonesterified/metabolism
- Fatty Acids, Omega-3
- Fatty Acids, Unsaturated/blood
- Fatty Acids, Unsaturated/metabolism
- Femoral Artery/physiology
- Femoral Vein/physiology
- Humans
- Infarction, Middle Cerebral Artery/complications
- Infarction, Middle Cerebral Artery/drug therapy
- Infarction, Middle Cerebral Artery/physiopathology
- Injections, Intravenous
- Ischemic Attack, Transient/drug therapy
- Ischemic Attack, Transient/etiology
- Ischemic Attack, Transient/physiopathology
- Jugular Veins/physiology
- Male
- Neuroprotective Agents/therapeutic use
- Rats
- Rats, Sprague-Dawley
- Serum Albumin/therapeutic use
- Triglycerides/blood
- Triglycerides/metabolism
Collapse
Affiliation(s)
- Elena B Rodriguez de Turco
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, School of Medicine, New Orleans, Louisiana, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Bennett CN, Horrobin DF. Gene targets related to phospholipid and fatty acid metabolism in schizophrenia and other psychiatric disorders: an update. Prostaglandins Leukot Essent Fatty Acids 2000; 63:47-59. [PMID: 10970713 DOI: 10.1054/plef.2000.0191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phospholipids make up about 60% of the brain's dry weight and play key roles in many brain signal tranduction mechanisms. A recent review(1)identified the increasing evidence that abnormal phospholipid and related fatty acid metabolism may contribute to illnesses such as schizophrenia, bipolar disorder, depression and attention deficit hyperactivity disorder. This current paper reviews the main pathways of phospholipid metabolism, emphasizing the role of phospholipases of the A2 in signal tranduction processes. It also updates the chromosomal locations of regions likely to be involved in these disorders, and relates these to the known locations of genes directly or indirectly involved in phospholipid and fatty acid metabolism.
Collapse
|
10
|
Rodriguez de Turco EB, Parkins N, Ershov AV, Bazan NG. Selective retinal pigment epithelial cell lipid metabolism and remodeling conserves photoreceptor docosahexaenoic acid following phagocytosis. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19990815)57:4<479::aid-jnr7>3.0.co;2-u] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Horrobin DF, Bennett CN. New gene targets related to schizophrenia and other psychiatric disorders: enzymes, binding proteins and transport proteins involved in phospholipid and fatty acid metabolism. Prostaglandins Leukot Essent Fatty Acids 1999; 60:141-67. [PMID: 10359017 DOI: 10.1054/plef.1999.0027] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phospholipids make up about 60% of the brain's dry weight. In spite of this, phospholipid metabolism has received relatively little attention from those seeking genetic factors involved in psychiatric and neurological disorders. However, there is now increasing evidence from many quarters that abnormal phospholipid and related fatty acid metabolism may contribute to illnesses such as schizophrenia, bipolar disorder, depression and attention deficit hyperactivity disorder. To date the possible specific proteins and genes involved have been relatively ill-defined. This paper reviews the main pathways of phospholipid metabolism, emphasizing the roles of phospholipases of the A2 and C series in signal transduction processes. It identifies some likely protein candidates for involvement in psychiatric and neurological disorders. It also reviews the chromosomal locations of regions likely to be involved in these disorders, and relates these to the known locations of genes directly or indirectly involved in phospholipid and fatty acid metabolism.
Collapse
Affiliation(s)
- D F Horrobin
- Laxdale Research, Kings Park House, Laurelhill Business Park, Stirling, UK
| | | |
Collapse
|
12
|
Saito M, Ueno M, Kubo K, Yamaguchi M. Dose-Response Effect of Dietary Docosahexaenoic Acid on Fatty Acid Profiles of Serum and Tissue Lipids in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 1998; 46:184-193. [PMID: 10554217 DOI: 10.1021/jf970385d] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The dose-response effects of dietary docosahexaenoic acid (22:6n-3, DHA) on the fatty acid profiles of total lipids of rat serum and tissues were investigated. Rats were fed diets containing graded levels of purified DHA at 0, 1.0, 3.4, and 8.7% of total energy in the diets for 2 weeks. It was found that each tissue had its own peculiar composition of fatty acids which differed markedly from that of circulating serum lipid. This composition was basically influenced dose-dependently by the dietary lipids with graded levels of DHA, but to different degrees in different tissues. Those of brain were most resistant and of heart most susceptible to dietary DHA.
Collapse
Affiliation(s)
- M Saito
- Division of Food Science, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162, Japan, and Department of Food Science, Faculty of Home Economics, Jissen Women's University, Hino-shi, Tokyo 191, Japan
| | | | | | | |
Collapse
|
13
|
Green P, Kamensky B, Yavin E. Replenishment of docosahexaenoic acid in n-3 fatty acid-deficient fetal rats by intraamniotic ethyl-docosahexaenoate administration. J Neurosci Res 1997; 48:264-72. [PMID: 9160249 DOI: 10.1002/(sici)1097-4547(19970501)48:3<264::aid-jnr9>3.0.co;2-d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A procedure for intraamniotic ethyl-docosahexaenoate (Et-DHA) administration was used to restore the docosahexaenoic acid (DHA; 22:6 n-3) levels in n-3-deficient fetal rats. The state of deficiency, characterized by a 34% and 60% decrease in DHA content of fetal brain and liver, respectively, was attained by feeding the pregnant dams from day 8 and up to 20 days gestation, with an n-3 linolenic acid-deprived diet. After a single intraamniotic administration of Et-DHA on day 18 or 19, a rapid increase in both fetal brain and liver DHA was achieved. This increase was accompanied by a decrease in the docosapentaenoic acid (DPA; 22:5 n-6) level. After 48 hr following Et-DHA administration, the major phospholipids (PLs) phosphatidylserine (PS), phosphatidylethanolamine (PE), and phosphatidylcholine (PC), together accounting for more than 90% of total lipid phosphorus in sunflower oil (SFO)-treated animals, regained the DHA content to levels similar to control animals in both fetal brain and liver tissues. Unlike brain, however, most of the DHA content in liver PLs was restored by 24 hr, suggesting that the fetal liver may have a higher metabolic turnover. The DHA/DPA ratio was used to assess the degree of DHA correction. Fetal brain PS, PC, and PE ratios following Et-DHA administration grew steadily over a period of 48 hr but reached only approximately 60% of the control levels. Liver PS regained a value similar to the control, while those of PC and PE were 33% and 46% lower than the controls, respectively. Alterations in the PL polar head-group composition were observed following the dietary manipulations and Et-DHA administration. Although the intraamniotic injection is an invasive approach, the ability to rapidly enhance DHA acylation during intrauterine life may hold potential clinical value whenever an indication for DHA deficiency exists.
Collapse
Affiliation(s)
- P Green
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|